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Abstract Optimal placement of charging stations for electric vehicles (EVs) is critical
for providing convenient charging service to EV owners and promoting public accep-
tance of EVs. There has been a lot of work on EV charging station placement, yet EV
drivers’ charging strategy, which plays an important role in deciding charging stations’
performance, is missing. EV drivers make choice among charging stations according
to various factors, including the distance, the charging fare and queuing condition in
different stations etc. In turn, some factors, like queuing condition, is greatly influenced
by EV drivers’ choices. As more EVs visit the same station, longer queuing duration
should be expected. This work first proposes a behavior model to capture the deci-
sion making of EV drivers in choosing charging stations, based on which an optimal
charging station placement model is presented to minimize the social cost (defined as
the congestion in charging stations suffered by all EV drivers). Through analyzing EV
drivers’ decision-making in the charging process, we propose a k−Level nested Quantal
Response Equilibrium charging behavior model inspired by Quantal Response Equilib-
rium model and level-k thinking model. We then design a set of user studies to simulate
charging scenarios and collect data from human players to learn the parameters of dif-
ferent behavior models. Experimental results show that our charging behavior model
can better capture the bounded rationality of human players in the charging activity
compared with state-of-the-art behavior models. Furthermore, to evaluate the proposed
charging behavior model, we formulate the charging station placement problem with
it and design an algorithm to solve the problem. It is shown that our approach obtains
placement with a significantly better performance to different extent, especially when
the budget is limited and relatively low.
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1 Introduction

Electric vehicles (EVs) are attracting growing interest from the public in recent years.
Many countries have started investing on EVs to mitigate the shortage of fossil fuels
and the serious air pollution caused by traditional combustion vehicles. A critical issue
that limits the promotion of EVs is their limited battery capacity, which brings mileage
anxiety for drivers. Consequently, the EV charging stations, which can support EVs
with fast and convenient charging (between 20 to 30 minutes, around 12 times faster
than charging with domestic electricity [1]) is important for the successful boosting
of EVs. With integrated network of charging stations, EV drivers can select the most
suitable and convenient one to use according to their preference. Such facility support
would increase the willingness of the public to accept EVs. On the one hand, character-
istics of charging stations (e.g., the location and size) influence the charging behavior
of EV drivers; in turn, the choices of EV drivers affect the performance of charging
stations (e.g., the length of the queue). Thus, it is important to study the interrelation-
ship between EV drivers’ charging behavior and the performance of charging stations,
which should be furthermore considered in the planning and construction process of
charging stations.

While there has been a number of studies [2–5] on Charging Station Placement
Problems (CSPP), only a few of them [2,5] take into consideration the influence of EV
drivers’ charging behavior. Moreover, among a few studies that mention EV drivers
during solving CSPP, their behavior models are based on rather simple assumptions.
There is lack of comprehensive study of EV drivers’ preference over different factors
and/or they assume that EV drivers are fully rational. Although there are some other
studies on EV drivers’ charging behavior or patterns without considering the charging
station placement problem [6–9], they focus on statistics of their charging time, fre-
quency and peak demand etc. None of them have studied the decision making process
of EV drivers about choosing charging stations in the charging process.

In this paper, we propose a realistic k-Level nested Quantal Response Equilibrium
(k-Level QRE) charging behavior model, which is the first contribution of this work.
In the proposed model, with different levels of rationality, EV drivers try to minimize
the charging cost and compete with each other over limited resources for charging. Our
k-Level QRE charging behavior model is inspired by the QRE model [10] and level-k
thinking model [11]. To the best of our knowledge, we are the first to study EV drivers’
specific charging behavior.

Our second contribution is that we formulate the charging station placement prob-
lem with the k-Level QRE charging behavior model and design an algorithm to solve
the complex optimization problem. We utilize the approximate derivative and design
a gradient descent based approach.

The third contribution of this work is that we design a set of simulations of charg-
ing scenarios and collect data from human players to learn the parameters of different
behavior models and compare the fitting results of them. The comparison result proves
that our proposed model can better capture the charging behavior of EV drivers.

The last contribution is that we conduct experimental evaluations to prove the
effectiveness of employing the k-Level QRE charging behavior model for CSPP. We
compare it with benchmarks with other behavior models. It is shown that our ap-
proach for placement significantly outperforms the benchmarks by decreasing the EV
drivers’ queuing duration to different extent, especially when the budget is limited and
relatively low.
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2 Related Work

Due to the rising attention to environment-friendly energy usage in transportation area,
electric vehicle (EV) and its charging techniques have been extensively researched in
recent years [12–14]. Meanwhile, to support the introduction of EVs, the charging
station placement problem (CSPP) has also been widely studied [15,16,3,17–20,4,
21–24]. They focus on different aspects, including the charging station coverage, the
cooperation with power grid, and the travel cost of EV drivers to access the charging
stations etc., to optimize the location and/or size of charging stations. Nevertheless,
they lack enough attention on the influence from the participating EV drivers on the
performance of the charging stations. Among a few studies that consider EV drivers’
charging strategies, He et al. [2] use a multi-nomial logit model to model EV drivers’
charging route distribution. However, they fail to explain why the drivers’ behavior
would form the distribution and how to decide the parameters in the logit model.
Xiong et al. [5,25] assume that the drivers are fully rational in the charging game and
would form Nash equilibrium in choosing charging stations, which is usually impractical
in real-world scenarios.

While perfect rationality has been extensively studied and used to model players’
decision-making in congestion games [26,27], it is not the best solution for the charging
game that we want to study. Nash equilibrium (NE) in a game is defined as the state
where no player can improve his/her utility by unilaterally changing his/her own deci-
sion. While the number of players goes to infinity, NE converges to the Wardrop user
equilibrium (UE), i.e., whichever choice used by the players has the same and maxi-
mum utility. However, the assumptions in perfect rationality are usually impractical
in reality due to (1) players’ lack of accurate information (on others’ behavior) and
(2) limited computational ability. Bounded rationality is first proposed by Simon [28],
where players tend to seek a satisfactory solution rather than an optimal one. However,
the qualitative definition of “satisfactory solution" does not specify its distance from
the optimal solution and thus it is hard to quantitatively evaluate it for specific prob-
lems. Moreover, the existence of Bounded Rational User Equilibria (BRUE) makes the
solution space a non-convex set.

To model the bounded rationality of human players, Mckelvey and Palfrey [10]
propose quantal response equilibrium (QRE). QRE specifies a set of mixed strategies
for each player while assuming a random perception error in utility estimation. A
typical QRE formation is the logit equilibrium based on a presumed error distribution,
i.e., i.i.d. Gumbel distribution.

pi =
eλui∑
j e
λuj

Note that the subscript i denotes a specific choice, ui is the utility of choice i, and pi is
the probability of using choice i. However, the hyper-parameter — rationality level λ
defined in QRE can be any value from 0 to∞, and it may vary from case to case. This
character hinders the application of QRE to real-world problems. Some work (e.g. [29])
discovers that value of λ is largely dependent on specific problem structure, but there
is no further research on how it is influenced. Thus, the hyper-parameter λ is usually
carefully studied for specific problems and applications.

Human behavior has also been valued and extensively studied in the economic
research community. Prospect theory, a Nobel-prize-winning theory is a classic behavior
economic theory proposed by Daniel Kahneman and Amos Tversky [30]. As shown in
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Figure 1, people’s prospect utility for a certain decision is influenced by a reference
point, as well as the loss or gain versus it. Another behavior model, cognitive hierarchy
model (which is well known as level-k thinking model [11]) assumes that players act
with different levels of rationality.

Fig. 1: The value function of prospect theory

Some existing work has focused on EV drivers’ charging behaviors or patterns.
Smart and Schey [6] collect and analyze data collected from an EV project. Their data
show some statistics of EV users, including the driving distance, charging frequency
and the place to charge (home or charging stations) etc. Franke and Krems [7] focus on
studying the charge level at which people recharge. Azadfar et al. [8] also present some
statistics of EV drivers’ recharging behavior such as driving distance between charging
activities etc. Quirós-Tortós et al. [9] use probability distribution functions to analyze
EV drivers’ start charging time and peak demand etc. to understand the interaction
between charging activities and the power grid. However, to the best of our knowledge,
there is no existing work studying EV drivers’ charging profile and strategy.

In this work, we formulate the charging process of EV drivers as a charging game;
study and describe the bounded rationality of EV drivers in charging activities with a
k-Level QRE model (which is inspired by the QRE model and level-k thinking model);
and integrate the obtained realistic charging behavior model into the CSPP formulation
to improve the charging station performance.

3 Charging Game and Equilibria

In this section, we first describe the EV charging scenario and model it as a charging
game. Then we discuss three kinds of different equilibrium concepts for the charging
game, including two state-of-the-art equilibria and the k-Level QRE model proposed
in this work.

3.1 Charging Scenario and Charging Game Formulation

When EV drivers need to charge their EVs, they are usually faced with multiple choices,
where each is a charging station with some specific characteristics. These characteristics
may include the distance to the station, the charging fare to pay for charging and the
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Notation Meaning
N = {1, ..., n} the set of zones; if there is a charging station in zone i, it is

named the ith charging station
τ the portion of EV owners that use charging stations
xi the number of chargers in the ith charging station; xi = 0 means

there is no charging station in zone i
Ei the number of EV owners in zone i; they are treated as identical

group i players of the charging game
pi = {pij} the mixed strategy of EV owners in zone i, where pij is the

probability they charge in the jth charging station
P = {pi} the strategy profile of all EV owners

P? An equilibrium strategy profile
P?−i An equilibrium strategy profile of all players except group i play-

ers
Ci the charging cost of all EV owners in zone i
cij the unit charging cost for EV owners in zone i to charge in the

jth charging station
tij , dij the travel time and distance between zone i and the jth charging

station
fj the charging fare of the jth charging station
qj the queuing duration in the jth charging station, which is a

function of the strategy profile P

µ the time used to charge one EV
yj the number of EV owners that use the jth charging station under

strategy profile P, yj =
∑
iEiτpij

wt, wd, wf , wq the weights of travel time, distance, charging fare and queuing
duration in function cij

λ the rationality parameter of QRE and k-Level QRE models
γl the proportion of level-l players in the k-Level QRE model,∑k

l=1 γl = 1

pli = {p
l
ij} the strategy of level-l players in zone i

SC the social cost
B the budget

S = {x0} the set of initial searching points, each of which is a valid place-
ment

NI the maximum number of iterations of Algorithm 1
NS the maximum searching step size (integer) of Algorithm 1

Table 1: Notations

queuing condition in the station etc. Specifically, considering the queuing condition,
it is straightforward to see that more people selecting the same station would lead to
longer queuing duration. In a sense, people are competing with each other for the re-
source — the charging stations and they are self-interested in this process. Therefore,
we define a charging game to model the interactions among them.

Let us first take a look at the charging scenario. We consider the EV charging prob-
lem in such an environment. Assume that there is an EV driver population scattered in
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the city. According to the geographic condition, residential distribution and city plan,
the city can be divided into a set N = {1, ..., n} of zones1. Each zone i ∈ N has Ei
residents that own EVs and a part τ ∈ (0, 1) of them use charging stations instead of
home electricity to recharge their EVs. Suppose there is at most one charging station
in each zone i and we name it the ith charging station, whose size is xi (i.e., there are
xi chargers and at most xi EVs can be served in the meantime) and location is decided
by the government according to various factors (e.g., the land property and city plan-
ning requirement etc.)2. Then the EV charging problem is for each EV driver to make
decision about where to charge the EV. The charging game has following components.

– Player. The EV drivers are players of the charging game.
– Strategy, mixed strategy and strategy profile. A strategy for a player is to use

one accessible charging station. For example, a player in zone i can charge in the
jth charging station. Considering that players in the same zone have the same ac-
cessibility to charging stations, we treat them as identical players. The EV drivers
in zone i are thus called group i players. We then focus on the mixed strategy
pi = {pij}, i.e., the strategy distribution of players in each group i, where pij is
the probability that players in zone i charge in the jth charging station. The strat-
egy profile of the charging game is denoted by P = {pi}, i.e., the mixed strategy
of all groups.

– Cost. Considering that charging in different charging stations bring the same utility
for EV drivers, i.e., having the EV recharged, we assume that EV drivers of each
group i only consider their cost Ci (details to be discussed later in this section)
when making decision in the charging process3.

– Equilibrium. Players are self-interested in the charging game, thus they are always
searching for better strategy to decrease the charging cost with their best ability.
An equilibrium strategy profile P? is the stable state of the game where no player
has the incentive to unilaterally deviate from their current strategy.

We then discuss the cost definition in the charging game. Considering the charging
process, an EV driver needs to drive from home to the charging station, (probably)
queue in the charging station for some time and pay the charging fare. Thus, we decide
to include the following factors in the charging cost function4.

– Travel time tij : the time of driving between zone i and the jth charging station.
We assume that the travel time is similar for going to and coming back from the
charging station.

– Travel distance dij : the distance between zone i and the jth charging station.

1 This is inspired by the city plan of Singapore (http://www.propertyhub.com.sg/
singapore-district-guide.html). Based on the zoning assumption, residents in the same
zone are living relatively close. Although identifying the specific location and treating each of
them as a different player would be closer to the real-world scenario, relatively unrealistic
for formulating and solving the optimization problem. Thus, we make the comprise and treat
them as a group of identical agents.

2 Readers might wonder why only one charging station is considered in one zone. The
reason is that in case there are multiple charging stations in one zone, we can always divide
the zone into a number of new zones, each with one charging station.

3 Under some circumstances, EV drivers might have different benefits while charging their
EVs in different charging stations (e.g., getting access to other facilities). In that case, our
model can be extended by deducting the benefit in the cost function.

4 We list the most common factors that influence EV drivers’ charging cost. While other
factors may make a difference in some special scenarios, the model can be extended accordingly.



Electric Vehicle Charging Strategy Study 7

– Charging fare fj : the money to pay in the jth charging station. We assume a
fixed fare for all players that use the same charging station.

– Queuing duration qj(P): the time to wait in line in the jth charging station,
which depends on the size xi of the charging station and the number of EV drivers
yi =

∑
iEiτpij that use it. Note that the queuing duration qj in the charging sta-

tion of zone j is decided by how many EV drivers use it. Thus it is a function of the
strategy profile P. Similar to [25], we assume that all chargers to be deployed have
the same service ability, and each of them averagely takes µ minutes to recharge
one EV. The queuing duration qj for EV drivers in the jth charging station is

qj(P) =
µyj
2xj

=
µ
∑
iEiτpij
2xj

(1)

A linear of aforementioned factors with corresponding weights is used to formulate
charging cost Ci.

Ci(P) = Eiτ
∑
j

pijcij(P) (2)

cij(P) = wttij + wddij + wffj + wqqj(P) (3)

where qj(P), cij(P) and Ci(P) mean that the queuing duration qj and cost Ci are
functions of the strategy profile P, and cij is the unit cost of charging in the jth
charging station.

3.2 Nash Equilibrium

Nash equilibrium is widely used in game theory. By assuming that players have the
knowledge of all other players’ strategies and are fully rational, the Nash equilibrium
describes the state where no player can decrease her charging cost via unilateral strat-
egy change. In the charging game, it means: if the jth charging station is used with
non-zero probability pij by group i players, there must be charging cost cij = minj′ cij′ .
Otherwise, pij will decrease while pij? with j? = argminj′ cij′ would increases. For-
mally, the Nash equilibrium P? can be denoted as Equation (4), which can further be
represented by Equation (5).

p?i ∈ argmin
pi

Eiτ
∑
j

pijcij(pi,P
?
−i), ∀i ∈ N (4)

cij(P
?) = min

j′
cij′(P

?), if p?ij > 0,∀i ∈ N (5)

Note that P?−i denotes the equilibrium strategy profile of all players except group i

players.

3.3 QRE Model

With the charging cost function in Equation (3), we can denote the selection distribu-
tion of players according to Quantal Response Equilibrium (QRE) model with Equation
(6).

pij =
e−λcij(P)∑
j′ e
−λcij′ (P)

(6)
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Note that λ is the rationality parameter of the QRE model. When λ→ 0, players tend
to be irrational and choose one charging station randomly; when λ→∞, players tend
to be rational and choose the option with the lowest cost. In this case, players are
actually using the Nash equilibrium.

3.4 k-Level QRE Model

A strong assumption in aforementioned QRE model is that players can form QRE
distribution P according to the actual charging cost cij(P). In practice, QRE is usually
employed when the cost for each strategy is a constant, which is different from our
charging game, where the charging cost of a strategy is in turn a function of the
strategy distribution (as shown in Equation (3)). In other words, players can hardly
know cij(P) when they are making decision.

With respect to the above characteristic, we propose a k-Level nested Quantal
Response Equilibrium (in short, k−Level QRE) model to capture the decision making
of the EV drivers.

We assume that there are players with k different levels of rationality, which means
players from different levels perceive the unknown charging cost differently and make
distinct decisions. Specifically, the level-1 players are the least rational players and
would form a QRE distribution according to their direct observation, i.e., the current
queuing duration that they observe. We denote the observable queuing duration for all
charging stations as q0 = {q01 , ..., q0n}, where q0j , j ∈ N is for the jth charging station.
Then, level-1 players would form the following QRE distribution P1 with each

p1ij =
e−λcij(q

0)∑
j′ e
−λcij′ (q0)

(7)

Consequently, level-2 players, as they are more intelligent and rational, would think
other players are in level-1, anticipate their choice distribution P1 and perceive the
queuing duration as q1(P1). Note that the queuing duration in charging stations de-
pends on the strategy profile P1, thus it is a function of P1. The QRE distribution P2

formed by level-2 players is then presented with Equation (8).

p2ij =
e−λcij(q

1(P1))∑
j′ e
−λcij′ (q1(P1))

(8)

Similarly, level-k players form QRE distribution Pk as Equation (9).

pkij =
e−λcij(q

k−1(Pk−1))∑
j′ e
−λcij′ (qk−1(Pk−1))

(9)

In Figure 2, we can see the illustration of k-Level QRE model’s structure while
k = 2.

We denote the portion of level-l players as γl. Then, the actual distribution P of
all players’ charging choices is decided by the distribution of players in each level and
the vector γ:

pij =
k∑
l=1

γlp
l
ij (10)

where
∑k
l=1 γl = 1.
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Fig. 2: The k-Level QRE model with k = 2

4 Charging Station Placement Problem Formulation and Algorithm

Based on the charging game definitions in the above section, we can then define the
Charging Station Placement Problem (CSPP). Actually, the CSPP is a problem to find
the best charging station placement, i.e., vector x = {xi}, to optimize a pre-defined
objective w.r.t. the charging game equilibrium state.

We use Singapore as a concrete example to demonstrate the process of formulating
and solving the CSPP. As we can see from Figure 3, Singapore city is a well-developed
metropolitan with the whole territory divided into a number of zones according to the
residential condition, geography and nature etc. We divide the island into a set N of
n zones for the CSPP, which is shown with broad lines on the map.

Fig. 3: Zonal division of a target area

We treat the government as the investor to construct the charging stations and they
aim to optimize the objective for peak hours, which is the most critic time period for
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city transportation. To decide the objective of the CSPP, we mainly take two factors
into consideration. (1) Congestion issue is a main concern for most big cities in the
world [31]. (2) The limited space and relatively long charging time for EVs would make
congestion a potential problem for charging stations. Thus, we define social cost SC as
the objective to optimize in the CSPP, which is the total queuing duration of all EV
drivers6, i.e., Equation (11).

SC =
∑
i∈N

τEi
∑
j

pijqj(P) (11)

Meanwhile, a budget B is introduced to constrain the upper bound of investment
from the government, which is the total number of chargers that can be placed in all
charging stations. Then, the CSPP is to minimize SC by strategically deciding the
optimal charging station placement x = {xi} with respect to the EV drivers’ charging
behavior in the charging game.

Specifically, with our proposed k-Level QRE model, the CSPP can be formulated
as follows.

min
x

SC (12)

s.t. (1)− (3), (7)− (10)∑
i∈N

xi ≤ B, xi ∈ N (13)

The CSPP is an integer non-convex optimization problem, finding the global opti-
mum is NP-hard. The number of possible charging station placements is as large as nB ,
so it is impossible to enumerate all solutions to find the optimal one. Therefore, we pro-
pose an algorithm named MAGD (Algorithm 1) with techniques including multi-start
point searching, derivative approximation and gradient descent method to compute an
approximate solution.

MAGD solves the charging station placement problem with multiple start points,
with each of which, it iteratively finds the best local optimum. Firstly, we randomly
generate a set of start points S (Line 1), where each x0 ∈ S represents a charging
station placement. The optimal object value is initialized as infinity (Line 2). For each
start point x0, the algorithm use gradient decent method to search the corresponding
local minimal objective value O0

bj (Lines 3 to 19). We initialize O0
bj by setting x as

x0 and solve the relaxed CSPP (Line 4). In each of the NI iterations, for each integer
step size from the maximum NS (> 1) to 1, we first set x as the current x0 (Line 7)
and solve the optimization problem to get the number of EV users in each charging
station, i.e., {yi} (Line 8), then compute the approximated gradient for each xi (Line
9). The vector x is then updated by increasing (resp. decreasing) step for the xi with
the minimal (resp. maximal) gradient (Lines 10 - 12). The objective for the updated x

is computed as Obj (Line 13), which is used to compare with the current local optimal
objective O0

bj . If Obj < O0
bj , both x0 and O0

bj will be updated and we go to next iter-
ation; otherwise, we would change step size. After NI iterations, we compare the local
minimal objective O0

bj of the start point with the O?bj and update the current opti-
mal solution and objective if O0

bj < O?bj . By increasing the number of start points and

6 The reason is that we think the most important factor is the congestion in charging station
for this placement problem. But our framework is able to be extended to include other factors.
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expanding the searching space, the probability of reaching the global optimal solution
would be increased.

The complexity of the MAGD algorithm is O(2|S|NINSCrelax) where Crelax is
the complexity of the relaxed CSPP with fixed variable x to compute the strategy
profile P. With the k−Level QRE model, Crelax = O(k|P|), where |P| =

∑
i

∑
j 1 is

the size of the strategy space. To find the strategy profile of the relaxed CSPP, we
start with computing the level-1 players’ strategy with the observable queuing dura-
tion (Equation (7)), with which the perceived queuing duration for the level-2 players
would be computed and used to compute the corresponding level-2 strategy profile
(Equation (8)), and so forth. After getting the strategy profile of players from all k
levels, we then use Equation (10) to compute the global strategy profile P. Therefore,
the overall complexity of the MAGD algorithm is at most O(n2) when players in each
zone i would charge in any of the n charging stations.

Algorithm 1: MAGD - Multi-start Approximate Gradient Descent Algorithm

1 Generate S;
2 O?bj ←∞;
3 for each x0 ∈ S do
4 Compute O0

bj with x← x0;
5 for Iter = 1 : NI do
6 for step = NS : −1 : 1 do
7 x← x0;
8 Solve CSPP with fixed x to get {yi};
9 5x← { −step·y

2
i

xi(xi+step)
};

10 for i ∈ N do
11 xi ← xi + step, if 5xi = mini′∈N 5xi′ ;
12 xi ← xi − step, if 5xi = maxi′∈N 5xi′ ;
13 Compute Obj with updated x;
14 if Obj < O0

bj then
15 x0 ← x;
16 O0

bj ← Obj ;
17 Goto next Iter;

18 else
19 Goto next step;;

20 if O0
bj < O?bj then

21 x? ← x0;
22 O?bj ← O0

bj ;

23 return O?bj and x?;
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5 User Study Design

To learn the charging cost function and the level of rationality of EV drivers, we design
a set of user studies to simulate the charging scenarios and collect data from human
players.

We present charging scenarios for players with abstracted information as shown in
Figure 47. The interface includes (1) a grey scale map as background, (2) the start
point8 marked with red circled S where EV drivers (players) stay, (3) the number
of EV drivers at the start point that will go for charging at the same time, (4) the
candidate charging stations marked with purple icons and named as CSi, i ∈ {1, 2, ...},
(5) the charging fare in $ at each charging station circled near the corresponding
charging station, (6) the hint for queuing duration, (7) the charging routes from the
start point to each candidate charging station, along which the travel time and distance
are denoted in min and km respectively, and (8) a table with text information below
the map.

The travel time and the distance from the start point to each of the charging stations
are assumed to be constants. To visualize the travel speed in the charging route, inspired
by Google Maps, we use four colors to draw the travel routes (respectively representing
travel speed from fast to slow. All candidate charging stations are assumed to be located
beside a shopping center9. The EV drivers at the same start point will charge at the
same time, thus they would cause congestion in the charging stations. The EV drivers
in a charging station with x EV drivers choosing it would wait for x mins on average
before starting charging.

With all the information provided, a player is able to see the difference between
different charging choices and then make his/her charging decision. For example, as
shown in Figure 4, if a player at the start point S chooses the charging station CS1,
meanwhile there are 12 other EV drivers that also select CS1, the player would travel
13 minutes, 9 kilometers, pay 1$ and queue 13 minutes before charging.

5.0.1 Environment Setting

To study the charging behavior of EV drivers, we design two different charging scenario
settings {I1, I2} respectively with: (1) one start point and two candidate charging
stations (I1); and (2) one start point and three candidate charging stations (I2). For
each setting, we carefully design 6 scenarios with different parameters. The basic idea
is to provide distinct scenarios to avoid over-fitting. The total 12 charging scenarios
are separated into two groups {GA, GB}, each with 3 from I1 and another 3 from I2.

To decide the parameters in the charging scenarios, we first randomly generate
1, 000 settings respectively for I1 and I2, each of which with travel time, distance,

7 The design of the game has been performed in several iterations with studies on human
players to ensure that they are aware of all the games’ parameters.

8 We design the charging games to capture the play behavior when competition exists in
the charging scenario by setting one start point but multiple EV drivers. Although there are
EV drivers from other start points in real-world scenarios, they form the equilibrium after
repeating charging activities in a long term. Setting a too complicated charging game would
make it unrealistic for players to fit in a short time.

9 In real-world application, a charging station can be located in other positions. In the ex-
periments, we say that a charging station is next to a shopping center to provide a simulated
scenario for players.
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Fig. 4: An example of user study interface

charging fare and the number of EVs all randomized from a given interval/set. Then
we use k-means clustering to class the settings into 6 clusters and select one from each
cluster in two steps as follows. Table 2 presents all settings got the 12 charging games.

1. Find the maximum dmax and minimum dmin distance between the settings’ pa-
rameter vectors in a group and the corresponding group center. Set the radius for
searching as 0.5 ∗ dmax + 0.5 ∗ dmin.

2. Randomly select a setting from the cluster in the circle with the cluster center and
distance radius.

5.0.2 Charging Game

Each invited human player is randomly directed to GA or GB . They are asked to make
a choice in each of the 6 different scenarios for once.

We put the user studies on a virtual machine build on Microsoft Azure platform.
Players are invited to access the user studies via a link. They would first see the
introduction with a video and text explanation, which clearly explain how the charging
scenarios are set and what decisions they are supposed to make. After acquiring the
preliminary information, players would see a toy example on the next page, which is
used to ensure that the participants have fully understood the user study. Until then
players would formally start the charging games.
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Table 2: Parameters of the 12 charging games (travel time t, distance d and charging
fare f respectively in min, km, $)

Game CS1(t, d, f) CS2 Game CS1(t, d, f) CS2 CS3
1 8, 6, 4 8, 6, 1 7 8, 7, 3 8, 8, 2 9, 8, 1
2 18, 6, 2 8, 6, 2 8 7, 6, 3 8, 7, 2 7, 7, 3
3 12, 5, 2 12, 12, 2 9 4, 3, 4 6, 3, 3 10, 8, 2
4 8, 5, 2 12, 12, 2 10 4, 3, 2 6, 3, 3 10, 8, 3
5 9, 5, 1 8, 6, 3 11 10, 8, 2 10, 9, 1 1, 1, 3
6 18, 7, 4 9, 10, 1 12 9, 8, 4 12, 9, 1 2, 1, 2

5.1 Model Fitting

We employ the Maximum Likelihood Estimation (MLE) to learn the parameters w.
For a charging scenario S with M records from the players, the logarithmic likelihood
of w is

logL(w|S) =
M∑
i=1

log pcs(i)(w) (14)

where cs(i) is the charging station selected in the sample i. Assuming that there are
B charging stations (strategies) for the players and the number of players that choose
to use the jth is Mj , then we have

∑
jMj =M and

logL(w|S) =
B∑
j=1

Mj log pj(w) (15)

By substitute pj with k-Level QRE model, we have

logL(w|S) =
B∑
j=1

Mj log(
k∑
l=1

γlp
l
j) (16)

As we can see from above function, γ = {γl} is another set of unknown parameter.
Our approach is to enumerate the value of each γl within [0, 1] with interval 0.01, and
find the best set.

In fact, we design a number of charging scenarios with different environment set-
tings to study players’ charging behavior. Thus, we are maximizing the sum of the
logarithmic likelihood when learning the parameters. The function fmincon of Matlab
is used for the maximization.

max
w,γ

logL(w) =
∑
S

logL(w|S) (17)

6 Experimental Result

We invite N = 50 players to participate the charging game, with 25 of them making
choices for charging scenarios in group GA and the rest for group GB . In this section,



Electric Vehicle Charging Strategy Study 15

we fit the charging behavior models with results from charging games and discuss the
results.

For a charging scenario with M EVs set for the start point, the actual queuing
duration in a candidate charging station i with Ni players selecting it is calculated as
qi =M ·Ni/N min.

We use Python language and PyOpt package to solve the electric vehicle charging
station placement optimization problem. We compare the result with (1) using QRE
and (2) an existing method from [32], which assumes EV owners form Nash equilibrium
in the charging game, i.e., the charging cost of each choice should be the same and
minimum if the choice is selected by any player.

6.1 Fitting Results of Charging Behavior Models

We fit Nash equilibrium (“NE”) model (Equations (4) and (5)), QRE model (Equa-
tion (6)) and k-Level QRE (“k-LQRE”) models (Equation (10)) of different k values
(k ∈ {1, 2, 3, 4}) with the experimental data collected from human players. Table 3
presents the fitting errors’ mean and standard deviation for different behavior models.
MAE is the mean absolute error (∈ [0, 1]) and smaller MAE value means better fitting
performance. R2 is the mean squared error (∈ (−∞, 1] for non-linear models). A R2

value closer to 1 means a better fitted model. DKL — the Kullback-Leibler Divergence
is used to evaluate how different are two distributions. Smaller DKL means two dis-
tributions are more similar, i.e., the fitted model is closer to the collected data. As we
can see, the R2 value for some of the models is negative, which is basically saying that
the mean of the data provides a better fit to the outcomes than do the fitted non-linear
function values [33]. Combining the fitting metrics, we can see that the 3−Level QRE
model performs best. Since the 4−Level QRE model is quite close to the 3−Level one,
we further compare the result of Chi-square test on these two models. The null hypoth-
esis is that the charging strategy profile follows the corresponding behavior model. It
is shown that the 3−Level QRE model has a larger p-value 0.96. Thus we select k = 3
as the best hyper-parameter for the k-Level QRE model in the charging game. The ex-
periments for charging station placement would be performed with the 3−Level QRE
model.

Table 4 shows the learnt parameters for different behavior models, where λ is the
rationality parameter when applicable and others are the weights for corresponding
factors. Table 5 demonstrates the proportion of players in each rationality level for the
k−Level QRE models. For example, when k = 3, the results show that 56% of players
are in level 1 and their charging decisions are made without considering others’ behav-
ior; 22% players think others are in level 1 and take into consideration their strategies;
and the rest are in level 3.

6.2 Charging Station Placement

As discussed in Section 4, we can divide Singapore into 23 zones. We present the exper-
imental results on Singapore in this section. We also test the scalability of our proposed
algorithm with synthetic data because we might need to apply the proposed approach
in bigger cities. In experiments with synthetic data, we increase the number of zones
from 20 to 200 with a step size of 20. It turns out that the run time of our approach



16 Yanhai Xiong et al.

Table 3: Learning results from charging games

Models\ Errors - mean(std) MAE R2 DKL
NE 0.147(0.063) -5.452(17.444) 0.124(0.077)
QRE 0.062(0.030) -0.189(3.366) 0.028(0.027)

1-LQRE 0.064(0.035) -0.541(4.324) 0.033(0.034)
2-LQRE 0.052(0.033) 0.403(1.407) 0.023(0.025)
3-LQRE 0.048(0.036) 0.833(0.251) 0.017(0.014)
4-LQRE 0.052(0.035) 0.779(0.346) 0.017(0.020)

Table 4: Learning results from charging games

Models\ Params. λ wt wd wf wq
NE – 0.250 0.250 0.250 0.250
QRE 3.918 0.060 0.028 0.251 0.660

1-LQRE 0.997 0.135 0.058 0.556 0.251
2-LQRE 1.793 0.167 0.046 0.626 0.160
3-LQRE 1.808 0.199 0.006 0.619 0.176
4-LQRE 2.012 0.245 0.000 0.568 0.187

Table 5: Proportion of players in each rationality level

Models\ γ 1 2 3 4
1-LQRE 1 – – –
2-LQRE 0.8 0.2 – –
3-LQRE 0.56 0.22 0.22 –
4-LQRE 0.19 0.00 0.53 0.28

increases with the problem size and the maximum run time of the problem with 200
zones is about 17 hours, which means the proposed approach can handle charging sta-
tion placement problems in cities as large as 10 times of Singapore. Therefore, we claim
that the proposed approach is applicable on real-world scenarios.

Especially, we test our approach with data of Singapore10. The main focus is to
compare the social cost of different placement plans while assuming that people ac-
tually follow the k-Level QRE charging behavior model. As presented in Table 6, we
compare with 4 benchmarks: (1) the existing work that assumes EV drivers follow
Nash equilibrium; (2) quantal response equilibrium; (3) randomized placement and (4)
demand-based plan that assign chargers to different zones proportionally according to
its number of EV drivers. As we can see from the table, our approach can decrease
the social cost to different extent comparing to all benchmarks, especially when the
resource is limited and the budget is relatively low.

10 Parameters are available on https://drive.google.com/open?id=1K6AYYA_
vq6NjYm1jJtSSjcsENwV1ZqdX
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Table 6: Social cost comparison

SC \ Budget 300 400 500 600
3-Level QRE 6947.82 5256.62 4190.56 3523.95

NE 7625.75 5750.31 5001.71 3719.27
QRE 7604.78 5805.69 4462.38 3564.42

Randomized 8877.99 6451.17 5132.83 4249.91
Demand-based 7432.53 5545.14 4443.04 3705.98

Decreased cost VS. NE (%) 8.89 8.59 16.22 5.25
Decreased cost VS. QRE (%) 8.64 9.46 6.10 1.14

Decreased cost VS. Randomized (%) 21.74 18.52 18.36 17.08
Decreased cost VS. Demand-based (%) 6.52 5.20 5.68 4.91

7 Conclusion

In this work, we study and model the bounded rational charging behavior of electric
vehicle (EV) drivers and apply the behavior model in solving EV Charging Station
Placement problem (CSPP). There are several contributions of this work. (1) We pro-
pose a k-Level QRE charging behavior model based on the QRE model and the level-k
thinking model. The proposed model well captures the bounded rationality of EV
drivers in charging activities. (2) We design a series of user studies to simulate the
real-world charging scenarios and collect data from human players. Experimental re-
sults of fitting different behavior models based on the collected data show that our
behavior model outperforms state-of-the-art models. (3) The charging station place-
ment problem is formulated by considering the EV drivers’ bounded rational charging
behavior. An algorithm is designed to solve this complex integer non-convex optimiza-
tion problem. (4) To show the efficiency of the proposed charging behavior model,
we execute experiments on charging station placement to compare the expected social
cost of using different behavior models. The results show that our model significantly
decreases the social cost. The EV charging behavior model can also be applied to
other related problems. For example, when charging stations have been constructed,
governors can use pricing as a method to incentivize the EV drivers’ charging decision.
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