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Abstract

Road accidents are the leading causes of death among youths and young adults worldwide. Efficient traffic enforcement is

an essential, yet complex, component in preventing road accidents. In this article, we present a novel model, an optimizing

algorithm and a deployed system which together mitigate many of the computational and real-world challenges of traffic

enforcement allocation in large road networks. Our approach allows for scalable, coupled and non-Markovian optimiza-

tion of multiple police units and guarantees optimality. Our deployed system, which utilizes the proposed approach, is

used by the Israeli traffic police and is shown to provide meaningful benefits compared to existing standard traffic police

enforcement practices.
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1. Introduction1

About 1.35 million people die worldwide each year as a result of road accidents and between 20 and 50 million people2

suffer disability or other severe injuries [1]. An essential component in mitigating serious traffic accidents (accidents that3

cause death or injury) is efficient traffic enforcement, which is based on giving drivers the feeling that they are likely to be4

caught and sanctioned when breaking the law [2]. In fact, recent studies suggest that drivers respect traffic laws mainly due5

to enforcement concerns, rather than safety concerns (e.g., [3]). As a result, efficient traffic enforcement has been shown6

to reduce a wide range of high-risk, illegal driving behaviors, including driving while under the influence of drugs/alcohol,7

speeding, lack of seatbelt use and red-light running, and thus reduces road accidents (e.g., [4, 5, 6, 7] to name a few).8

Unfortunately, traffic police cannot cover the entire road network given its limited number of police cars and officers [8].9

Within the Security Games (SG) field, optimal police allocation mechanisms for mitigating various types of crimes10
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have been developed. The generic SG framework consists of a defender (traffic police) who has a limited number of11

resources (police cars) to protect a large set of targets (road segments) from an adversary (reckless drivers) [9, 10]. To the12

best of our knowledge, [11] is the only work in the scope of SG which addresses traffic enforcement. The authors model13

the problem as a Stackelberg Security Game (SSG) where traffic police seek to apprehend reckless drivers who in turn14

seek to avoid apprehension. In a SSG, the traffic police commit to a mixed strategy where drivers can first observe and15

then respond as best as possible. In practice, traffic enforcement seeks to reduce traffic accidents (and not necessarily to16

apprehend reckless drivers) [12]. Furthermore, due to the dynamic environmental factors which influence driving behavior17

(weather, traffic jams, etc.), drivers have been shown to act in a less strategical manner, responding to changes in their18

environment, including the observed police presence in current and past rounds [13]. Therefore, SSGs seem unsuitable to19

the task of preventing serious road accidents.20

Non-strategical adversaries in SG settings have recently been modeled as opportunistic criminals which choose where21

and when to commit a crime in real-time based on police presence and the attractiveness of the potential targets [14].22

Opportunistic criminals are reactive to police actions and do not consider their behaviors’ effect on future police actions.23

We adopt this approach here, modeling the drivers, and consequently accidents, as reactive to police allocations. However,24

unlike [14], drivers may react to both present and past police enforcement allocations, making the authors’ Markovian25

assumption unsuitable. For example, it has been shown that drivers continue to react to police presence long after the26

enforcement operation has ceased (a phenomena also known as time and distance halo) [13]. Basilico et al. [15] have27

investigated non-Markovian strategies for robotic patrols. However, the authors assume that the attacker is strategic, and28

therefore the approach is inapplicable. To our knowledge, no work has efficiently addressed the non-Markovian property29

in SG.30

Most allocation mechanisms in SG simplify the computational task by assuming that planning for each police unit31

separately will bring about a (near-)optimum solution [16]. However, this is not the case in traffic enforcement. For32

example, experts from the Israeli Traffic Police (ITP) claim that if police cars are stationed at the same place and time,33

their effectiveness in reducing traffic accidents cannot be assumed to be greater than the effectiveness of a single police car34

at the same point and time, a fact we leverage in this work. Furthermore, significant benefits may accrue from coordination35

across multiple police units, e.g., allocating two police cars in adjacent road segments could have a stronger impact than36

allocating a single police car. This notion relates to the coordinated actions notion in [17] which captures the combined37

effects of multiple defenders guarding the same target simultaneously. As a result, the computational task of deriving38

optimal traffic enforcement allocation in order to prevent serious road accidents is both coupled and non-Markovian,39

which makes it computationally intractable. Namely, the optimal allocation of traffic enforcement at time t could depend40

on the trajectories of all police cars (i.e., coupled) up to time t (i.e., non-Markovian).41
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In order to address these shortcomings, we first formulate the TRAFFIC ENFORCEMENT ALLOCATION PROBLEM42

(TEAP). We prove that deriving or approximating the optimal solution to a TEAP is NP-Hard, and remedy this hardness43

by introducing an optimal novel algorithm called the RELAXED OPTIMIZATION SOLVER ENHANCER, or ROSE for short.44

ROSE uses a master/slave optimization approach, aimed at reducing the computational burden of directly solving the45

TEAP, and leverages common characteristics of TEAPs that have not been investigated in previous works. In an extensive46

set of lab-based empirical evaluations, we show that ROSE favorably compares to several baseline approaches, achieving47

a significant speed-up, using both synthetic and real-world road networks.48

Based on the promising results obtained in our lab-based evaluation (Section 4.1), we extended our model to make49

it suitable for real-world deployment. Through a four month-long controlled field study with the ITP, we show that the50

results obtained in our lab-based evaluation translate well to the field, resulting in an improved traffic enforcement policy51

as depicted by the number of accidents and average driving speeds in the deployment district compared to the control52

condition.53

As such, the contribution of this article is twofold: First, the theoretical TEAP modeling and the novel ROSE solution54

technique. Second, the adaptation of these lab-based developments into a beneficial real-world application which can be55

adopted and extended by researchers and practitioners in the traffic safety and security games fields.56

All code and procedures used in this study are available at http://www.biu-ai.com/trafficPolice in order57

to encourage other researchers to tackle the important and challenging task of preventing serious traffic accidents.158

The remainder of this article is structured as follows: Section 2 presents the TEAP formulation and analyzes its proper-59

ties. In Section 3 we present our solution approach, followed by its evaluation in the lab and in the field (Section 4). Then,60

in Section 5, we discuss the obtained results. Lastly, we summarize the work and highlight future research directions in61

Section 7.62

2. Traffic Enforcement Allocation63

We model the interaction between drivers and police as a repeated game over T (<∞) rounds, which takes place on a64

road network, represented as a graph G = 〈V,E〉 where V = {v} is the set of intersections and E = {e = (u, v)} is the65

set of road segments. We assume that no accidents occur off-road, and therefore E is the set of enforcement targets in this66

work (intersection v is considered part of the road segments that share v, thus there is no need to consider v as a different67

1Unfortunately, we are unable to release confidential data provided by the ITP such as the number of police resources used, where and when traffic

citations where given, etc.
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target). Without losing generality, we assume that the time it takes to travel through each road segment is 1 round; this68

assumption can be relaxed by including dummy vertices.69

The traffic police has k(<< |E|) police cars at its disposal. At each round t, the police places enforcement on a subset70

of size k from E, which we refer to as the allocation at round t denoted at, such that the allocation respects the graph’s71

connectivity constraints and no more than a single police car is assigned to any edge. Namely, at round t, each police car72

can either stay in its current road segment (enforcing for a longer period of time) or move to an adjacent edge given at−1.73

a1 can assume any subset of size k of E. We denote the traffic police allocation history at round t as Ht = 〈a1, . . . , at〉.74

We use the notation et to denote road e at round t, and H[et] as an indicator of whether a police car is assigned to road e75

at round t. Simultaneously, drivers choose whether to obey the law (drive safely) or not at each road segment e ∈ E.76

We assume that drivers’ actions at round t are visible to the police. For example, the ITP, as with many other police77

departments, uses anonymous cellular reports provided by commercial companies to evaluate the distribution of speeds on78

each road in real-time. Other technological aids such as speed cameras are also in use. Note that while the police does79

not consider the behavior of each driver individually, they do obtain aggregated statistics on traffic behavior for the entire80

road network. On the other hand, drivers are only exposed to a noisy signal regarding the police allocation. For example,81

common applications such as WAZE and other technological instruments such as police scanners allow drivers to have an82

indicator of police presence at et. However, these indicators are not completely accurate (police presence in a road segment83

is not always reported in WAZE, an indicator of police presence may not be up-to-date, a police car may be covert, etc.).84

As a result, the game is conducted under one-sided uncertainty. Due to this uncertainty, the drivers base their actions at et85

according to at (although not completely visible) and the police’s past allocations (Ht−1), which together constitute Ht.86

Following recent advancements in predictive policing, including the prediction model constructed in the course of this87

study, and in the same spirit as done in previous works such as [18], we define the risk of accidents occurring at et as88

risk(et). The risk function measures the likelihood that a serious traffic accident will occur at et in the absence of police89

enforcement (in the [0,1] range). We further define the effectiveness of enforcement as eff(Ht, et). eff measures the90

effect that the police allocation history has on the risk of accidents occurring at et.91

The traffic police is interested in minimizing the total expected number of accidents occurring throughout the game.92

Formally, it seeks to minimize the following objective of the optimization problem we denote as the TRAFFIC ENFORCE-93

MENT ALLOCATION PROBLEM (TEAP):94

minHT

∑
t=1,...,T

∑
e∈E

risk(et)(1− eff(et, Ht)) (1)

risk(et) cannot be influenced by police enforcement but rather through modification of the road’s characteristics (e.g.,95
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notation meaning

t ≤ T Game round index.

et Road segment e at round t.

at Defender’s allocation in round t.

Ht Defender’s allocation history at round t.

H[et] Indicator whether police is present at et.

risk(et) Likelihood of a car accident occurring at et

in the absence of police enforcement.

eff(et, Ht) The effectiveness of police enforcement on et.

Table 1: Summary of key notations.

number of lanes), traffic (e.g., reducing speed-limit), etc. On the other hand, eff heavily depends on police enforcement,96

Ht. We assume both risk(et) and eff(et, Ht) are known to the police and can be computed in polynomial time.97

A summary of the notations used in this article is available in Table 1.98

The solution to Eq. (1) prescribes a pure strategy for the traffic police. The police could optimize over all rounds99

simultaneously, however this approach is computationally expensive; it needs to solve a possibly non-convex optimization100

problem as the police must consider drivers’ responses (modeled within eff). Unfortunately, approximating the optimal101

solution to a TEAP, within any constant factor, is hard even for a single driver and a single police car.102

Theorem 1. TEAP cannot be approximated within any factor of c ≥ 1 in polynomial time, unless P = NP .103

Proof. In order to prove the theorem, we give a reduction from SAT to TEAP with one driver and one police car: On input104

Φ(x1, . . . , xn), construct n + 1 nodes V = {vi}, i = 1, . . . , n + 1. Then connect node i with node i + 1 (i = 1, . . . , n)105

using 2 directed edges, one for xi = True and one for xi = False and a single directed edge from vn+1 to v1 representing106

Satisfiable (S). Consider the resulting graph G = (V,E) as the road network for a TEAP with T = n + 1. A single107

police car starts at v0. Let risk assume 0 for all edges at all rounds except for edge S at round t + 1, which assumes the108

value of 1. Let eff assume 0 for all edges, rounds and allocation histories except for eff(S,Ht), which assumes the value109

of 1 if the police trajectory (Ht) corresponds to a satisfying assignment for Φ(x1, . . . , xn) and 0 otherwise. Clearly, the110

driver’s action (causing an accident at edge S or not) can be decided in polynomial time.111

The above construction takes polynomial time. Assume to the contrary that such an approximation polynomial time112

algorithm App(G) exists. If there is no satisfying assignment to Φ, then every trajectory the police car may take will113
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bring about an objective value of 1, thus App(G) ≥ c. If there is a satisfying assignment, then the defender can take the114

respective trajectory and receive a value of 0, hence App(G) = 0.115

Two key computational challenges arise from the TEAP formulation. First, the arbitrary risk and eff, which can take116

any polynomial time computable form and depend on an unbounded history of police actions (eff), pose a significant opti-117

mization challenge. Second, the space of possible police strategies (joint schedules for all police cars) grows exponentially118

in the number of resources and the number of time steps which make the computation even more challenging.119

3. Optimizing Police Strategy120

In this work we derive an optimal pure strategy for traffic enforcement for T steps. Our goal is to find the pure strategy121

that would minimize the total expected number of serious accidents. In our framing, any randomized mixed-strategy, which122

is the combination of pure strategies, results in a greater or equal number of accidents than the optimal pure strategy, as in123

[14].124

Given Theorem 1, we resort to remedying the hardness of solving the TEAP by introducing an optimal novel algorithm125

called the RELAXED OPTIMIZATION SOLVER ENHANCER, or ROSE for short. ROSE uses a master/slave optimization126

approach, aimed at reducing the computational burden of directly solving the TEAP. It exploits the fact that no two police127

cars are allowed to enforce the same road segment at the same time. ROSE is guaranteed to return an optimal solution,128

hence, in the worst case, ROSE will run in exponential time. Nevertheless, experimental results (see Section 4) on both129

synthetic and the Israeli road networks demonstrate that ROSE is able to derive an optimal solution significantly faster130

than competing approaches under various real-world conditions.131

Before introducing ROSE, we first cast the TEAP as a binary graph flow problem and present an exponential sized132

Binary Integer Program (BIP) for solving it.133

3.1. TEAP as Graph Flow134

Similar to other transition-based security formulations, we model the TEAP using a transition graph [19]. The transi-135

tion graph is a compact representation which captures the spatio-temporal structure of the road network and allows us to136

handle the exponential strategy space by avoiding the enumeration of all pure strategies. Technically, given a road network137

G, we transform it into a T time-expanded graph GT such that each vertex v (edge e) is replicated T times, one for each138

round, denoted vt (et).139

Each vt in the transition graph is associated with the number of police cars that start their trajectories in it minus the140

number of police cars that end their trajectory in it, denoted bvt
. For example, bvt = 0 means that either no police cruiser141

6



starts or ends its route in v at time t, or, more generally, the same number of police cruisers start and end their route in v at142

time t. bvt is assumed to be known in advance and cannot be changed by the police.2 The resulting flow problem can be143

formulated as the following mathematical program:144

min
HT

∑
t

∑
et

risk(et) · (1− eff(et, Ht)) (2)

s.t
∑
v′t−1

Ht[(v
′
t−1, vt)t−1]−

∑
v′t+1

Ht+1[(vt, v
′
t+1)t+1] = bvt ∀vt ∈ GT

(3)

HT [et] ∈ {0, 1} ∀e, t (4)

Constraints (3) and (4) are standard binary flow constraints. Let Sol = {et|HT [et] = 1} denote the set of ets that were145

assigned a unit of flow (a police car) in the optimal assignment.146

We transform the above mathematical program into a 0-1 integer linear program (or Binary Integer Problem, BIP for147

short) of exponential size, using the following non-standard procedure. The procedure is intended to cast the original148

optimization problem formulation into a unique structure that will then be exploited by our novel optimization technique –149

ROSE (Section 3.2). risk(et) and eff(et, Ht) are enumerable; for every et and possible Ht (which is bounded in size by150

2|V ||E||T |) one can conceptually calculate the value of risk(et) · (1−eff(et, Ht)) offline and store it in a table. For every151

entry i in the table, let V aluei denote the value of risk(et)·(1−eff(et, Ht)) for a given et and assumed allocation history152

Ht. We denote V isitedi = {et|Ht[et] = 1} as the set of ets that assumed the value of 1 under the allocation history of153

table entry i. For every entry i we create a new binary variable pi which takes the value of 1 if Sol∩V isitedi = V isitedi.154

Mathematically, we add the constraint:155

pi =
∏

et∈{V isitedi}

HT [et] (5)

Equation (5) might seem non-linear at first. However, it is rather easy to linearize it using a fix-sized set of linear156

constraints that will force the indicator pi to assume the correct value (an explanation of the procedure is available in157

Appendix B).158

For all table entries i, other than the empty allocation HT = ∅, there exists at least one table entry j such that V isitedj159

is a strict (proper) subset of V isitedi. As such, if pi = 1 then pj = 1. In order to “isolate” the true value of some HT ,160

2This formulation allows police cars to start and finish their paths at different times and locations.
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we modify the optimization objective (2) using the inclusion-exclusion principle as follows: Let Pow(i) be the set of all161

strict (proper) subsets of V isitedi.162

minHT

∑
t

∑
et

∑
i

pi(V aluei +
∑

V isitedj∈Pow(i)

(−1)|V isitedj∩V isitedi|+1V aluej) (6)

Intuitively, given an HT , we derive the true value of HT by appropriately adding and deducting the values associated163

with all proper subsets of the visited ets according to the inclusion-exclusion rule. For interperability purposes, for a given164

et and i, we shall refer to a summed term as penalty if the summed term is positive, and reward otherwise.165

Clearly, the result is a BIP. Furthermore, the resulting BIP is not sensitive to the number of police cars. The correctness166

of the above procedure easily follows that of the inclusion-exclusion principle. In order to understand the procedure better,167

consider the following example:168

Example 1. Assume a time-expanded graph with 2 vertices (v, u) expanded over 3 time steps (v1, u1, v2, u2, v3, u3) such169

that v1 and u1 are connected to v2 and u2, and v2 and u2 are connected to v3 and u3. There are 2 guards, starting at170

nodes v1 and u1, and they finish their trajectories at v3 and u3. Overall, the problem induces 8 binary decision variables,171

written in short as Iv1,v2 , Iv1,u2 , Iu1,v2 , Iu1,u2 , etc. risk is set to 1 for all edges. eff is set to 1 for all edges and strategies172

except for (v1, v2) which is set to 0.6 if Iv1,v2
= 1, 0.8 if Iu1,v2 = 1 and to 0.5 if both Iv1,v2

= 1 and Iu1,v2 = 1.173

Technically, one can define 28 − 1 new variables, each corresponding to a non-empty subset of the 8 binary decision174

variables defined above. However, given that only Iv1,v2 and Iu1,v2
= 1 bear an effect on the objective, it is sufficient to175

consider only three new variables, p1, p2 and p3, and the following three new constraints: p1 = Iv1,v2 , p2 = Iu1,v2 and176

p3 = Iv1,v2 · Iu1,v2 . In simple words, p1 = 1 iff a guard traverses the (v1, v2) edge, p2 = 1 iff a guard traverses the177

(u1, v2) edge and p3 = 1 iff p1 = p2 = 1. Considering the above 3 new variables, the modified optimization objective178

is: minI 8 + (0.6 − 1)p1 + (0.8 − 1)p2 + (0.5 − (0.6 + 0.8) + 1)p3. Note that the terms associated with p1 and p2 are179

rewards as placing a guard on the corresponding edges helps the optimizer lower the objective. The term associated with180

p3 is a penalty as it lowers the effectiveness of the guards obtained though p1 and p2, thus obstructing the optimizer from181

lowering the objective.182

183
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3.2. Linear Optimization Using ROSE184

The resulting BIP of the procedure above cannot scale up due to the exponential number of variables and constraints185

(see evaluation in Section 4). To overcome this limitation we introduce a novel master/slave-based optimization algorithm,186

ROSE, Algorithm 1. The Master program consists of two levels: At the high level the Master program maintains a subset187

of penalty terms, denoted P . At the low level a BIP solver is used to solve a relaxed BIP in which only a subset of penalty188

terms are introduced along with their associated binary variables, pi. At the beginning of the execution, P contains all189

penalty terms extracted from Eq. (6) (Line 3) and the low level solver generates a solution, Sol (Line 6), while considering190

only pi variables associated with reward terms (Line 2) . Simply put, the solver is executed on a smaller scale optimization191

problem which consists of only a subset of penalty terms (at the initial execution, an empty set). Given Sol, the Slave192

program is used to examine whether any penalty term p ∈ P is triggered (Line 7), that is, the Slave program (Lines 12-14)193

checks whether any binary variable pi associated with a penalty term in P should assume the value of 1 given Sol. If no194

penalty terms from P are triggered, the Slave returns an empty set, indicating that an optimal solution has been found and195

ROSE terminates (Lines 8 and 9); otherwise, a set of penalty terms P ′ ⊆ P is returned. The returned P ′ is injected into196

the relaxed BIP, P ′ is removed from P by the Master and the process is repeated (Lines 10 and 11).197

The Slave program can return any subset P ′ ⊆ P as long as it obeys the following two rules: 1) P ′ = ∅ if no penalty198

terms from P are triggered under Sol; and 2) P ′ contains at least one penalty term (if such exists). We use an elementary199

implementation of the Slave program, returning all triggered penalty terms from P . Namely, we enumerate all (relevant)200

subsets of Sol and return the triggered penalty terms. The investigation of more elaborate Slave programs which predict201

which penalty terms are most beneficial to introduce, in terms of minimizing ROSE ’s run-time, is left for future work.202

We demonstrate the use of ROSE in the following example:203

Example 2. Using the same setup of Example 1, the set of penalty terms extracted from the original formulation consists204

of only p3 and its associated value. Therefore, the relaxed BIP’s objective is: minI 8 + (0.6 − 1)p1 + (0.8 − 1)p2. With205

the constraints of Example 1 in mind, it is clear that the generated solution Sol will result in p1 = p2 = 1. The Slave206

program will then detect that p3 ∈ P assumes the value of 1 and therefore injects it into the relaxed BIP and the process is207

repeated. In the second iteration, no new penalty terms are triggered (as there are none), and the process is concluded.208

It is well known that BIP solvers are sensitive to the number of constraints. Therefore, ROSE’s computational perfor-209

mance depends on the number of penalty terms in P which can be avoided in the iterative penalty generation process. it is210

hard to guarantee the computational benefit of the approach in the general case. While ROSE may be inefficient in some211

cases (e.g., no penalty term can be avoided regardless of Slave implementation, as is the case in Example 2), in several212
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Algorithm 1 ROSE

Require: Time-expanded graph GT , BIP Solver Solver.

1: function MASTER

2: BIP ← Initialize BIP with reward terms

3: P ← Penalty terms

4: Sol← ∅

5: repeat

6: Sol← Solver(BIP )

7: P ′ ← Slave(Sol, P )

8: if P ′ = ∅ then

9: return Sol

10: P = P \ P ′

11: Introduce P ′ into BIP

12: function SLAVE(Sol,P)

13: P ′ = {p|p ∈ P ∧ p is triggered by Sol}

14: return P ′

settings, including realistic and real-world traffic enforcement settings, it can bring about a significant improvement in213

runtime without jeopardizing the solution quality (see Theorem 1).214

Proposition 2. ROSE always terminates and returns an optimal solution.215

Proof. The Slave program introduces at least one penalty term to the relaxed BIP at each non-terminal iteration. Due to the216

finite number of penalty terms, ROSE terminates after a finite number of steps. At each iteration, the value of each feasible217

solution cannot decrease as ROSE only introduces penalty terms to the objective function. When ROSE terminates, all218

penalty terms triggered by Sol have been injected into the relaxed BIP, therefore the relaxed BIP’s objective value under219

Sol is the optimal value under both the relaxed BIP and the original BIP, and its objective value would not change if any220

additional penalties from P were to be added to the objective function.221

ROSE bears some similarity to the classic column generation approach [20]. The premise of both approaches is that222

most of the variables will assume a value of zero in the optimal solution. As such, only a subset of variables needs to223

be considered when solving the problem. However, the two differ in that column generation leverages the above idea to224

generate only the variables which have the potential to improve the objective function while ROSE introduces variables225
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which definitely deteriorate the objective function yet must be taken into account in order to assert optimality.226

Similar to other security settings, eff is assumed to be submodular [17]. Namely,227

Definition 3. eff is submodular if for every et, e′t and Ht ⊆ H ′t, eff(et, Ht ∪ {e′t}) − eff(et, Ht) ≥ eff(et, H
′
t ∪228

{e′t})− eff(et, H
′
t)229

A submodular eff means that performing an additional enforcement activity (allocating a police car at e′t) has dimin-230

ishing gains in effectiveness. In Section 4 we show the significant runtime benefits that can be generated by ROSE when231

this property holds.232

4. Evaluation233

We evaluate our approach in two experimental settings: First, we perform a lab-based evaluation using a newly built234

realistic simulation environment consisting of both synthetic and the Israeli road networks. Through this examination, we235

demonstrate the strengths and limitations of ROSE . Second, following a year and a half-long process, we perform an236

in-the-field evaluation of our approach in a controlled study with the ITP. For reproducibility purposes and to facilitate237

future research on traffic enforcement, we release our simulation environment. Complete details, source code and data are238

provided in http://www.biu-ai.com/trafficPolice.239

4.1. Lab-based Evaluation240

We first describe our simulation environment followed by the competing approaches evaluated in this part of the study.241

Then, we report the results obtained for the synthetic and the Israeli road networks.242

4.1.1. Simulation Environment243

Our simulation environment consists of 3 components: 1) Synthetic and Israeli road networks; 2) A state-of-the-art244

prediction model for modeling risk; and 3) A submodular eff function. risk and eff are derived from 11 years of245

accident data, extensive literature review on accident prevention and analysis and human expert knowledge from the ITP.246

We will describe the main components below.247

risk. We obtained a record of 11 years of accident reports from the Israeli Central Bureau of Statistics (2005-2015).248

By cross-referencing these reports with additional sources such as the Israeli GIS database and weather reports, we were249

able to characterize each accident using 117 features, including infrastructure characteristics (e.g., number of lanes), date250

and time characteristics (e.g., weekend/weekday), weather (e.g., precipitation), traffic (e.g., average speed), etc. The full251
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list of features is available in Appendix A. To the best of our knowledge, this is the largest set of features ever to be252

used to predict serious car accidents. For comparison, the Indiana traffic police use an intelligent accident prediction tool253

http://www.in.gov/isp/ispCrashApp/main.html which is based on approximately 90 features which we254

also use here. Experts in traffic enforcement claim that only the Indiana and Tennessee State traffic police use accident255

prediction tools but we were only able to obtain the latter’s features. Using more than 30,000 accident records and under256

sampling the “non-accident” class (see [21]), we trained a deep neural network model that, given 110 features representing257

et, returns a value in the [0,1] range, acting as a proxy to the likelihood of an accident occurring at et.3 We compared our258

prediction model to several baseline prediction models such as logistic regression, SVM and XGBoost (which is currently259

in use by the Indiana traffic police). Our model achieves an AUC of 0.87, outperforming logistic regression, SVM and260

XGBoost which recorded 0.78, 0.77 and 0.82, respectively.261

eff. We base eff on [22], which used a unique database to track the exact location of the Dallas Police Department’s262

patrol cars throughout 2009 and cross-referenced it with the car accidents of that year. To the best of our knowledge, this263

is the most recent investigation of the topic. The author found that if et is enforced, eff should assume a value of 36%.264

However, enforcement effects are not restricted to the specific time and space in which the enforcement is performed. For265

example, Time halo is the time and the intensity to which the effects of enforcement on drivers’ behavior continue after266

the enforcement operations have been concluded. It has been recorded that longer enforcement efforts cause more intense267

time halo effects that can last for hours and influence the next day(s) or even week(s) during the same time of day as268

the enforcement. Distance halo is defined as the distance over which the effects of an enforcement operation last after a269

driver passes the enforcement site. The most frequent distance halo effects are in the range of 1.5 - 3.5 kilometers from the270

enforcement site (see [13] for a review). Currently, there is no consensus on a mathematical modeling of these two halo271

effects, separately or combined. In the absence of real-world data such as was used in [22], we resort to an expert-based272

approach [23] and define eff in accordance with the ITP’s estimations. We define time halo effects in the exponential273

diminishing form 36
2k

% where k ≥ 0 is the number of time-steps that have passed since the enforcement effort. To avoid274

negligible effects, we prune the effect at k = 3. The Distance halo effect is defined to be 5%, given that the two road275

segments are adjutant. Given the police allocation, eff assumes a simple submodular form where eff takes the largest276

applicable effect and adds half of each of the smaller appropriate effects to it. For example, if both et and et+1 are enforced277

(and no other time or distance halo effects are appropriate), eff assumes 45% (= 36% + 18
2 %).278

3Note that serious accidents are sporadic events in both time and space. Therefore, directly estimating the probability of accidents occurring at et is

extremely challenging.
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We are currently investigating a more data-driven approach for modeling eff in Israel.279

4.1.2. Competing Approaches280

ROSE is compared with 4 baseline solutions: First, a Naı̈ve solver which solves the entire BIP (Eq. (6)) in its281

general form. Second, a Random solver which for each police unit selects an action at random at each time step, resolving282

conflicts locally. Third, a Greedy solver, which computes a greedy path for each individual police car iteratively, capturing283

a (wrongly) assumed additivity in individual police car gains. Greedy considers a simplified version of eff which only284

accounts for the marginal gains that an enforcement in a road segment will generate given the current allocation of other285

police cars. Given the calculated path, Greedy updates the simplified eff given the visited road segments and continues286

to the next police car. Finally, we compare ROSE with Domain Expert allocations from the ITP. We could not evaluate287

Cartesian product solutions, which capture the joint effects of all police units, such as the ones presented in [24, 14], due288

to their lack of scalability in the number of road segments (we were unable to solve road networks larger than 5 road289

segments, which are unrealistic).290

The resulting allocations are evaluated on the basis of two criteria: 1) Accidents, the expected number of accidents291

(i.e., the objective value of Eq. (6)) normalized by the no-police enforcement condition; 2) Runtime and Scalability of292

the deployed algorithm with respect to the number of police cars, road segments and the density of the road network [25].293

The evaluation was done on a personal computer with 16 GB RAM and a CPU with 4 cores each operating at 4 GHz.294

The BIP solver was GUROBI [26].295

4.1.3. Synthetic Road Networks296

We evaluate ROSE, Naı̈ve, Random and Greedy on a series of synthetic road networks. We used 2 sets of synthetic road297

networks: Small networks (each consists of between 40 and 100 road segments in intervals of 10) and realistic networks298

(each consists of between 200 and 400 road segments in intervals of 100). Connectivity between road segments (i.e.,299

the network density) is randomized such that each two road segments are connected by an intersection with a probability300

ranging between 0.05 and 0.15 (in intervals of 0.05), allowing for different topologies. risk uniformly samples a value301

in the [0, 1] interval for each road segment and round and eff is defined as in our simulation environment. The number302

of police cars is set to either 5, 10 or 15 and T is set for either 8, 16 or 24. Overall, 270 networks were evaluated. A 30303

minute timeout was set for all conditions and networks.304

Accidents. As expected, ROSE and Naı̈ve return optimal allocations. On average, they reduce 22.7% and 5.3% of the305

no-enforcement objective value (the expected number of accidents) in small and realistic networks, respectively. On the306

other hand, on average, Random and Greedy reduce 1% of the no-enforcement objective value in both small and realistic307
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(a) Accidents/Police cars (T=8) (b) Runtime/Police cars (T=24)

(c) Runtime/Size (T=24) (d) Runtime/Density (T=24)

Figure 1: Synthetic road networks: results for the small networks set. In all Figures, the lower - the better.

networks. In realistic networks Greedy exceeded the timeout for all networks of size 300 and 400 and thus its quality308

cannot be evaluated properly. In our trials, Random and Greedy did not come up with an optimal allocation in any of the309

cases. Figures 1a and 2a present the results.310

Runtime and Scalability. We begin by analyzing the non-optimal algorithms, aimed at reducing runtime. Random takes311

negligible time under all settings (< 3 seconds). Greedy is linear in the number of police cars (it iteratively solves the312

problem for each police car separately) but exponential in the size of the network. For example, for a network of size 100313

with a density of 0.1, 10 police cars and T = 16, ROSE takes exactly 1 second to derive an optimal solution while Greedy314

takes 289 seconds, and produces a suboptimal solution. Greedy reached the timeout for all realistic networks.315

Analyzing the Naı̈ve and ROSE conditions head-to-head provides interesting insights. First, in all tested networks,316

ROSE performed faster than Naı̈ve. On average, for small networks, ROSE requires only 19% of the runtime needed by317

Naı̈ve. We were able to manually engineer circumstances in which Naı̈ve outperforms ROSE, mainly in very small net-318
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(a) Accidents/Police cars (T=8) (b) Runtime/Police cars (T=24)

(c) Runtime/Size (T=24) (d) Runtime/Density (T=24)

Figure 2: Synthetic road networks: results for the realistic networks. In all Figures, the lower - the better. Note that Naı̈ve and Greedy

exceeded the timeout and thus do not appear.

works (size < 40) or in networks with a high number of police cars (> 25). The runtime difference increases significantly319

depending on the network’s size and density but slightly decreases in the number of police cars and the network’s density.320

Similar to Greedy, Naı̈ve was unable to solve most networks of size 200 and all networks of size 300 (and above) in 30321

minutes time. See Figures 1b,1c, 1d, 2b, 2c and 2d.322

4.1.4. Real-World Road Network323

We evaluate ROSE using of the Israeli road network. Unlike for synthetic networks, for the Israeli road network we324

used the risk prediction model available in our simulation environment. T was set to 8, 16 and 24, and the number of325

police cars varied between 5 and 40 (in intervals of 5), with 24 settings in total. We also evaluate a Domain Expert condition326

in which we asked an experienced ITP superintendent who specialized in traffic enforcement to provide an allocation.327

The Israeli road network is much larger than the synthetic networks analyzed previously, consisting of 715 road seg-328

ments, but with a very low density (on average, each intersection connects between 3 and 4 road segments). Therefore, the329

results display slightly different patterns.330
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The results show that for cases with 30 or fewer police cars, both in terms of quality and runtime, ROSE outperforms331

the Naı̈ve, Greedy and Domain Expert conditions by a large margin. Specifically, in these cases, Naı̈ve achieves the332

same solution quality as ROSE (a 5.5% decrease in the number of expected accidents), but requires up to 6 times longer333

for runtime. For example, under T = 16 and 10 police cars, ROSE requires only 45 seconds compared to almost 4334

minutes required by Naı̈ve. However, a transition occurs between 30 and 35 police cars. Specifically, while Naı̈ve and335

ROSE achieve the same solution quality (averaging an 8% decrease in the number of expected accidents), Naı̈ve favorably336

compares to ROSE . See Table 2 for the results.337

Greedy and Random produced extremely poor solutions across the conditions, averaging less then 1% improvement338

over the no-enforcement condition. Greedy required a significantly longer runtime than ROSE and reached our timeout of339

30 minutes in most cases. As expected, Random required negligible runtime under all settings (< 2 seconds). The Domain340

Expert produced allocations where police cars were allocated permanently at the most risky road segments. The quality of341

the proposed allocation was about 1%.342

Note that Table 2 further shows that the runtime benefits of ROSE are diminished as the number of police units343

increases. The reason is simple: with the increase in the number of police cars, penalty terms are more likely to be344

triggered by feasible solutions and thus more iterations are needed. Next, in the online evaluation of our approach, we345

demonstrate that the real-world benefits are, in fact, substantial.346

4.2. Online Evaluation347

Based on the promising results obtained through our lab-based settings (Section 4.1), we began the process of making348

our approach suitable for real-world deployment. First, several technical issues had to be addressed in order to make our349

approach suitable for real-world deployment. These include extending the TEAP formulation to include the scheduling350

of lunch breaks for the officers such that a minimum number of officers are always on duty, allowing officers to “transit”351

through road segments without enforcing the traffic laws (i.e., bypassing our restriction to a single police cruiser at each352

road segment and time), etc. As these modifications are mostly technical in nature and do not alter our underling approach,353

solution technique and theoretical properties, they are reported in Appendix C. Next, we discuss the design of our controlled354

field experiment and its evaluation metrics. We then present and analyze the results.355

4.2.1. Setup356

After attaining the approval of the ITP’s commander of the traffic police forces (in the rank of a Major General), we357

began a controlled field experiment for a period of four months from January up to and including April 2019. The ITP has358
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T = 8 T = 16 T = 24

Police Cars ROSE Naı̈ve ROSE Naı̈ve ROSE Naı̈ve

5 5 33 31 153 58 352

10 7 36 45 191 212 402

15 11 36 219 301 384 875

20 12 40 119 263 471 695

25 21 53 394 487 1432 1520

30 36 40 479 520 N/A N/A

35 53 51 611 591 N/A N/A

40 85 53 1072 836 N/A N/A

Table 2: Runtime of ROSE and Naı̈ve for the Israeli road network with varying numbers of police cars and T . Runtime is measured in

seconds. N/A means that a timeout of 30 minutes was reached.

chosen the “Shfela”4 district to test out our system. The Shfela district includes approximately 100 road segments.359

During the evaluation period, a 24-hour schedule (T = 24) was automatically provided to the ITP every morning360

around 6am5 given the number of police units at our disposal and the operational constraints imposed by the ITP on361

that day6. The use of a single schedule for 24 hours is naturally flawed as unexpected delays, operational constraints362

and changes in manpower may occur during that time, making the pre-calculated schedule infeasible or sub-optimal. In363

full-scale deployment, one may need to recalculate an allocation for all police cars when such unexpected events occur.364

However, for this evaluation, the ITP had used ad-hoc local adjustments to follow the schedule “to the best of their ability”.365

4https://en.wikipedia.org/wiki/Shfela
5At this point in time, the ITP preferred not to integrate our system in their computer network due to security considerations.
6The exact number of police cars available on each day and time is withheld at the ITP’s request.
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Only sporadically, when these local adjustments were too complex to perform, had the ITP requested a new schedule to366

replace an existing one. These adjustments were not made available to us.367

Recall that several technical changes were made to the original TEAP formulation (e.g., the inclusion of lunch breaks368

for the officers such that a minimum number of officers are always on duty. See Appendix C). As such, we report an369

additional comparison of ROSE and the Naı̈ve algorithm next in Section 4.2.2.370

As in many security settings, it is hard to expect that a comparison over a relatively short time frame will yield a371

statistically significant difference [27]. In our case, it is unlikely that we will observe a statistically significant decrease372

in the number of serious accidents, due to the fact that road accidents are very sporadic. Therefore, in addition to the373

evaluation of the number of severe accidents, we define a more subtle metric which is well-known to correlate with our374

system’s main objective - average speed. Average speed is strongly associated with traffic safety, influencing both the risk375

of a traffic accident and the severity of the injury that results from an accident [28, 29]. In order to evaluate the average376

speed of drivers, we used anonymized cellular reports purchased from Decell Technologies7 which have been shown to377

match drivers’ average speeds as measured by other (more conventional) instruments in Israel [30].378

The use of alternative metrics which are not directly optimized by the system is not unique to this study. For example,379

in PAWS [31], the authors faced a similar challenge in quantifying the number of saved wildlife due to their provided380

ranger patrols. The authors used human and animal signs as indicators that PAWS patrols prioritize areas with higher381

animal and poacher activity. In the same spirit, in this study, we use drivers’ average speed as an additional metric.382

If our model is capable of successfully prioritizing dangerous road segments and times, it is reasonable to expect it383

to prioritize road segments and times in which the average speed is high. It is important to stress once more that both384

the TEAP formulation and the existing ITP practices do not explicitly optimize for police presence in roads segments and385

times with high average speeds.386

4.2.2. Results387

Runtime. Recall that some technical changes were made to our initial model (see Appendix C). As such, we compared the388

ROSE approach to the Naı̈ve algorithm once more in order to quantify its runtime benefit. As was the case in the offline389

evaluation, ROSE performs more than twice as fast as the Naı̈ve algorithm, averaging less than 5 minutes compared to 11.5390

minutes. However, a closer examination of the results demonstrates different patterns compared to the offline evaluation.391

As shown in Table 3, when the number of police cars is small (i.e., 5 or 10), ROSE outperforms the Naive algorithm by a392

significant margin. For example, for the case of 5 police cars and T = 24, ROSE demonstrates a runtime of 43 seconds393

7http://www.decell.com/
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compared to the more than 10 times slower Naı̈ve algorithm (8.5 minutes). However, for cases with many police cars (i.e.,394

25 and 30), we see that Naı̈ve consistently outperforms ROSE . It is important to recall that the Shfela district consists395

of only 100 road segments (about one seventh of the entire Israeli road network). As such, the bottom half of the table396

is considered very unrealistic as there is no traffic police force that can cover up to 30% of its road network at any given397

moment. According to the ITP, most police forces do not have enough police cars and officers to cover more than 10% of398

any district at any given moment. Averaging over these cases alone in Table 3 shows that ROSE outperforms the Naı̈ve399

algorithm by averaging 36 seconds compared to about 5 minutes, respectively.400

T = 8 T = 16 T = 24

Police Cars ROSE Naı̈ve ROSE Naı̈ve ROSE Naı̈ve

5 4 42 25 218 43 509

10 18 57 31 287 97 619

15 68 59 328 364 452 615

20 126 67 359 531 636 931

25 410 104 625 664 1831 1373

30 861 193 1707 752 3805 2026

Table 3: Runtime of ROSE and Naı̈ve for the Shfela road network with varying numbers of police cars and T . Runtime is measured in

seconds. N/A means that a timeout of 30 minutes was reached.

Recall that in full-scale deployment, one may need to execute ROSE again and again given unexpected events. As401

such, the runtime differences between Naı̈ve and ROSE may prove very substantial in practice.402

Accidents. We first analyze the number of serious accidents that occurred in the Shfela district during the evaluation period.403

For comparison, we consider the adjacent “HaSharon”8 district which is highly similar in its size and land use, with many404

8https://en.wikipedia.org/wiki/Sharon_plain
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roads spanning across the two districts and the general trend in all other parts of Israel. To that end, we use official data405

published by the Israeli CBS. Prior to the deployment of our system, the number of serious accidents in the Shfela district406

decreased from 84 in January-April of 2017 to 77 in the same period of 2018 (8% decrease). In the same period in 2019,407

while using our system, 65 serious accidents were reported (15.5% decrease from 2018). During the same time frame,408

the number of serious accidents in the HaSharon district and in all other parts of Israel decreased by 8% and 7% from409

2017 to 2018, and by an additional 9.5% and 11% from 2018 to 2019, respectively. The Shfela district has demonstrated410

the sharpest decrease in the number of serious accidents among all Israeli districts. See Figure 3 for a month-by-month411

analysis. Part of the decrease in the number of accidents in Israel (and in the Shfela and HaSharon districts in particular)412

is naturally attributed to the increased prevalence of automotive safety measures such as MobileEye9 and to the increased413

number of vehicles on the roads which translate into slower average driving speeds. To our knowledge, no other significant414

traffic-related changes have occurred during the above-mentioned period, specifically enforcement-related changes.415

A month-by-month analysis reveals some sharp changes in the number of accidents in January and February 2019 in416

the Shfela district (a decrease of more than 30%) while only a modest decrease is recorded for the other Israeli districts417

(less than 10%). Inconsistency in the number of serious accidents is also demonstrated in the HaSharon district. On the418

other hand, the change in the number of serious accidents in all other Israeli districts displays low variance (maximum of419

13% and minimum of 7.5%). The high variance in both districts is mostly attributed to the sporadic nature of accidents420

while the low variance in the Israeli measurement is due to the aggregative calculation of accidents outside the Shfela421

distinct which “balances” the differences encountered in each individual district.422

Average Speed. To provide some additional insights into the evaluation, we take a closer look at the average speed on423

road segments and times which were enforced by officers using our system and compare it to the average speed on roads424

enforced by officers not using our system in the HaSharon district. Using a standard t-test, we cannot reject the null425

hypothesis that the average speed limits of the two districts are the same (p = 0.99), nor can we reject the null hypothesis426

that the average of speeds across the two districts are the same (p = 0.96), thus supporting our hypothesis that the two427

districts are indeed similar.428

On average, police officers in the Shfela district were allocated to roads and times with an average speed 8% higher as429

compared to the locations and times that police officers in the adjutant district were allocated. The difference is statistically430

significant using a standard t-test (p < 0.05). Namely, police officers in the Shfela district (who use our system) were431

allocated to road segments and times which are assumed to be more dangerous than the ones in which the officers from432

9http://www.mobileye.com
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Figure 3: A month-by-month comparison of the number of serious accidents between 2018 and 2019.

the adjutant district were allocated (using standard police practices), assuming that police presence does not increase the433

average speed. Under the assumption that the presence of a police cruiser reduces the average speed on a road segment434

at a certain time to a similar extent (e.g., reduce it by 20%) this would mean that the absolute reduction in average speed435

is greater in the Shfela district. The above assumption seems reasonable as the two districts are very similar and drivers436

cannot distinguish between officers who use our system and those who do not.437

It is, however, important to note that the two districts do not significantly differ in the average speed across all segments438

even after using our system (p = 0.94). The reason is simple: the ITP’s limited resources can affect the average speed for439

only a (very) small subset of road segments. In turn, these changes do not translate into statistically significant differences440

at the entire district level.441

5. Discussion442

The results of our evaluation (Section 4), both in the lab and in real-world deployment settings, show that our approach443

can successfully address the computational challenges associated with traffic enforcement (compared to the competing444

optimization approaches) and outperform existing police practices. The latter is measured in terms of both the number of445

accidents and the average speeds in the deployment site compared to the control condition.446

21



When presented with the results, ITP officials stated that they were “very happy” with the system and the outcomes.447

They are currently considering deployment in additional districts.448

However, when presenting a new formulation such as TEAP, new solution techniques such as ROSE, and an in-the-449

field evaluation of a deployed system, it is worth discussing limitations.450

ROSE allows us to optimally solve large TEAPs with significant runtime improvement compared to baseline ap-451

proaches. This improvement is most significant for large, dense networks. However, ROSE’s runtime is impaired with the452

increase in the number of police units. The reason is simple: with the increase in the number of police cars, penalty terms453

are more likely to be triggered by feasible solutions. Therefore, in a “congested” TEAP (i.e., a small network with many454

police cars), ROSE could be counterproductive. According to ITP experts, traffic police worldwide use a network size –455

police car ratio similar to the one deployed in Israel. Therefore, in real-world deployment in other countries, one is most456

likely to encounter large networks with a relatively low number of police resources, like the settings investigated in this457

article.458

The TEAP solution is a pure strategy for the police, which makes predictability an issue. Unlike various other security459

models such as adversarial robotic patrolling (e.g., [32, 33, 34]), in this article TEAP assumes that the drivers are reactive460

to police presence and essentially do not learn the police’s actual policy. This assumption may lead to repetitive police461

allocations which drivers may (eventually) understand and anticipate. A possible indication for the occurrence of such462

a phenomena in practice can be seen in Figure 3. The benefit from our system in the first half of the evaluation period463

was much larger than the benefit in the second half. It is, however, possible that factors of which we are unaware have464

caused this discordance, such as operational constraints or natural noise in the data. All the same, a practical solution to465

this concern is to (periodically) define additional allocation constraints that impose or restrict the enforcement of a specific466

road segment, similar to the entropy-based approach suggested in [11]. Today, police forces occasionally define road467

segments that must or must not be visited during a shift due to special enforcement needs (e.g., road work). The injection468

of these constraints in the TEAP formulation is straightforward, yet the injection itself was not performed in our online469

evaluation following the ITP’s request. An automatic process may also randomly select which road segments must/must470

not be enforced in a given allocation such that every road segment has at least a user-defined ε probability of being enforced471

at every time step. Note that the adoption of SSG for preventing serious road accidents seems unsuitable as it can be argued472

that drivers follow an opportunistic behavioral model rather than a strategic one.473

A common challenge to many human-centered problems and systems, such as TEAP, is the efficient adaption to human-474

driven changes in the environment. For example, adapting to a human’s changing preferences or abilities (e.g., [35]). In475

traffic enforcement, this challenge may manifest itself as a police cruiser being delayed, which might make the proposed476

allocation undesirable or infeasible. An efficient way to resolve this issue is for central command to allocate the police477
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cars, assuming perfect execution. Only after a non-default transition occurs does the central command resolve the TEAP,478

starting from the current state [16]. Given the positive runtime results of ROSE, especially the ones demonstrated in our479

online evaluation (Section 4.2.2), such reallocation should not pose a significant computational concern and the former’s480

runtime advantage accrues over time.481

As with any in-the-field experiment, one is limited by the data he or she is exposed to and by the natural noise it contains.482

In our case, as discussed before, the number of accidents and average speeds recorded during our evaluation period should483

be partially attributed to additional factors which we cannot control and observe. For example, unexpected operational484

constraints may have influenced the ITP’s ability to follow our schedule (e.g., a police officer took an unexpected sick485

day). Similarly, special circumstances such as sports events, road work, political events10 and others may have influenced486

both the occurrence of accidents as well as the recorded average speeds. Unfortunately, the ITP does not record most of487

these events in their systems and they are unable to report them to us (both in real time and in retrospect). In addition,488

considering 2018 as a baseline introduces additional noise as we have little information on traffic-related circumstances489

other than the fact that the number of police officers has not changed. For example, In March 2019, a slight increase in the490

number of accidents was recorded.491

6. Related Notions in Traffic Enforcement492

It has been established that a significant reduction in the occurrence of serious traffic accidents can be achieved by493

efficient traffic police allocation [2]. Specifically, efficient traffic enforcement has been shown to reduce a wide range of494

high-risk, illegal driving behaviors, including driving while under the influence of drugs/alcohol, speeding, lack of seat495

belt use and red-light running, and thus reduces traffic accidents (e.g., [5, 6]). Therefore, recently, traffic police forces496

have begun implementing the predictive policing paradigm [36] through which police officers can identify people and497

locations at increased risk. From a methodological standpoint, the effort of predicting traffic accidents has mainly focused498

on aggregative analysis, specifically on the prediction of the annual number of serious accidents per road segment using499

statistical methods such as Poisson or negative binomial regression models [37]. Such aggregation is limited in its use to500

police forces as the allocation of traffic police enforcement requires a prediction on a much more finely-grained level. To501

the best of our knowledge, the state-of-the-art prediction models provide prediction for three hour time-frames. Overall,502

despite its promise and successful implementation, predictive policing does not provide police officers with a means to503

derive optimal enforcement allocations. In this study, we were able to construct a prediction model that provides beneficial504

10General elections took place on April 4th.
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predictions for one hour time-frames by using a unique set of features and 11 years of collected data.505

The Gambler’s Fallacy is the phenomenon where people tend to put ample weight on previous events, believing that506

they influence future outcomes. This phenomenon manifests itself in the context of traffic enforcement in the form of halo507

effects. For over 4 decades traffic halo effects have been validated repeatedly, showing that enforcement effects are not508

restricted to the specific time and space in which the enforcement is performed. Two such effects are called time-halo509

and distance-halo [13]. To our knowledge, this is the first work to formulate and integrate halo effects in enforcement510

optimization. Existing works on modeling human behavior in SG settings such as [38, 39, 40] consider the adaptive nature511

of human behavior to successes and failures in past rounds. However, the integration of halo effects in such models is not512

straightforward.513

7. Conclusions514

This article introduces a novel framework for optimizing traffic police allocation in real-world settings. First, we515

model the interaction between drivers and traffic police as a Traffic Enforcement Allocation Problem (TEAP) and prove516

that accurately solving or approximating the optimal solution of a TEAP is hard. Next, we cast the TEAP as a binary517

graph flow problem, which in turn is translated into a unique binary optimization problem, and we show how to solve it518

efficiently and optimally by a new algorithm called the RELAXED OPTIMIZATION SOLVER ENHANCER, ROSE. Extensive519

empirical evaluation, both in lab-based settings and in a controlled field experiment in Israel, demonstrates the benefits of520

our approach and its applicability.521

We hope that this study will encourage other researchers to tackle the important and challenging task of preventing522

serious traffic accidents. To assist others with this challenge, we also provide a realistic simulation environment, which we523

name SECURE, that includes a state-of-the-art accident prediction model along with useful road networks and data.524

In future work, we intend to extend our investigation in two ways: First, we wish to study the use of police resources525

which vary in their capabilities. For example, breathalyzers are often used by police officers to detect the blood alcohol526

content of drivers. The decision of which officers should be equipped with breathalyzers and when has yet to be captured527

in our proposed model and, to the best of our knowledge, has yet to be captured by any optimization-based model. A528

similar challenge of integrating traffic enforcement drones within our framework was recently addressed in [41]. Second,529

we seek to investigate additional security settings in which the submodularity assumption does not hold, yet other structural530

properties, such as supermodularity, may prove useful.531
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Appendix A. Modeling risk548

We characterize each road segment in time using a unique set of 117 features. The features are divided into 3 categories:549

1) infrastructure features; 2) date and time features; and 3) traffic features. To the best of our knowledge, this is the largest550

set of features ever to be used to predict severe car accidents.551

Infrastructure Features552

The geography of Israel is very diverse, with desert conditions in the south and snow-capped mountains in the north.553

It is customary to divide Israel into 3 regions: North, South and Center. These three regions differ significantly in their554

population and land use. For example, the central region is a metropolitan area (e.g, the Tel-Aviv metropolis) characterized555

by dense urban building and high-tech land use, whereas the southern region is mostly a desert which for the most part556

consists of rural low-density residential areas [3 features]. The ITP further divides Israel into 15 districts according to557

geographic criteria [15 features].558

Each road segment is characterized according to its type (e.g., highway) [7 features], its length in KM [1 feature], the559

number of lanes [7 features], the posted speed limit [5 features], road signals [2 features], road width [5 features], whether a560
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traffic light is present on the road segment [2 feature], road surface conditions (e.g., gravel/paved) [6 features] and whether561

the road is lit up at night [5 features]. Unfortunately, to date, we were unable to obtain additional features that have been562

shown to affect the prevalence of road accidents in past literature. These features include the existence of road shoulders,563

the road segment’s curvature, incline/decline etc.564

Date and Time Characteristics565

We characterize the date using the month of the year [12 features], day of the week [7 features] and an indicator whether566

it is a weekday, weekend, holiday, holiday evening or another type of special day [5 features]. Time is characterized on an567

hourly scale [24 features] and by an indicator of whether it is daytime or nighttime [2 features].568

In addition, we characterize the weather in the vicinity of the road segment at the given time using the publicly available569

IMS reports and forecasts [4 features].570

Traffic Characteristics571

While the infrastructure characteristics do not change frequently, the traffic that goes through the road segments changes572

rapidly over time. We characterize the traffic by its volume [1 feature]. Traffic volume is provided by the CBS and average573

speeds are provided by the ITP. We further identify the number of severe accidents which have occurred on that road574

segment in the prior 30, 90, 180 and 365 days [8 features].575

Appendix A.1. Training a Deep Neural Network576

Our network consists of 3 layers, 1024x512x1, where the hidden layer uses the common RelU activation function.577

Several other architectures were tested and found to be of lower quality in terms of AUC.578

Appendix B. Linearization Technique579

Let us assume a product term of n binary variables denoted x1 · · ·xn.580

Define a new binary variable z which will represent the product term using the following n+ 1 constraints:

z ≤ xi for i = 1, . . . , n

z ≥
n∑
1

xi − (n− 1)

It is easy to verify that z will be forced to take the value of 0 if at least one xi = 0 (first n constraints) and that it must581

take the value of 1 otherwise (last constraint).582
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Appendix C. From the Lab to the Roads583

A few steps needed to be taken before our approach could be deployed in the field.584

Security Clearance. Before any meaningful intersection with the ITP could take place (e.g., allowing us access to their585

confidential data), the first two authors had to obtain security clearance, including a 2-hour background check and an586

interview at the ITP headquarters. The clearance came through about 6 months into the process.587

Adding Transit Edges. The ITP has requested the addition of transit commands to their schedule. Namely, in addition to588

directing police cruisers to enforce different road segments, they have requested that we explicitly model the option of a589

police car traveling through a road segment without enforcing the law. To that end, when time-extending the road network590

G such that each vertex v is replicated T times, two types of edges are added for each t < T to the transition graph.591

Specifically, transit edges are added from each vertex ut to vt+l(e,t) where l(e, t) is the estimated travel time to cross592

e at time t according to Google Maps (https://maps.google.com).11 Unfortunately, the above does not suffice.593

Specifically, the TEAP’s formulation relies on the assumption that no two police cars should enforce the same road segment594

at the same time. However, this rule does not necessarily apply to transit actions, where more than one police car can be595

present on the same road and at the same time. We investigated this issue empirically; first we duplicated each transit edge596

by the number of police cars available. Practically, under various conditions, we did not encounter any realistic settings in597

which more than a single police car was present on the same road segment at the same time in Israel.598

Logistics. According to the ITP, during an 8-hour shift, each police car should have a break of about 1 hour to eat and599

reach its next destination. The rationale is that the ITP has arranged various different places for police officers to eat and600

therefore no special requirements should be implemented as to where a police car should have its break. This break is601

scheduled for different times, for example, interleaving during the 4th hour of work so as to avoid having all officers on602

break at the same time. Specifically, officers are interleaved as to when they would go on a break during the 4th hour of603

work such that at least k police cars are not on break at any given moment (k is a police defined constant). We amend our604

model by adding designated “break” vertices during the 4th hour. These vertices are accessible from any vertex during605

the 4th hour and are connected to all vertices which are one hour later. For example, a police car can go on a break from606

any location at 12:00, and continue its schedule from any vertex at 13:00. This formulation was specifically tailored at the607

request of the ITP. To make sure each police car goes on a single break, nodes during the 4th hour were duplicated such608

that every node had two copies – “pre-break” and “post-break”. Then, pre-break nodes were disconnected from 5th hour609

11Time was discretized in 10 minute time-frames.
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nodes and post-break nodes were disconnected such that they are only accessible from break nodes or other post-break610

nodes. Simply put, a police crusier can only reach the 5th hour of the shift if it goes though a post-break node. Naturally,611

the post-break nodes do not allow re-access to a break node, ensuring that each police car visits only a single break node612

on its path.613

Non-default transition. Note that, given a non-default transition, we recalculate the allocation for all police cars, as local614

adjustments may produce suboptimal allocations. We plan to investigate local methods for adjusting infeasible or undesired615

allocations in future work.616
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