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Negotiation is a very common interaction between agents. Many common negotiation protocols 
work with cardinal utilities, even though ordinal preferences, which only rank the outcomes, 
are easier to elicit from humans. In this work, we focus on negotiation with ordinal preferences 
over a finite set of outcomes. We study an intuitive protocol for bilateral negotiations, where the 
two parties make offers alternately. We analyze the negotiation protocol under two settings: 
First, we consider the full information setting, where each party is fully aware of the other 
party’s preference order. For this case, we provide elegant strategies that specify a sub-game 
perfect equilibrium. In addition, we show how the studied negotiation protocol almost completely 
implements a known bargaining rule. Second, we analyze the complementary no-information 
setting where neither party knows the preference order of the other party. For this case, we 
provide a Maxmin strategy and show that every pair of Maxmin strategies specifies a robust-
optimization equilibrium. Finally, through a human study (𝑁 = 150), we empirically study the 
practical relevance of our full information analysis to people engaging in negotiations with 
each other and/or with an automated agent using the studied protocol. Surprisingly, our results 
indicate that people tend to arrive at the equilibrium outcomes despite frequently departing 
from the proposed strategies. In addition, in contrast to commonly held beliefs, we find that 
an equilibrium-following agent performs very well with people.

1. Introduction

Negotiation is a dialogue between two or more parties over one or more issues, where each party has some preferences regarding 
the discussed issues, and the negotiation process aims to reach an agreement that would be beneficial to the parties. From an artificial 
intelligence perspective, the study of automated negotiation is primarily concerned with the creation of agents which will be able to 
proficiently negotiate on behalf of their human users or owners [16].

In order to adequately develop such agents, several interwoven aspects of the negotiation framework have to be addressed, 
including the representation of one’s preferences and the negotiation protocol [24]. Focusing on the former, most negotiating agents 
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assume access to cardinal preferences represented as a utility function that adequately associates different outcomes with numerical 
values. Unfortunately, utility functions are not always readily available and the use of cardinal utilities for representing human 
preferences has been widely criticized on the grounds of cognitive complexity, the difficulty of elicitation, and various other concerns 
(e.g., [2]). On the other hand, ordinal preferences, commonly represented as ranking over the outcomes, are assumed to be easier to 
elicit from people. Unfortunately, agents which assume access to ordinal preferences are significantly less prevalent. When ordinal 
preferences are assumed, it is common to convert them to cardinal preferences by following some non-trivial assumptions [30,38,10,
12,35].

In this paper, we study negotiation with ordinal preferences over a finite set of outcomes, without converting the ordinal prefer-
ences to a cardinal utility.1 We analyze an intuitive negotiation protocol for bilateral negotiation introduced by Anbarci [3], where 
the two parties make alternating offers. Each offer is a possible outcome, and we allow the parties to make any offer they would like, 
in any order. The only restriction is that no offer can be made twice, and thus if there are 𝑚 possible outcomes, the negotiation will 
last at most 𝑚 rounds.

Our analysis consists of several complementary components: First, we analyze the full information setting, where both parties are 
informed of the other party’s preferences. We provide elegant strategies that specify a Sub-game Perfect Equilibrium (SPE) for the 
parties. Our strategies are easy to implement and improve the previous result of Anbarci [4] by finding an SPE strategy in linear 
time instead of quadratic time. The SPE result is then linked to the designed Rational Compromise (𝑅𝐶) bargaining rule [20], which 
is a centralized procedure useful in a cooperative environment. Specifically, we show that the SPE result of the negotiation protocol 
is always part of the set of results returned by the 𝑅𝐶 rule, even though the negotiation protocol does not force the parties to offer 
specific outcomes in a specific order as the 𝑅𝐶 rule does. This non-trivial and perhaps surprising connection also enables us to prove 
that the SPE result of the protocol satisfies several axiomatic properties such as monotonicity which are normatively desired. We 
further analyze the no information setting where neither party knows the preference order of the other party nor do they have any 
prior probability distribution over possible orders. We begin by showing that an ex-post SPE does not exist. We then provide the 
Maxmin strategy and the Maxmin value of the game that is imposed by the negotiation protocol. We further show that any pair of 
Maxmin strategies also specifies a robust-optimization equilibrium. Last, we empirically investigate the practical relevance of our 
full information analysis through a human study with 150 participants. Using ten negotiation instances, which vary in the degree 
of disagreement between the parties’ preferences, we study how ordinary people negotiate using the studied protocol, either with 
each other or with an automated agent that implements the SPE strategy. Our results show that ordinary people tend to arrive at 
the SPE outcomes when negotiating with each other or with the automated agent. At the same time, our results show that people 
do not closely follow the SPE strategy. In addition, in contrast with the commonly held belief that equilibrium-following agents are 
unsuccessful when negotiating with people, our results show that our equilibrium-following agent is, in fact, highly successful and 
significantly outperforms human negotiators.

Above all, the contribution of this work is four-fold: First, we introduce elegant strategies that specify an SPE and provide a 
substantial analysis for showing that they indeed form an SPE. We also provide an improved algorithm for computing an SPE 
strategy for the studied negotiation protocol. The second contribution of our work is that we show how the studied negotiation 
protocol almost completely implements the 𝑅𝐶 rule. As noted by Kıbrıs and Sertel [20], who studied the 𝑅𝐶 rule, the relevance 
of the 𝑅𝐶 rule for real-life bargaining depends on the existence of non-cooperative games that implement it, and to the best of our 
knowledge our work is the first to find such a connection. The third contribution of this paper is the analysis of the negotiation 
protocol under a no information setting, which have not been considered before. Finally, our user study demonstrates the practical 
relevance of the SPE strategy and outcome as well as the adequacy of the SPE strategy for human-agent negotiation.

2. Related work

The basic rules of engagement between the negotiating agents, be they automated or otherwise, are defined through a negotiation 
protocol. The protocol determines, among other things, how the negotiation will proceed, the space of possible proposals, the rules 
determining how such proposals may be made, and how agreement or failure is determined [5]. Focusing on bilateral automated 
negotiation, one of the first protocols was introduced by Rubinstein [37]. Since then, a lot of work has been done to develop 
and investigate a variety of negotiation protocols that extend this basic alternating-offers negotiation protocol (see the following 
comprehensive books [32,21,16]). The traditional assumption in the negotiation theory is that there is a continuum of feasible 
outcomes, but many real-life negotiation scenarios violate this assumption. Indeed, there are several works that consider problems 
with a finite number of outcomes. For example, see [42], [25], [29] and [31]. All of these works focus on negotiation when the 
preferences are represented by a cardinal utility, while we study negotiation with ordinal preferences.

There are several works that studied bargaining rules with ordinal preferences over a finite set of outcomes (for example, [41]). A 
bargaining rule is a function that assigns to each negotiation instance a subset of the outcomes, which are considered the result of the 
negotiation. Sequential procedures, in particular the fallback bargaining method, have attracted considerable interest [39,19,8,20,11], 
since they satisfy some nice theoretical properties. All of these works are inherently different from our setting: bargaining rules are 
useful in a cooperative environment or where there is a central authority that can force the parties to offer specific outcomes in 
a specific order, while we study a negotiation protocol that is useful in a non-cooperative environment. Indeed, we show that the 
studied negotiation protocol almost completely implements the individually rational variant of the fallback bargaining method, i.e., 
2

1 Note that this is also the typical assumption in most voting literature [9].
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the 𝑅𝐶 rule [20]. We note that the 𝑅𝐶 bargaining rule is equivalent to Bucklin voting [18] with two voters, and thus our result can 
also be interpreted as a (weak) SPE implementation of the Bucklin rule where there are two voters.

There are a few works that study negotiation protocols with ordinal preferences over a finite set of outcomes. De Clippel et al. [13]
study the problem of selection of arbitrators, and they concentrate on two-step protocols. Barberà and Coelho [6] study three pro-
tocols that are refinements of “rules of k names”, whereby one of the parties proposes a shortlist and the other chooses from it. 
Recently, Bol et al. [7] have conducted a human study to examine the efficiency and fairness of three negotiation protocols with 
ordinal preferences over five outcomes. The most closely related works are Anbarci’s papers. In [3] he introduces the Voting by 
Alternating Offers and Vetoes (VAOV) negotiation protocol, which we study here, and shows the possible SPE results in different sce-
narios. Implicitly, this work shows that the SPE result is unique and Pareto optimal. In [4] he introduces three additional negotiation 
protocols. Moreover, he sharpens his previous result by exactly identifying the SPE result of the VAOV protocol, and by providing 
an algorithm that computes an SPE strategy. He also shows that if the outcomes are distributed uniformly over the comprehensive 
utility possibility set and as the number of outcomes tends to infinity, the VAOV protocol converges to the equal area rule [40]. 
Our work provides a more efficient algorithm that finds an elegant SPE strategy and establishes the relationship between the VAOV 
protocol and the 𝑅𝐶 rule. In addition, we analyze the no information setting, which has yet to be investigated thus far. Last, we 
provide the first human study for this protocol.

Our human study follows a substantial line of research examining human negotiation decisions and outcomes. This research 
spans a wide range of disciplines, including psychology, business, economics, and others [34]. Common to most of these works 
is the observation that people’s bargaining and negotiation behavior does not adhere to equilibrium [26,14]. From an automated 
negotiation perspective, this observation raises concerns over the adequacy of following equilibrium strategies when negotiating with 
people. Indeed, various empirical investigations have shown that equilibrium-following agents are often unsuccessful. For example, 
in Kraus et al. [22], the authors have found that despite the low complexity of finding an equilibrium strategy in their full information 
setting, an equilibrium-following agent was highly unsuccessful. In a no-information setting, Peled et al. [33] have provided similar 
results. Following these and similar works, it is often claimed that agents cannot rely on equilibrium strategies alone to negotiate 
well with people [23]. As a result, the design of such agents has relied primarily on machine learning techniques which often require 
extensive contextual data or hand-crafted heuristics which need not necessarily generalize well across domains and settings [36, 
Ch. 4.3].

Very few studies have demonstrated the usefulness of following an equilibrium strategy in human-agent interaction. Notably, 
Haim et al. [17] has demonstrated this in a negotiation setting over contracts in a three-player market. The authors attribute their 
equilibrium-following agent’s success to the competitive nature of the market, however, they also claim that categorizing a priori the 
type of strategies that will succeed in a given negotiation environment is still an open challenge. In this respect, our human study is 
the first study to examine human-agent negotiation under ordinal preferences with an equilibrium-following agent. The importance 
of further promoting research into these and similar human-agent negotiation issues is also highlighted in the Automated Negotiating 
Agent Competition2 which introduced the Human-Agent League since 2017 [27,28].

3. Formal model

We assume that there are two negotiation parties, 𝑝1 and 𝑝2, negotiating over a finite set of potential outcomes 𝑂 = {𝑜1, ..., 𝑜𝑚}, 
where 𝑝1 is the party that makes the first offer. Each party has a preference order over the potential outcomes that does not permit 
any ties. Formally, the preferences of a party 𝑝 are a strict order, ≻𝑝, which is a complete, transitive, and irreflexive binary relation 
on 𝑂. We write 𝑜′ ≻𝑝 𝑜 to denote that party 𝑝 strictly prefers 𝑜′ to 𝑜, and 𝑜′ ⪰𝑝 𝑜 to denote that 𝑜′ ≻𝑝 𝑜 or 𝑜′ = 𝑜 (i.e., 𝑜′ is the exact 
same outcome as 𝑜). Clearly, each party would like the outcome of the negotiation to be ranked as high as possible in her preference 
ordering. We assume that any agreement is preferred by both parties over a no-agreement outcome.

The negotiation protocol (VAOV, [3]) works as follows: The parties make offers alternately with no offer made twice. We also 
assume that lotteries are not valid offers, as in most real-life negotiations. Formally, denote by 𝑂𝑡 the set of available outcomes (i.e., 
offers) at round 𝑡, and let 𝑂1 = 𝑂. At round 1, party 𝑝1 offers an outcome 𝑜 ∈ 𝑂1 to 𝑝2. If 𝑝2 accepts, the negotiation terminates 
successfully with 𝑜 as the outcome of the negotiation. Otherwise, party 𝑝2 offers an outcome 𝑜′ ∈ 𝑂2 = 𝑂1 ⧵ {𝑜}. If 𝑝1 accepts, the 
negotiation terminates successfully with 𝑜′ as the result of the negotiation. Otherwise, 𝑝1 offers an outcome 𝑜′′ ∈ 𝑂3 = 𝑂2 ⧵ {𝑜′} to 
𝑝2, and so on. If no offer was accepted until round 𝑚 then the last available outcome is accepted in the last round as the result of the 
negotiation since both parties wish to avoid a no-agreement outcome.

4. Theoretical analysis

In the following, we provide a theoretical analysis of the formal model specified above under the full information (i.e., both 
parties know the preferences of the other) and no information (i.e., neither party knows the preference of the other) settings. For 
convenience, we denote 𝑝𝑖 as the party whose turn it is to make an offer at a given round 𝑖, and 𝑝𝑗 denotes the other party. That is, 
𝑝𝑖 = 𝑝1 in odd round numbers and 𝑝𝑖 = 𝑝2 otherwise.

We start by providing a general result that is useful for both information settings. Consider the following definition:
3

2 http://ii .tudelft .nl /negotiation /index .php /node /7.
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Definition 1. In each round 𝑡, let 𝐿𝑗

𝑡
be the ⌊|𝑂𝑡|∕2⌋ lowest ranked outcomes in ≻𝑝𝑗 . If |𝑂𝑡| is odd, then let 𝐿𝑖

𝑡
be the ⌊|𝑂𝑡|∕2⌋ lowest 

ranked outcomes in ≻𝑝𝑖 . If |𝑂𝑡| is even, then 𝐿𝑖
𝑡

is the |𝑂𝑡|∕2 − 1 lowest ranked outcomes in ≻𝑝𝑖 .

We show that in each round 𝑡, we can identify a set of outcomes that cannot be the negotiation result if the parties are acting 
rationally, regardless of the information setting. Intuitively, these are all the outcomes that are in the lower parts of the preference 
orders of either party, denoted by 𝐿𝑜𝑤𝑡. We denote all of the other outcomes by 𝐽𝐺𝑡 (intuitively denoting the “Joint Goals”).

Definition 2. Given a round 𝑡, let 𝐿𝑜𝑤𝑡 = {𝑜 ∶ 𝑜 ∈𝐿𝑖
𝑡
∪𝐿

𝑗

𝑡
}, and 𝐽𝐺𝑡 =𝑂𝑡 ⧵𝐿𝑜𝑤𝑡.

Lemma 1. Let 𝑜 be the result of the negotiation if both parties are acting rationally. Then, 𝑜 ∉ 𝐿𝑜𝑤𝑡.

Proof. Given a round 𝑡, let 𝑚𝑡 = |𝑂𝑡|. Starting from round 𝑡, each party will be able to reject all of the offers that she would receive 
from the other party, except for the offer she would receive in the last round. Specifically, if 𝑚𝑡 is odd, 𝑝𝑖 and 𝑝𝑗 can reject at most ⌊𝑚𝑡∕2⌋ offers. If 𝑚𝑡 is even, 𝑝𝑖 can reject at most ⌊𝑚𝑡∕2⌋ − 1 offers (since it is 𝑝𝑖’s turn to offer) and 𝑝𝑗 can reject at most ⌊𝑚𝑡∕2⌋
offers. That is, each party 𝑝𝑘, 𝑘 ∈ {1, 2}, can reject at most |𝐿𝑘

𝑡
| offers. Therefore, each party will always be able to guarantee that the 

result of the negotiation will be an outcome that is placed higher than the |𝐿𝑘
𝑡
| lowest outcomes in her preference order. Therefore, 

𝑜 ∉𝐿𝑜𝑤𝑡. □

We now analyze the different information settings. In each case, we are interested in finding the best actions that a party should 
take, given the information that she has.

4.1. Full information

In this setting, we assume that each party has full information about the other party’s preference order, and she will thus take 
this information into account when deriving her best strategy. Therefore, in the full information setting, we are interested in finding 
an SPE. Since Anbarci [3] showed that the SPE result is unique, it suffices to find one set of strategies that specify an SPE.

4.1.1. SPE strategies

Recall that SPE is a function that maps the histories of players’ choices. Note that in our case, if an offer was accepted, the game 
is over. Therefore, a history for 𝑝𝑖, the party whose turn it is to make an offer at a given round, consists of a sequence of outcomes 
that were proposed and rejected in the previous rounds. Let 𝐻𝑖

𝑡
= (𝑜1, 𝑜2, ..., 𝑜𝑡−1) be the history for 𝑝𝑖 at round 𝑡, and recall that 

𝑂𝑡 = 𝑂 ⧵𝐻𝑖
𝑡
. Let 𝑜−

𝑡
be the least preferred outcome in 𝑂𝑡 according to ≻𝑝𝑗 . We define the following offer strategy, which will later 

be shown to specify an SPE.

Strategy 1 (Offer Strategy). Given a history 𝐻𝑖
𝑡
, if 𝐼𝑡 =𝐿𝑖

𝑡
∩𝐿

𝑗

𝑡
≠ ∅ then offer 𝑜 ∈ 𝐼𝑡, else offer 𝑜−

𝑡
.

A history for 𝑝𝑗 , the party whose turn it is to decide whether to accept or reject an offer at a given round, consists of a sequence of 
outcomes that were proposed and rejected in the previous rounds and an additional outcome 𝑜 that was offered by 𝑝𝑖 in the current 
round. Let 𝐻𝑗

𝑡
=𝐻𝑖

𝑡
+ 𝑜 = (𝑜1, 𝑜2, ..., 𝑜𝑡−1, 𝑜) be the history for 𝑝𝑗 at round 𝑡. In addition, given a round 𝑡 and history for 𝑝𝑖, 𝐻𝑖

𝑡
, let 𝑜𝑖

𝑡

be an outcome 𝑜 ∈ 𝐼𝑡 =𝐿𝑖
𝑡
∩𝐿

𝑗

𝑡
if 𝐼𝑡 ≠ ∅, and 𝑜−

𝑡
otherwise. Given a round 𝑡 and history for 𝑝𝑗 , 𝐻𝑗

𝑡
, let 𝑜𝑎(𝐻

𝑗

𝑡
) be the single outcome 

in 𝑂𝑚 = 𝑂 ⧵𝐻𝑖
𝑚

, where 𝐻𝑖
𝑚
=𝐻

𝑗

𝑡
+ 𝑜𝑖

𝑡+1 + ... + 𝑜𝑖
𝑚−1. That is, 𝑜𝑎(𝐻

𝑗

𝑡
) is the result of the negotiation if both parties reject all of the 

offers that they get (except for the last offer) from round 𝑡 and on, but use the offer strategy that is specified by Strategy 1 from 
round 𝑡 + 1 and on. Note that 𝑜𝑎(𝐻

𝑗

𝑡
) remains the same regardless of the specific order in which outcomes from 𝐼𝑡 are chosen. We 

define the following response strategy, which will later be shown to specify an SPE.

Strategy 2 (Response Strategy). Given a history 𝐻𝑗

𝑡
, if 𝑜 ⪰𝑝𝑗 𝑜𝑎(𝐻

𝑗

𝑡
) then accept 𝑜, else reject 𝑜.

To illustrate the strategies of our SPE, we consider two examples: an instance in which 𝐼1 = ∅, and an instance in which 𝐼1 ≠ ∅.

Example 1. Suppose that

≻𝑝1= 𝑜6 ≻ 𝑜5 ≻ 𝑜4 ≻ 𝑜3 ≻ 𝑜2 ≻ 𝑜1

≻𝑝2= 𝑜1 ≻ 𝑜3 ≻ 𝑜2 ≻ 𝑜6 ≻ 𝑜4 ≻ 𝑜5.

Following Definition 1, 𝐿1
1 = {𝑜2, 𝑜1} and 𝐿2

1 = {𝑜6, 𝑜4, 𝑜5}. Therefore, 𝐼1 = ∅ and according to the offer strategy (Strategy 1) 𝑝1 would 
offer 𝑝2 ’s least preferred outcome - 𝑜5. Then, according to the response strategy (Strategy 2) 𝑝2 would reject, since 𝑜𝑎((𝑜5)) = 𝑜3, as 
we will show, and 𝑜3 ≻𝑝2 𝑜5 see Fig. 1(a)). In round 2, in which it is the turn of 𝑝2 to make an offer, 𝐿1

2 = {𝑜1, 𝑜2} and 𝐿2
2 = {𝑜6, 𝑜4}, 

and thus 𝑝2 would offer 𝑜1 which 𝑝1 would reject for a similar reason (see Fig. 1(b)). In round 3 (Fig. 1(c)), it is 𝑝1’s turn to make an 
4

offer. In this round 𝐿1
3 = {𝑜2}, 𝐿2

3 = {𝑜6, 𝑜4}, and 𝑝1 would offer 𝑜4. 𝑝2 would then reject and, in turn, she would offer 𝑜2. 𝑝1 would 
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𝑃1

𝑃2

𝑜5 ...

𝑜3

𝑜5

accept reject

reject

(a) Round 1.

𝑃2

𝑃1

𝑜1 ...

𝑜3

𝑜1

accept reject

reject

(b) Round 2.

𝑃1

𝑃2

𝑜4 ...

𝑜3

𝑜4

accept reject

reject

(c) Round 3.

Fig. 1. An illustration of the first 3 rounds in Example 1.

reject and offer 𝑜6, which 𝑝2 would reject and offer 𝑜3, which is accepted as the result of the negotiation since no other outcome is 
available.

Example 2. Now suppose that

≻𝑝1= 𝑜6 ≻ 𝑜5 ≻ 𝑜4 ≻ 𝑜3 ≻ 𝑜2 ≻ 𝑜1

≻𝑝2= 𝑜1 ≻ 𝑜3 ≻ 𝑜6 ≻ 𝑜2 ≻ 𝑜4 ≻ 𝑜5.

Following Definition 1, 𝐿1
1 = {𝑜2, 𝑜1} and 𝐿2

1 = {𝑜2, 𝑜4, 𝑜5}. Therefore, 𝐼1 = {𝑜2} and according to Strategy 1, 𝑝1 would offer 𝑜2. Then, 
𝑝2 will reject, since 𝑜𝑎((𝑜2)) = 𝑜6 ≻𝑝2 𝑜2, as we will show. In round 2, 𝐿1

2 = {𝑜3, 𝑜1} and 𝐿2
2 = {𝑜4, 𝑜5}, 𝐼2 = ∅, and thus 𝑝2 would offer 

𝑜1. In each subsequent round, the parties would offer each other the least preferred outcomes, until the final round in which 𝑜6 will 
be accepted as the result of the negotiation.

We now prove that our strategies specify an SPE. The key idea is to consider the outcomes each party could offer at each round 
and analyze the dynamics of the negotiation process. The proof proceeds by induction, starting from the base case of a negotiation 
with two outcomes. In this case, it is straightforward to show that the strategies specify an SPE. Then, the induction step considers 
negotiations with more than two outcomes. The proof first shows that there is no incentive to deviate from the response strategy, 
since the result of following the offer and response strategies is Pareto optimal. It then shows that there is no incentive to deviate 
from the offer strategy. To that end, we define functions that quantify the number of outcomes each party can offer until a specific 
outcome becomes part of their lower preference set.

We begin by noting that in the offer strategy (Strategy 1), 𝑝𝑖 offers an outcome from the set 𝐼𝑡 if it is not empty. We now show 
the relation between the set 𝐼𝑡 and the set 𝐽𝐺𝑡.

Lemma 2. |𝐽𝐺𝑡| = |𝐼𝑡| + 1.

Proof. Suppose that in round 𝑡, |𝑂𝑡| =𝑚𝑡 is odd. Then,

|𝐿𝑖
𝑡
⧵ 𝐼𝑡| =

⌊𝑚𝑡

2

⌋
− |𝐼𝑡| = 𝑚𝑡 − 1

2
− |𝐼𝑡|,

|𝐿𝑗

𝑡
⧵ 𝐼𝑡| =

⌊𝑚𝑡

2

⌋
− |𝐼𝑡| = 𝑚𝑡 − 1

2
− |𝐼𝑡|.

Therefore,

|𝐽𝐺𝑡| =𝑚𝑡 − 2 ⋅ (
𝑚𝑡 − 1

2
− |𝐼𝑡|) − |𝐼𝑡| = |𝐼𝑡|+ 1.

Now suppose that 𝑚𝑡 is even. Then,

|𝐿𝑖
𝑡
⧵ 𝐼𝑡| =

⌊𝑚𝑡

2

⌋
− 1 − |𝐼𝑡| = 𝑚𝑡

2
− 1 − |𝐼𝑡|,

|𝐿𝑗

𝑡
⧵ 𝐼𝑡| =

⌊𝑚𝑡

2

⌋
− |𝐼𝑡| = 𝑚𝑡

2
− |𝐼𝑡|.

Therefore,

|𝐽𝐺𝑡| =𝑚𝑡 − (
𝑚𝑡

2
− 1 − |𝐼𝑡|) − (

𝑚𝑡

2
− |𝐼𝑡|) − |𝐼𝑡| = |𝐼𝑡|+ 1. □
5

Considering Lemma 1, we show a simple corollary. Let 𝑜𝑒𝑞 be the SPE result. We get:
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Corollary 1. 𝑜𝑒𝑞 ∉𝐿𝑜𝑤𝑡.

If we combine the findings from Corollary 1 and Lemma 2, we get that if the set 𝐼𝑡 is empty, i.e., the intersection between the 
lower parts of the preference orders of the parties is empty, then the set 𝐽𝐺𝑡 contains only one outcome, 𝑜𝑒𝑞 .

Corollary 2. If 𝐼𝑡 = ∅ then 𝐽𝐺𝑡 = {𝑜𝑒𝑞}.

Proof. From Lemma 2, |𝐽𝐺𝑡| = 1. Assume that 𝑜𝑒𝑞 ∉ 𝐽𝐺𝑡, then 𝑜𝑒𝑞 ∈𝐿𝑜𝑤𝑡, in contradiction to Lemma 1. □

Next, we show how the transition from round 𝑡 to round 𝑡 + 1 affects the number of outcomes in 𝐿𝑘
𝑡+1, 𝑘 ∈ {1, 2}.

Lemma 3. Suppose that in round 𝑡, 𝑝𝑖 offered an outcome 𝑜 and 𝑝𝑗 rejected it, then in round 𝑡 + 1, |𝐿𝑖
𝑡+1| = |𝐿𝑗

𝑡
| − 1 and |𝐿𝑗

𝑡+1| = |𝐿𝑖
𝑡
|.

Proof. Assume |𝑂𝑡| =𝑚𝑡 is even, then by definition |𝐿𝑖
𝑡
| = 𝑚𝑡

2 − 1 and |𝐿𝑗

𝑡
| = 𝑚𝑡

2 . After that 𝑝𝑖 offered the outcome 𝑜 and 𝑝𝑗 rejected 

it, 𝑚𝑡+1 is odd, and the roles are switched between 𝑝𝑖 and 𝑝𝑗 . Therefore, |𝐿𝑖
𝑡+1| = |𝐿𝑗

𝑡+1| =
⌊
𝑚𝑡+1
2

⌋
=
⌊
𝑚𝑡−1
2

⌋
=
⌊
𝑚𝑡

2 − 1
2

⌋
= 𝑚𝑡

2 −1. Now 

assume that 𝑚𝑡 is odd, then |𝐿𝑖
𝑡
| = |𝐿𝑗

𝑡
| = ⌊

𝑚𝑡

2

⌋
= 𝑚𝑡−1

2 . After that 𝑝𝑖 offered the outcome 𝑜 and 𝑝𝑗 rejected it, 𝑚𝑡+1 is even, and the 

roles are switched between 𝑝𝑖 and 𝑝𝑗 . Therefore, |𝐿𝑗

𝑡+1| = 𝑚𝑡−1
2 and |𝐿𝑖

𝑡+1| = 𝑚𝑡−1
2 − 1. □

We note that the number of outcomes in 𝐿𝑘
𝑡

is important, since we already showed in Corollary 1 that these are the outcomes that 
cannot be an equilibrium result. Indeed, it is more important to understand how the transition from round 𝑡 to round 𝑡 + 1 affects 
which outcomes become part of 𝐿𝑘

𝑡+1. Obviously, it depends on the offer that was made in round 𝑡. The following three lemmas 
analyze this transition, based on the offers that are made according to Strategy 1. Specifically, Lemma 4 together with Lemma 5
cover the offer strategy where 𝐼𝑡 = ∅, and Lemma 5 together with Lemma 6 cover the offer strategy where 𝐼𝑡 ≠ ∅.

Lemma 4. In round 𝑡, if 𝑝𝑖 offers 𝑜 ∉𝐿𝑖
𝑡

and 𝑝𝑗 rejects it, then 𝐿𝑗

𝑡+1 ←𝐿𝑖
𝑡
.

Proof. According to Lemma 3, the sets 𝐿𝑗

𝑡+1 and 𝐿𝑖
𝑡

have the same size. Therefore, if 𝑝𝑖 offers 𝑜 ∉ 𝐿𝑖
𝑡

and 𝑝𝑗 rejects it, we can be 
assured that 𝐿𝑗

𝑡+1 =𝐿𝑖
𝑡
. □

Lemma 5. In round 𝑡, if 𝑝𝑖 offers 𝑜 ∈𝐿
𝑗

𝑡
and 𝑝𝑗 rejects it, then 𝐿𝑖

𝑡+1 ←𝐿
𝑗

𝑡
⧵ {𝑜}.

Proof. According to Lemma 3, the set 𝐿𝑖
𝑡+1 contains one outcome less than the set 𝐿𝑗

𝑡
. Therefore, if 𝑝𝑖 offers 𝑜 ∈𝐿

𝑗

𝑡
and 𝑝𝑗 rejects it, 

𝑜 is the only outcome that becomes unavailable in round 𝑡 + 1, and we can thus be assured that 𝐿𝑖
𝑡+1 =𝐿

𝑗

𝑡
⧵ {𝑜}. □

Lemma 6. In round 𝑡, if 𝑝𝑖 offers 𝑜 ∈𝐿𝑖
𝑡

and 𝑝𝑗 rejects it, then 𝐿𝑗

𝑡+1 ←𝐿𝑖
𝑡
⧵ {𝑜} ∪ {𝑜′}.

Proof. According to Lemma 3, the sets 𝐿𝑗

𝑡+1 and 𝐿𝑖
𝑡

have the same size. Therefore, if 𝑝𝑖 offers 𝑜 ∈ 𝐿𝑖
𝑡

and 𝑝𝑗 rejects it, 𝑜 is the only 
outcome that becomes unavailable in round 𝑡 + 1, and thus there must be another outcome 𝑜′ ∈𝑂𝑡+1 that becomes part of 𝐿𝑗

𝑡+1. □

Note that when 𝑝𝑗 follows Strategy 2, she computes the outcome 𝑜𝑎(𝐻
𝑗

𝑡
) to decide whether to accept or reject the offer that she 

gets from 𝑝𝑖. By definition,

Lemma 7. 𝑜𝑎(𝐻
𝑗

𝑡
) = 𝑜𝑎(𝐻

𝑗

𝑡
+ 𝑜𝑖

𝑡+1).

We now show that if, in a given round 𝑡, 𝑝𝑖 follows Strategy 1, i.e., 𝑜𝑎(𝐻
𝑗

𝑡
) = 𝑜𝑎(𝐻𝑖

𝑡
+ 𝑜𝑖

𝑡
), then 𝑜𝑎(𝐻

𝑗

𝑡
) has some desirable 

properties. For example, it is Pareto optimal in 𝑂𝑡, i.e., ∀𝑜 ∈ 𝑂𝑡 ⧵ {𝑜𝑎(𝐻𝑖
𝑡
+ 𝑜𝑖

𝑡
)}, 𝑜𝑎(𝐻𝑖

𝑡
+ 𝑜𝑖

𝑡
) ≻𝑝𝑖 𝑜 or 𝑜𝑎(𝐻𝑖

𝑡
+ 𝑜𝑖

𝑡
) ≻𝑝𝑗 𝑜. For ease of 

notation, let 𝑜𝑎𝑡 = 𝑜𝑎(𝐻𝑖
𝑡
+ 𝑜𝑖

𝑡
).

Lemma 8. Given any history 𝐻𝑖
𝑡
,

1. 𝑜𝑖
𝑡
≺𝑝𝑗 𝑜𝑎𝑡.

2. 𝑜𝑎𝑡 ∈ 𝐽𝐺𝑡.
6

3. 𝑜𝑎𝑡 is Pareto optimal in 𝑂𝑡.
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Proof. We prove by induction on 𝑚. If 𝑚 = 2 and 𝑡 = 1, without loss of generality (WLOG) assume that ≻𝑝2= 𝑜1 ≻ 𝑜2. Since 𝐼𝑡 = ∅, 
𝑜1
𝑡
= 𝑜−

𝑡
= 𝑜2 and 𝐻1

𝑡
= () by definition. Thus, 𝑜𝑎𝑡 = 𝑜𝑎(𝐻1

𝑡
+ 𝑜1

𝑡
) = 𝑜1. In addition, 𝐽𝐺𝑡 = {𝑜1}, and therefore 𝑜1

𝑡
≺𝑝2 𝑜𝑎𝑡 and 𝑜𝑎𝑡 ∈ 𝐽𝐺1

as required. Since 𝑂𝑡 ⧵ {𝑜𝑎𝑡} = {𝑜2} and 𝑜2 ≺𝑝2 𝑜𝑎𝑡 then 𝑜𝑎𝑡 is also Pareto optimal in 𝑂𝑡. Now, assume that if there are 𝑚 −1 outcomes 
in round 𝑡 + 1, 𝑜𝑖

𝑡+1 ≺𝑝𝑗 𝑜𝑎(𝐻𝑖
𝑡+1 + 𝑜𝑖

𝑡+1), 𝑜𝑎(𝐻
𝑖
𝑡+1 + 𝑜𝑖

𝑡+1) ∈ 𝐽𝐺𝑡+1 and 𝑜𝑎(𝐻𝑖
𝑡+1 + 𝑜𝑖

𝑡+1) is Pareto optimal in 𝑂𝑡+1. We show that when 
there are 𝑚 outcomes in round 𝑡, 𝑜𝑖

𝑡
≺𝑝𝑗 𝑜𝑎(𝐻𝑖

𝑡
+ 𝑜𝑖

𝑡
) = 𝑜𝑎𝑡, 𝑜𝑎𝑡 ∈ 𝐽𝐺𝑡 and 𝑜𝑎𝑡 is Pareto optimal in 𝑂𝑡. According to Lemma 7, if 

𝐻
𝑗

𝑡
=𝐻𝑖

𝑡
+ 𝑜𝑖

𝑡
we get that 𝑜𝑎𝑡 = 𝑜𝑎(𝐻𝑖

𝑡
+ 𝑜𝑖

𝑡
) = 𝑜𝑎(𝐻𝑖

𝑡
+ 𝑜𝑖

𝑡
+ 𝑜𝑖

𝑡+1) = 𝑜𝑎(𝐻𝑖
𝑡+1 + 𝑜𝑖

𝑡+1). Now, if 𝐼𝑡 = ∅ and thus 𝑜𝑖
𝑡
= 𝑜−

𝑡
∈𝐿

𝑗

𝑡
then according 

to Lemmas 4 and 5 𝐽𝐺𝑡+1 = 𝐽𝐺𝑡. If 𝐼𝑡 ≠ ∅ and thus 𝑜𝑖
𝑡
∈ 𝐼𝑡 then according to Lemmas 5 and 6 𝐽𝐺𝑡+1 ⊆ 𝐽𝐺𝑡. According to the 

induction assumption, 𝑜𝑎(𝐻𝑖
𝑡+1 + 𝑜𝑖

𝑡+1) ∈ 𝐽𝐺𝑡+1 and thus 𝑜𝑎𝑡 = 𝑜𝑎(𝐻𝑖
𝑡+1 + 𝑜𝑖

𝑡+1) ∈ 𝐽𝐺𝑡. In addition, 𝑜𝑖
𝑡
∈𝐿

𝑗

𝑡
by definition and since we 

showed that 𝑜𝑎𝑡 ∈ 𝐽𝐺𝑡, we get that 𝑜𝑖
𝑡
≺𝑝𝑗 𝑜𝑎𝑡. Finally, since 𝑜𝑎𝑡 is Pareto optimal in 𝑂𝑡+1, 𝑂𝑡 =𝑂𝑡+1 ∪{𝑜𝑖

𝑡
}, and 𝑜𝑖

𝑡
≺𝑝𝑗 𝑜𝑎𝑡, we conclude 

that 𝑜𝑎𝑡 is Pareto optimal in 𝑂𝑡. □

Rephrasing Lemma 8, we showed that given any history 𝐻𝑖
𝑡
, if both parties follow Strategies 1 and 2 from round 𝑡 and on, 𝑝𝑗

would always reject the offers that she gets from 𝑝𝑖 (i.e., 𝑜𝑖
𝑡
, 𝑜𝑖

𝑡+1, ..., 𝑜
𝑖
𝑚−1), and the negotiation result would be 𝑜𝑎𝑡, which would be 

accepted in the last round. Moreover, the negotiation result 𝑜𝑎𝑡 is Pareto optimal in 𝑂𝑡, 𝑂𝑡+1, ..., 𝑂𝑚.
Before we prove that Strategies 1 and 2 specify an SPE we need to add some definitions. We first define a distance function 

for each party 𝑝𝑘, that given an outcome 𝑜𝑥 ∉ 𝐿𝑘
𝑡

counts the number of outcomes 𝑜 ∉ 𝐿𝑘
𝑡

such that 𝑜𝑥 ⪰𝑝𝑘 𝑜. Intuitively, this is the 
number of outcomes a party can offer until a round 𝑡′ where 𝑜𝑥 becomes part of 𝐿𝑘

𝑡′
. Formally:

Definition 3. 𝑑𝑘,𝑥,𝑡 = |{𝑜 ∈𝑂𝑡 ∶ 𝑜𝑥 ⪰𝑝𝑘 𝑜 ∧ 𝑜 ∉𝐿𝑘
𝑡
}| where 𝑘 ∈ {1, 2}.

We also define the number of offers that are made before reaching a round 𝑡′ where 𝐼𝑡′ = ∅.

Definition 4. Let 𝓁𝑘,𝑡 be the number of offers a party 𝑝𝑘 offers according to Strategy 1 from round 𝑡 until round 𝑡′ where 𝐼𝑡′ = ∅.

Recall our previous examples. In Example 1 at round 1, 𝐼1 = ∅ and thus 𝓁1,1 = 𝓁2,1 = 0. The distance of 𝑜3 at round 1 is 𝑑1,3,1 = 1
for party 𝑝1 and 𝑑2,3,1 = 2 for party 𝑝2. In Example 2, 𝐼1 ≠ ∅ but 𝐼2 = ∅ and thus 𝓁1,1 = 1 and 𝓁2,1 = 0. The distance of 𝑜6 at round 1
for the parties is 𝑑1,6,1 = 4 and 𝑑2,6,1 = 1, and the distance of 𝑜3 at round 1 for the parties is 𝑑1,3,1 = 1 and 𝑑2,3,1 = 2.

We also make the following simple observation, which is true since we use an alternating offers negotiation protocol:

Lemma 9. At any round 𝑡, 𝓁𝑗,𝑡 ≤ 𝓁𝑖,𝑡.

Our main theorem is as follows:

Theorem 10. Strategies 1 and 2 specify an SPE.

Proof. We prove by induction on 𝑚. If 𝑚 = 2 and 𝑡 = 1, WLOG assume that ≻𝑝2= 𝑜1 ≻ 𝑜2. Thus, 𝐽𝐺𝑡 = {𝑜1}, and according to 
Corollary 2, 𝑜1 is the SPE result. Indeed, according to Strategy 1 𝑝1 will offer 𝑜2 in the first round and 𝑝2 will reject it according to 
Strategy 2 since 𝑜𝑎((𝑜2)) = 𝑜1 ≻2 𝑜2. In the next round 𝑝𝑖 = 𝑝2 will offer 𝑜1, 𝑝1 will accept it and then the negotiation will end with 𝑜1
as the negotiation result. Clearly, there are only two states where 𝑝2 has the option to deviate: on the equilibrium path, i.e., where 
𝐻2

𝑡
= (𝑜2), and off the equilibrium path, i.e., where 𝐻2

𝑡
= (𝑜1). Where 𝐻2

𝑡
= (𝑜2), 𝑝2 has no incentive to deviate from the response 

strategy and accept the offer of 𝑜2 from 𝑝1, since 𝑜1 ≻2 𝑜2. Where 𝐻2
𝑡
= (𝑜1), 𝑝2 has no incentive to deviate and reject the offer of 

𝑜1, since then 𝑜2 would become the last available outcome and thus the negotiation result, but 𝑜1 ≻2 𝑜2. Similarly, there is only one 
state where 𝑝1 has the option to deviate, i.e., 𝐻1

𝑡
= (). In this state 𝑝1 has no incentive to deviate from the offer strategy and offer 𝑜1, 

since 𝑝2 will accept it (because 𝑜1 ≻2 𝑜2) and 𝑜1 is already the SPE result if 𝑝1 follows the offer strategy.
Now, assume that if there are 𝑚 − 1 outcomes in round 𝑡 + 1, our strategies specify an SPE. We show that they specify an SPE 

when there are 𝑚 outcomes in round 𝑡. We first consider the strategy of 𝑝𝑗 at round 𝑡. Note that 𝑜𝑎(𝐻
𝑗

𝑡
) = 𝑜𝑎(𝐻𝑖

𝑡
+ 𝑜) = 𝑜𝑎(𝐻𝑖

𝑡+1)
by definition, and 𝑜𝑎(𝐻𝑖

𝑡+1) is the SPE result of following our strategies from state 𝐻𝑖
𝑡+1 according to Lemma 8 combined with the 

induction assumption. Clearly, if according to the response strategy (Strategy 2) 𝑝𝑗 should reject the offer 𝑜, it is because 𝑜𝑎(𝐻
𝑗

𝑡
) ≻𝑝𝑗 𝑜. 

Therefore, it is not worthwhile for 𝑝𝑗 to deviate and accept 𝑜 instead of 𝑜𝑎(𝐻𝑖
𝑡+1) = 𝑜𝑎(𝐻

𝑗

𝑡
). Similarly, if according to the response 

strategy 𝑝𝑗 should accept an offer 𝑜, it is because 𝑜 ⪰𝑝𝑗 𝑜𝑎(𝐻
𝑗

𝑡
). Therefore, it is not worthwhile for 𝑝𝑗 to deviate and reject 𝑜 in 

order to get as the negotiation result the outcome 𝑜𝑎(𝐻𝑖
𝑡+1) = 𝑜𝑎(𝐻

𝑗

𝑡
). Overall, 𝑝𝑗 does not have an incentive to deviate in round 𝑡. 

According to the induction assumption, Strategies 1 and 2 specify an SPE when there are 𝑚 − 1 outcomes in round 𝑡 + 1. Therefore, 
𝑝𝑗 does not have any incentive to deviate.

We now concentrate on the strategy of 𝑝𝑖 at round 𝑡, but we first derive some general inequalities. Given a history 𝐻𝑖
𝑡
, suppose 

that there is an outcome 𝑜𝑥 ∈ 𝑂𝑡 such that 𝑜𝑥 ≻𝑝𝑖 𝑜𝑎𝑡 = 𝑜𝑎(𝐻𝑖
𝑡
+ 𝑜𝑖

𝑡
). According to Lemma 8, since 𝑜𝑥 ≻𝑝𝑖 𝑜𝑎𝑡, 𝑜𝑎𝑡 ≻𝑝𝑗 𝑜𝑥. Suppose that 
7

both parties follow strategies 1 and 2, and let 𝑡′ be the round in which 𝐽𝐺𝑡′ = {𝑜𝑎𝑡}. Then, in round 𝑡, 𝓁𝑖,𝑡 < 𝑑𝑖,𝑎𝑡,𝑡 and 𝓁𝑗,𝑡 < 𝑑𝑗,𝑎𝑡,𝑡
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(otherwise, 𝑜𝑎𝑡 ∉ 𝐽𝐺𝑡′ ). By definition, 𝑡′ = 𝓁𝑖,𝑡 + 𝓁𝑗,𝑡. In addition, since 𝐽𝐺𝑡′ = {𝑜𝑎𝑡}, 𝑜𝑥 must be part of 𝐿𝑜𝑤𝑡′′ for some 𝑡′′ < 𝑡′

(otherwise, 𝑜𝑥 ∈ 𝐽𝐺𝑡′ ). Since 𝑜𝑥 ≻𝑝𝑖 𝑜𝑎𝑡 and 𝓁𝑖,𝑡 < 𝑑𝑖,𝑎𝑡,𝑡, it must be that 𝑜𝑥 is part of 𝐿𝑗

𝑡′′
, that is, 𝑑𝑗,𝑥,𝑡 ≤ 𝓁𝑗,𝑡. In summary:

𝓁𝑖,𝑡 < 𝑑𝑖,𝑎𝑡,𝑡 < 𝑑𝑖,𝑥,𝑡

𝑑𝑗,𝑥,𝑡 ≤ 𝓁𝑗,𝑡 < 𝑑𝑗,𝑎𝑡,𝑡

(1)

Now assume that in round 𝑡 𝑝𝑖 deviates, and the result of the negotiation, if both parties follow our strategies from round 𝑡 +1, is 
𝑜𝑥. Note that 𝑝𝑖 in round 𝑡 + 1 is 𝑝𝑗 in round 𝑡, and thus 𝑜𝑎𝑡 ≻𝑝𝑖 𝑜𝑥. Therefore, we use the same arguments as above to get

𝓁𝑖,𝑡+1 < 𝑑𝑖,𝑥,𝑡+1 < 𝑑𝑖,𝑎𝑡,𝑡+1

𝑑𝑗,𝑎𝑡,𝑡+1 ≤ 𝓁𝑗,𝑡+1 < 𝑑𝑗,𝑥,𝑡+1
(2)

Now, assume by contradiction that there is an outcome 𝑜𝑑 ∉ 𝐼𝑡 such that if 𝑝𝑖 offers 𝑜𝑑 the negotiation result will be 𝑜𝑥, 𝑜𝑥 ≻𝑝𝑖 𝑜𝑎𝑡, 
as demonstrated in Fig. 2. We first analyze the case where 𝑝𝑗 rejects the offer of 𝑜𝑑 , since 𝑜𝑥 ≻𝑝𝑗 𝑜𝑑 (otherwise, 𝑝𝑗 would have 
accepted). We examine the change in the distance function for 𝑝𝑖 and 𝑝𝑗 , for outcomes 𝑜𝑎𝑡 and 𝑜𝑥, from round 𝑡 to round 𝑡 + 1. 
According to Lemma 3, |𝐿𝑖

𝑡+1| + 1 = |𝐿𝑗

𝑡
|, and since 𝑜𝑥 ≻𝑝𝑗 𝑜𝑑 and 𝑜𝑎𝑡 ≻𝑝𝑗 𝑜𝑑 , 𝑑𝑗,𝑥,𝑡 and 𝑑𝑗,𝑎𝑡,𝑡 do not change when moving to round 

𝑡 + 1. Let 𝑐 be an integer. Then:

𝑑𝑖,𝑎𝑡,𝑡 + 𝑐 = 𝑑𝑗,𝑎𝑡,𝑡+1

𝑑𝑗,𝑎𝑡,𝑡 = 𝑑𝑖,𝑎𝑡,𝑡+1

𝑑𝑗,𝑥,𝑡 = 𝑑𝑖,𝑥,𝑡+1

(3)

If we combine (2) and (3), and apply Lemma 9, we get that:

𝓁𝑗,𝑡+1 < 𝑑𝑗,𝑥,𝑡 < 𝑑𝑗,𝑎𝑡,𝑡

𝑑𝑖,𝑎𝑡,𝑡 + 𝑐 ≤ 𝓁𝑖,𝑡+1

Adding (1) we get that:

𝓁𝑖,𝑡 < 𝓁𝑖,𝑡+1 − 𝑐

𝓁𝑖,𝑡+1 < 𝓁𝑗,𝑡

Adding Lemma 9 once more we can conclude that: 𝓁𝑖,𝑡+1 < 𝓁𝑗,𝑡 ≤ 𝓁𝑖,𝑡 < 𝓁𝑖,𝑡+1 − 𝑐. That is, 𝓁𝑖,𝑡+1 ≤ 𝓁𝑖,𝑡+1 − 𝑐−2, thus 𝑐 ≤ −2. However, 
the distance function cannot decrease by more than 1 when moving from round 𝑡 to 𝑡 + 1, thus 𝑐 ≥ −1.

We now analyze the case where 𝑝𝑗 accepts the offer of 𝑜𝑑 , since 𝑜𝑑 ⪰𝑝𝑗 𝑜𝑥. We examine the change in the distance function for 𝑝𝑖
and 𝑝𝑗 , for outcomes 𝑜𝑎𝑡 and 𝑜𝑥, from round 𝑡 to round 𝑡 +1. Note that since 𝑝𝑖 deviates, 𝑜𝑑 ≻𝑝𝑖 𝑜𝑎𝑡. According to Lemma 8, 𝑜𝑎𝑡 ≻𝑝𝑗 𝑜𝑑 . 
According to Lemma 3, |𝐿𝑖

𝑡+1| + 1 = |𝐿𝑗

𝑡
|, and since 𝑜𝑎𝑡 ≻𝑝𝑗 𝑜𝑑 , 𝑑𝑗,𝑎𝑡,𝑡 does not change when moving to round 𝑡 + 1. However, since 

𝑜𝑑 ≻𝑝𝑗 𝑜𝑥, 𝑑𝑗,𝑥,𝑡 increases by one when moving to round 𝑡 + 1. Let 𝑐 be an integer. Then:

𝑑𝑖,𝑎𝑡,𝑡 + 𝑐 = 𝑑𝑗,𝑎𝑡,𝑡+1

𝑑𝑗,𝑎𝑡,𝑡 = 𝑑𝑖,𝑎𝑡,𝑡+1

𝑑𝑗,𝑥,𝑡 + 1 = 𝑑𝑖,𝑥,𝑡+1

(4)

If we combine (2) and (4) we get that:

𝓁𝑖,𝑡+1 < 𝑑𝑗,𝑥,𝑡 + 1 < 𝑑𝑗,𝑎𝑡,𝑡

𝑑𝑖,𝑎𝑡,𝑡 + 𝑐 ≤ 𝓁𝑗,𝑡+1

Adding (1) we get that:

𝓁𝑖,𝑡 < 𝓁𝑗,𝑡+1 − 𝑐

𝓁𝑖,𝑡+1 − 1 < 𝓁𝑗,𝑡

Adding Lemma 9 we can conclude that: 𝓁𝑖,𝑡+1 − 1 < 𝓁𝑗,𝑡 ≤ 𝓁𝑖,𝑡 < 𝓁𝑗,𝑡+1 − 𝑐. That is, 𝓁𝑗,𝑡+1 − 1 ≤ 𝓁𝑗,𝑡+1 − 𝑐 − 2, thus 𝑐 ≤ −1. However, 
in order for 𝑑𝑖,𝑎𝑡,𝑡 to decrease by at least one, 𝑜𝑎𝑡 ≻𝑝𝑖 𝑜𝑑 , but in our case 𝑜𝑑 ≻𝑝𝑖 𝑜𝑎𝑡.

Overall, we showed that 𝑝𝑖 does not have an incentive to deviate in round 𝑡. According to the induction assumption, Strategies 1
and 2 specify an SPE when there are 𝑚 − 1 outcomes in round 𝑡 + 1. Therefore, 𝑝𝑖 does not have any incentive to deviate. □

Finally, note that trivial exploration of the whole game tree in order to derive the SPE would take at least 𝑂(2𝑚) operations, since 
there can be 𝑚 − 1 rounds in which a party 𝑝𝑖 can offer any outcome from the available outcomes and the other party 𝑝𝑗 can decide 
either to accept the offer or reject it. The complexity of finding an SPE strategy of [4] is not explicitly analyzed, but its running 
8

time is at least 𝑂(𝑚2) since it requires finding all the Pareto optimal outcomes for a given state of the game tree (i.e., given any 



Artificial Intelligence 327 (2024) 104050N. Hazon, S. Erlich, A. Rosenfeld et al.

𝑝𝑖

𝑜𝑎𝑡 𝑝𝑗

𝑜𝑑 𝑜𝑥

𝑜𝑖 𝑜𝑑

𝑎𝑐𝑐𝑒𝑝𝑡 𝑟𝑒𝑗𝑒𝑐𝑡

Fig. 2. 𝑝𝑖 ’s decision node.

history 𝐻𝑖
𝑡

or 𝐻𝑗

𝑡
). We propose a completely different approach and provide elegant strategies that are easy to implement and are 

(computationally) more efficient: given a state in the game tree (i.e. given any history 𝐻𝑖
𝑡

or 𝐻𝑗

𝑡
), we compute an SPE strategy from 

the current state in time that is linear in 𝑚. Indeed, in our approach, we only need to simulate one branch of the tree (to find 𝑜𝑎(𝐻𝑖
𝑡
)

or 𝑜𝑎(𝐻
𝑗

𝑡
)) and then trace the intersection between 𝐿𝑖

𝑡
and 𝐿𝑗

𝑡
.

4.1.2. Properties

We first note that since we showed that the result of following Strategies 1 and 2 is Pareto optimal, we proved that they specify 
an SPE, and the SPE result is unique, we can infer that the SPE result is Pareto optimal.

Next, we analyze the relationship between the SPE result and the results of the designed Rational Compromise (𝑅𝐶) bargaining 
rule [20]. By establishing such a connection, one can transfer additional axiomatic properties that were previously proven for the 
RC outcome(s) to the SPE result of the VAOV protocol. Note that the 𝑅𝐶 rule is a private case of the Unanimity Compromise rule, 
where any agreement is preferred by both parties over a no-agreement result, as we assume. With our notations, the 𝑅𝐶 rule can be 
rephrased as the set 𝑅𝐶 = {𝑜𝑥| max𝑜𝑥∈𝑂 min𝑘∈{1,2}(𝑑𝑘,𝑥,1 + |𝐿𝑘

1| − 1)}. It can also be computed by the following steps:

1. Let 𝑣 = 1.
2. For each 𝑘 ∈ {1, 2}, let 𝐵𝑘

𝑣
= {the 𝑣 most preferred outcomes in ≻𝑝𝑘}.

3. If |𝐵1
𝑣
∩𝐵2

𝑣
| > 0 then return 𝐵1

𝑣
∩𝐵2

𝑣
as the result.

4. Else, 𝑣 ← 𝑣 + 1 and go to line 2.

We note that the 𝑅𝐶 rule may return either one or two outcomes, while our strategies always result in a single outcome. Surprisingly, 
the SPE result is always part of the set returned by the 𝑅𝐶 rule. The intuition is that our strategies specify an SPE by making offers 
and rejecting them until 𝐼𝑡 = ∅. At this stage, 𝐽𝐺𝑡 = {𝑜𝑒𝑞}, and by definition, the set 𝐽𝐺𝑡 is the intersection of the upper parts of the 
preferences of both parties, which corresponds to the 𝐵1

𝑣
∩𝐵2

𝑣
returned by 𝑅𝐶 .

Theorem 11. 𝑜𝑒𝑞 ∈𝑅𝐶

Proof. Let 𝑡 be the round where 𝐼𝑡 = ∅ after both parties follow our strategies. By Corollary 2, 𝐽𝐺𝑡 = {𝑜𝑒𝑞}. Rephrasing the definition 
of 𝐽𝐺𝑡 we get that 𝐽𝐺𝑡 = 𝐵𝑖|𝑂𝑡|−|𝐿𝑖

𝑡
| ∩𝐵

𝑗

|𝑂𝑡|−|𝐿𝑗

𝑡
|. If |𝐿𝑗

𝑡
| = |𝐿𝑖

𝑡
|, then for any 𝑣 where 𝑣 ≤ |𝑂𝑡| − |𝐿𝑗

𝑡
|, 𝐵𝑖

𝑣
∩𝐵

𝑗
𝑣 = {𝑜𝑒𝑞} or 𝐵𝑖

𝑣
∩𝐵

𝑗
𝑣 = ∅. 

If |𝐿𝑗

𝑡
| = |𝐿𝑖

𝑡
| + 1, then for any 𝑣 where the 𝑣 ≤ |𝑂𝑡| − |𝐿𝑗

𝑡
|, 𝐵𝑖

𝑣
∩𝐵

𝑗
𝑣 = {𝑜𝑒𝑞} or 𝐵𝑖

𝑣
∩𝐵

𝑗
𝑣 = ∅, and for 𝑣 = |𝑂𝑡| − |𝐿𝑖

𝑡
| it is possible that 

𝐵𝑖
𝑣
∩𝐵

𝑗
𝑣 = {𝑜𝑒𝑞, 𝑜𝑥}, for some outcome 𝑜𝑥. Overall, 𝑜𝑒𝑞 ∈𝑅𝐶 . □

Fig. 3 illustrates the relation between the step where 𝑅𝐶 stops, 𝑣, and the SPE result 𝑜𝑒𝑞 in three different scenarios. The orange 
color represents the outcomes of 𝐿𝑜𝑤𝑡, where 𝐼𝑡 = ∅, and the other outcomes are shown in blue color. In the first scenario (Fig. 3(a)) |𝐿𝑗

𝑡
| = |𝐿𝑖

𝑡
| and 𝑣 < |𝑂𝑡| − |𝐿𝑗

𝑡
|. That is, 𝑅𝐶 returns a single outcome, 𝑜𝑒𝑞 . In the second scenario (Fig. 3(b)) |𝐿𝑗

𝑡
| = |𝐿𝑖

𝑡
| + 1 and 

𝑣 = |𝑂𝑡| − |𝐿𝑗

𝑡
|. Therefore, 𝑅𝐶 returns a single outcome, 𝑜𝑒𝑞 . In the last scenario (Fig. 3(c)) |𝐿𝑗

𝑡
| = |𝐿𝑖

𝑡
| + 1, 𝑣 = |𝑂𝑡| − |𝐿𝑖

𝑡
|, and 𝑅𝐶

returns two outcomes, {𝑜𝑒𝑞, 𝑜𝑥}.
Based on Theorem 11, we can derive interesting results regarding the relationship between the 𝑅𝐶 rule and the SPE result:

Theorem 12.

1. If 𝑅𝐶 = {𝑜} then 𝑜𝑒𝑞 = 𝑜.

2. If 𝑜𝑒𝑞 is the SPE result, let 𝑜𝑒𝑞′ be the SPE result if 𝑝1 and 𝑝2 switch their rules (i.e., 𝑝2 starts the negotiation). If 𝑜𝑒𝑞 ≠ 𝑜𝑒𝑞′ , then 
𝑅𝐶 = {𝑜𝑒𝑞, 𝑜𝑒𝑞′ }.

3. If 𝑚 is odd and 𝓁1,1 + 𝓁2,1 is even or if 𝑚 is even and 𝓁1,1 + 𝓁2,1 is odd, then |𝑅𝐶| = 1.

4. If 𝑅𝐶 = {𝑜𝑥, 𝑜𝑦} and 𝓁1,1 + 𝓁2,1 is odd, then 𝑜𝑒𝑞 = 𝑜𝑥 and 𝑜𝑥 ≻𝑝1 𝑜𝑦. If 𝓁1,1 + 𝓁2,1 is even, then 𝑜𝑒𝑞 = 𝑜𝑦 and 𝑜𝑦 ≻𝑝2 𝑜𝑥.
9
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Fig. 3. An illustration of the relations between the step where 𝑅𝐶 stops, 𝑣, and the SPE result 𝑜𝑒𝑞 . (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 4. An illustration of the two scenarios where |𝑅𝐶| = 2.

Proof. 1. An easy corollary of Theorem 11.
2. An easy corollary of Theorem 11.
3. If 𝑚 is odd and 𝓁1,1 +𝓁2,1 is even or if 𝑚 is even and 𝓁1,1 +𝓁2,1 is odd, then 𝑚𝑡 is odd. Therefore, |𝐿1

𝑡
| = |𝐿2

𝑡
| by definition. Then, 

by Theorem 11, for any 𝑣 where 𝑣 ≤ |𝑂𝑡| − |𝐿1
𝑡
|, 𝐵1

𝑣
∩𝐵2

𝑣
= {𝑜𝑒𝑞} or 𝐵1

𝑣
∩𝐵2

𝑣
= ∅. That is, 𝑅𝐶 = {𝑜𝑒𝑞}.

4. |𝑅𝐶| = 2, thus there exists 𝑣 such that 𝐵1
𝑣
∩ 𝐵2

𝑣
= {𝑜𝑥, 𝑜𝑦}, and for every 𝑣′ < 𝑣, 𝐵1

𝑣′
∩ 𝐵2

𝑣′
= ∅. From Theorem 11, 𝑜𝑒𝑞 = 𝑜𝑥 or 

𝑜𝑒𝑞 = 𝑜𝑦. Let 𝑡 be the round such that 𝐼𝑡 = ∅ and 𝐽𝐺𝑡 = {𝑜𝑒𝑞}. That is, 𝐵1
|𝑂𝑡|−|𝐿1

𝑡
| ∩𝐵2

|𝑂𝑡|−|𝐿2
𝑡
| = {𝑜𝑒𝑞}. Therefore, |𝐿1

𝑡
| ≠ |𝐿2

𝑡
|, and 

thus 𝑚𝑡 is even. If 𝓁1,1 +𝓁2,1 is odd, then it is 𝑝2 ’s turn to offer. That is, |𝐿2
𝑡
| +1 = |𝐿1

𝑡
|, and since 𝑜𝑥 ≻𝑝1 𝑜𝑦, 𝑜𝑦 ∈𝐿1

𝑡
, as illustrated 

in Fig. 4(a). Therefore, 𝑜𝑒𝑞 = 𝑜𝑥. Similarly, if 𝓁1,1 + 𝓁2,1 is even, then it is 𝑝1’s turn to offer. That is, |𝐿1
𝑡
| + 1 = |𝐿2

𝑡
|, and since 

𝑜𝑦 ≻𝑝2 𝑜𝑥, 𝑜𝑥 ∈𝐿2
𝑡
, as illustrated in Fig. 4(b). Therefore, 𝑜𝑒𝑞 = 𝑜𝑦. □

Finally, we adapt the monotonicity criterion that the 𝑅𝐶 rule satisfies to our domain, and show that the negotiation protocol is 
monotonic.

Definition 5. A negotiation protocol is monotonic if given an instance (𝑂, ≻𝑝1 , ≻𝑝2 ) where the SPE result is 𝑜𝑒𝑞 , then for any instance 
(𝑂′, ≻′

𝑝1
, ≻′

𝑝2
) such that:

1. 𝑂 ⊂𝑂′,
10

2. For any 𝑜1, 𝑜2 ∈𝑂, 𝑜1 ≠ 𝑜2, and for 𝑘 ∈ {1, 2}, if 𝑜1 ≻𝑝𝑘 𝑜2 then 𝑜1 ≻′
𝑝𝑘

𝑜2,
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3. For any 𝑜 ∈𝑂′ ⧵𝑂, and for 𝑘 ∈ {1, 2}, 𝑜 ≻′
𝑝𝑘

𝑜𝑒𝑞 ,

we have that 𝑜′
𝑒𝑞
≻′
𝑝𝑘

𝑜𝑒𝑞 .

Theorem 13. The VAOV negotiation protocol is monotonic.

Proof. Given an instance (𝑂, ≻𝑝1 , ≻𝑝2 ), we know from Theorem 11 that 𝑜𝑒𝑞 ∈ 𝑅𝐶 . If we add a set of outcomes 𝑂′ ⧵ 𝑂 such that 
for every outcome 𝑜 ∈ 𝑂′ ⧵ 𝑂, 𝑜 ≻ 𝑜𝑒𝑞 for both parties, then for every outcome 𝑜′ in the set returned by the 𝑅𝐶 rule on the 
modified instance (𝑂′, ≻′

𝑝1
, ≻′

𝑝2
), 𝑜′ ≻ 𝑜𝑒𝑞 by both parties. Since 𝑜′

𝑒𝑞
∈ 𝑅𝐶 on (𝑂′, ≻′

𝑝1
, ≻′

𝑝2
), we get that 𝑜′

𝑒𝑞
≻ 𝑜𝑒𝑞 for both parties, as 

required. □

That is, adding outcomes that are preferred over 𝑜𝑒𝑞 by both parties causes 𝑅𝐶 to stop before reaching 𝑜𝑒𝑞 . To illustrate this, 
consider the following example. Assume that ≻𝑖= 𝑜5 ≻ 𝑜4 ≻ 𝑜3 ≻ 𝑜2 ≻ 𝑜1 and ≻𝑗= 𝑜1 ≻ 𝑜3 ≻ 𝑜5 ≻ 𝑜2 ≻ 𝑜4. Then, 𝑅𝐶 returns {𝑜3, 𝑜5}
and the SPE result is 𝑜3. Now assume that we add an outcome 𝑜6, where ≻′

𝑖
= 𝑜5 ≻ 𝑜4 ≻ 𝑜6 ≻ 𝑜3 ≻ 𝑜2 ≻ 𝑜1 and ≻′

𝑗
= 𝑜1 ≻ 𝑜6 ≻ 𝑜3 ≻ 𝑜5 ≻

𝑜2 ≻ 𝑜4. Clearly, 𝑅𝐶 returns 𝑜6 that is also the SPE result, and 𝑜6 ≻ 𝑜3 by both parties.

4.2. No information

We now consider the case of no information, where we assume that neither party knows the preference order of the other party. 
Moreover, the parties do not even hold any prior probability distribution over each other’s possible preference orders. A common 
solution concept for this case is an ex-post equilibrium, or in our case, an ex-post SPE. Intuitively, this is a strategy profile in which the 
strategy of each party depends only on her own type, i.e., its preference order, and it is an SPE for every realization of the other party’s 
type (i.e., her private preference order). Formally, let 𝑠𝑘(≺) be a strategy for player 𝑘 ∈ {1, 2} given a preference order ≺, and let 
 ([𝑠1(≺), 𝑠2(≺′)]) be the negotiation result if both parties follow their strategies. In the ex-post setting, a strategy for party 𝑘 ∈ {1, 2}, 
𝑠𝑘, is a best response to 𝑠3−𝑘 if for every strategy 𝑠′

𝑘
and for every preference orders ≺, ≺′,  ([𝑠𝑘(≺), 𝑠3−𝑘(≺′)]) ⪰𝑘  ([𝑠′

𝑘
(≺), 𝑠3−𝑘(≺′)]). 

A strategy profile [𝑠1, 𝑠2] is an ex-post equilibrium if 𝑠1 is a best response to 𝑠2 and 𝑠2 is a best response to 𝑠1, and it is an ex-post 
SPE if it is an ex-post equilibrium in every subgame of the game. We show that ex-post SPE is too strong to exist in our setting.

Theorem 14. There are no two strategies that specify an ex-post SPE for our model.

Proof. Clearly, every ex-post SPE is also an SPE (i.e., in the full information setting), we can apply Strategies 1 and 2 to identify 
the SPE result. Assume by contradiction that there are two strategies 𝑠1, 𝑠2 for parties 𝑝1, 𝑝2, respectively, such that [𝑠1, 𝑠2] is an 
ex-post SPE. Let ≺1= 𝑜1 ≺ 𝑜2 ≺ 𝑜5 ≺ 𝑜4 ≺ 𝑜3 ≺ 𝑜6, and let ≺2= 𝑜1 ≺ 𝑜2 ≺ 𝑜6 ≺ 𝑜3 ≺ 𝑜5 ≺ 𝑜4. Following our strategies, we get that 
the SPE result is 𝑜4. Since the SPE result is unique and every ex-post SPE is also an SPE,  ([𝑠1(≺1), 𝑠2(≺2)]) = 𝑜4. Now consider 
≺′
1= 𝑜4 ≺ 𝑜5 ≺ 𝑜1 ≺ 𝑜2 ≺ 𝑜3 ≺ 𝑜6. According to Corollary 1,  ([𝑠1(≺′

1), 𝑠2(≺2)]) = 𝑜3. Note that 𝑜4 ≺𝑝1 𝑜3. Consider the following 
strategy: 𝑠′1(≺) = 𝑠1(≺′

1) if ≺=≺1, and 𝑠′1(≺) = 𝑠1(≺) otherwise. That is,  ([𝑠1(≺1), 𝑠2(≺2)]) ≺𝑝1  ([𝑠′1(≺1), 𝑠2(≺2)]), and thus 𝑠1 is not 
a best response to 𝑠2. □

We note that Theorem 14 also implies that there is no solution in dominant strategies. Another approach to uncertainty, which 
follows a conservative attitude, is that a party 𝑝𝑘, 𝑘 ∈ {1, 2}, who wants to maximize her utility may want to play a Maxmin strategy. 
That is, since the preference order and the strategy of the other party 𝑝3−𝑘 are not known, it is sensible to assume that 𝑝3−𝑘 happens 
to play a strategy that causes the greatest harm to 𝑝𝑘, and to act accordingly. 𝑝𝑘 then guarantees the Maxmin value of the game for 
her, which in our case is a set of outcomes such that no other outcome that is ranked lower than all of the outcomes in this set will 
be accepted as the result of the negotiation, regardless of the preferences of 𝑝3−𝑘. Before we show the Maxmin strategy, we define 
the complement sets for the sets 𝐿𝑘

𝑡
, i.e., the sets of the highest ranked outcomes.

Definition 6. In each round 𝑡, for each party 𝑝𝑘, 𝑘 ∈ {1, 2}, 𝑈𝑘
𝑡
=𝑂𝑡 ⧵𝐿𝑘

𝑡
.

The Maxmin strategy, which is composed of offer and response strategies, is defined as follows:

Strategy 3 (Maxmin Strategy). Given a history 𝐻𝑖
𝑡
, offer any 𝑜 ∈𝑈𝑖

𝑡
. Given a history 𝐻𝑗

𝑡
, if 𝑜 ∈𝑈

𝑗

𝑡
then accept 𝑜, else reject 𝑜.

We now prove that our strategy specifies a Maxmin strategy and that a party 𝑝𝑘 that follows it can guarantee the Maxmin value 
of the game, which is the set 𝑈𝑘

1 . We denote the party that uses Strategy 3 by 𝑝𝑚𝑎𝑥 and the other party, which might try to minimize 
the utility of 𝑝𝑚𝑎𝑥, by 𝑝𝑚𝑖𝑛. Note that we need to handle both the case where 𝑝𝑚𝑎𝑥 starts the negotiation (i.e., 𝑝𝑚𝑎𝑥 = 𝑝1) and the case 
where 𝑝𝑚𝑖𝑛 starts it (i.e., 𝑝𝑚𝑖𝑛 = 𝑝1). We re-use Lemmas 4, 5 and 6, since they do not depend on the full information assumption. 
Furthermore, we add a fourth lemma, which complements these three lemmas by considering the fourth possible offer type.
11

Lemma 15. In round 𝑡, if 𝑝𝑖 offers 𝑜 ∉𝐿
𝑗

𝑡
and 𝑝𝑗 rejects it, then 𝐿𝑖

𝑡+1 ←𝐿
𝑗

𝑡
⧵ {𝑜′}, where 𝑜 ≠ 𝑜′.
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Proof. According to Lemma 3, the set 𝐿𝑖
𝑡+1 contains one outcome less than the set 𝐿𝑗

𝑡
. Therefore, if 𝑝𝑖 offers 𝑜 ∉𝐿

𝑗

𝑡
and 𝑝𝑗 rejects it, 

there must be another outcome 𝑜′ ∈𝑂𝑡 that left the set 𝐿𝑗

𝑡
. □

For ease of notation, we write 𝑈 ≻𝑝 𝑜 for 𝑈 ⊂𝑂 to denote that party 𝑝 strictly prefers all of the outcomes in the set 𝑈 over 𝑜. The 
intuition of our proof is as follows: We show that if 𝑝𝑚𝑎𝑥 deviates from the strategy specified by Strategy 3, 𝑝𝑚𝑖𝑛 is able to make the 
negotiation result in an outcome 𝑜, such that 𝑈𝑚𝑎𝑥

1 ≻𝑝𝑚𝑎𝑥 𝑜.

Theorem 16. Strategy 3 specifies a Maxmin strategy, and the Maxmin value of the game is the set 𝑈𝑚𝑎𝑥
1 .

Proof. We will prove by induction on 𝑚. If 𝑚 = 2 WLOG assume that ≻𝑝𝑚𝑎𝑥= 𝑜1 ≻ 𝑜2. If 𝑝𝑚𝑎𝑥 = 𝑝1 then 𝑈𝑚𝑎𝑥
1 = {𝑜1, 𝑜2} and clearly 

one of them will be the negotiation result. If 𝑝𝑚𝑎𝑥 = 𝑝2 then 𝑈𝑚𝑎𝑥
1 = {𝑜1}. If 𝑝𝑚𝑖𝑛 offers 𝑜1 in the first round, according to our strategy 

𝑝𝑚𝑎𝑥 should accept it. If 𝑝𝑚𝑖𝑛 offers 𝑜2 in the first round, according to our strategy 𝑝𝑚𝑎𝑥 should reject it, and offer 𝑜1 in the next 
round. Since this is the last round, 𝑜1 will be accepted. In any case, the negotiation result is 𝑜1. On the other hand, if 𝑝𝑚𝑎𝑥 deviates 
and rejects the offer of 𝑜1 or accepts the offer of 𝑜2, then 𝑜2 will be the result of the negotiation, but 𝑈𝑚𝑎𝑥

1 ≻𝑝𝑚𝑎𝑥 𝑜2. Now, assume 
that if there are 𝑚 − 1 outcomes in round 𝑡 +1 our strategy specifies a Maxmin strategy, and the Maxmin value of the game is the set 
𝑈𝑚𝑎𝑥
𝑡+1 . We show that our strategy specifies a Maxmin strategy, and the Maxmin value of the game is the set 𝑈𝑚𝑎𝑥

𝑡
when there are 𝑚

outcomes in round 𝑡.
Assume that it is 𝑝𝑚𝑎𝑥’s turn to offer. Clearly, if 𝑝𝑚𝑎𝑥 deviates and offers an outcome 𝑜 such that 𝑈𝑚𝑎𝑥

𝑡
≻𝑝𝑚𝑎𝑥 𝑜 then 𝑝𝑚𝑖𝑛 can accept 

it, and the negotiation results in 𝑜. On the other hand, if 𝑝𝑚𝑎𝑥 offers any 𝑜 ∈ 𝑈𝑚𝑎𝑥
𝑡

then 𝑝𝑚𝑖𝑛 can either accept or reject it. If 𝑝𝑚𝑖𝑛
rejects it then there are 𝑚 −1 outcomes in the next round, and according to the induction assumption 𝑝𝑚𝑎𝑥 can guarantee the Maxmin 
value of 𝑈𝑚𝑎𝑥

𝑡+1 by following our strategy. However, according to Lemma 4, 𝐿𝑚𝑎𝑥
𝑡+1 = 𝐿𝑚𝑎𝑥

𝑡
and thus 𝑈𝑚𝑎𝑥

𝑡+1 ∪ {𝑜} = 𝑈𝑚𝑎𝑥
𝑡

. Overall, the 
Maxmin value of the game is the set 𝑈𝑚𝑎𝑥

𝑡
.

Now assume that it is 𝑝𝑚𝑖𝑛 ’s turn to offer, and 𝑝𝑚𝑖𝑛 offers 𝑜 ∈ 𝑈𝑚𝑎𝑥
𝑡

. Clearly, if 𝑝𝑚𝑎𝑥 accepts then the negotiation result is from 
𝑈𝑚𝑎𝑥
𝑡

. If 𝑝𝑚𝑎𝑥 deviates and rejects, then according to induction assumption 𝑝𝑚𝑎𝑥 can guarantee the Maxmin value of 𝑈𝑚𝑎𝑥
𝑡+1 . However, 

according to Lemma 15, 𝐿𝑚𝑎𝑥
𝑡+1 =𝐿𝑚𝑎𝑥

𝑡
⧵ {𝑜′}, and thus 𝑈𝑚𝑎𝑥

𝑡+1 =𝑈𝑚𝑎𝑥
𝑡

⧵ {𝑜} ∪{𝑜′}. That is, 𝑜′ is a possible result of the negotiation even 
though 𝑈𝑚𝑎𝑥

𝑡
≻𝑝𝑚𝑎𝑥 𝑜

′. Finally, assume that 𝑝𝑚𝑖𝑛 offers 𝑜 ∉𝑈𝑚𝑎𝑥
𝑡

. Clearly, if 𝑝𝑚𝑎𝑥 deviates and accepts, then the negotiation results in 
𝑜. On the other hand, if 𝑝𝑚𝑎𝑥 follows our strategy and rejects, then according to the induction assumption 𝑝𝑚𝑎𝑥 can guarantee the 
Maxmin value of 𝑈𝑚𝑎𝑥

𝑡+1 . However, according to Lemma 5, 𝐿𝑚𝑎𝑥
𝑡+1 =𝐿𝑚𝑎𝑥

𝑡
⧵ {𝑜}, and thus 𝑈𝑚𝑎𝑥

𝑡+1 =𝑈𝑚𝑎𝑥
𝑡

. □

We note that even though a party does not hold any information regarding the preference order of the other party, she can still 
guarantee that the negotiation result will be from the upper part of her preference order (i.e., 𝑈𝑘

1 ) by following Strategy 3. This is 
possible since both parties have some important common knowledge, which is the number of outcomes 𝑚, as formally captured in 
Lemma 1.

Now, what will be the negotiation result if neither party knows the preference order of the other party, but both are acting 
rationally and will thus follow the Maxmin strategy? Clearly, the negotiation result will be an outcome 𝑜 such that 𝑜 ∈𝑈1

1 ∩𝑈2
1 . That 

is, an outcome from the set 𝐽𝐺1 as defined in Definition 1. We then get an interesting observation: if 𝐼1 = ∅, 𝐽𝐺1 = {0𝑒𝑞} according 
to Corollary 2, thus the negotiation result is the same for both the case of full information and the case of no information.

In addition, we note that a party 𝑝𝑖 cannot guarantee that the negotiation result will be from a subset 𝑈 ⊂ 𝑈𝑖
1, since we proved 

that this is the Maxmin value. However, she can heuristically offer in each round 𝑡 the best outcome in 𝑈𝑖
𝑡
, instead of an arbitrarily 

chosen 𝑜 ∈ 𝑈𝑖
𝑡
. Since |𝑈𝑗

𝑡
| ≥ |𝐿𝑗

𝑡
|, if the other party 𝑝𝑗 is also acting rationally and plays the Maxmin strategy, there are more cases 

in which 𝑝𝑗 will accept this offer, and it is thus beneficial for 𝑝𝑖 to heuristically offer in each round 𝑡 the best outcome in 𝑈𝑖
𝑡
.

The idea of the Maxmin strategy is that a party, not knowing the preferences of the other party, makes a worst-case assumption 
about the behavior of that party (i.e., that she does not need to be rational). This assumption may seem too restrictive, and we 
therefore also consider the robust-optimization equilibrium solution concept from [1], which we adapt to our setting. Intuitively, in 
this solution concept, each party makes a worst-case assumption about the preference order of the other party, but each party still 
assumes that the other party will play rationally and thus her aim is to maximize her utility. Formally, given a strategy profile [𝑠1, 𝑠2]
and a preference order ≺, let 𝑤𝑠1,≺,𝑠2

=  ([𝑠1(≺), 𝑠2(≺′)]), where ≺′ is a preference order such that for all ≺′′,  ([𝑠1(≺), 𝑠2(≺′)]) ⪯𝑝1

 ([𝑠1(≺), 𝑠2(≺′′)]). In the robust-optimization setting, a strategy for party 𝑘 ∈ {1, 2}, 𝑠𝑘, is a best response to 𝑠3−𝑘 if for all 𝑠′
𝑘

and 
for all ≺, 𝑤𝑠𝑘,≺,𝑠3−𝑘

⪰𝑝𝑘 𝑤𝑠′
𝑘
,≺,𝑠3−𝑘

. A strategy profile [𝑠1, 𝑠2] is a robust-optimization equilibrium if 𝑠1 is a best response to 𝑠2 and 𝑠2
is a best response to 𝑠1. We show that in our setting, surprisingly, every pair of Maxmin strategies specifies a robust-optimization 
equilibrium.

Theorem 17. If 𝑠1 and 𝑠2 are Maxmin strategies, then [𝑠1, 𝑠2] is a robust-optimization equilibrium.

Proof. Given a preference order, ≺, let ≺𝑜𝑝 be the opposite preference order, i.e., if ≺= 𝑜1 ≺ 𝑜2 ≺ ... ≺ 𝑜𝑚 then ≺𝑜𝑝= 𝑜1 ≻ 𝑜2 ≻ ... ≻ 𝑜𝑚. 
According to Theorem 16, if 𝑠𝑘 is a Maxmin strategy then the negotiation result is 𝑜 ∈ 𝑈𝑘

1 . That is, the worst negotiation result for 𝑝𝑘

is the least preferred outcome in 𝑈𝑘
1 , denoted by 𝑜𝑤𝑜. Since the other party 𝑝3−𝑘 is also using a Maxmin strategy, 𝑜 ∈𝑈𝑘

1 ∩𝑈3−𝑘
1 . For 
12

every preference order, ≺, if the preference order of 𝑝3−𝑘 =≺𝑜𝑝, 𝑈𝑘
1 ∩𝑈3−𝑘

1 = {𝑜𝑤𝑜}. That is, 𝑤𝑠1,≺,𝑠3−𝑘
= 𝑜𝑤𝑜. Assume by contradiction 
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that there is another strategy 𝑠′
𝑘

and a preference order ≺, such that 𝑤𝑠′
𝑘
,≺,𝑠3−𝑘

≻𝑝𝑘 𝑜𝑤𝑜. However, if the preference order of 𝑝3−𝑘 =≺𝑜𝑝, 
𝑤𝑠′

𝑘
,≺,𝑠3−𝑘

∉𝑈3−𝑘
1 , in contradiction to Theorem 16. □

5. Human study

In the following, we present a study on how ordinary people negotiate, either with each other or with an automated agent, using 
the studied protocol. We focus on the full information setting, where an SPE strategy and outcome were identified and analyzed 
earlier in this article; the empirical investigation of the no-information setting is left for future work. The reason is that an ex-
post SPE does not exist and the Maxmin strategy may entail various actions and outcomes which, from a theoretical standpoint, are 
considered equally appropriate. As such, an additional strategy has to be defined in order to select one offer from the various possible 
ones for any agent implementation. The evaluation of such possible strategies is outside the scope of this work.

In our context, we are mainly interested in three key issues: First, whether the negotiation outcomes coincide with the 𝑆𝑃𝐸; 
Second, whether the individual decisions made by the participants are aligned with those prescribed by the SPE strategy (Strategies 1
and 2). It is important to note in this context, that reaching an equilibrium outcome need not necessarily mean that the negotiators 
followed an equilibrium strategy, hence one needs to examine both issues. Last, whether an equilibrium-following agent performs 
well with people. To that end, we devised the following human study, which consists of two experimental setups. In both setups, 
participants were presented with the following negotiation task:

Motivating Scenario: A colleague and you were asked to select the next venue for the company’s retreat. There are seven possible venues: 
‘Los Angeles’, ‘Buenos Aires’, ‘London’, ‘New York’, ‘Rome’, ‘Tokyo’ and ‘Paris’. In the following, you will be presented with 10 instances, in 
each you will be given a different preferences profile (i.e., ordering over the seven possible venues). For each instance, you will be asked to 
negotiate with a colleague. Your goal is that the negotiation outcome will be ranked as high as possible in your preference orderings. Clearly, 
your colleague tries to achieve the same while considering her own preference ordering. Both of you are informed of your own preference 
order as well as your counterpart’s preference order.

Ten negotiation instances were devised such that each encompasses a different level of disagreement between the negotiators’ 
preferences, ranging from having the exact same preference order to having reversed ones. The ten instances, along with their 
characteristics (e.g., which agent starts the negotiation) and the computed SPE and RC outcomes (for completeness), are provided in 
Appendix B.

In Experimental Setup 1, participants negotiated with each other (i.e., Human vs. Human). Experimental Setup 2 replicates 
Experiment 1 while replacing one of the negotiating parties with an automated agent that implements strategies 1 and 2 (i.e., Human 
vs. Agent). In both experiments, participants did not know who they negotiate with.3 In both setups, participants were not provided 
with any advice or recommendation on how they should negotiate in order to pursue their objective.

5.1. Participants and procedure

All participants (𝑁 = 150, 91 males, average age 24) were recruited via ads posted on the academic platform used by the Computer 
Science undergraduate programs of the authors’ universities. All participants took part in this study of their own free will. The study 
was approved by the corresponding IRB.

Participants were asked to log in to a designated system, at a specified time, using their personal computer. Once participants 
logged into the system, they first had to fill out a standard informed consent form, followed by a few basic demographic questions. 
Then, the motivating scenario described above was presented along with an explanation of the VAOV negotiation protocol. Then, 
the participants were presented with detailed instructions on how they respond to an offer and make an offer. Participants then 
had to pass a short quiz, ensuring they understood the negotiation protocol and the task at hand. Both the instructions and the quiz 
are available in Appendix C (see Figs. C.9, C.10, C.11, and C.12). Then, each participant was randomly assigned to one of the two 
experimental setups discussed above. In each setup, the ten instances were presented, one after the other, in a random order. Overall, 
100 participants were assigned to Experimental Setup 1 and 50 participants were assigned to Experimental Setup 2, resulting in 
1,500 negotiations in each setup.4 Recall that participants were unaware of who or what they were negotiating with.

In order to avoid possibly under-quality data, negotiations in which at least one response move was extremely fast (less than 1 
second) or unreasonably slow (more than 100 seconds) were omitted. Less than 10% of the negotiations were omitted from further 
analysis.

For each negotiation, we first identify the negotiation outcome and contrast it with the 𝑆𝑃𝐸 and 𝑅𝐶 outcomes. Second, we 
examine the individual decisions made by the participants and compare them with those prescribed by our proposed strategies 
(Strategies 1 and 2).

3 Short informal interviews with some of the participants indicated that, indeed, the participants were unaware of the fact they negotiated with a person or an 
agent.
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4 50 human pairs x 10 instances in setup 1 plus 50 human participants who negotiated with an agent x 10 instances in setup 2.
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Fig. 5. Negotiation outcomes for Experimental Setup 1 - Human vs. Human. The X-Axis denotes the negotiation instance and the Y-Axis represents the percentage of 
negotiations that resulted in the corresponding outcome. The SPE and any additional RC outcomes are marked by 𝑥 and 𝑜, respectively.

Table 1

Negotiation outcomes for Experimental Setup 1 - Human vs. Human. The first column denotes the ne-
gotiation instance. The SPE outcome is marked in bold and any additional RC outcome is marked in 
italic.

# Buenos Aires London Los Angeles New York Paris Rome Tokyo Total

1 5 23 8 5 3 5 1 50

2 0 4 9 30 2 2 1 48

3 1 18 3 0 14 0 3 39

4 30 7 2 5 0 1 1 46

5 0 7 0 2 37 2 1 49

6 4 25 4 3 3 5 1 45

7 2 1 1 8 2 3 30 47

8 4 4 19 12 0 2 2 43

9 2 2 1 2 0 20 19 46

10 0 40 2 1 3 3 0 49

5.2. Experimental setup 1 - human vs. human

Starting with the negotiation outcome, as can be seen in Fig. 5 and Table 1, in eight out of ten negotiation instances, the majority 
of negotiations have resulted in the predicted SPE outcome. In the remaining two instances, the SPE outcome is second only to the 
additional RC outcome, which exists only in three instances. Recall that a non-SPE RC outcome is strongly related to the SPE outcome 
as shown in Theorem 12.

Fig. 6 presents the individual actions taken by the participants compared to those prescribed by Strategies 1 and 2. Starting with 
the response actions (i.e., accepting or rejecting an offer), we see that participants’ actions generally follow Strategy 2 with more 
than 60% of all response decisions in all instances adhering to the proposed strategy. In other words, participants generally tend 
to accept the SPE outcome and reject other proposals. However, considering the participants’ offers (i.e., possible outcomes which 
were yet to be rejected), we see that these are only weakly aligned with Strategy 1, with all instances presenting less than 20% 
adherence. The combination of these two results is somewhat surprising since it suggests that participants did arrive at the predicted 
outcomes, yet they only seem to follow the response strategy to a reasonable extent. One possible explanation for this result is that 
the participants were able to identify the SPE as desired outcomes, and hence were able to accept them while rejecting most other 
offers. On the other hand, given the complexity of the offer strategy and the long negotiation process it entails (i.e., if both parties 
follow the proposed strategies then the negotiation process would consist of many offers being exchanged and rejected until the SPE 
is proposed and accepted), “shortcuts” were practiced and the SPE outcome was proposed and accepted much sooner than it should 
under the equilibrium strategy. Indeed, the data supports this explanation – the average number of offers made in this setup was 
statistically significantly lower than that of Experimental Setup 2 (i.e., Human vs. Agent) for all 10 instances at 𝑝 < 0.05. Specifically, 
in this Human vs. Human setup, people exchanged 2.2 offers on average before the negotiation terminated whereas in the Human 
vs. Agent setup, more than twice the number of offers were exchanged (4.7 offers on average). Note if both parties follow the SPE 
strategies then 7 offers are to be exchanged.

5.3. Experimental setup 2 - human vs. agent

Similarly to Experimental Setup 1, as can be seen in Fig. 7 and Table 2, in six negotiation instances, the vast majority of 
negotiations have resulted in the predicted SPE outcome. In three of the remaining four instances, the SPE outcome is second to 
the additional RC outcome. Only in instance 4, the SPE outcome is second to a non-RC outcome. A closer examination of this 
instance reveals a possible explanation for this abnormality – the agent, who starts the negotiation, first offers Tokyo according 
to Strategy 1. The vast majority of human negotiators rejected the offer (since it is ranked very low in their preference order), 
14

as they should according to Strategy 2. Then, about 25% of the participants have offered their highest ranking choice - Buenos 
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Fig. 6. Negotiation actions in Experimental Setup 1 compared to the actions prescribed by the SPE strategy.

Fig. 7. Negotiation outcomes for Experimental Setup 2 - Human vs. Agent. The X-Axis denotes the negotiation instance and the Y-Axis represents the percentage of 
negotiations that resulted in the corresponding outcome. The SPE and any additional RC outcomes are marked by 𝑥 and 𝑜, respectively.

Aires, deviating from Strategy 1. By rejecting this offer, the agent is able to “force” the negotiation to result in its most preferred 
option – London – which is not the SPE outcome. In other words, the second offer made by the human participants often allowed 
the agent to capitalize on their deviation from Strategy 1 (i.e., “mistake”) and improve its own outcome. Further support for this 
explanation can be found when examining the differences in outcome distribution between Experimental Setups 1 and 2 (Figs. 5 and 
7). In most instances, the differences are associated with better outcomes for the agent (and in some cases, also for the human), i.e., 
outcomes that are preferred by the agent are more prevalent in setup 2 (Human vs. Agent) than in setup 1 (Human vs. Human). For 
example, considering instance 3, we see that the Tokyo outcome, which is not an SPE or RC outcome, was much more prevalent 
in setup 2 while the London outcome, which is in RC, is much less prevalent. Tokyo is preferred by the agent to both the SPE and 
RC outcomes, while both are preferred by the human participant. As such, in the context of outcome distribution, the differences 
between setups 1 and 2 seem to be indicative of the strategic capabilities of the agent rather than any perplexing deviation from the 
SPE outcomes.

Considering the individual actions taken by the human participants, we see that participants’ actions are, generally, better aligned 
with those of Strategies 1 and 2 compared to Experimental Setup 1. Starting with the participants’ responses, in all instances, more 
than 83% of the responses coincide with those prescribed by Strategy 2. This result is not surprising as the agent, which implements 
Strategy 1, starts by offering low-ranking outcomes which are naturally rejected by most participants (as per Strategy 2). Considering 
the participants’ offers, we see that a significantly larger portion of offers is aligned with Strategy 1 compared to Experimental 
Setup 1. Specifically, in 8 out of 10 instances, more than 35% of the offers coincide with those prescribed by Strategy 1. Since the 
participants of this study are assigned to the different setups completely at random, it is unreasonable to suspect that the participants 
in this setup are “more strategic” than those of setup 1. One plausible explanation is that participants were affected by the agent’s 
offer strategy. Specifically, given that the agent’s offers are lower-ranked in the human participant’s preference order, the participant 
might have “retaliated” by doing the same. It is important to note that we did not find any significant temporal effect for the repeated 
interaction, namely, the percentage of participant’s offers that coincide with Strategy 1 is not correlated with the number of offers or 
rounds played by that participant.

In order to evaluate the agent’s performance, we further compare the negotiated outcomes in setups 1 and 2 with respect to the 
15

agent’s and human’s preferences. Specifically, for each negotiation instance, we compare the agent’s average ranking of the negotiated 
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Table 2

Negotiation outcomes for Experimental Setup 2 - Human vs. Agent. The first column denotes the negoti-
ation instance. The SPE outcome is marked in bold and any additional RC outcome is marked in italic.

# Buenos Aires London Los Angeles New York Paris Rome Tokyo Total

1 0 41 0 0 3 0 5 49

2 1 1 0 41 4 1 0 48

3 1 14 0 2 18 0 11 46

4 10 29 2 0 0 0 6 47

5 0 0 0 2 46 0 0 48

6 2 45 0 0 0 0 2 49

7 3 1 1 0 0 0 39 44

8 0 0 27 13 1 0 7 48

9 2 0 2 0 4 20 22 50

10 0 46 0 1 0 2 0 49

Fig. 8. Negotiation actions in Experimental Setup 2 compared to the actions prescribed by Strategies 1 and 2.

outcomes in setup 2 to the corresponding average ranking of the negotiated outcomes for the same negotiation role in setup 1. That 
is, we compare the agent’s performance only to the people who assumed the same role as the agent in setup 1. Surprisingly, despite 
the scarce evidence to support the adequacy of equilibrium-following strategies for the agent in human-agent negotiation, in 7 out of 
the 10 instances, the agent’s average ranking was statistically significantly higher than that of the corresponding human negotiators 
in setup 1, with the difference ranging across negotiation instances from 0.3 to 1.1 ranking positions, 𝑝 < 0.05. In the remaining 3 
instances, no statistically significant differences were encountered.

Overall, we believe that the success of our agent should be primarily attributed to the nature of the SPE outcome and strategy. 
First and foremost, we see that people tend to reach the SPE outcome when negotiating with other people (Fig. 5) and that this 
outcome has favorable axiomatic properties (Theorem 11). As such, it is reasonable to expect people to perceive this outcome as 
“fair” or “desirable” and thus people are unlikely to be deterred from reaching this outcome when negotiating with an agent. From 
the SPE strategy perspective, intuitively, the agent’s offers “move up” the human negotiator’s preference order over the negotiation 
process. Since the human negotiator has no incentive to accept any low-ranking offers, these are mostly rejected by people as can be 
seen in Fig. 8, thus avoiding clearly unsuccessful outcomes. In addition, any deviation by a human negotiator from the offer strategy, 
for example by trying to use “shortcuts” in reaching the SPE outcome (or any other outcome) as observed in setup 1 (Fig. 5), is 
likely to be costly as the agent can capitalize on their behavior and force the negotiation to end in a better outcome for the agent 
as demonstrated earlier using instance 4. Taken jointly, people have no clear incentive to deviate from the SPE strategy, which 
clearly leads to the SPE outcome, nor do they have any clear incentive to refrain from reaching that outcome. It is important to note, 
however, that these properties are associated with the VAOV negotiation protocol. As such, equilibrium-following agents applied to 
other negotiation protocols and strategic interactions, which are not associated with the same properties, may not be as successful as 
16

documented in previous literature (e.g., [22,33]).
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6. Conclusion and future work

We investigated the negotiation over a finite set of outcomes, assuming ordinal preferences, using the VAOV negotiation protocol. 
We introduced strategies that specify an SPE and improved upon previous results by providing a linear time algorithm that computes 
an SPE strategy. We provided a substantial analysis of our strategies, which establishes a link between the SPE result of the protocol 
in a non-cooperative setting, to the result of the 𝑅𝐶 rule in a cooperative setting. We further analyzed the no information setting 
and show that, in our setting, every pair of Maxmin strategies specifies a robust-optimization equilibrium. Finally, through a human 
study of the full information settings, we have revealed an intriguing phenomenon where people tend to reach the SPE outcomes 
despite very frequently deviating from the proposed equilibrium strategies. Moreover, contrary to commonly held belief, an agent 
which follows the identified SPE strategy is shown to be highly successful when negotiating with people. Taken jointly, our results 
indicate that the studied VAOV negotiation protocol with ordinal preferences is especially suitable for non-cooperative, multi-agent 
systems with or without human negotiators.

In future work, we plan to extend this work in five directions: First, we plan to perform an extensive empirical evaluation of the 
no information setting as discussed earlier in Section 5. Second, we plan to replicate our human study with participants of different 
backgrounds and cultures, which may differ from our participant pool. Third, we plan to extend the protocol to a multi-party setting 
(i.e., more than two negotiators) and analyze the resulting SPE and its properties. Note that our fundamental Lemma 1 does not apply 
in the multi-party case as acceptance criteria have to be defined to determine when the negotiation ends. Given different acceptance 
criteria, our lemma and the subsequent analysis need not necessarily hold. Fourth, we plan to examine a variant of the VAOV protocol 
where the negotiation must terminate after 𝑚′ rounds, where 𝑚′ <𝑚. As in the case above, our fundamental Lemma 1 does not hold 
in this case. Last, we intend to investigate the additional implementation of other bargaining rules by negotiation protocols, similar 
to the implementation of the 𝑅𝐶 bargaining rule by the VAOV protocol.
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Appendix A. Uniqueness of the SPE result

Even though the uniqueness of the SPE result was proven elsewhere [3], we provide direct and simpler proof.

Theorem 18. The SPE result is unique.

Proof. We prove by induction on 𝑚. If 𝑚 = 2, then no matter what 𝑝1 offers, the negotiation results with the most preferred outcome 
of 𝑝2, and thus the SPE is unique. Now, assume that if there are 𝑚 − 1 outcomes in round 𝑡 + 1, the SPE is unique. We show that the 
SPE is unique when there are 𝑚 outcomes in round 𝑡. 𝑝𝑖 is able to offer an outcome 𝑜 ∈ 𝑂𝑡. For any such 𝑜, 𝑝𝑗 either accepts 𝑜 or 
rejects it and the game moves to round 𝑡 + 1 with 𝑚 − 1 outcomes. According to the induction assumption, the SPE is unique in each 
sub-tree of the game where there are 𝑚 − 1 outcomes. Since 𝑝𝑖 has strict preferences, in an SPE she will choose either an outcome 
that 𝑝𝑗 will accept or a sub-tree of the game, that results with the best outcome according to 𝑝𝑖’s preferences. That is, in all of the 
offers of 𝑝𝑖 in round 𝑡 that are in SPE, the SPE result is the same. □

Appendix B. Negotiation instances

In Table B.3 we present the ten negotiation instances used in our human study. The instances were generated automatically such 
that each represents a different degree of disagreement between the preferences of the two parties. Specifically, instance 1 presents 
a completely reversed order, whereas instance 2 presents an identical order. Instances 3 and 4 represent the setting in which both 
parties agree on the top 4 (and bottom 3) venues, but rank them differently. Instances 5 and 6 represent a setting in which the two 
parties do not agree on any venue in the top 4 (and bottom 3). Instances 7 and 8 follow the same rationale, with the two parties 
agreeing on 2 out of the 4 top (and 1 out of 3) venues and rank them differently. Instances 9 and 10 complete the picture, with the 
17

two parties agreeing on 3 out of the 4 top (and 2 out of 3) venues and rank them differently.
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Table B.3

The ten negotiation instances used in the human study. Player 𝑝𝑖 begins the negotiation process in instances 1,3,6,8 and 9. 𝑝𝑗 is played by the automated agent in 
Experimental Setup 2.

# Pref. 𝑝𝑖 Pref. 𝑝𝑗 𝑆𝑃𝐸 𝑅𝐶

1 𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >𝑅𝑜𝑚𝑒 >
𝐿𝑜𝑛𝑑𝑜𝑛 > 𝑃𝑎𝑟𝑖𝑠 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝑇𝑜𝑘𝑦𝑜

𝑇 𝑜𝑘𝑦𝑜 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝑃𝑎𝑟𝑖𝑠 >
𝐿𝑜𝑛𝑑𝑜𝑛 >𝑅𝑜𝑚𝑒 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘

London London

2 𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >𝑅𝑜𝑚𝑒 >
𝐿𝑜𝑛𝑑𝑜𝑛 > 𝑃𝑎𝑟𝑖𝑠 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝑇𝑜𝑘𝑦𝑜

𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >𝑅𝑜𝑚𝑒 >
𝐿𝑜𝑛𝑑𝑜𝑛 > 𝑃𝑎𝑟𝑖𝑠 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝑇𝑜𝑘𝑦𝑜

New York New York

3 𝑃𝑎𝑟𝑖𝑠 > 𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 > 𝐿𝑜𝑛𝑑𝑜𝑛 > 𝑇𝑜𝑘𝑦𝑜 >
𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 >𝑅𝑜𝑚𝑒

𝑇 𝑜𝑘𝑦𝑜 >𝐿𝑜𝑛𝑑𝑜𝑛 > 𝑃𝑎𝑟𝑖𝑠 > 𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >
𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 >𝑅𝑜𝑚𝑒 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘

Paris Paris
London

4 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝐿𝑜𝑛𝑑𝑜𝑛 >
𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 > 𝑇𝑜𝑘𝑦𝑜 >𝑅𝑜𝑚𝑒 > 𝑃𝑎𝑟𝑖𝑠

𝐿𝑜𝑛𝑑𝑜𝑛 >𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >
𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 > 𝑃𝑎𝑟𝑖𝑠 > 𝑇𝑜𝑘𝑦𝑜 >𝑅𝑜𝑚𝑒

Buenos Aires Buenos Aires

5 𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 > 𝑃𝑎𝑟𝑖𝑠 > 𝑇𝑜𝑘𝑦𝑜 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠

> 𝑅𝑜𝑚𝑒 >𝐿𝑜𝑛𝑑𝑜𝑛 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠

𝑃𝑎𝑟𝑖𝑠 >𝑅𝑜𝑚𝑒 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 > 𝐿𝑜𝑛𝑑𝑜𝑛 >
𝑇𝑜𝑘𝑦𝑜 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠

Paris Paris

6 𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >𝑅𝑜𝑚𝑒 >
𝐿𝑜𝑛𝑑𝑜𝑛 > 𝑃𝑎𝑟𝑖𝑠 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝑇𝑜𝑘𝑦𝑜

𝑇 𝑜𝑘𝑦𝑜 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝑃𝑎𝑟𝑖𝑠 > 𝐿𝑜𝑛𝑑𝑜𝑛 >
𝑅𝑜𝑚𝑒 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘

London London

7 𝑇 𝑜𝑘𝑦𝑜 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 >𝑅𝑜𝑚𝑒 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘

> 𝐿𝑜𝑛𝑑𝑜𝑛 > 𝑃𝑎𝑟𝑖𝑠 > 𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠

𝑃𝑎𝑟𝑖𝑠 > 𝑇𝑜𝑘𝑦𝑜 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >
𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝐿𝑜𝑛𝑑𝑜𝑛 >𝑅𝑜𝑚𝑒

Tokyo Tokyo

8 𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝐿𝑜𝑛𝑑𝑜𝑛 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >
𝑃𝑎𝑟𝑖𝑠 > 𝑇𝑜𝑘𝑦𝑜 >𝑅𝑜𝑚𝑒 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠

𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 > 𝑇𝑜𝑘𝑦𝑜 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝑅𝑜𝑚𝑒 >
𝐿𝑜𝑛𝑑𝑜𝑛 > 𝑃𝑎𝑟𝑖𝑠 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠

New York New York
Los Angeles

9 𝑅𝑜𝑚𝑒 > 𝑇𝑜𝑘𝑦𝑜 > 𝑃𝑎𝑟𝑖𝑠 > 𝐿𝑜𝑛𝑑𝑜𝑛 >
𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘

𝑇 𝑜𝑘𝑦𝑜 >𝑅𝑜𝑚𝑒 >𝐿𝑜𝑛𝑑𝑜𝑛 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >
𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 > 𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝑃𝑎𝑟𝑖𝑠

Rome Rome
Tokyo

10 𝑃𝑎𝑟𝑖𝑠 > 𝐿𝑜𝑛𝑑𝑜𝑛 >𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 >
𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >𝑅𝑜𝑚𝑒 > 𝑇𝑜𝑘𝑦𝑜

𝑇 𝑜𝑘𝑦𝑜 >𝐿𝑜𝑛𝑑𝑜𝑛 >𝑁𝑒𝑤𝑌 𝑜𝑟𝑘 >
𝐵𝑢𝑒𝑛𝑜𝑠𝐴𝑖𝑟𝑒𝑠 > 𝑃𝑎𝑟𝑖𝑠 >𝑅𝑜𝑚𝑒 >𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠

London London

Appendix C. The instructions and the quiz from the experiment
18

Fig. C.9. The motivating scenario, and the explanation of the VAOV negotiation protocol.



Artificial Intelligence 327 (2024) 104050N. Hazon, S. Erlich, A. Rosenfeld et al.

Fig. C.10. The instruction on how to respond to an offer and make an offer.
19

Fig. C.11. Quiz, part 1.
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Fig. C.12. Quiz, part 2.

References

[1] Michele Aghassi, Dimitris Bertsimas, Robust game theory, Math. Program. 107 (1–2) (2006) 231–273.
[2] Shehzad Ali, Sarah Ronaldson, Ordinal preference elicitation methods in health economics and health services research: using discrete choice experiments and 

ranking methods, Br. Med. Bull. 103 (1) (2012) 21–44.
[3] Nejat Anbarci, Noncooperative foundations of the area monotonic solution, Q. J. Econ. 108 (1) (1993) 245–258.
[4] Nejat Anbarci, Finite alternating-move arbitration schemes and the equal area solution, Theory Decis. 61 (1) (2006) 21–50.
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