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ABSTRACT

This paper presents a novel approach to Explainable AI (XAI) that

combines contrastive explanations with differential privacy for clus-

tering algorithms. Focusing on k-median and k-means problems,

we calculate contrastive explanations as the utility difference be-

tween original clustering and clustering with a centroid fixed to

a specific data point. This method provides personalized insights

into centroid placement. Our key contribution is demonstrating

that these differentially private explanations achieve essentially

the same utility bounds as non-private explanations. Experiments

across various datasets show that our approach offers meaningful,

privacy-preserving, and individually relevant explanations without

significantly compromising clustering utility. This work advances

privacy-aware machine learning by balancing data protection, ex-

planation quality, and personalization in clustering tasks.
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1 INTRODUCTION

Different notions of clustering are fundamental primitives in sev-

eral areas, including machine learning, data science, and operations

research [34]. 𝑘-means and 𝑘-median clustering remain among the

most important and widely used approaches, as demonstrated by
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recent advances in explainability, privacy, fairness, and contrastive

learning [12, 25, 26, 42]. These problems often involve significant

trade-offs between accessibility, resource allocation, and overall

cost. For example, in emergency response planning, authorities

must decide the optimal locations for ambulance stations to mini-

mize response times across a city. Residents might question why

an ambulance station isn’t located closer to their neighborhood,

especially if they feel imbalances in resource distribution. Similarly,

in retail, customers might wonder why a new store is not placed

near their area, despite being part of a high-demand demographic.

Explainability in these contexts provides transparency into how and

why certain decisions are made, addressing questions like: "Why

was this location chosen instead of another?" This is particularly

important in applications where the consequences of clustering

decisions directly affect individuals or communities. [2, 31]

Such questions fall within the area of Explainable AI, which is a

rapidly growing and vast area of research [4, 10, 24, 36, 37]. We

focus on post-hoc explanations, especially contrastive explanations,

e.g., [24, 33], which address “why P instead of Q?” questions. For ex-

ample, in warehouse optimization, contrastive explanations clarify

why a specific location was chosen as a distribution center, con-

sidering constraints like storage capacity or demand [42]. These

methods are widely applied in multi-agent systems, reinforcement

learning, and contrastive analysis [3, 4, 20, 37, 38]. In reinforcement

learning, they explain actions by highlighting trade-offs, such as

long-term rewards or risks [41].

Following the approach introduced in [33, 42], we explain clustering

decisions by comparing the costs in two scenarios: 𝑐𝑜𝑠𝑡 (𝑆), the
cost of an optimal clustering solution on the whole dataset X =

{𝑥1, . . . , 𝑥𝑛} and 𝑐𝑜𝑠𝑡 (𝑆 (𝑖 ) ), the cost of a modified solution where

we fix a center at a desired location requested by agent 𝑥𝑖 ∈ X.
We explain the decision by showing 𝑐𝑜𝑠𝑡 (𝑆 (𝑖 ) ) − 𝑐𝑜𝑠𝑡 (𝑆), i.e., how
much the overall clustering cost increases when we force a center

to be in a specific location. A higher clustering cost indicates worse

performance. This comparison reveals the trade-offs in clustering:

optimizing for one specific location often leads to a higher overall

cost, meaning a worse solution for everyone else. By examining

the difference between the optimal clustering cost and the cost of
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the forced fixed clustering, we can understand why the algorithm

chose certain locations for centers and not others. This approach

helps people grasp the complex balancing act involved in clustering

decisions, especially when trying to distribute resources fairly [42].

Data privacy is a crucial concern across various fields, and Differen-

tial Privacy (DP) is one of the most widely used and rigorous models

for privacy [8]. We focus on the setting where the set of data points

X = {𝑥1, . . . , 𝑥𝑛} are private; for instance, in the ambulance center

deployment problem, each 𝑥𝑖 represents an individual requiring

emergency services and seeking to keep their information private.

There has been a lot of work on the design of differentially private

solutions to clustering problems such as 𝑘-median and 𝑘-means in

such a privacy model [1, 13, 15, 40].

While there has been significant progress in various domains of

differential privacy, the intersection of explainability and differ-

ential privacy still needs to be explored. In clustering problems,

building on the formalization of explanations for combinatorial

problems we provide a private contrastive explanation to agent 𝑥𝑖

by computing cost(𝑆 (𝑖 )𝜖 ) − cost(𝑆𝜖 ). Here, 𝑆𝜖 represents a private

solution using the privacy budget 𝜖 , while 𝑆
(𝑖 )
𝜖 denotes a private

solution, when we constrain one center to be at a location specified

by agent 𝑥𝑖 (this can be any point of interest, not necessarily the

agent’s own location). This difference quantifies how the clustering

cost changes when accommodating agent 𝑖’s position, offering a

privacy-preserving explanation of the clustering decision. How-

ever, giving such a private contrastive explanation to each agent 𝑖

naively using a private clustering algorithm would require a high

privacy budget due to composition, which impact the accuracy, and

lead to misleading or uninformative results. The central question

of our research: is it possible to offer each user an informative private

contrastive explanation with a limited overall privacy budget?

Our contributions.

1. We introduce the PrivEC problem, designed to formalize private

contrastive explanations to all agents in clustering using 𝑘-median

and 𝑘-means objectives.

2. We present an 𝜖-DP mechanism, PrivateExplanations, which

provides a contrastive explanation to each agent while ensuring

the same utility bounds as private clustering in Euclidean spaces,

offering personalized insights without compromising privacy or

clustering quality. We use the private coreset technique of [13],

which is an intermediate private data structure that preserves simi-

lar clustering costs as the original data.

3. We evaluate our methods on diverse datasets with varying distri-

butions and feature dimensions. Our results demonstrate privacy-

utility trade-offs comparable to private clustering, with low clus-

tering errors even at reasonable privacy budgets, showcasing the

effectiveness of our approach. Our research stands out by seam-

lessly integrating differential privacy into contrastive explanations,

maintaining the quality of explanations even under privacy con-

straints. This work bridges the gap between privacy and explainabil-

ity, marking a significant advancement in privacy-aware machine

learning. A key technical contribution of our work is the derivation

of rigorous bounds on the approximation factors for all contrastive

explanations, ensuring their reliability and effectiveness. Due to

space limitations, we only present major technical details in the

main paper. We maintain a full, updated version of this paper with

complete proofs and extended experimental results at [27].

2 RELATEDWORK

Ourwork considers differential privacy for explainable AI in general

(XAI) andMulti-agent explanations (XMASE) in particular, focusing

on post-hoc contrastive explanations for clustering. We summarize

some of the work directly related to our paper; additional discussion

is presented in the Appendix, due to space limitations. Extensive

experiments presented in [35] demonstrate non-negligible changes

in explanations of black-box ML models through the introduction

of privacy.

[29] considers feature-based explanations (e.g., SHAP) that can

expose the top important features that a black-boxmodel focuses on.

To prevent such expose they introduced a new concept of achieving

local differential privacy (LDP) in the explanations, and from that,

they established a defense, called XRAND, against such attacks.

They showed that their mechanism restricts the information that

the adversary can learn about the top important features while

maintaining the faithfulness of the explanations.

[14] study the security of contrastive explanations, and introduce

the concept of the “explanation linkage attack”, a potential vulnera-

bility that arises when employing strategies to derive contrastive

explanations. To address this concern, they put forth the notion

of k-anonymous contrastive explanations. As the degree of pri-

vacy constraints increases, a discernible trade-off comes into play:

the quality of explanations and, consequently, transparency are

compromised.

Closer to our application is the work of [11], which investigates

the privacy aspects of contrastive explanations in the context of

team formation. They present a comprehensive framework that

integrates team formation solutions with their corresponding expla-

nations, while also addressing potential privacy concerns associated

with these explanations. Additional evaluations are needed to de-

termine the privacy of such heuristic-based methods.

There has been a lot of work on private clustering and facility

location, starting with [15], which was followed by a lot of work on

other clustering problems in different privacy models, e.g., [9, 16, 30,

39, 40]. [15] demonstrated that the additive error bound for points

in a metric space involves an 𝑂 (Δ𝑘2
log𝑛/𝜖) term, where Δ is the

space’s diameter. Consequently, all subsequent work, including

ours, assumes points are restricted to a unit ball.

We note that our problem has not been considered in any prior

work in the XAI or differential privacy literature. The formulation

we study here will likely be useful for other problems requiring

private contrastive explanations.

3 PRELIMINARIES

Let X ⊂ R𝑑 denote a dataset consisting of 𝑑-dimensional points

(referred as agents). We consider the notion of (𝑘, 𝑝)-clustering, as
defined by Definition 1.

Definition 1. ((𝑘, 𝑝)-Clustering [13]). Given 𝑘 ∈ N, and a multi-

set X = {𝑥1, . . . , 𝑥𝑛} of points in the unit ball, a (𝑘, 𝑝)-clustering
is a set of 𝑘 centers {𝑐1, . . . , 𝑐𝑘 } minimizing cost

𝑝

X (𝑐1, . . . , 𝑐𝑘 ) =∑
𝑖∈[𝑛] min𝑗∈[𝑘 ] ∥𝑥𝑖 − 𝑐 𝑗 ∥𝑝 .
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For 𝑝 = 1 and 𝑝 = 2, this corresponds to the 𝑘-median and 𝑘-means

objectives, respectively. We drop the subscript X and superscript 𝑝 ,

when it is clear from the context, and refer to the cost of a feasible

clustering solution 𝑆 by cost(𝑆).

Definition 2. ((𝑤, 𝑡)-approximation). Given 𝑘 ∈ N, and a multiset

X = {𝑥1, . . . , 𝑥𝑛} of points in the unit ball, let𝑂𝑃𝑇𝑝,𝑘

X = min𝑐1,...,𝑐𝑘 ∈R𝑑

cost
𝑝

X (𝑐1, . . . , 𝑐𝑘 ) denote the cost of an optimal (𝑘, 𝑝)-clustering. We

say 𝑐1, . . . , 𝑐𝑘 is a (𝑤, 𝑡)– approximation to a (𝑘, 𝑝)-optimal clustering

if cost
𝑝

X (𝑐1, . . . , 𝑐𝑘 ) ≤ 𝑤 ·𝑂𝑃𝑇𝑝,𝑘

X + 𝑡 .

Let 𝑂𝑃𝑇 denote the cost of the optimal (𝑘, 𝑝)-clustering, 𝑂𝑃𝑇𝑖 de-
note the cost of the optimal (𝑘, 𝑝)-clustering, with a center fixed

at position 𝑧𝑖 (the location chosen by agent 𝑖) and the remaining

𝑘-1 centers are chosen to optimize the objective. Let𝑤 ′,𝑤 ′′ denote
the maximum approximation (w.r.t. 𝑂𝑃𝑇 and 𝑂𝑃𝑇𝑖 respectively) of

non-private clustering algorithms. These factors will be specified

in Sections 4.1 and 4.2.

A coreset (of some original set) is a set of points that, given any 𝑘

centers, the cost of clustering of the original set is “roughly” the

same as that of the coreset [13].

Definition 3. For 𝛾, 𝑡 > 0, 𝑝 ≥ 1, 𝑘, 𝑑 ∈ N, a set 𝑋 ′ is a (𝑝, 𝑘,𝛾, 𝑡)-
coreset of 𝑋 ⊆ R𝑑 if for every 𝐶 = {𝑐1, . . . , 𝑐𝑘 } ∈ 𝑅𝑑 , we have

(1 − 𝛾)𝑐𝑜𝑠𝑡𝑝
𝑋
(𝐶) − 𝑡 ≤ 𝑐𝑜𝑠𝑡𝑋 ′ (𝐶) ≤ (1 + 𝛾)𝑐𝑜𝑠𝑡

𝑝

𝑋
(𝐶) + 𝑡 .

Privacy model. We use the notion of differential privacy (DP),

introduced in [8], which is a widely accepted formalization of pri-

vacy. A mechanism is DP if its output doesn’t differ too much on

“neighboring” datasets; this is formalized below.

Definition 4. M : X → Y is (𝜖, 𝛿)-differentially private if for any

neighboring datasets 𝑋 ∼ 𝑋 ′ ∈ X and 𝑆 ⊆ Y,
Pr[M(𝑋 ) ∈ 𝑆] ≤ 𝑒𝜖 Pr[M(𝑋 ′) ∈ 𝑆] + 𝛿.

If 𝛿 = 0, we sayM is 𝜖-differentially private.

We assume that the data points in X (i.e., users) are private, and

say X,X′ are neighboring (denoted by X ∼ X′) if they differ in one

data point. When a value is disclosed to an individual agent 𝑖 , it

is imperative to treat the remaining clients in X − {𝑖} as private
entities.

Definition 5. A mechanismM is 𝜖-𝑖-exclusion DP if, ∀𝑋,𝑋 ′ : 𝑖 ∈
𝑋, 𝑖 ∈ 𝑋 ′, 𝑋 \ {𝑖} ∼ 𝑋 ′ \ {𝑖}, and for all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (M):

Pr[M(𝑋 ) ∈ 𝑆] ≤ 𝑒𝜖 Pr[M(𝑋 ′) ∈ 𝑆] .
We extend this to say thatM is 𝜖-𝑌 -exclusion DP if the above holds

∀𝑋,𝑋 ′ : 𝑌 ⊂ 𝑋,𝑌 ⊂ 𝑋 ′, 𝑋 \ 𝑌 ∼ 𝑋 ′ \ 𝑌 .

We now define the PrivEC problem for providing private con-

trastive explanations, where each agent 𝑥𝑖 seeks an explanation for

a center fixed at a location of their choosing denoted by 𝑧𝑖 .

Definition 6. Private and Explainable Clustering problem

(PrivEC) Given an instance X ⊂ R𝑑 , clustering parameters 𝑘, 𝑝 , and

a contrastive set of points 𝑍 ⊂ R𝑑 , the goal is to output:
Private: An 𝜖-DP clustering solution 𝑆𝜖 (available to all)

Explainable: For each agent 𝑥𝑖 ∈ 𝑋 , output cost(𝑆 (𝑖 )𝜖 ) - cost(𝑆𝜖 ).
𝑆
(𝑖 )
𝜖 is a private solution computed by the clustering algorithm with

one centroid fixed at the position requested by agent 𝑖 .

We assume that 𝑆
(𝑖 )
𝜖 is not revealed to any agent, but cost(𝑆 (𝑖 )𝜖 ) -

cost(𝑆𝜖 ) is released to agent 𝑖 as contrastive explanation, which is

𝜖-𝑖-exclusion DP.

Lemma 1. With probability at least 1 − 𝛽 , cost(𝑆𝜖 ) (clustering cost)
is a (𝑤, 𝑡)-approximation of 𝑂𝑃𝑇 , where1:

𝑤 = 𝑤 ′ (1 + 𝛼),

𝑡 = 𝑤 ′O𝑝,𝛼
(
(𝑘/𝛽)𝑂𝑝,𝛼 (1) .polylog(𝑛/𝛽)/𝜖

)
𝛼 is the approximation parameter for the utility of clustering and

explanations. 𝛽 is the failure probability of the utility guarantees of

clustering and explanations.

Lemma 2. DP of fixed centroid yield additional cost. Fix an 𝑖 .

If𝑂𝑃𝑇𝑖 ≥ 𝑤 ′′ (1+𝛼)𝑂𝑃𝑇 + 𝑡 (𝑖 ) , then with probability at least 1− 2𝛽 ,

cost(𝑆𝜖 ) and cost(𝑆
(𝑖 )
𝜖 ) computed by Algorithm PrivateExplanations

satisfies that 𝑐𝑜𝑠𝑡 (𝑆 (𝑖 )𝜖 ) > 𝑐𝑜𝑠𝑡 (𝑆𝜖 ).

4 PRIVATEEXPLANATIONS MECHANISM

We design PrivateExplanation (Algorithm 1) for providing con-

trastive explanations for each agent. Specifically, it takes as inputs:

(1) 𝑥𝑖 which specifies the location of each agent 𝑖 , and the con-

trastive location 𝑧𝑖 for which they want an explanation, (2) original

and target dimensions (d, d’), number of clusters (𝑘), privacy budget

𝜖 , and 𝜁 (explained later). The algorithm’s key components are:

Algorithm 1 PrivateExplanation

Input: (𝑥1, . . . , 𝑥𝑛), (𝑧1, . . . , 𝑧𝑛), 𝑑, 𝑑′, 𝑘, 𝜖, 𝜁
Output: (𝜖, 𝛿)-differentially private explanation for agents

1: (𝑥 ′
1
, . . . , 𝑥 ′𝑛) ← 𝐷𝑖𝑚𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛((𝑥1, . . . , 𝑥𝑛), 𝑑, 𝑑′)

2: 𝑍 ′ ← 𝐷𝑖𝑚𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛((𝑧1, . . . , 𝑧𝑛), 𝑑, 𝑑′)
3: 𝑌 ← PrivateCoreset

𝜖/2 (𝑥 ′
1
, . . . , 𝑥 ′𝑛 ; 𝜁 )

4: (𝑐′
1
, . . . , 𝑐′

𝑘
), 𝑐𝑜𝑠𝑡 (𝑆 ′𝜖 ) ← 𝑁𝑜𝑛𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐴𝑝𝑝𝑟𝑜𝑥 (𝑌, 𝑘)

5: 𝑐𝑜𝑠𝑡 (𝑆𝜖 ) = 𝑅𝑒𝑣𝑒𝑟𝑡𝐷𝑖𝑚𝑉𝑎𝑙𝑢𝑒 ∗ 𝑐𝑜𝑠𝑡 (𝑆 ′𝜖 )
6: 𝑐 ← DimReverse

𝜖/2 ((𝑐′
1
, . . . , 𝑐′

𝑘
), (𝑥 ′

1
, . . . , 𝑥 ′𝑛))

7: for 𝑧′
𝑖
∈ 𝑍 ′ do

8: 𝑐𝑜𝑠𝑡 (𝑆 ′(𝑖 )𝜖 ) ← 𝑁𝑜𝑛𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐴𝑝𝑝𝑟𝑜𝑥𝐹𝐶 (𝑌, 𝑘, 𝑧′
𝑖
)

9: 𝑐𝑜𝑠𝑡 (𝑆 (𝑖 )𝜖 ) = 𝑅𝑒𝑣𝑒𝑟𝑡𝐷𝑖𝑚𝑉𝑎𝑙𝑢𝑒 ∗ 𝑐𝑜𝑠𝑡 (𝑆 ′(𝑖 )𝜖 )
10: end for

11: return 𝑐𝑜𝑠𝑡 (𝑆 (𝑖 )𝜖 ) − 𝑐𝑜𝑠𝑡 (𝑆𝜖 ) |𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒 (1, . . . , |𝑋 |)

• Dimension Reduction: Using DimReduction from [13], we

transform input data (in dimension 𝑑) to a lower-dimensional

space 𝑑′. This reduction is crucial since our coreset algorithm

is exponential in the dimension, but by reducing to logarithmic

dimensions, it becomes polynomial-time.

• Private Coreset: We create a differentially private coreset

𝑌 using PrivateCoreset from [13], ensuring 𝜖/2 differential

privacy; the coreset is defined in Definition 3.

• Clustering: The coreset is clustered using a non-private ap-

proximation algorithm (NonPrivateApprox). We can use a

non-private clustering algorithm here since the coreset itself is

already private, and by the Post-Processing property of differ-

ential privacy, the final result remains private.

1
We use the notation O𝑝,𝛼 to explicitly ignore factors of 𝑝, 𝛼
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• Cost Scaling: In line 5 of the algorithm, by multiplying by

RevertDimValue = (log(𝑛/𝛽)/0.01)𝑝/2 we scale the cluster-

ing cost (𝑐𝑜𝑠𝑡 (𝑆 ′𝜖 )) (in the low-dimensional space) back to the

original dimension (cost(𝑆𝜖 )) as shown in [21]. This reversal

is necessary because while we computed costs in reduced di-

mensions for efficiency, we need the final cost in the original

dimensions for accuracy.

• Dimension Reverse: Centroids are mapped back to the origi-

nal space using DimReverse, maintaining 𝜖-differential privacy.

• Contrastive Explanations: For each data point, we execute

fixed-centroid clustering (NonPrivateApproxFC) on the coreset,

constraining one centroid to a location chosen by the agent.

This algorithm, detailed in Sections 4.1 and 4.2, is our key con-

tribution as it modifies standard k-means and k-median algo-

rithms to fix one centroid while maintaining their original util-

ity bounds from literature, ensuring meaningful explanations.

Without utility bounds, agents could challenge the validity of

the explanation, arguing that the fixed centroid might degrade

the clustering solution to an unacceptable extent. However,

by guaranteeing the same utility bounds as the original algo-

rithms, we ensure that the explanations are grounded in the

vicinity of optimal clustering solutions, leaving no room for

users to dispute the fairness or validity of the explanation. This

alignment between explanation quality and clustering utility

reinforces the trustworthiness of the algorithm and the insights

it provides. After clustering, we apply RevertDimValue to

transform the cost back to the original space (cost(𝑆
(𝑖 )
𝜖 )). By

combining lines 5 and 9 of the algorithm, we derive the out-

put: cost(𝑆
(𝑖 )
𝜖 ) - cost(𝑆𝜖 ) for each agent. This value captures the

loss of optimality when fixating one centroid, quantifying how

much the clustering quality degrades due to this constraint,

serving as a contrastive explanation.

Theorem 1. DP of Explanation. The solution (𝑐1, . . . , 𝑐𝑘 ) and
𝑐𝑜𝑠𝑡 (𝑆𝜖 ) computed by Algorithm PrivateExplanations are 𝜖-DP. For

all clients 𝑖 and 𝑆
(𝑖 )
𝜖 computed by Algorithm PrivateExplanations

is 𝜖-𝑖-exclusion DP.

Privacy analysis, as demonstrated in Theorem 1, we establishes

the privacy guarantees of PrivateExplanations. 𝑌 coreset is 𝜖/2-
differentially private as an output of 𝜖/2-DP algorithm. Conse-

quently, (𝑐′
1
, . . . , 𝑐′

𝑘
) and 𝑐𝑜𝑠𝑡 (𝑆𝜖 ) maintain 𝜖/2-DP status, under

the Post-Processing property.

Applying DimReverse
𝜖/2

to find the centers in the original space,

𝑐 = {𝑐1, . . . , 𝑐𝑘 } is 𝜖-DP byComposition theorem. For each 𝑖 , cost(𝑆
(𝑖 )
𝜖 )

is produced by Post-Processing of 𝑌 with only 𝑧′
𝑖
, hence 𝑐𝑜𝑠𝑡 (𝑆 (𝑖 )𝜖 )

satisfies 𝜖-𝑖-exclusion-DP.

Running Time Analysis.

Algorithm 1 has a total runtime of𝑂 ((𝑘/𝛽)𝑂𝑝,𝛼 (1)
poly(𝑛𝑑)), which

is polynomial in the input size. The key components contributing

to this complexity include PrivateCoreset, DimReverse, and in-

stances of (𝑘, 𝑝)-clustering with and without fixed centers.

PrivateCoreset runs in 𝑂 ((𝑘/𝛽)𝑂𝑝,𝛼 (1)
poly(𝑛)) time, as it sets

𝑑′ = 𝑂 (𝑝4
log(𝑘/𝛽)) to satisfy the Dimension-Reduction Lemma

(Appendix Section B) and uses Lemma 42 from [13]. DimReverse,

which includes the FindCenter operation (detailed in the Appen-

dix), has a time complexity of 𝑂 (poly(𝑛𝑝)) and is invoked 𝑘 times.

Additionally, we execute one standard (𝑘, 𝑝)-clustering and |𝑋 | in-
stances of (𝑘, 𝑝)-clustering with a fixed center. Together, these steps
ensure the algorithm’s overall polynomial runtime. All symbols

used in this analysis are defined in Table 2 in the Appendix.

Theorem 2. Assume there exist polynomial-time algorithms for

(𝑘, 𝑝)-clustering and (𝑘, 𝑝)-clustering with a fixed center. The total

running time of Algorithm 1 is 𝑂 ((𝑘/𝛽)𝑂𝑝,𝛼 (1)
poly(𝑛𝑑)).

This computational complexity demonstrates that our algorithm

is efficient for large datasets, balancing the additional overhead

of fixed-centroid clustering with practical runtimes. Theorem 2

follows from the detailed steps, as PrivateCoreset and FindCen-

ter contribute manageable computational overhead. Finally, the

algorithm integrates a critical utility analysis to ensure robust per-

formance. In the following sections, we present rigorous upper

bounds and specific constraints for 𝑘-means and 𝑘-median, illus-

trating the practicality and effectiveness of our approach.

Utility Analysis. PrivateCoreset uses parameters 𝜁 (which is

a function of 𝛼) and privacy budget 𝜖/2, derived from [13] and

detailed in our Appendix. This algorithm produces a coreset 𝑌

that ensures the clustering cost on 𝑌 closely approximates the

cost on the projected dataset 𝑋 ′. Specifically, the approximation

is within a (1 + 0.1𝛼) factor, plus an additive

∼
𝑂 (polylog(𝑛/𝛽)/𝜖)

term. Then, by applying the Dimensional Reduction lemma (in the

Appendix), which states that the cost of a specific clustering on 𝑋 ′

(𝑑′-dimensional space) is under some constant factor of the same

clustering on𝑋 (𝑑-dimensional space), we can bound the 𝑐𝑜𝑠𝑡 (𝑆𝜖 (𝑖 ) )
by its optimal clustering 𝑂𝑃𝑇𝑖 . We first state the approximation

factor derived using [13], since this is used in our analysis.

Theorem 3. Cost of explanations due to privacy. Fix an agent

𝑖 . With probability at least 1 − 𝛽 , cost(𝑆 (𝑖 )𝜖 ) computed by Algorithm

PrivateExplanations is a (𝑤, 𝑡)-approximation of 𝑂𝑃𝑇𝑖 , with

𝑤 = 𝑤 ′′ (1 + 𝛼)

𝑡 = 𝑤 ′′O𝑝,𝛼
(
(𝑘/𝛽)𝑂𝑝,𝛼 (1) .polylog(𝑛/𝛽)/𝜖

)
As 𝑆

(𝑖 )
𝜖 results from a randomized mechanism, its cost is higher

than 𝑆𝜖 ’s most of the time with high probability, ensuring a positive

private explanation.

Tight Approximation Ratios. The most challenging aspect of

our analysis is determining the precise approximation factor 𝑤 ′′

for k-means and k-median in the context of fixed-centroid clus-

tering. In the following sections, we will present modifications to

well-known k-median and k-means algorithms, adapting them for

fixed-centroid clustering scenarios. We will then demonstrate that

these modified algorithms achieve the same tight approximation

factors. Formally, we show how the well-known utility bounds of

k-means and k-median can be preserved while fixing one centroid

to a requested location, ensuring the robustness of these algorithms

under such constraints. Corollary 1 and Corollary 2 will conclude

this section by presenting the specific, tight approximation ratios

(𝑤 ′′) achieved after applying our NonPrivateApproxFC algorithm.
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These corollaries will provide detailed confirmation of our algo-

rithm’s effectiveness in achieving these optimal approximation

ratios within the constraints of differential privacy.

4.1 NonPrivateApproxFC for 𝑘-median

We have developed a non-private fixed centroid clustering algo-

rithm, which we call NonPrivateApproxFC. This algorithm is an

adaptation of [5]. In the following section, we will prove that our

modified algorithm, which works with a fixed centroid (referred to

as 𝑧), achieves an 8-approximation factor. To grasp how we adapted

the algorithm to suit our needs, it’s essential to understand the

symbols used in [5]. In this section, we adopt the notation from [5]

to avoid confusion with the symbols used in this paper, where 𝑑

and 𝑑′ denote the original and reduced dimensions, respectively.

In their work, 𝑑 𝑗 represents the demand at each location 𝑗 ∈ 𝑁 ,

serving as a weight that reflects the importance of the location. 𝑁

refers to the set of agents 1, . . . , 𝑛.

For the conventional k-median problem, each 𝑑 𝑗 is initially set to 1

for all 𝑗 ∈ 𝑁 . The term 𝑐𝑖 𝑗 represents the cost of assigning any 𝑖 to

𝑗 , 𝑥𝑖 𝑗 represents if location 𝑗 is assigned to center 𝑖 and 𝑦𝑖 indicates

if the location i is selected as a center.

We assume the fixed center is one of the input data points 𝑁 . [5]

demonstrates that the 𝑘-median problem can be formulated as an

integer programming problem, and in order to adapt the algorithm

we add a constraint in line 9 to treat 𝑧 as a fixed centroid. This

modification allows the algorithm to account for the fixed centroid

requirement. We then relax the integer program (IP) into a linear

program (LP) and show that it preserves the same utility bound as

the original algorithm. By specifying that 𝑦𝑧 ≥ 1, we ensure that 𝑦𝑧
is designated as a centroid in our linear programming formulation.

Throughout the solution process, 𝑦𝑧 remains fixed as a centroid.

minimize

∑︁
𝑖, 𝑗∈𝑁

𝑑 𝑗𝑐𝑖 𝑗𝑥𝑖 𝑗 (1)

s.t.

∑︁
𝑖∈𝑁

𝑥𝑖 𝑗 = 1 for each 𝑗 ∈ 𝑁 ;

∑︁
𝑗∈𝑁

𝑦 𝑗 = 𝑘 (2)

𝑥𝑖 𝑗 ≤ 𝑦𝑖 for each 𝑖, 𝑗 ∈ 𝑁 (3)

𝑥𝑖 𝑗 , 𝑦𝑖 ≥ 0 for each 𝑖, 𝑗 ∈ 𝑁 (4)

𝑦𝑧 , 𝑥𝑧𝑧 ≥ 1 for a fixed 𝑧 ∈ 𝑁 (5)

Let (𝑥,𝑦) be a feasible solution of the LP relaxation and let 𝐶 𝑗 =∑
𝑖∈𝑁 𝑐𝑖 𝑗𝑥𝑖 𝑗 for each 𝑗 ∈ 𝑁 as the total (fractional) cost of client 𝑗 .

Throughout the three steps, we demonstrate that solving this linear

program with the added constraint does not introduce any addi-

tional approximation factor. The program is solved with the same

efficiency and accuracy as it would be without the fixed centroid

constraint.

The first step. We group nearby locations by their demands with-

out increasing the cost of a feasible solution (𝑥,𝑦), such that loca-

tions with positive demands are relatively far from each other. By

re-indexing, we get 𝐶𝑧 ≤ 𝐶1 ≤ 𝐶2 ≤ . . .𝐶𝑛 .

We will show that it’s always possible to position 𝐶𝑧 as the first

element of the list, i.e., 𝐶𝑧 is equal to the minimum value of all 𝐶 𝑗 .

Recall that:𝐶𝑧 =
∑
𝑖∈𝑁 𝑐𝑖𝑧𝑥𝑖𝑧 =

∑
𝑖∈𝑁,𝑖≠𝑧 𝑐𝑖𝑧𝑥𝑖𝑧 + 𝑐𝑧𝑧𝑥𝑧𝑧 = 0, since

we know that

∑
𝑖∈𝑁 𝑥𝑖𝑧 = 1, 𝑥𝑧𝑧 ≥ 1 and 𝑐𝑧𝑧 = 0.

The remaining work of the first step follows [5]. We first set the

modified demands 𝑑 𝑗
′ ← 𝑑 𝑗 . For 𝑗 ∈ 𝑁 , moving all demand of loca-

tion 𝑗 to a location 𝑖 < 𝑗 s.t. 𝑑′
𝑖
> 0 and 𝑐𝑖 𝑗 ≤ 4𝐶 𝑗 , i.e., transferring

all 𝑗 ’s demand to a nearby location with existing positive demand.

Demand shift occurs as follows: 𝑑′
𝑖
← 𝑑′

𝑖
+ 𝑑′

𝑗
, 𝑑′

𝑗
← 0. Since we

initialize 𝑑′𝑧 = 𝑑𝑧 = 1, and we never move its demands away, it

follows that 𝑑′𝑧 > 0.

Let 𝑁 ′ be the set of locations with positive demands 𝑁 ′ = { 𝑗 ∈
𝑁,𝑑′

𝑗
> 0}. A feasible solution to the original demands is also a

feasible solution to the modified demands.

Lemma 3. Locations 𝑖, 𝑗 ∈ 𝑁 ′ satisfy: 𝑐𝑖 𝑗 > 4 max(𝐶𝑖 ,𝐶 𝑗 ).

Proof. The lemma follows the demands moving step (in the first

step of the algorithm): for every 𝑗 to the right of 𝑖 (which means

𝐶 𝑗 ≥ 𝐶𝑖 ) and within the distance of 𝐶 𝑗 (that also covers all points

within distance 𝐶𝑖 ), we move all demands of 𝑗 to 𝑖 , hence 𝑗 will not

appear in 𝑁 ′. □

Lemma 4. The cost of the fractional (𝑥,𝑦) for the input withmodified

demands is at most its cost for the original input.

Proof. The cost of the LP𝐶𝐿𝑃 =
∑

𝑗∈𝑁 𝑑 𝑗𝐶 𝑗 and𝐶
′
𝐿𝑃

=
∑

𝑗∈𝑁 𝑑′
𝑗
𝐶 𝑗 .

Since we move the demands from𝐶 𝑗 to a location 𝑖 with lower cost

𝐶𝑖 ≤ 𝐶 𝑗 the contribution of such moved demands in 𝐶′ is less than
its contribution in 𝐶 , it follows that 𝐶′

𝐿𝑃
≤ 𝐶𝐿𝑃 . □

The second step.We analyze the problem with modified demands

𝑑′. We will group fractional centers from the solution (𝑥,𝑦) to
create a new solution (𝑥 ′, 𝑦′) with cost at most 2𝐶𝐿𝑃 such that

𝑦′
𝑖
= 0 for each 𝑖 ∉ 𝑁 ′ and 𝑦′

𝑖
≥ 1/2 for each 𝑖 ∈ 𝑁 ′. We also ensure

that 𝑦′𝑧 ≥ 1/2 in this step, i.e., 𝑧 will be a fractional center after this.

A solution is called 1/2-restricted if 𝑦 𝑗 ≥ 1/2 for any point 𝑗 ∈ 𝑁
and 𝑦 𝑗 = 0 otherwise. This restriction balances the assignment of

demand, ensuring that no single center dominates excessively. The

concept of 1/2-restricted solutions is used to create more equitable

distributions of demand and is key to transitioning to a {1/2, 1}-
integral solution. The next lemma leverages this property:

Lemma 5. For any 1/2-restricted solution (𝑥 ′, 𝑦′) there exists a
{1/2, 1}-integral solution with no greater cost.

Proof. The cost of the
1

2
-restricted solution (by Lemma 7 of [5])

is:

𝐶′𝐿𝑃 =
∑︁
𝑗∈𝑁 ′

𝑑′𝑗𝑐𝑠 ( 𝑗 ) 𝑗 −
∑︁
𝑗∈𝑁 ′

𝑑′𝑗𝑐𝑠 ( 𝑗 ) 𝑗𝑦
′
𝑗 , (6)

Let 𝑠 ( 𝑗) be 𝑗 ’s closest neighbor location in 𝑁 ′, the first term above

is independent of 𝑦′ and the minimum value of 𝑦′
𝑗
is 1/2. We now

construct a {1/2, 1}-integral solution (𝑥,𝑦) with no greater cost.

Sort the location 𝑗 ∈ 𝑁 ′, 𝑗 ≠ 𝑧 in the decreasing order of the weight

𝑑′
𝑗
𝑐𝑠 ( 𝑗 ) 𝑗 and put 𝑧 to the first of the sequence, set 𝑦 𝑗 = 1 for the

first 2𝑘 − 𝑛′ locations and 𝑦 𝑗 = 1/2 for the rest. By doing that,

we minimize the cost by assigning heaviest weights 𝑑′
𝑗
𝑐𝑠 ( 𝑗 ) 𝑗 to

the maximum multiplier (i.e., 1) while assigning lightest weights

𝑑′
𝑗
𝑐𝑠 ( 𝑗 ) 𝑗 to the minimum multiplier (i.e., 1/2) for each 𝑗 ∈ 𝑁 ′, 𝑗 ≠ 𝑧.

Any feasible 1/2-restricted solution must have 𝑦′𝑧 = 1 to satisfy

the constraint of 𝑧 so that the contribution of 𝑦𝑧 is the same as its

of 𝑦′𝑧 . It follows that the cost of (𝑥,𝑦) is no more than the cost of

(𝑥 ′, 𝑦′). □
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The third step. This step is similar to the part of Step 3 of [5] that

converts a {1/2, 1}-integral solution to an integral solution with

the cost increases at most by 2. We note that there are two types of

center 𝑦 𝑗 = 1/2 and 𝑦 𝑗 = 1, hence there are two different processes.

All centers 𝑗 with 𝑦 𝑗 = 1 are kept while more than half of centers

𝑗 with 𝑦 𝑗 = 1/2 are removed. Since we show that 𝑦𝑧 = 1 in the

previous step, 𝑧 is always chosen by this step and hence guarantees

the constraint of 𝑧.

Theorem4. Approximation factor of fixed centroid k-median.

For the metric k-median problem, the algorithm above outputs an

8-approximation solution.

Proof. It is obvious that the optimal of the LP relaxation is the

lower bound of the optimal of the integer program. While con-

structing an integer solution for the LP relaxation with the modified

demands, [5] states that there is a 1/2-restricted solution (𝑥 ′, 𝑦′)
which costs at most 2𝐶𝐿𝑃 . And now the third step multiplies this

cost by a factor of 2, making the cost of the solution (to the LP)

at most 4𝐶𝐿𝑃 . Transforming the integer solution of the modified

demands to a solution of the original input adds an additive cost of

4𝐶𝐿𝑃 by Lemma 4 of [5] and the Theorem follows. □

Having demonstrated that our modification of [5] to execute fixed-

centroid k-median instead of standard k-median yields an 8-factor

approximation of the optimal solution, we can now proceed to

prove that our private explanation closely approximates the optimal

solution for the fixed-centroid scenario.

Corollary 1. Running PrivateExplanations with NonPrivateAp-

proxFC be the above K-median algorithm, with probability at least

1 − 𝛽 , 𝑆 (𝑖 )𝜖 is a (𝑤, 𝑡)-approximation of 𝑂𝑃𝑇𝑖–the optimal K-median

with a center fixed at position 𝑧𝑖 , in which:

𝑤 = 8(1 + 𝛼)

𝑡 = 8O𝑝,𝛼
(
(𝑘/𝛽)𝑂𝑝,𝛼 (1) .𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛/𝛽)/𝜖

)
.

4.2 NonPrivateApproxFC for 𝑘-means

In this section, we present our NonPrivateApproxFC algorithm

for k-means with a fixed center. Based on [19], we achieve a 25-

approximation. We will analyze this approximation factor in detail

below.We adapt thework by [19] by adding a fixed center constraint

to the single-swap heuristic algorithm. As in their result, we need

to assume that we are given a discrete set of candidate centers 𝐶

from which we choose 𝑘 centers. The optimality is defined in the

space of all feasible solutions in 𝐶 , i.e., over all subsets of size 𝑘 of

𝐶 . We then present how to remove this assumption, with the cost

of a small constant additive factor.

Definition 7. Let 𝑂 = (𝑂1,𝑂2, . . . ,𝑂𝑘 ) be the optimal clustering

with 𝑂1 be the cluster with the fixed center 𝑧. A set 𝐶 ⊂ R𝑑 is a 𝛾-

approximate candidate center set if there exists 𝑧 ∈ {𝑐1, 𝑐2, . . . , 𝑐𝑘 } ⊆
𝐶 , such that: 𝑐𝑜𝑠𝑡 (𝑐1, 𝑐2, . . . , 𝑐𝑘 ) ≤ (1 + 𝛾)𝑐𝑜𝑠𝑡 (𝑂).

Given 𝑢, 𝑣 ∈ R𝑑 , let Δ(𝑢, 𝑣) denote the squared Euclidean distance

between 𝑢 and 𝑣 : Δ(𝑢, 𝑣) = dist
2 (𝑢, 𝑣). For a set 𝑆 ⊂ R𝑑 , the total

squared distance between all points in 𝑆 and a point 𝑣 is given

by Δ(𝑆, 𝑣) = ∑
𝑢∈𝑆 Δ(𝑢, 𝑣). Similarly, for a set 𝑃 ⊂ R𝑑 , Δ𝑃 (𝑆) rep-

resents the total squared distance between each point 𝑞 ∈ 𝑃 and

its closest point 𝑠𝑞 ∈ 𝑆 . Here, 𝑞 refers to an individual data point

in set 𝑃 , and 𝑠𝑞 is its nearest neighbor in 𝑆 . When the context is

clear, we drop 𝑃 for simplicity. This notation captures the essential

relationships between points and their nearest centroids.

Let 𝑧 be the fixed center that must be in the output. Let𝐶 be the set

of candidate centers, that 𝑧 ∈ 𝐶 . We define stability in the context

of 𝑘-means with a fixed center 𝑧 as follows. We note that it differs

from the definition of [19] such that we never swap out the fixed

center 𝑧:

Definition 8. A set 𝑆 of k centers that contains the fixed center 𝑧

is called 1-stable if: Δ
(
𝑆 \ {𝑠} ∪ {𝑜}

)
≥ Δ(𝑆), for all 𝑠 ∈ 𝑆 \ {𝑧},

𝑜 ∈ 𝑂 \ {𝑧}.

Algorithm. We initialize 𝑆 (0) as a set of 𝑘 centers form 𝐶 that

𝑧 ∈ 𝑆 (0) . For each set 𝑆 (𝑖 ) , we perform the swapping iteration:

• Select one center 𝑠 ∈ 𝑆 (𝑖 ) \ 𝑧
• Select one replaced center 𝑠′ ∈ 𝐶 \ 𝑆 (𝑖 )
• Let 𝑆 ′ = 𝑆 (𝑖 ) \ 𝑠 ∪ 𝑠′
• If 𝑆 ′ reduces the distortion, 𝑆 (𝑖+1) = 𝑆 ′. Else, 𝑆 (𝑖+1) = 𝑆 (𝑖 )

We repeat the swapping iteration until 𝑆 = 𝑆 (𝑚) , i.e., after 𝑚 it-

erations, is a 1-stable. Theorem 5 states the utility of an arbitrary

1-stable set, which is also the utility of our algorithm since it al-

ways outputs an 1-stable set. We note that if𝐶 is created with some

errors 𝛾 to the actual optimal centroids, the utility bound of our

algorithm is increased by the factor Θ(𝛾), i.e., ours is a (25 +Θ(𝛾))-
approximation to the actual optimal centroids.

Theorem 5. Approximation factor of fixed centroid k-mean.

If 𝑆 is an 1-stable 𝑘-element set of centers, Δ(𝑆) ≤ 25Δ(𝑂). Further-
more, if 𝐶 is a

𝛾
25
-approximate candidate center set, 𝑆 is a (25 + 𝛾)-

approximate of the actual optimal centroids in the Euclidean space.

Having demonstrated that our modification of [19] to execute fixed-

centroid k-means instead of standard k-means yields a 25-factor

approximation of the optimal solution, we can now proceed to

prove that our private explanation closely approximates the optimal

solution for the fixed-centroid scenario.

Corollary 2. Running PrivateExplanations with NonPrivateAp-

proxFC be the above 𝑘-means algorithm, with probability at least

1 − 𝛽 , 𝑆 (𝑖 )𝜖 is a (𝑤, 𝑡)-approximation of 𝑂𝑃𝑇𝑖–the optimal 𝑘-means

with a center fixed at position 𝑥𝑖 , in which:

𝑤 = (25 + 𝛾) (1 + 𝛼)

𝑡 = (25 + 𝛾)O𝑝,𝛼
(
(𝑘/𝛽)𝑂𝑝,𝛼 (1) .𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛/𝛽)/𝜖

)
.

With the utility bounds for k-means and k-median under the fixed-

centroid constraint proven, it is clear that altering the original

algorithms preserves the same utility bounds as their non-fixed

counterparts. This ensures that accommodating fixed centroids

does not compromise clustering quality. Notably, these bounds

refer to clustering utility, not explanation bounds. By showing

that fixed-k-means and fixed-k-median perform as effectively as

standard versions, users can trust the quality of the explanations.

Without these guarantees, users might question the validity of

centroid placements. Our results ensure the explanations are based

on clustering solutions that are as robust and reliable as the original

algorithms.
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Figure 1: A visualization of our dataset (Heart Disease dataset from the UCI ML Repository), projected into an 8-dimensional

space. (a) t-SNE of our data. (b) Comparison of k-median clustering with fixed and non-fixed centroids, both private and

non-private. (c) Bar graph showing contrastive explanation differences for differential private and non-private k-median with a

fixed centroid. (d) We fix the privacy budget of 0.6 while demonstrating the contrastive explanation across various dimensions.

5 EXPERIMENTS

Our study examines how the privacy budget 𝜖 affects the trade-off

between privacy and accuracy, focusing on the quality of differen-

tially private explanations.We use four keymetrics: Private Optimal

(PO, 𝑆𝜖 ), Private Contrastive (PC, 𝑆
(𝑖 )
𝜖 ), Regular Optimal (RO,𝑂𝑃𝑇 ),

and Regular Contrastive (RC, 𝑂𝑃𝑇𝑖 ), to compare clustering costs

with and without fixed centroids in both private and non-private

algorithms. To assess explanation quality, we define two derived

metrics: Average Private Explanation (APE, PC - PO, cost(𝑆
(𝑖 )
𝜖 ) -

cost(𝑆𝜖 )) and Average Explanation (AE, RC - RO, cost(𝑆 (𝑖 ) ) - cost(𝑆)).
APE measures utility loss in private clustering as an explanatory

output, while AE provides a non-private baseline. These metrics

help us evaluate the explanatory power of our approach. By analyz-

ing these metrics across different 𝜖 values, we explore the balance

between privacy and utility, highlighting the trade-offs in our dif-

ferentially private clustering and explanation framework.

Datasets Our research utilizes a diverse set of datasets to demon-

strate the versatility and effectiveness of our approach, as sum-

marized in Table 1. We employed the Heart Disease dataset fea-

turing 13 dimensions, and the Breast Cancer dataset with 30 fea-

tures, including both numeric and categorical fields. Both datasets

were taken from the UCI Machine Learning Repository Those

higher-dimensional datasets were crucial in validating our theoret-

ical framework. Additionally, we used two-dimensional activity-

based population datasets from Charlottesville City and Albemarle

County, Virginia, previously employed in mobile vaccine clinic de-

ployment studies [23]. To complement these real-world datasets,

we also generated a synthetic two-dimensional dataset. By testing

our method on both high-dimensional and two-dimensional data,

as well as on real and synthetic datasets, we showcase its robustness

across different data complexities and origins.

Data Preprocessing: We normalized all datasets to fit within a

unit ball to ensure consistency with prior work and standardize our

analysis framework. While this normalization alters the absolute

scale, it preserves the relative relationships between data points,

which is crucial for clustering. The entire preprocessed dataset

was used for analysis, as there is no ground truth labeling for a

traditional train-test split in this unsupervised task.

DimensionalityOur study explored both 2D and higher-dimensional

datasets. A crucial aspect of our methodology, DimReduction,

employs Principal Component Analysis (PCA) for initial dimen-

sionality reduction. This process normalizes the data and creates

lower-dimensional representations. We performed extensive ex-

periments, reducing high-dimensional datasets to various lower

dimensions, including 2D, with additional low-dimension experi-

ments. Remarkably, our results remained consistent across differ-

ent reduced dimensionalities. Even when reducing data from 13

dimensions to 2, we observed similar trends and results as with

other dimensional reductions, despite significant information loss.

This consistency underscores our method’s robustness across vary-

ing dimensions. By addressing high-dimensional data challenges

through PCA reduction, we ensure our technique’s applicability and

efficiency across diverse dataset complexities, maintaining result

integrity regardless of original data dimensionality.

Running Time Analysis: The computational complexity of our

algorithm varies by clustering method. For k-means, we use the

linear-time algorithm from [19], while the k-median approach relies

on polynomial-time Linear Programming (LP). We have optimized

performance with GPU parallelization, reducing execution times

from minutes to seconds for both differentially private coresets and

clustering tasks. Our method is data-agnostic, handling any data

distribution efficiently, independent of sparsity. For reproducibil-

ity, we provide our code, experimental details, and pre-processed

datasets in a public repository.

5.1 Experimental results

Figure 1 presents four key visualizations of our differentially pri-

vate clustering and explanation framework across various dimen-

sions. The t-SNE plot (leftmost) shows the 2D representation of

our dataset, revealing potential clusters and patterns. The second

plot illustrates K-median cost versus 𝜖 for our four metrics (PC,

Dataset Dim Size Source

Heart Disease 13 303 UCI MLR

Breast Cancer Wisconsin 31 569 UCI MLR

Charlottesville 2 33K [23]

Albemarle 2 74K [23]

Synthetic dataset 2 1k Generated

Table 1: Datasets used in our research
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Figure 2: A visualization of another dataset (Breast Cancer dataset (30 features) from the UCI ML Repository), projected into a

16-dimensional space. (a) t-SNE of our data. (b) Comparison of k-means clustering with fixed and non-fixed centroids, both

private and non-private. (c) Bar graph showing contrastive explanation differences for differential private and non-private

k-means with a fixed centroid.

PO, RC, RO), demonstrating the privacy-accuracy trade-off and the

consistency of our contrastive explanations.

In plots (b) and (c) of Figure 1, the x-axis represents the privacy

budget 𝜖 , which we tested over the range [0, 1] in intervals of 0.05.

This granularity allows for a detailed analysis of the privacy-utility

trade-off. Smaller values of 𝜖 enforce stronger privacy guarantees, as

reflected in higher clustering costs for PC and PO. Conversely, as 𝜖

increases, these costs gradually decrease, highlighting the improved

utility that comes with relaxed privacy constraints. Importantly,

the observed trends demonstrate that the framework consistently

balances privacy and utility, even at stricter privacy levels. Addition-

ally, the stability of the non-private metrics (RC and RO) across the

𝜖 range provides a robust baseline for evaluating the performance

of our private clustering and explanation methods.

As expected, both PC and PO costs decrease as 𝜖 increases, demon-

strating the trade-off between privacy and accuracy. The non-

private metrics (RC and RO) remain constant across 𝜖 values, serv-

ing as baselines for comparison. Notably, the gap between PC and

PO remains relatively consistent, indicating that our contrastive

explanations maintain their relative quality at different levels of

privacy. The third plot illustrates the Explanation Utility for both

private (Average Private Explanation) and non-private (Average

Non-Private Explanation) scenarios across various 𝜖 values. This

graph quantifies the difference in clustering cost between the opti-

mal solution and the solution with a fixed centroid, representing

our contrastive explanations. Notably, we observe that the Aver-

age Private Explanation remains relatively stable across different

𝜖 values. This stability is crucial as it indicates that the quality of

our contrastive explanations in the private setting is consistent,

regardless of the privacy budget. The consistent performance across

different 𝜖 values underscores the robustness of our method, pro-

viding reliable explanations even under strict privacy constraints.

The rightmost plot demonstrates the difference between PC and PO

across dimensions for a fixed 𝜖 , illustrating our method’s scalability

with dimensionality.

Figure 2 follows a similar format but uses another high-dimensional

dataset. This dataset was reduced from 30 dimensions to 16 to test

the robustness of our approach on different datasets and higher

dimensions. Unlike Figure 1, this figure presents results obtained

using the k-means algorithm. Furthermore, we extended our ex-

periments to include other reduced dimensions for both k-means

and k-median, with the detailed results provided in the Appendix.

These additional experiments further validate the adaptability and

robustness of our framework across different clustering methods

and dimensionality settings.

6 CONCLUSIONS

Our work explores the design of private explanations for clustering,

particularly focusing on the k-median and k-means objectives for

Euclidean datasets.We formalize this as the PRIVEC problem, where

each agent receives a contrastive explanation corresponding to the

loss in utility they experience when a cluster centroid is placed at

a strategic position chosen by the agent. Our algorithm provides

explanations to each user while maintaining the same approxima-

tion factor as private clustering, within a predefined privacy budget.

The related work in this domain has shown the development of

algorithms for contrastive explanations, but our contribution stands

out by integrating differential privacy guarantees.

Our experiments demonstrate the resilience of our approach. De-

spite the added layer of providing differentially private explanations

on top of differentially private clustering, the quality of our expla-

nations remains uncompromised. The extended experiments on

all our datasets further validate our approach’s efficacy. The bal-

ance between privacy and utility, the robustness of contrastive

explanations, and the negligible impact of 𝜖 on explainability were

consistent across datasets. These findings underscore the potential

of our method for diverse real-world applications.

Our approach is not restricted to k-means and k-median but can

be applied to other clustering algorithms as well. The methodol-

ogy leverages fundamental principles common to many cluster-

ing techniques, such as centroids and utility functions. As long

as a clustering algorithm defines centroids and evaluates cluster-

ing quality using these metrics, our approach can be adapted to

provide privacy-preserving contrastive explanations. This adapt-

ability makes it suitable for extending to other paradigms, such as

density-based or hierarchical clustering, extending its applicability

to various datasets and contexts.
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Notations Definitions Note

𝑋 ∼ 𝑋 ′ Two datasets 𝑋 and 𝑋 ′ differ by at most 1 element

𝛼 Approximation parameter for the utility of clustering and explanations

𝛽 Failure probability of the utility guarantees of clustering and explanations

𝜁 Parameter to control the utility of the private coreset: 𝜁 = 0.01

(
𝛼

10𝜆𝑝,𝛼/2

)
1/𝑝

𝜆𝑝,𝛼/2 Definition 9

O𝑝,𝛼 Big O notation that explicit ignore factors of 𝑝 and 𝛼

𝑤, 𝑡 Approximation factors of the utility of our private explanations Def. 2

𝑤 ′′ Approximation factors of the non-private clustering algorithm when one centroid is fixed

𝑂𝑃𝑇 Cost of the optimal clustering

𝑂𝑃𝑇𝑖 Cost the the optimal clustering when one centroid is fixed at requested location of agent 𝑖

𝑑, 𝑑′ The # of dimensions of the original and projected spaces

𝑆𝜖 Private clustering solution with privacy budget 𝜖

𝑆
(𝑖 )
𝜖 Private solution computed by the clustering algorithm while

Fixing one centroid to the requested position of agent 𝑖

NonPrivateApprox Any (not necessarily private) clustering algorithm with approximation factor𝑤 ′ ≤ 𝑤 ′′

NonPrivateApproxFC Any (not necessarily private) clustering algorithm with one centroid fixed as request,

with approximation factor𝑤 ′′

𝑋 Input dataset in the original space

𝑋 ′ Projected dataset in the 𝑑′-dimensional space in Theorem 3

𝑌 The private coreset

S Projection from R𝑑 to S
Table 2: Summary of repeatedly used notations and their definitions

A RELATEDWORK: ADDITIONAL DETAILS

Our work considers differential privacy for explainable AI in general (XAI) and Multi-agent explanations (XMASE) in particular, focusing on

post-hoc contrastive explanations for clustering.

Extensive experiments presented in [35] demonstrate non-negligible changes in explanations of black-boxMLmodels through the introduction

of privacy. The findings in [32] corroborate these observations regarding explanations for black-box feature-based models. These explanations

involve creating local approximations of the model’s behavior around specific points of interest, potentially utilizing sensitive data. In order

to safeguard the privacy of the data used during the local approximation process of an eXplainable Artificial Intelligence (XAI) module, the

researchers have devised an innovative adaptive differentially private algorithm. This algorithm is designed to determine the minimum

privacy budget required to generate accurate explanations effectively. The study undertakes a comprehensive evaluation, employing both

empirical and analytical methods, to assess how the introduction of randomness inherent in differential privacy algorithms impacts the

faithfulness of the model explanations.

[29] considers feature-based explanations (e.g., SHAP) that can expose the top important features that a black-box model focuses on. To

prevent such expose they introduced a new concept of achieving local differential privacy (LDP) in the explanations, and from that, they

established a defense, called XRAND, against such attacks. They showed that their mechanism restricts the information that the adversary

can learn about the top important features while maintaining the faithfulness of the explanations.

The analysis presented in restatable[14] considers security concerning contrastive explanations. The authors introduced the concept of the

"explanation linkage attack", a potential vulnerability that arises when employing instance-based strategies to derive contrastive explanations.

To address this concern, they put forth the notion of k-anonymous contrastive explanations. Furthermore, the study highlights the intricate

balance between transparency, fairness, and privacy when incorporating k-anonymous explanations. As the degree of privacy constraints is

heightened, a discernible trade-off comes into play: the quality of explanations and, consequently, transparency are compromised.

Amongst the three types of eXplainable AI mentioned earlier, the maintenance of privacy during explanation generation incurs a certain cost.

This cost remains even if an expense was previously borne during the creation of the original model. However, in our proposed methodology

for generating contrastive explanations in clustering scenarios, once the cost of upholding differential privacy in the initial solution is paid,

no additional expenses are requisite to ensure differential privacy during the explanation generation phase.

Closer to our application is the study that investigates the privacy aspects concerning contrastive explanations in the context of team formation

[11]. In this study, the authors present a comprehensive framework that integrates team formation solutions with their corresponding

explanations, while also addressing potential privacy concerns associated with these explanations. To accomplish this, the authors introduce

a privacy breach detector (PBD) that is designed to evaluate whether the provision of an explanation might lead to privacy breaches. The

PBD consists of two main components: (a) A belief updater (BU), calculates the posterior beliefs that a user is likely to form after receiving
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the explanation. (b) A privacy checker (PC), examines whether the user’s expected posterior beliefs surpass a specified belief threshold,

indicating a potential privacy breach. However, the research is still in its preliminary stages and needs a detailed evaluation of the privacy

breach detector.

Our contribution includes the development of comprehensive algorithms for generating contrastive explanations with differential privacy

guarantees. We have successfully demonstrated the effectiveness of these algorithms by providing rigorous proof for their privacy guarantees

and conducting extensive experiments that showcased their accuracy and utility. In particular, we have shown the validity of our private

explanations for clustering based on the 𝑘-median and 𝑘-means objectives for Euclidean datasets. Moreover, our algorithms have been

proven to have the same accuracy bounds as the best private clustering methods, even though they provide explanations for all users, within

a bounded privacy budget. Notably, our experiments in the dedicated experiments section reveal that the epsilon budget has minimal impact

on the explainability of our results, further highlighting the robustness of our approach.

There has been a lot of work on private clustering and facility location, starting with [15], which was followed by a lot of work on other

clustering problems in different privacy models, e.g., [9, 16, 30, 39, 40]. [15] demonstrated that the additive error bound for points in a metric

space involves an 𝑂 (Δ𝑘2
log𝑛/𝜖) term, where Δ is the space’s diameter. Consequently, all subsequent work, including ours, assumes points

are restricted to a unit ball. In addition, there has been extensive work on a closely related problem, in the context of private clustering on

graphs or networked data, often mentioned as community detection [6, 17, 28].

Algorithm 2 DimReduction

Input: (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑑, 𝑑′, 𝛽
Output: (𝑥 ′

1
, . . . , 𝑥 ′𝑛) low-dimensional space dataset.

1: Λ =

√︃
0.01𝑑

log(𝑛/𝛽 )𝑑 ′
2: for 𝑖 ∈ {1, .., 𝑛} do
3: 𝑥𝑖 ← ΠS (𝑥𝑖 )
4: if ∥𝑥𝑖 ∥ ≤ 1/Λ then

5: 𝑥 ′
𝑖
= Λ𝑥𝑖

6: else

7: 𝑥 ′
𝑖
= 0

8: end if

9: end for

10: return (𝑥 ′
1
, . . . , 𝑥 ′𝑛)

Algorithm 3 DimReverse

Input: (𝑐′
1
, . . . , 𝑐′

𝑘
), (𝑥 ′

1
, . . . , 𝑥 ′𝑛)

Output: (𝑐1, . . . , 𝑐𝑘 ) Private Centroids in high dimension

1: X1, . . . ,X𝑘 ← the partition induced by (𝑐′
1
, . . . , 𝑐′

𝑘
) on (𝑥 ′

1
, . . . , 𝑥 ′𝑛)

2: for 𝑗 ∈ {1, . . . , 𝑘} do
3: 𝑐 𝑗 ← FindCenter

𝜖/2 (X𝑗 )
4: end for

5: return (𝑐1, . . . , 𝑐𝑘 )

B ADDITIONAL PROOFS FOR PRIVATEEXPLANATIONS

Theorem 1. DP of Explanation. The solution (𝑐1, . . . , 𝑐𝑘 ) and 𝑐𝑜𝑠𝑡 (𝑆𝜖 ) computed by Algorithm PrivateExplanations are 𝜖-DP. For all

clients 𝑖 and 𝑆
(𝑖 )
𝜖 computed by Algorithm PrivateExplanations is 𝜖-𝑖-exclusion DP.

Proof. It follows that cost(𝑆𝜖 ) is the direct results of 𝑌 , which is 𝜖/2-differentially private coreset. By the post-processing property, cost(𝑆𝜖 )
is 𝜖/2-DP (which implies 𝜖-DP).

The output 𝑐 of the DimReverse algorithm is 𝜖/2-differentially private with respect to the input (𝑋1, 𝑋2, . . . , 𝑋𝑘 ), where 𝑋𝑖 represents the
data points in cluster 𝑖 . The overall process achieves 𝜖-differential privacy through composition, as (𝑋1, 𝑋2, . . . , 𝑋𝑘 ) is partially derived from

𝑌 , which itself is 𝜖/2-differentially private.

For each explanations 𝑆
(𝑖 )
𝜖 , let 𝑋,𝑋 ′ : 𝑋 \ {𝑥𝑖 } ∼ 𝑋 ′ \ {𝑥𝑖 }, i.e., 𝑋 and 𝑋 ′ are any two neighbor datasets that differ at exact one data point

that is not agent 𝑖 . Let 𝑆
(𝑖 )
𝜖 (𝑌𝑋 ) be the value of 𝑆 (𝑖 )𝜖 with input dataset 𝑋 (and 𝑌𝑋

as the private coreset of 𝑋 respectively). Note that we

specify the dataset 𝑋 (and 𝑋 ′) as a parameter of 𝑆
(𝑖 )
𝜖 to highlight the original dataset where the explanation comes from (either 𝑋 or 𝑋 ′). Fix
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any set 𝑆 , let 𝑇 = {𝑌 : 𝑆
(𝑖 )
𝜖 (𝑌 ) ∈ 𝑆} ,i.e., the set of coresets 𝑌 that make 𝑆

(𝑖 )
𝜖 (𝑌 ) ∈ 𝑆 . Since 𝑋 ∼ 𝑋 ′, we have:

Pr[𝑆 (𝑖 )𝜖 (𝑌𝑋 ) ∈ 𝑆] = Pr[𝑌𝑋 ∈ 𝑇 ] (7)

≤ 𝑒𝜖/2 Pr[𝑌𝑋 ′ ∈ 𝑇 ] (8)

= 𝑒𝜖/2 Pr[𝑆 (𝑖 )𝜖 (𝑌𝑋 ′ ) ∈ 𝑆], (9)

which implies that cost(𝑆 (𝑖 )𝜖 ) − cost(𝑆𝜖 ) is 𝜖-𝑥𝑖 -exclusion DP, since cost(𝑆𝜖 ) is 𝜖/2-DP (which implies 𝜖/2-𝑥𝑖 -exclusion DP). □

Lemma 2. DP of fixed centroid yield additional cost. Fix an 𝑖 . If 𝑂𝑃𝑇𝑖 ≥ 𝑤 ′′ (1 + 𝛼)𝑂𝑃𝑇 + 𝑡 (𝑖 ) , then with probability at least 1 − 2𝛽 ,

cost(𝑆𝜖 ) and cost(𝑆
(𝑖 )
𝜖 ) computed by Algorithm PrivateExplanations satisfies that 𝑐𝑜𝑠𝑡 (𝑆 (𝑖 )𝜖 ) > 𝑐𝑜𝑠𝑡 (𝑆𝜖 ).

Proof. By the result of Lemma 6, with probability 1 − 2𝛽 we have:

𝑐𝑜𝑠𝑡 (𝑆 (𝑖 )𝜖 ) ≥ 𝑂𝑃𝑇𝑖 (10)

≥ 𝑤 ′′ (1 + 𝛼)𝑂𝑃𝑇 + 𝑡 (𝑖 ) (11)

≥ 𝑤 ′′ (1 + 𝛼)
𝑐𝑜𝑠𝑡 (𝑆𝜖 ) − Ω𝑝,𝛼,𝑤′′

(
(𝑘/𝛽 )𝑂𝑝,𝛼 (1)

𝜖 .polylog(𝑛/𝛽)
)

𝑤 ′′ (1 + 𝛼) + 𝑡 (𝑖 ) (12)

= 𝑐𝑜𝑠𝑡 (𝑆𝜖 ) + 𝑡 (𝑖 ) − Ω𝑝,𝛼,𝑤′′

(
(𝑘/𝛽)𝑂𝑝,𝛼 (1)

𝜖
.polylog(𝑛/𝛽)

)
. (13)

Set 𝑡 (𝑖 ) = Ω𝑝,𝛼,𝑤′′

(
(𝑘/𝛽 )𝑂𝑝,𝛼 (1)

𝜖 .polylog(𝑛/𝛽)
)
and the Lemma follows. □

Definition 9. For 𝑝 ≥ 1, 𝛼 > 0, 𝜆𝑝,𝛼/2
𝑑𝑒𝑓
=

1+𝛼/2
( (1+𝛼/2)1/𝑝−1)𝑝 .

Lemma 6. (Johnson-Lindenstrauss (JL) Lemma [7, 18]) Let 𝑣 be any 𝑑-dimensional vector. Let S denote a random 𝑑′-dimensional subspace of

R𝑑 and let Π𝑆 denote the projection from R𝑑 to S. Then, for any 𝜏 ∈ (0, 1) we have

Pr

[
∥𝑣 ∥2 ≈1+𝜏

√︁
𝑑/𝑑′∥ΠS (𝑣)∥2

]
≥ 1 − 2 exp

(
−𝑑
′𝜏2

100

)
(14)

Lemma 7. (Dimensionality Reduction for (𝑘, 𝑝)-Cluster [21]) For every 𝛽 > 0, 𝛼 < 1, 𝑝 ≥ 1, 𝑘 ∈ N , there exists 𝑑′ = 𝑂𝛼̃ (𝑝4
log(𝑘/𝛽)). Let S

be a random d-dimensional subspace of R𝑑 and ΠS denote the projection from R𝑑 to S. With probability 1 − 𝛽 , the following holds for every
partition X = (𝑋1, . . . , 𝑋𝑘 ) of 𝑋 :

𝑐𝑜𝑠𝑡𝑝 (X) ≈
1+𝛼̃ (𝑑/𝑑′)𝑝/2𝑐𝑜𝑠𝑡𝑝 (ΠS (X)), (15)

where ΠS (X) denotes the partition (ΠS (𝑋1), . . . ,ΠS (𝑋𝑘 )).

Theorem 3. Cost of explanations due to privacy. Fix an agent 𝑖 . With probability at least 1 − 𝛽 , cost(𝑆
(𝑖 )
𝜖 ) computed by Algorithm

PrivateExplanations is a (𝑤, 𝑡)-approximation of 𝑂𝑃𝑇𝑖 , with

𝑤 = 𝑤 ′′ (1 + 𝛼)

𝑡 = 𝑤 ′′O𝑝,𝛼
(
(𝑘/𝛽)𝑂𝑝,𝛼 (1) .polylog(𝑛/𝛽)/𝜖

)
Proof. Let X̃ = (𝑥1, 𝑥2, . . . , 𝑥𝑛), i.e., the projected data after applying the transformation ΠS . Let 𝑋 = (𝑥 ′

1
, 𝑥 ′

2
, . . . , 𝑥 ′𝑛), i.e., X̃ after being

clipped by 1/Λ. By setting 𝛼 ′ = 0.1𝛼 , and applying Lemma 7, we have:

𝑂𝑃𝑇
˜𝑑
𝑖 ≤

(
𝑑′

𝑑

)𝑝/2
(1 + 0.1𝛼)𝑂𝑃𝑇𝑑

𝑖 . (16)

By standard concentration, it can be proved that ∥𝑥 ′
𝑖
∥ ≤ 1/Λ with probability 0.1𝛽/𝑛 as follows:

Using Lemma 6, we have:

Pr

[
∥𝑥 ∥ > 1

1 + 𝜏
√︁
𝑑/𝑑′∥𝑥 ′∥

]
≥ 1 − 2 exp(−𝑑′𝜏2/100) . (17)
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Since 𝑥 is in the unit ball, ∥𝑥 ∥ < 1, which leads to:

Pr

[
∥𝑥 ′∥ < (1 + 𝜏)

√︁
𝑑′/𝑑

]
≥ 1 − 2 exp(−𝑑′𝜏2/100). (18)

Setting 𝜏 =

√︃
𝑙𝑜𝑔 (𝑛/𝛽 )

0.01
− 1, Λ = 1

1+𝜁
√︁
𝑑/𝑑′ =

√︃
0.01

log (𝑛/𝛽 ) .
𝑑
𝑑 ′ , we have:

Pr[∥𝑥 ′∥ < 1/Λ] ≥ 1 − 2 exp(−𝑑
′𝜏2

100

) (19)

> 1 − 2 exp(−𝑑′ log(𝑛/𝛽)) (20)

> 1 − 2𝛽/𝑛, (21)

By union bound on all 𝑖 , then with probability at least 1 − 2𝛽 , 𝑥 ′
𝑖
= Λ𝑥𝑖 for all 𝑖 . Since 𝑌 is the output of PrivateCoreset with input 𝑋 ′ and

𝜁 , then by Theorem 38 of [13], 𝑌 is a (0.1𝛼, 𝑡)-coreset of 𝑋 ′ (with probability at least 1 − 𝛽), with 𝛼 =
(100𝜁 )𝑝
10𝜆𝑝,𝛼/2

and 𝑡 ′ as:

𝑡 ′ = 𝑂𝑝,𝛼

(
2
𝑂𝑝,𝛼 (𝑑 ′ )𝑘2

log
2 𝑛

𝜖
log

(
𝑛

𝛽

)
+ 1

)
. (22)

We note that alternatively, given a target approximation parameter 𝛼 , we can set 𝜁 = 0.01

(
𝛼

10𝜆𝑝,𝛼/2

)
1/𝑝

.

Let (𝑦1, 𝑦2, . . . , 𝑦𝑘 ) be the solution of NonPrivateApproxFC in PrivateExplanations for a fixed 𝑖 , (𝑦∗
1
, 𝑦∗

2
, . . . , 𝑦∗

𝑘
) be the optimal solution of

the clustering with fixed center at 𝑥 ′
𝑖
on 𝑋 ,𝑂𝑃𝑇𝑌 be the optimal cost of the clustering with fixed center at 𝑥 ′

𝑖
on 𝑌 . By the𝑤 ′-approximation

property of NonPrivateApproximationFC, we have:

𝑐𝑜𝑠𝑡𝑌 (𝑦1, 𝑦2, . . . , 𝑦𝑘 ) ≤ 𝑤 ′𝑂𝑃𝑇𝑌 (23)

≤ 𝑤 ′𝑐𝑜𝑠𝑡𝑌 (𝑦∗1, 𝑦
∗
2
, . . . , 𝑦∗

𝑘
) (24)

≤ 𝑤 ′ (1 + 0.1𝛼)𝑐𝑜𝑠𝑡X′
1..𝑛
(𝑦∗

1
, 𝑦∗

2
, . . . , 𝑦∗

𝑘
) +𝑤 ′𝑡 ′ (25)

= 𝑤 ′ (1 + 0.1𝛼)𝑂𝑃𝑇𝑑 ′
𝑖 +𝑤

′𝑡 ′ . (26)

Composing with Lemma 7, we have:

𝑐𝑜𝑠𝑡𝑌 (𝑦1, 𝑦2, . . . , 𝑦𝑘 ) ≤ 𝑤 ′ (1 + 0.1𝛼)𝑂𝑃𝑇𝑑 ′
𝑖 +𝑤

′𝑡 ′ (27)

≤ Λ𝑝𝑤 ′ (1 + 0.1𝛼)𝑂𝑃𝑇 ˜𝑑
𝑖 +𝑤

′𝑡 ′ (28)

≤ Λ𝑝𝑤 ′ (1 + 0.1𝛼) (1 + 0.1𝛼)
(
𝑑′

𝑑

)𝑝/2
𝑂𝑃𝑇𝑑

𝑖 +𝑤
′𝑡 ′ (29)

≤ 𝑤 ′ (1 + 𝛼)𝑂𝑃𝑇𝑑
𝑖

(
0.01

log(𝑛/𝛽)

)𝑝/2
+𝑤 ′𝑡 ′, since Λ2𝑑′/𝑑 = Θ(1/log(𝑛/𝛽)) (30)
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Finally, since

𝑐𝑜𝑠𝑡 (𝑆 (𝑖 )𝜖 ) = 𝑐𝑜𝑠𝑡𝑌 (𝑦1, 𝑦2, . . . , 𝑦𝑘 )
(

log(𝑛/𝛽)
0.01

)𝑝/2
(31)

≤ 𝑤 ′ (1 + 𝛼)𝑂𝑃𝑇𝑑
𝑖 + Θ(𝑤

′𝑡 ′ (log(𝑛/𝛽)𝑝/2) (32)

(𝑎)
≤ 𝑤 ′ (1 + 𝛼)𝑂𝑃𝑇𝑑

𝑖 +𝑤
′Θ

(
2
𝑂𝑝,𝛼 (𝑑 ′ )𝑘2

log
2 𝑛

𝜖
log

(
𝑛

𝛽

)
(log(𝑛/𝛽))𝑝/2

)
(33)

(𝑏 )
≤ 𝑤 ′ (1 + 𝛼)𝑂𝑃𝑇𝑑

𝑖 +𝑤
′Θ

(
(𝑘/𝛽)𝑂𝑝,𝛼 (1)𝑘2

log
2 𝑛

𝜖
log

(
𝑛

𝛽

)
(log(𝑛/𝛽))𝑝/2

)
(34)

(𝑐 )
≤ 𝑤 ′ (1 + 𝛼)𝑂𝑃𝑇𝑑

𝑖 +𝑤
′Θ

(
(𝑘/𝛽)𝑂𝑝,𝛼 (1) (𝑘/𝛽)2 log

2 (𝑛/𝛽)
𝜖

log

(
𝑛

𝛽

)
(log(𝑛/𝛽))𝑝/2

)
(35)

= 𝑤 ′ (1 + 𝛼)𝑂𝑃𝑇𝑑
𝑖 +𝑤

′Θ

(
(𝑘/𝛽)𝑂𝑝,𝛼 (1)

𝜖
.polylog(𝑛/𝛽)

)
, (36)

(37)

where in (𝑎) we substitute the value of 𝑡 ′, and (𝑏) is because 𝑑′ = 𝑂𝛼 (𝑝4
log(𝑛/𝛽)), and (𝑐) is because 𝛽 < 1, and the Lemma follows.

□

C ADDITIONAL PROOFS FOR 𝑘-MEDIAN ALGORITHM

Definition 10. The solution of the 𝑘-median problem (with demands and a center fixed at a location 𝑧 can be formulated as finding the optimal

solution of the following Integer program (IP):

minimize

∑︁
𝑖, 𝑗∈𝑁

𝑑 𝑗𝑐𝑖 𝑗𝑥𝑖 𝑗 (38)

subject to

∑︁
𝑖∈𝑁

𝑥𝑖 𝑗 = 1 for each 𝑗 ∈ 𝑁 (39)

𝑥𝑖 𝑗 ≤ 𝑦𝑖 for each 𝑖, 𝑗 ∈ 𝑁 (40)∑︁
𝑗∈𝑁

𝑦𝑖 = 𝑘 (41)

𝑥𝑖 𝑗 ∈ {0, 1} for each 𝑖, 𝑗 ∈ 𝑁 (42)

𝑦𝑖 ∈ {0, 1} for each 𝑖 ∈ 𝑁 (43)

𝑦𝑧 = 1 for a fixed 𝑧 ∈ 𝑁 (44)

𝑥𝑧𝑧 = 1 for a fixed 𝑧 ∈ 𝑁 . (45)

Lemma 8. Locations 𝑖, 𝑗 ∈ 𝑁 ′ satisfy: 𝑐𝑖 𝑗 > 4 max(𝐶𝑖 ,𝐶 𝑗 ).

Proof. The lemma follows the demands moving step (in the first step of the algorithm): for every 𝑗 to the right of 𝑖 (which means 𝐶 𝑗 ≥ 𝐶𝑖 )

and within the distance of𝐶 𝑗 (that also covers all points within distance𝐶𝑖 ), we move all demands of 𝑗 to 𝑖 , hence 𝑗 will not appear in 𝑁 ′. □

D ADDITIONAL PROOFS FOR 𝑘-MEANS ALGORITHM

Lemma 9. (Lemma 2.1 of [19]) Given a finite subset 𝑆 of points inR𝑑 , let 𝑐 be the centroid of 𝑆 . Then for any 𝑐′ ∈ R𝑑 ,Δ(𝑆, 𝑐′) = Δ(𝑆, 𝑐)+|𝑆 |Δ(𝑐, 𝑐′).

Lemma 10. Let 𝑆 be 1-stable set and 𝑂 be the optimal set of 𝑘 centers, we have Δ(𝑂) − 3Δ(𝑆) + 2𝑅 ≥ 0, where 𝑅 =
∑
𝑞∈𝑃 Δ(𝑞, 𝑠𝑜𝑞 ).

Proof. Since 𝑆 is 1-stable, we have for each swap pair: ∑︁
𝑞∈𝑁𝑂 (𝑜 )

(
Δ(𝑞, 𝑜) − Δ(𝑞, 𝑠𝑞)

)
(46)

+
∑︁

𝑞∈𝑁𝑆 (𝑠 )\𝑁𝑂 (𝑜 )

(
Δ(𝑞, 𝑠𝑜𝑞 ) − Δ(𝑞, 𝑠)

)
≥ 0. (47)

We will sum up the inequality above for all swap pairs. For the left term, the sum is overall 𝑜 ∈ 𝑂 :
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∑︁
𝑜∈𝑂

∑︁
𝑞∈𝑁𝑂 (𝑜 )

(
Δ(𝑞, 𝑜) − Δ(𝑞, 𝑠𝑞)

)
(48)

=
∑︁
𝑞∈𝑃

(
Δ(𝑞, 𝑜) − Δ(𝑞, 𝑠𝑞)

)
, (49)

Since each 𝑜 ∈ 𝑂 will appear exactly once, and ∪𝑜∈𝑂𝑞 ∈ 𝑁𝑂 (𝑜) will cover all points in 𝑃 .

For the right term, the sum is over all 𝑠 that is being swapped out. We note that each 𝑠 can be swapped out at most twice, hence:∑︁
𝑠 being swapped out

∑︁
𝑞∈𝑁𝑆 (𝑠 )

(
Δ(𝑞, 𝑠𝑜𝑞 ) − Δ(𝑞, 𝑠)

)
(50)

≤ 2

∑︁
𝑞∈𝑃

(
Δ(𝑞, 𝑠𝑜𝑞 ) − Δ(𝑞, 𝑠)

)
(51)

When we combine the two terms, we have:∑︁
𝑞∈𝑃

(
Δ(𝑞, 𝑜) − Δ(𝑞, 𝑠𝑞)

)
+ 2

∑︁
𝑞∈𝑃

(
Δ(𝑞, 𝑠𝑜𝑞 ) − Δ(𝑞, 𝑠)

)
≥ 0 (52)∑︁

𝑞∈𝑃
Δ(𝑞, 𝑜𝑞) − 3

∑︁
𝑞∈𝑃

Δ(𝑠, 𝑠𝑞) + 2

∑︁
𝑞∈𝑃

Δ(𝑞, 𝑠𝑜𝑞 ) ≥ 0 (53)

Δ(𝑂) − 3Δ(𝑆) + 2𝑅 ≥ 0, (54)

and the Lemma follows. □

Lemma 11. (Proof in Lemma 2.2 & 2.3 of [19]) Let 𝛼2 =
Δ(𝑆 )
Δ(𝑂 ) , we have

∑
𝑞∈𝑃 𝑑𝑖𝑠𝑡 (𝑞, 𝑜𝑞)𝑑𝑖𝑠𝑡 (𝑞, 𝑠𝑞) ≤

Δ(𝑆 )
𝛼

Lemma 12. With 𝑅 and 𝛼 defined as above: 𝑅 ≤ 2Δ(𝑂) + (1 + 2/𝛼)Δ(𝑆).

Proof. By Lemma 10, we have:

𝑅 =
∑︁
𝑞∈𝑃

Δ(𝑞, 𝑠𝑜𝑞 ) (55)

=
∑︁
𝑜∈𝑂

∑︁
𝑞∈𝑁𝑂 (𝑜 )

Δ(𝑞, 𝑠𝑜 ) (56)

=
∑︁

𝑜∈𝑂\𝜎

∑︁
𝑞∈𝑁𝑂 (𝑜 )

Δ(𝑞, 𝑠𝑜 ) +
∑︁

𝑞∈𝑁𝑂 (𝜎 )
Δ(𝑞, 𝜎) (57)

=
∑︁

𝑜∈𝑂\𝜎
Δ(𝑁𝑂 (𝑜), 𝑠𝑜 ) + Δ(𝑁𝑂 (𝜎), 𝜎) (58)

(𝑎)
=

∑︁
𝑜∈𝑂\𝜎

(
Δ(𝑁𝑂 (𝑜), 𝑜) + |𝑁𝑂 (𝑜) |Δ(𝑜, 𝑠𝑜 )

)
+ Δ(𝑁𝑂 (𝜎), 𝜎) (59)

=
∑︁

𝑜∈𝑂\𝜎

∑︁
𝑞∈𝑁𝑂 (𝑜 )

(
Δ(𝑞, 𝑜) + Δ(𝑜, 𝑠𝑜 )

)
+

∑︁
𝑞∈𝑁𝑂 (𝜎 )

Δ(𝑞, 𝜎) + Δ(𝜎, 𝑜𝜎 ) (60)

=
∑︁
𝑜∈𝑂

∑︁
𝑞∈𝑁𝑂 (𝑜 )

(
Δ(𝑞, 𝑜) + Δ(𝑜, 𝑠𝑜 )

)
(61)

(𝑏 )
=

∑︁
𝑜∈𝑂

∑︁
𝑞∈𝑁𝑂 (𝑜 )

(
Δ(𝑞, 𝑜) + Δ(𝑜, 𝑠𝑞)

)
(62)

≤
∑︁
𝑞∈𝑃

(
Δ(𝑞, 𝑜𝑞) + Δ(𝑜𝑞, 𝑠𝑞)

)
(63)

(𝑐 )
≤ Δ(𝑂) +

∑︁
𝑞∈𝑃
(𝑑𝑖𝑠𝑡 (𝑜𝑞, 𝑞) + 𝑑𝑖𝑠𝑡 (𝑞, 𝑠𝑞))2 (64)

= 2Δ(𝑂) + Δ(𝑆) + 2

∑︁
𝑞∈𝑃

𝑑𝑖𝑠𝑡 (𝑞, 𝑜𝑞)𝑑𝑖𝑠𝑡 (𝑞, 𝑠𝑞) (65)

(𝑑 )
≤ 2Δ(𝑂) + Δ(𝑆) + (2/𝛼)Δ(𝑆), (66)
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where (𝑎) is because Lemma 9 applies for all 𝑜 ∈ 𝑂 \ 𝜎 , (𝑏) is because Δ(𝑜, 𝑠𝑜 ) ≤ Δ(𝑜, 𝑠𝑞), (𝑐) is because the triangle inequality applies for

Δ(𝑜𝑞, 𝑠𝑞) and (𝑑) is because of Lemma 11 and the Lemma follows. □

D.1 Swap pairs mapping

In this section, we describe the swap pairs mapping scheme for the 𝑘-means with a fixed center algorithm. We adapt the scheme of [22] to

accommodate the fixed center. We discuss the modifications in Section 4.2. Here we discuss the complete mapping scheme.

At the last iteration of the algorithm, we always have a candidate set of centers 𝑆 that is 1-stable, i.e., no single feasible swap can decrease its

cost. We then analyze some hypothetical swapping schemes, in which we try to swap a center 𝑠 ∈ 𝑆 with an optimal center 𝑜 ∈ 𝑂 . We utilize

the fact that such single swaps do not decrease the cost to create some relationships between Δ(𝑆) and Δ(𝑂)–the optimal cost. Particularly,

these relationships are stated in Lemma 10 and Lemma 12.

Let 𝜎 be the fixed center. We note that 𝜎 ∈ 𝑆 and 𝜎 ∈ 𝑂 . Let 𝑠𝑜 be the closest center in 𝑆 for an optimal center 𝑜 ∈ 𝑂 , which means 𝑜 is

captured by 𝑠𝑜 . It follows that 𝑠𝜎 = 𝜎 . A center 𝑠 ∈ 𝑆 may capture no optimal center (we call it lonely). We partition both 𝑆 and 𝑂 into

𝑆1, . . . , 𝑆𝑟 and 𝑂1, . . . ,𝑂𝑟 that |𝑆𝑖 | = |𝑂𝑖 | for all 𝑖 .
We construct each pair of partitions 𝑆𝑖 ,𝑂𝑖 as follows: let 𝑠 be a non-lonely center, 𝑂𝑖 = {𝑜 ∈ 𝑂 : 𝑠𝑜 = 𝑠}, i.e., 𝑂𝑖 is the set of all optimal

centers that are captured by 𝑠 . Now, we compose 𝑠 with |𝑂𝑖 | − 1 lonely centers (which are not partitioned into any group from 𝑆) to form 𝑆𝑖 .

It is clear that |𝑆𝑖 | = |𝑂𝑖 | ≥ 1.

We then generate swap pairs for each pair of partitions 𝑆𝑖 ,𝑂𝑖 by the following cases:

• |𝑆𝑖 | = |𝑂𝑖 | = 1: let 𝑆𝑖 = {𝑠},𝑂𝑖 = {𝑜}, generate a swap pair {𝑠, 𝑜}.
• |𝑆𝑖 | = |𝑂𝑖 | =𝑚 > 1: let 𝑆𝑖 = {𝑠, 𝑠1..𝑚−1} in which 𝑠1..𝑚−1 are𝑚 − 1 lonely centers, let𝑂𝑖 = {𝑜1..𝑚}, generate𝑚 − 1 swap pairs {𝑠 𝑗 , 𝑜 𝑗 } for

𝑗 = 1..𝑚 − 1. Also, we generate a swap pair of {𝑠1, 𝑜𝑚}. Please note that 𝑠 does not belong to any swap pair, each 𝑜 𝑗 belongs to exactly

one swap pair, and each 𝑠 𝑗 belongs to at most two swap pairs.

We then guarantee the following 3 properties of our swap pairs:

(1) each 𝑜 ∈ 𝑂 is swapped in exactly once

(2) each 𝑠 ∈ 𝑆 is swapped out at most twice

(3) for each swap pair {𝑠, 𝑜}, 𝑠 either captures only 𝑜 , or 𝑠 is lonely (captures nothing).

D.2 𝛾-approximate candidate center set for fixed-center 𝑘-means.

We describe how to generate a 𝛾-approximate candidate center set for 𝑘-means with fixed center 𝜎 for a dataset 𝑋 ⊂ R𝑑 . From the result

of [22], we create a set 𝐶′ which is a 𝛾-approximation centroid set of 𝑋 . We will prove that 𝐶 = 𝐶′ ∪ {𝜎} forms a 𝛾-approximate candidate

center set for 𝑘-means with fixed center 𝜎 .

Definition 11. Let 𝑆 ⊂ R𝑑 be a finite set with its centroid 𝑐 (𝑆). A 𝛾-tolerance ball of 𝑆 is the ball centered at 𝑐 (𝑆) and has radius of 𝛾
3
𝜌 (𝑆).

Definition 12. Let 𝑋 ⊂ R𝑑 be a finite set. A finite set𝐶′ ∈ R𝑑 is a 𝛾-approximation centroid set of 𝑋 if𝐶′ intersects the 𝛾-tolerance ball of each
nonempty 𝑆 ⊆ 𝑋 .

Lemma 13. (Theorem 4.4 of [22]) We can compute 𝐶′–a 𝛾-approximation centroid set of 𝑋 that has size of 𝑂 (𝑛𝛾−𝑑 log(1/𝛾)) in time

𝑂 (𝑛 log𝑛 + 𝑛𝛾−𝑑 log(1/𝛾)).

Theorem 6. Let 𝐶 = 𝐶′ ∪ {𝜎}, in which 𝐶′ is a 𝛾-approximation centroid set computed as Lemma 13, then 𝐶 is a 𝛾-approximate candidate

center set for 𝑘-means with fixed center 𝜎 .

Proof. Let𝑂 = (𝑂1,𝑂2, . . . ,𝑂𝑘 ) be the optimal clustering in which𝑂1 is the cluster whose center is 𝜎 (we denote it as𝑂𝜎 ). For any 𝑆 ⊂ R𝑑 ,
we define 𝑐𝑜𝑠𝑡𝑆 (𝑐) =

∑
𝑥∈𝑆 ∥𝑥 − 𝑐 ∥2 and 𝑐𝑜𝑠𝑡 (𝑆) = 𝑐𝑜𝑠𝑡𝑆 (𝑐 (𝑆)) in which 𝑐 (𝑆) is the centroid of 𝑆 . By Definition 7, we will prove that there

exists a set 𝑐1, 𝑐2, . . . , 𝑐𝑘 ⊂ 𝐶 and 𝑐1 = 𝜎 such that 𝑐𝑜𝑠𝑡 (𝑐1, 𝑐2, . . . , 𝑐𝑘 ) ≤ (1 + 𝛾)𝑐𝑜𝑠𝑡 (𝑂). We adapt the analysis of [22] for the special center

𝜎–which is not a centroid as other centers in 𝑘-means.

First, we analyze the optimal cost. For any cluster except𝑂𝜎 , its center is also the centroid 𝑐 (𝑂𝑖 ) of the cluster, while𝑂𝜎 must have center 𝜎 :

𝑐𝑜𝑠𝑡 (𝑂) =
∑︁

𝑥∈𝑂𝜎

∥𝑥 − 𝜎 ∥2 +
∑︁
𝑖=2..𝑘

∑︁
𝑥∈𝑂𝑖

∥𝑥 − 𝑐 (𝑂𝑖 )∥2 (67)

= 𝑐𝑜𝑠𝑡𝑂𝜎 (𝜎) +
∑︁
𝑖=2..𝑘

𝑐𝑜𝑠𝑡 (𝑂𝑖 ) (68)
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Now, we construct {𝑐1, . . . , 𝑐𝑘 } as follows: setting 𝑐1 = 𝜎 , for 𝑖 = 2..𝑘 , 𝑐𝑖 ∈ 𝐶′ is the candidate center that intersects the 𝛾-tolerance ball of
cluster 𝑂𝑖 . For 𝑂𝜎 , 𝑐𝑜𝑠𝑡𝑂𝜎

(𝜎) = 𝑐𝑜𝑠𝑡 (𝑂𝜎 ). For other clusters, 𝑐𝑜𝑠𝑡𝑂𝑖
(𝑐𝑖 ) ≤ (1 + 𝛾)𝑐𝑜𝑠𝑡 (𝑂𝑖 ) as below:

𝑐𝑜𝑠𝑡𝑂𝑖
(𝑐𝑖 ) =

∑︁
𝑥∈𝑂𝑖

∥𝑥 − 𝑐𝑖 ∥2 (69)

≤
∑︁
𝑥∈𝑂𝑖

(∥𝑥 − 𝑐 (𝑂𝑖 )∥ + ∥𝑐 (𝑂𝑖 ) − 𝑐𝑖 ∥)2 (70)

= 𝑐𝑜𝑠𝑡 (𝑂𝑖 ) + 2∥𝑐𝑖 − 𝑐 (𝑂𝑖 )∥
∑︁
𝑥∈𝑂𝑖

∥𝑥 − 𝑐 (𝑂𝑖 )∥ + |𝑂𝑖 |∥𝑐𝑖 − 𝑐 (𝑂𝑖 )∥2 (71)

≤ 𝑐𝑜𝑠𝑡 (𝑂𝑖 ) + 2𝛾/3𝜌 (𝑂𝑖 )
√︁
|𝑂𝑖 |

√︁
𝑐𝑜𝑠𝑡 (𝑂𝑖 ) + |𝑂𝑖 | (𝛾/3𝜌 (𝑂𝑖 ))2 (72)

≤ 𝑐𝑜𝑠𝑡 (𝑂𝑖 ) + (2/3)𝛾𝑐𝑜𝑠𝑡 (𝑂𝑖 ) + (𝛾2/9)𝑐𝑜𝑠𝑡 (𝑂𝑖 ) (73)

≤ (1 + 𝛾/3)2𝑐𝑜𝑠𝑡 (𝑂𝑖 ) (74)

≤ (1 + 𝛾)𝑐𝑜𝑠𝑡 (𝑂𝑖 ). (75)

Let (𝑆1, 𝑆2, . . . , 𝑆𝑘 ) be the Voronoi partition with centers (𝑐1, 𝑐2, . . . , 𝑐𝑘 ), i.e., 𝑆𝑖 are points in the Voronoi region of 𝑐𝑖 in the Voronoi diagram

created by 𝑐1, . . . , 𝑐𝑘 , we have:

𝑐𝑜𝑠𝑡 (𝑐1, 𝑐2, . . . , 𝑐𝑘 ) = 𝑐𝑜𝑠𝑡𝑆1
(𝜎) +

∑︁
𝑖=2..𝑘

𝑐𝑜𝑠𝑡 (𝑆𝑖 ) (76)

(𝑎)
≤ 𝑐𝑜𝑠𝑡𝑆1

(𝜎) +
∑︁
𝑖=2..𝑘

𝑐𝑜𝑠𝑡𝑆𝑖 (𝑐𝑖 ) (77)

(𝑏 )
≤ 𝑐𝑜𝑠𝑡𝑂𝜎

(𝜎) +
∑︁
𝑖=2..𝑘

𝑐𝑜𝑠𝑡𝑂𝑖
(𝑐𝑖 ) (78)

(𝑐 )
≤ 𝑐𝑜𝑠𝑡𝑂𝜎

(𝜎) + (1 + 𝛾)
∑︁
𝑖=2..𝑘

𝑐𝑜𝑠𝑡 (𝑂𝑖 ) (79)

≤ (1 + 𝛾)𝑐𝑜𝑠𝑡 (𝑂), (80)

where (𝑎) is because 𝑐𝑜𝑠𝑡 (𝑆𝑖 ) implies its minimal cost for any center, (𝑏) is because 𝑆𝑖s are picked by Voronoi partition which minimies the

cost over 𝑘 partitions of seletecd 𝑘 centers, and (𝑐) is because 𝑐𝑜𝑠𝑡𝑂𝑖
(𝑐𝑖 ) ≤ (1+𝛾)𝑐𝑜𝑠𝑡 (𝑂𝑖 ) as we proved above, and the Theorem follows. □

D.3 Additional details on experiments

D.3.1 Datasets and Experimental Setup

Figure 3: A detailed visualization of our dataset (Charlottesville County, Virginia) and analysis includes (a) A scatter plot of the

full dataset with 100 randomly selected points for contrastive analysis, chosen to provide a more comfortable and manageable

subset for explanation purposes. (b) Comparison of 𝑘-median clustering with fixed and non-fixed centroids, both private and

non-private. (c) Bar graph showing contrastive explanation differences for differential private and non-private 𝑘-median with a

fixed centroid.
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Figure 4: The figure presents visualizations of the dataset (Heart Disease, UCI MLR) reduced to four dimensions (2, 4, 6, and

8), along with the corresponding analysis (a) A t-SNE scatter plot illustrating the high-dimensional data. (b) Comparison

of 𝑘-means clustering with fixed and non-fixed centroids, both private and non-private. (c) Bar graph showing contrastive

explanation differences for differential private and non-private 𝑘-means with a fixed centroid.
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Figure 5: The figure presents further visualizations of the dataset (Heart Disease, UCI MLR) introduced in the main paper,

reduced to four dimensions (2, 4, 6, and 8), along with the corresponding analysis (a) A t-SNE scatter plot illustrating the

high-dimensional data. (b) Comparison of 𝑘-median clustering with fixed and non-fixed centroids, both private and non-private.

(c) Bar graph showing contrastive explanation differences for differential private and non-private 𝑘-median with a fixed

centroid.
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Figure 6: The figure presents visualizations of the dataset (Breast Cancer - 30 features, UCI MLR) reduced to four dimensions

(4, 6, 8, and 16), along with the corresponding analysis (a) A t-SNE scatter plot illustrating the high-dimensional data. (b)

Comparison of 𝑘-means clustering with fixed and non-fixed centroids, both private and non-private. (c) Bar graph showing

contrastive explanation differences for differential private and non-private 𝑘-means with a fixed centroid.
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In the main body of the paper, we focused on the Heart Disease dataset from the UCI Machine Learning Repository, which was reduced

from 13 features to 8 features for visualization purposes. However, we have also conducted experiments on the same dataset with different

dimensionality reductions to analyze the impact on our results. Furthermore, to demonstrate the robustness of our work, we have applied

our analysis to additional datasets, including synthetic datasets and real-world datasets from Charlottesville, Albemarle and Breast Cancer

Wisconsin dataset including 30 features. This appendix provides a detailed discussion of these experiments and their outcomes.

Real-World Datasets

To demonstrate the robustness and real-world applicability of our approach, we conducted experiments on real-world datasets: the

Charlottesville City dataset, the Albemarle County dataset, Heart Disease and Breast Cancer Wisconsin.

Charlottesville City Dataset

The Charlottesville City dataset is part of the synthetic U.S. population, as described in [Chen et al., 2021] and [Barrett et al., 2009]. This

dataset consists of approximately 33,000 individuals and around 5,600 activity locations visited by these individuals. The locations represent

places where individuals perform various activities, providing insights into human mobility patterns and social interactions within the city.

Albemarle County Dataset

TheAlbemarle County dataset is another real-world dataset used in our experiments. This dataset is significantly larger than the Charlottesville

City dataset, comprising about 74,000 individuals. The increased sample size allows us to evaluate the scalability and performance of our

approach when applied to larger, more complex datasets.

The Albemarle County dataset contains information about individuals’ activities and the locations they visit, similar to the Charlottesville

City dataset. This dataset provides a comprehensive representation of human mobility patterns and social interactions within the county.

By using these real-world datasets, we aim to validate the effectiveness and practicality of our methodology in real-life scenarios. The

diverse characteristics of these datasets, such as the number of individuals and activity locations, enable us to assess the robustness and

generalizability of our approach.

In our experiments, we applied our methodology to all datasets and compared the results to those obtained from the synthetic datasets.

The consistency of results across these real-world datasets further reinforces the reliability and potential of our approach for real-world

applications.

Synthetic 2D Dataset: We carefully created a synthetic dataset that mimics the properties of real-world datasets, striking a balance between

realism and controlled variability. This dataset consists of 1000 uniformly distributed data points in a 2D space, with a range similar to the

real datasets we analyzed.

The primary motivation behind this synthetic dataset is to provide a sandbox environment free from the unpredictable noise and anomalies

of real-world data. This controlled setting is pivotal in understanding the core effects of differential privacy mechanisms, isolating them

from external confounding factors. The dataset is a foundational tool in our experiments, allowing us to draw comparisons and validate our

methodologies before applying them to more complex, real-world scenarios.

Figure 7: A detailed visualization of our synthetic dataset, measured by the same metrics as the other real-world datasets.

D.3.2 Experimental Results

Impact of 𝜖 on Private Optimal (PO) and Private Contrastive (PC):. We observed consistent trends and patterns in all our data sets, including

Charlottesville city, Albemarle county, and notably the Heart Disease dataset and the Breast Cancer dataset from the UCI Machine Learning

Repository. As the value of 𝜖 increased to prioritize accuracy, we observed a gradual reduction in privacy protection. However, in line with
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our hypothesis, the impact of the epsilon budget on the explainability of our outcomes remained minimal. This consistency held true across

all dimensions of the Heart Disease dataset, reinforcing the robustness of our findings across diverse data sources and attributes.

D.3.3 Performance Evaluation:

For each 𝜖 value, we conducted 100 different runs for each dataset. The average results were consistent with our findings across all datasets.

It’s essential to note that these multiple invocations were solely for performance evaluation. In real-world applications, invoking private

algorithms multiple times could degrade the privacy guarantee.

Consistency in Contrastive Explanations across Datasets: Despite the distinct scales between our different datasets, we observed consistent

patterns in the contrastive explanations. Specifically, as illustrated in all Figures - (b), contrastive explanations remained largely unaffected

by variations in the 𝜖 budget. This consistency further reinforces our hypothesis that the epsilon budget has a negligible influence on the

explainability of our outcomes, even when applied to datasets of different scales.

D.3.4 Conclusion:

The extended experiments on all our datasets further validate our approach’s efficacy. The balance between privacy and utility, the robustness

of contrastive explanations, and the negligible impact of 𝜖 on explainability were consistent across datasets. These findings underscore the

potential of our method for diverse real-world applications.
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