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ABSTRACT
Many applications where tasks should be assigned to agents can be

modeled as matching in bipartite graphs. In this paper, we consider

applications where tasks arrive dynamically and rejection of a task

may have significant adverse effects on the requester, therefore

performing the task with some delay is preferred over complete

rejection. The performance time of a task depends on the task, the

agent, and the assignment, and only its distribution is known in

advance. The actual time is known only after the task performance

when the agent is available for a new assignment. We consider such

applications to be one of two arrival types. With the first type, the

arrival distribution is known in advance, while there is no assump-

tion about the arrival times and order with the second type. For the

first type, we present an LP-based online algorithm with a competi-

tive ratio of 0.5. For the second type, we show no online algorithm

with a constant competitive ratio. We run extensive experiments to

evaluate our algorithm in a real-world dataset, demonstrating the

advantages of the LP approach.

CCS CONCEPTS
• Computing methodologies→Multi-agent planning; • The-
ory of computation→ Online algorithms.
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1 INTRODUCTION
In classic bipartite matching problems such as assigning classes

to classrooms [28] or papers to reviewers [24], both sides of the

matching are known in advance. However, in many other problems,

one side of the matching is known, but the other side is dynamic.

Such is the case in many two-sided marketplace problems where

the available supplies (e.g., goods in a grocery store) are known

in advance but the requirements (e.g., customers’ demand) are

dynamic.

In other applications, the product is rented out and will be avail-

able after the current customer finishes using it. An example of this

is a cell phone application such as "Get Taxi" that assigns drivers to

continuously arriving customers. Once a taxi finishes its journey it

becomes available for the next customer. In some cases, we may as-

sume that the usage time depends only on the user (e.g., when taxi

drivers are very similar to one another). However, sometimes there

are significant differences between them. Gong et al. [13] showed

that, in the former case, there is no approximation algorithm with

a reasonable ratio for the problem. In some situations, depending

on the task properties and the available resources, it is possible

that a request will not be fulfilled. If this occurs frequently, it may

damage the usefulness and popularity of the application. In other

applications, rejecting a request is disastrous. An example of such

an application is assigning hospital resources like beds or doctors

to patients (see, for example, [32]). In such applications, rejecting a

patient or even serving her too late is not acceptable. At the begin-

ning of the COVID-19 pandemic, many people who didn’t get the

required resources such as trained staff, beds, or respirators were

affected severely or even died (see for example Emanuel et al. [9]).

Our motivating application is teleoperating autonomous cars

(driving them remotely) [2, 15, 16, 35] that have special characteri-

zations. In many situations, autonomous cars get stuck and cannot

continue their trip without human intervention. For example –

consider an object permanently blocking the vehicle’s way. A rea-

sonable human driver would bypass this object even if they had to

cross a continuous dividing line to do so. That decision cannot be

made by an autonomous vehicle. The establishment of dedicated

centers of human teleoperators, whose job is to deal with such

cases will be required [40] and already exists (e.g., autonomous

mining trucks [34]). Furthermore, in many countries, a process has
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been started to define regulations for such solutions [23]. When an

autonomous vehicle encounters a scenario that it doesn’t know to

deal with, it will call for help from human teleoperators sitting in

the centers. The chosen teleoperator from the center will take con-

trol of the car and drive it remotely. Once the situation is resolved,

control will be given back to the car for continued autonomous

driving. In this domain, the efficiency (i.e., task waiting time) of

the allocation of a request for intervention (tasks) to human op-

erators (agents) is extremely important since waiting in a stuck

car is extremely annoying and may become dangerous (e.g., if the
car is blocking a road). Therefore, in this case, it is not acceptable

to refuse a task or have a long delay. Another characterization of

this application is that the time duration of the performance of a

request for intervention (task) depends on the operator, the type

of request for the intervention itself, and the assignment time. The

dependency on the assignment time stems from the traffic load

changes during the day. Furthermore, the arrival of a specific type

of request for intervention also depends on the time and the type

of request.

In this study, we address delayed online matching problems

where a long delay or rejection is costly or unacceptable and one of

two settings below applies. In the first setting, the expected arrival

rate is known to the algorithm. We develop a novel online algo-

rithm with a competitive ratio of 0.5 (a ratio between the expected

yield of the online algorithm and an optimal offline algorithm) and

demonstrate its effectiveness through extensive experiments on a

dataset based on both simulations and real-world data. For settings

where the arrival rate is unknown, we have the second category. In

this category, there is no knowledge about the arrival distribution

of tasks and therefore we consider an adversarial model for the

sequence of arriving tasks. We adopt a proof of Gong et al. [13]

and show that there is no online algorithm with a competitive ratio

better than 𝑂 (log𝑇 /𝑇 ).

2 RELATEDWORK
Online and offline bipartite matching is a rich area of study with

many theoretical works. We are specifically interested in weighted

matching problems, where each edge is assigned a weight and our

goal is to maximize the total weight of the matching edges. The

bipartite online matching problem was introduced by Karp et al.

[21]. In this problem, tasks arrive over time and must be performed
as they arrive. On the other hand, the agents serving these tasks are

stationary. In teleoperation environments, we consider rejecting

tasks problematic, and a short delay in providing the service is

allowed.

Following the paper byWang et al. [37], work on onlinematching

can be divided into two categories. The first refers to problems that

use the adversarial model. In this model, there is no prior knowledge

about the incoming tasks and the order in which they arrive. The

goal of the work in this category is to provide a bound for the worst-

case scenario. The second category assumes some knowledge about

the underlying distribution of incoming tasks. Work that belongs to

this category usually attempts to optimize the expected utilization

or revenue. In this paper, we address both categories.

Another branch of the problem is one where resources can be

reused. Most similar to our work is that of Dickerson et al. [7],

who considered the online matching problem when resources are

reusable and the distribution of customer types is known. They

considered cab dispatching and ride-sharing applications where

stationary drivers are dynamically assigned to incoming tasks. They

proposed a simulation- and LP-based approach and presented an

algorithm with an online competitive ratio of 1/2 − 𝜖 for any given

𝜖 > 0. However, in their case tasks cannot be delayed and are re-

jected if they cannot be assigned immediately upon arrival. For

the adversarial setting, Goyal et al. [14] discussed the case of on-

line allocation of reusable resources and the uncertainty about

their usage duration when their capacity is large or even infinite.

Reusable resources have also been considered in the context of e-

commerce (e.g., Feng et al. [10]) and crowdsourcing (e.g., Manshadi

and Rodilitz [25]).

Righter [30] considers the problem of allocating resources to ac-

tivities where the activities are known in advance and the resources

arrive dynamically and delays are allowed. However, the arrival

time or the waiting time does not affect the reward and therefore it

is not useful in our application.

Dervovic et al. [6] assumes a Poisson process for the arrival of

jobs and has presented an algorithm with a performance guarantee

for the expected revenue. Recently, Aouad and Sarıtaç [1] consider

a dynamic matching setting, where the algorithm can choose to

handle the tasks in batches and serve them. However, unlike our

setting, they do not consider reusable resources and assume that

we can match more than one edge at a given time step.

Wang et al. [37] use a reinforcement learning(RL) approach to

solve online matching with delays, where both sides of bipartite

graphs arrive dynamically over time. However, as in the previous

work, the value of an assignment depends only on the agent and

the task and not on other important features such as the arrival

time and the waiting time. In addition, workers arrive dynamically

and therefore we cannot use the available knowledge about the

current workers to optimize the reward obtained. In both works, the

only drawback associated with a longer waiting time is the higher

probability that workers or jobs will disappear before they are

assigned. Qin et al. [29] presents an RL approach to balance the cost

of delaying tasks with the benefit of improved allocation efficiency.

However, they assume a static Poisson process for arrivals, which

is different from our more realistic arrival probabilities. Moreover,

in the last couple of works, the decision about the time steps for

assigning a request (or a driver) is made in batches, which reduces

the complexity of the problem but does not optimize the utility of

the assignment. Recent work by Li et al. [22] also addresses the

problem of solving online matching with delays, where both sides

of bipartite graphs arrive dynamically. They propose an LP-based

approach with a constant approximation ratio. However, in their

setting, the delay is not penalized but only capped.

Jintao et al. [20] presented a combined approach of RL and com-

binatorial optimization for cases where the decision is made for

each passenger individually. Their model attempts to optimize some

factors, such as the number of rejected tasks and the time from

request arrival to matching. However, like many other RL works,

they have not obtained theoretical results regarding the optimality

of their approach compared to the performance of an optimal offline

solution.



Another area that overlaps with online matching is online as-

sortment optimization. In these problems, the decision maker’s

objective is to select a subset of products from the available re-

sources to offer to the user, who in turn chooses to buy one of them,

in order to maximize the expected reward of the decision maker,

given the user’s selection. For any given subset of the products

offered, the user’s choice depends on his probabilistic preference

for the set of products, including the option to buy nothing or to

drop out. The optimal selection of a subset is similar to the selection

of the optimal single resource in a matching problem, which is con-

sidered an assortment problem where the resources are reusable

and the execution time is uncertain.

In the literature, areas such as crowdsourcing, ride-sharing, ride-

hailing and internet advertising have been studied in depth. For

example, Ho and Vaughan [17] have studied the problem of assign-

ing heterogeneous tasks to agents with different unknown skills in

crowdsourcing markets such as Amazon Mechanical Turk. They

present a two-stage task assignment algorithm and empirically

evaluate this algorithm using data collected on Mechanical Turk.

They show that this algorithm performs better than random assign-

ments or greedy algorithms. In addition, Tong et al. [36] identified

a practical micro-task allocation problem called ”the Global Online
Micro-task Allocation in spatial crowdsourcing” (GOMA). They con-

sidered the average performance of online algorithms, also known

as the online random-order model, and demonstrated the effective-

ness and efficiency of the proposed methods through extensive

experiments on real and synthetic datasets.

Another family of problems involves multi-class queues where

each task has its own characteristics, such as its urgency, the time

it takes to be completed, and its arrival rate. Yoon and Lewis [39]

address the problem of finding an optimal admission policy for

queues with multiple classes. However, they have only one class of

tasks. Rigter et al. [31] consider multiple classes of tasks. However,

they only consider cases where all servers are identical. This as-

sumption is unacceptable in our setting since there are very large

differences between different teleoperators.

To the best of our knowledge, there is no research in the literature

that pertains to our problems of online arrival of tasks during a finite

time period, where the delay is allowed but is costly and resources

are reusable. Furthermore, the duration time of the performance

of a task depends on the arrival time, the resource, and the type

of the task. When the arrival time duration is known, the arrival

probability depends on the arrival time. Finally, we aim to bind the

competitive ratio of the proposed solution.

3 PROBLEM DEFINITION: ONLINE
MATCHING WITH DELAYED ASSIGNMENTS
(OMDA)

Following works by [18, 27, 38], we use a bipartite graph 𝐺 =

(𝐼 , 𝐽 , 𝐸) to model the network between offline agents 𝐼 (human

operators) and online agent types 𝐽 (task types), where an edge

𝑒 = (𝑖, 𝑗) indicates the feasibility of matching between agent 𝑖 and

agent of type 𝑗 due to practical constraints. We assume here by

default that the offline agents are all static, while the online agents

arrive dynamically. The online process is as follows: we have a time

horizon of 𝑇 rounds. During each round (interchangeably time)

𝑡 ∈ [𝑇 ] := {1, 2, . . . ,𝑇 }, a task of type 𝑗 will be sampled from 𝐽

such that Pr[ 𝑗 = 𝑗] = 𝑝 𝑗,𝑡 with
∑

𝑗∈ 𝐽 𝑝 𝑗,𝑡 = 1
1
. In this case, we say

that a task of the sampled type, 𝑗 , arrived at time 𝑡 . For each task

of type 𝑗 arriving at time 𝑡 , we can assign it to any offline neighbor

𝑖 with (𝑖, 𝑗) ∈ 𝐸 at any time 𝑡 ′ ≥ 𝑡 as long as 𝑖 is available (i.e., un-
matched) at 𝑡 ′, which is referred to as an assignment 𝜆 = ( 𝑗, 𝑡, 𝑖, 𝑡 ′).
Let Λ = {𝜆 = ( 𝑗, 𝑡, 𝑖, 𝑡 ′) | (𝑖, 𝑗) ∈ 𝐸, 𝑡 ′ ≥ 𝑡} be the collection of all

valid assignments. For each valid assignment 𝜆 = ( 𝑗, 𝑡, 𝑖, 𝑡 ′) ∈ Λ, it
is associated with a positive reward𝑤𝜆 gained by the system and

a usage duration 𝐶𝜆 ∈ [𝑇 ], which denotes the (random) number

of rounds during which 𝑖 will be occupied by the assignment of

the task of type 𝑗 arriving at 𝑡 that is scheduled on 𝑖 at 𝑡 ′. Note
that our setting is general enough to allow both reward (𝑤𝜆) and

the occupation distribution (𝐶𝜆) to be sensitive to all of the four

elements involved in the assignment, i.e., the task type, the arriving
time, the assigned agent, and the scheduling time. We assume the

distributions of {𝐶𝜆} are all accessible to the algorithm. In addi-

tion to that, all information of {𝐺 = (𝐼 , 𝐽 , 𝐸),𝑇 , {𝑤𝜆}} is known as

part of the input. We consider two variants of the problem. In the

first case, the arriving probabilities {𝑝 𝑗,𝑡 } are also known to the

algorithm, which is referred to as OMDA-KD; while in the second

case, they are unknown but fixed by an adversary (referred to as

OMDA-UKD). Our goal is to design online policies (or algorithms)
such that the expected total rewards are maximized. Throughout this
paper, we denote [𝑛] = {1, 2, . . . , 𝑛} for a generic positive integer
𝑛; we use OPT to denote both a clairvoyant optimal policy and the

corresponding performance, and the same applies to ALG, which

denotes both a generic algorithm and its performance.

4 FIRST CASE: KNOWN ARRIVAL
DISTRIBUTIONS

In this section, we describe the case where the arrival probabilities

{𝑝 𝑗,𝑡 } of the tasks are known. First, we define the competitive ratio

used to evaluate our algorithm. Then, we define a benchmark linear

program used by the algorithm. Finally, we define our algorithm

and give a theoretical guarantee for its performance.

4.1 Competitive Ratio (CR)
The CR is a commonly-used metric to evaluate the performance

of online algorithms. Consider a given online algorithm (or policy)

ALG and a clairvoyant optimal OPT. In the context when the arrival

distributions are known in advance, ALG observes task arrivals

sequentially, while OPT can access all arrivals of tasks at the very

beginning (including their arriving time). Neither ALG nor OPT

has the information of the exact realized values of {𝐶𝜆}, but both
can access their distributions in advance. The CR is defined as

E[ALG]/E[OPT].

4.2 Benchmark Linear Program (LP)
For each assignment 𝜆, let 𝑥𝜆 be the probability that 𝜆 is made

in OPT. Recall that Λ = {𝜆 = ( 𝑗, 𝑡, 𝑖, 𝑡 ′) | (𝑖, 𝑗) ∈ 𝐸, 𝑡 ′ ≥ 𝑡} is the
collection of all valid assignments. For each given pair 𝑗 ∈ 𝐽 and

𝑡 ∈ [𝑇 ], let Λ 𝑗,𝑡 denote the collection of all valid assignments

1
We can always make this equal by creating a dummy node whose arrival simulates

the case of no arrival at time 𝑡 .



involving task of type 𝑗 arriving at 𝑡 . Similarly, let Λ𝑖,𝑡 ′ be that of

all valid assignments that are scheduled to be matched on 𝑖 at 𝑡 ′.

max

∑︁
𝜆∈Λ

𝑥𝜆 ·𝑤𝜆, (1)∑︁
𝜆∈Λ 𝑗,𝑡

𝑥𝜆 ≤ 𝑝 𝑗,𝑡 , ∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ [𝑇 ] (2)∑︁
𝑡 ′≤𝑡

∑︁
𝜆∈Λ𝑖,𝑡 ′

𝑥𝜆 Pr[𝐶𝜆 > 𝑡 − 𝑡 ′] ≤ 1, ∀𝑖 ∈ 𝐼 ,∀𝑡 ∈ [𝑇 ] (3)

0 ≤ 𝑥𝜆 ≤ 1, ∀𝜆 ∈ Λ. (4)

Throughout this paper, we refer to the LP above simply as LP (1)

that has Constraints (2) to (4) by default.

Lemma 1. The optimal value of LP (1) is a valid upper bound of
the total expected reward achieved by a clairvoyant optimal policy
for OMDA-KD.

Proof. Note that for each valid assignment 𝜆 ∈ Λ, 𝑥𝜆 denotes

the probability that 𝜆 is made in clairvoyant optimal policy (OPT).

We can verify that Objective (1) encodes the expected reward in

OPT. Thus, to prove Lemma 1, it suffices to show that {𝑥𝜆} is
feasible to all constraints in LP (1). For Constraint (2): Observe that

the left-handed side (LHS) value denotes the probability that a task

of type 𝑗 arriving at time 𝑡 gets assigned in OPT. Thus, it should be

no larger than the probability that 𝑗 arrives at 𝑡 , which is exactly

equal to 𝑝 𝑗,𝑡 . As for Constraint (3): consider a given 𝑖 and 𝑡 . The

summation over 𝑡 ′ < 𝑡 on the LHS represents the probability that 𝑖

is occupied by some assignments made at some previous time 𝑡 ′ < 𝑡 ,

while the summation on 𝑡 = 𝑡 ′ represents the probability that 𝑖 is

available at 𝑡 since Pr[𝐶𝜆 > 0] = 1. Thus, the sum of these two

parts of 𝑡 ′ < 𝑡 and 𝑡 ′ = 𝑡 should be no more than 1. Constraint (4)

is trivial since 𝑥𝜆 is a probability value. Therefore, we establish the

feasibility of {𝑥𝜆} to all constraints in LP (1). □

4.3 A Sampling Policy with Attenuations
Wepresent an LP-based sampling policywith attenuations inALG-LP.

First, the algorithm solves the LP (1). Then, during its online phase,

it iterates through all the available unprocessed valid assignments

and assigns them to an agent with some probability if the agent is

available. Note that all unprocessed tasks that have arrived so far

are considered candidates for the assignment.

Slightly abusing the notation, we use {𝑥𝜆} to denote an optimal

solution to LP (1).

Remarks on ALG-LP. (i) For each 𝑡 ∈ [𝑇 ], let Λ(𝑡) ⊆ Λ be the

set of all possible valid assignments that are scheduled at 𝑡 . We

can impose an arbitrary order 𝜋𝑡 over Λ(𝑡), which then yields an

order on S𝑡 . Note that S𝑡 is a random set but surely is a subset of

Λ(𝑡). Here is an example of 𝜋𝑡 over Λ(𝑡). Consider two different

assignments 𝜆 = ( 𝑗, 𝑡 ′, 𝑖, 𝑡) and 𝜆 = ( 𝑗, 𝑡 ′, 𝑖, 𝑡) in Λ(𝑡). We set 𝜆 ≺ 𝜆

(𝜆 falls before 𝜆 under 𝜋𝑡 ) if either 𝑖 < 𝑖 2 or 𝑡 ′ < 𝑡 ′ or 𝑗 < 𝑗 . (ii) The

value 𝛽𝜆 can be estimated at an arbitrary accuracy via simulating

Steps (5) to (11) before ALG-LP checking 𝜆 for enough number of

2
We assume 𝑖 is indexed as 1, 2, . . . , 𝑛 with 𝑛 = |𝐼 | . Similarly for 𝑗 ∈ 𝐽 .

times.
3
Note that 𝛽𝜆 can be affected by the orders {𝜋𝑡 } imposed

on {S𝑡 }. (iii) The constant 0.5 in line 10 is the best possible we

can choose. Let 𝛼 be the constant such that we sample each valid

available assignment 𝑥𝜆 from S𝑡 with a probability 𝛼𝑥𝜆/𝛽𝜆 . On the

one hand, we should set an 𝛼 value as large as possible since it

determines the final competitive ratio achieved by ALG-LP(·); on
the other hand, to ensure ALG-LP(·) functions well, we can set the

𝛼 value no more than 0.5 (see the proof of Theorem 1). That’s how

we get the final choice of 0.5.

Theorem 1. ALG-LP(·) achieves a competitive ratio of 0.5 for
OMDA-KD.

Proof. We first show that the expected total weight of all as-

signments made by ALG-LP should be at least half of the optimal

value of the benchmark LP-(1). This further suggests a competitive

ratio of 0.5 since LP-(1) offers a valid upper bound for the clair-

voyant optimal (by Lemma 1). For showing the ratio between the

expected weight of assignments and the optimal solution of the

LP-(1), we observe that in Step 10 of ALG-LP, we sample an as-

signment with probability 0.5𝑥𝜆/𝛽𝜆 . Thus, the fact that 𝛽𝜆 ≥ 0.5𝑥𝜆
for every 𝜆 ∈ 𝑆𝑡 and every 𝑡 ∈ [𝑇 ] is a critical (and also suffi-

cient) condition that ensures ALG-LP function properly. Under that

assumption, we see that each valid assignment 𝜆 is scheduled suc-

cessfully with a probability equal to 0.5𝑥𝜆 . The ratio follows from

the linearity of expectation. It remains to prove the fact that every

assignment in Λ will be made with a probability of at least 0.5𝑥𝜆 .

The proof is by induction over a given order 𝜋 = {𝜋𝑡 } imposed on

Λ = ∪𝑡Λ(𝑡), where Λ(𝑡) is the collection of all valid assignments

that are scheduled at 𝑡 ∈ [𝑇 ]. Consider the base case when 𝑡 = 1.

Let 𝜆 = ( 𝑗, 𝑡 ′ = 1, 𝑖, 𝑡 = 1) be the first assignment under order 𝜋1 on

S1. In this case, we see 𝛽𝜆 = 𝑝 𝑗,𝑡 ′ ≥ 0.5𝑥𝜆 , which follows from the

fact that 𝑥𝜆 ≤ 𝑝 𝑗,𝑡 ′ due to Constraint (2). Consider a given valid

assignment 𝜆 = ( 𝑗, 𝑡 ′, 𝑖, 𝑡) ∈ Λ. Let Λ(𝜆) be an ordered collection of

all valid assignments before 𝜆 that are arranged following the given

order imposed on Λ. Now assume that any 𝜆 ∈ Λ(𝜆) is made with a

probability equal to 0.5𝑥𝜆 , and we show 𝜆 will be made with a prob-

ability equal to 0.5𝑥
𝜆
. It suffices to prove that 𝛽

𝜆
≥ 0.5𝑥

𝜆
. Assume 𝑗

arrives at time 𝑡 ′, which occurs with probability 𝑝 𝑗,𝑡 ′ . Observe that

( 𝑗, 𝑡 ′) remains in Q upon ALG-LP. Checking 𝜆 should happen with

a probability equal to 𝑝 𝑗,𝑡 ′ −
∑
𝜆=( 𝑗,𝑡 ′,∗,∗)∈Λ(𝜆) 0.5𝑥𝜆 . Note that 𝑖

is safe at 𝑡 upon ALG-LP. Checking 𝜆 with a probability equal to

1 −∑
𝜆=(∗,∗,𝑖,𝑡 ) ∈Λ(𝜆) 0.5𝑥𝜆 Pr[𝐶𝜆 > 𝑡 − 𝑡] ≥ 1 − 0.5 unconditionally

due to Constraint (3). Observe that the event 𝑗 that arrives at 𝑡 ′

will not affect the arrival of an online agent during any other 𝑡 ≠ 𝑡 ′

(since arrivals are independent over different rounds); meanwhile,

the event that ( 𝑗, 𝑡 ′) remains in Q by ALG-LP checking 𝜆 implies

that ( 𝑗, 𝑡 ′) has not ever been matched with 𝑖 . This suggests that

the occurrence of an event where ( 𝑗, 𝑡 ′) remains in Q could only

positively contribute to the chance that 𝑖 is safe at 𝑡 . Thus, we claim

that 𝛽
𝜆
≥ 0.5 ·

(
𝑝 𝑗,𝑡 ′ −

∑
𝜆=( 𝑗,𝑡 ′,∗,∗)∈Λ(𝜆) 0.5𝑥𝜆

)
≥ 0.5𝑥

𝜆
, where the

second inequality is due to the fact that

∑
𝜆=( 𝑗,𝑡 ′,∗,∗)∈Λ 𝑥𝜆 ≤ 𝑝 𝑗,𝑡 ′

from Constraint (2). □

3
The number of simulations needed is poly( |𝐼 |, | 𝐽 |,𝑇 , 1/𝜖 ) if we aim for a multiplica-

tive error of 𝜖 > 0.



Algorithm 1: An LP-based sampling policy with attenuations for OMDA-KD: ALG-LP(·).
1 Offline Phase:
2 Solve LP (1) and let {𝑥𝜆} be an optimal solution.

3 Set Q = ∅, A = 𝐼 .

/* A is a set storing all currently available offline agents;Q is a set storing all unprocessed tasks

arriving so far in the form of ( 𝑗, 𝑡) (the task type together with its arriving time). */

4 Online Phase:
5 for 𝑡 = 1, . . . ,𝑇 do
6 Let a task of type 𝑗 arrive at (the beginning of) time 𝑡 . Update Q = Q ∪ {( 𝑗, 𝑡)}.
7 Let S𝑡 = {𝜆 = ( 𝑗, 𝑡 ′, 𝑖, 𝑡) ∈ Λ : 𝑖 ∈ A, ( 𝑗, 𝑡 ′) ∈ Q}, the collection of all available unprocessed valid assignments that are scheduled

at 𝑡 .

8 for each 𝜆 ∈ S𝑡 (following a specific order 𝜋𝑡 over S𝑡 ; see Remarks on ALG-LP) do
9 Let 𝜆 = ( 𝑗, 𝑡 ′, 𝑖, 𝑡) and 𝛽𝜆 = Pr[𝜆 ∈ S𝑡 ], i.e., 𝑖 ∈ A and ( 𝑗, 𝑡 ′) ∈ Q at 𝑡 , which can be obtained via simulations (see Remarks

on ALG-LP).

10 With probability 0.5𝑥𝜆/𝛽𝜆 : Assign ( 𝑗, 𝑡 ′) to (𝑖, 𝑡) with 𝜆 = ( 𝑗, 𝑡 ′, 𝑖, 𝑡), updateA ← A \ {𝑖}, Q ← Q \ {( 𝑗, 𝑡 ′)}, and remove any

assignment in S𝑡 in the form of either (∗, ∗, 𝑖, 𝑡) or ( 𝑗, 𝑡 ′, ∗, 𝑡); with probability 0.5𝑥𝜆/𝛽𝜆 : Skip. (see Remarks on ALG-LP).

11 For any offline agent 𝑖 that finishes its task by (the end of) time 𝑡 , add it to A by A ← A ∪ {𝑖}.

4.4 Impossibility
We consider two types of impossibility. First, we claim that no

online algorithm can achieve a competitive ratio better than 0.5with

respect to the benchmark LP (1). This claim follows from the proof

of Theorem 2 in the work of Dickerson et al. [7]. Second, Manshadi

et al. [26] showed that for a known arrival distribution, no algorithm

can have a better competitive ratio than 0.823 with respect to the

optimal offline solution. In their setting, no delay is allowed and

offline resources are disposable. However, their problem is a private

case of ours and hence their results hold for our problem as well.

5 SECOND CASE: ADVERSARIAL ARRIVALS
In this section, we describe the case where the distribution is un-

known. In this case, we must consider arbitrary bad arrival rates.

We first define what a competitive ratio is and then show that it is

impossible to find an algorithm with a constant competitive ratio

for the problem with |𝐼 | > 1.

5.1 Competitive Ratio (CR)
In the context where the arrival distribution is unknown, ALG

does not use information about arrival times. OPT can access all

arrival times of the tasks at the very beginning. Both have access

to the distribution of usage times. Here again, the ratio is defined

as E[ALG]/E[OPT].

5.2 Impossibility Results
Proposition 1. In the adversarial arrival model, there is no online

algorithm with a constant competitive ratio.

Proof. We rely on Theorem 2 in the work of Gong et al. (2019).

The theorem is as follows (reformulated according to our notations).

Theorem 2. For online matching with a single type reusable agent
and an arbitrary number of agents, if the random duration of use
depends on the task, no online (randomized) algorithm can have a
competitive ratio better than 𝑂 (log𝑇 /𝑇 ).

In their proof, Gong et al. [12] construct arrival sequences and prove

by contradiction that there is no algorithm with a competitive ratio

better than 𝑂 (log𝑇 /𝑇 ) for these sequences. We construct similar

sequences and adjust their proof such that it holds for our setting.

We define a sequence 𝐶 (𝑐, 𝑡) as a sequence of 𝑐 · 𝑇 𝑡
tasks, each

having identical usage duration distributions. In our construction,

the workers are identical and for each pair with a task and a worker,

the task is completed after a single unit of time with probability

𝑝𝑡 = 1− 1

𝑇 𝑡 or after𝑇 +1 units of time, i.e., Pr(𝑑𝑡 = 0) = 𝑝𝑡 = 1− 1

𝑇 𝑡

and Pr(𝑑𝑡 = 𝑇 + 1) = 1 − 𝑝𝑡 = 1

𝑇 𝑡 , where 𝑐 denotes the number of

agents. The set of𝑇 sequences considered in the proof is defined as

𝐷 (𝑇 ) = {𝐶 (𝑐, 1), ..,𝐶 (𝑐,𝑇 )}.
□

6 EXPERIMENTS
Teleoperation of autonomous vehicles has been gaining a lot of

attention recently (e.g., [3, 11, 33, 40]) and is expected to play an

important role in helping autonomous cars handle challenging situ-

ations which they cannot handle on their own. Efficient assignment

of online requests for interventions arriving from the vehicles to

the appropriate operators is essential for making teleoperation cen-

ters feasible by enabling the reduction of the number of human

operators employed at a given time. In the next sections, we will

describe, in detail, the extensive experiments we ran in a simulated

teleoperation environment in order to evaluate the proposed al-

gorithm. We will compare it with a greedy algorithm and with a

heuristic that is based on the LP approach.

In order to evaluate the LP approach in the teleoperation of the

autonomous cars simulation environment, we need data on the

expected duration time of a task of type 𝑗 performed by a given

operator (𝐶𝜆) and the arrival distribution of the task types over

time (𝑝 𝑗,𝑡 ). Due to the early stage of the technology and regula-

tory and economic barriers, data has not yet been collected from

operational teleoperation centers. Therefore, we used two sources

for data. First, we ran experiments with human subjects driving in



a simulator to generate the duration time. Second, we estimated

the arrival times based on estimates presented in the literature on

autonomous cars and their requests for interventions. Finally, we

had to define a benefits function that will be used for the evalua-

tion of the teleoperation centers. We did this in consultation with

members of the industry.

Duration time dataset. We collected data on expected duration

times using the CARLA platform [8]. The CARLA platform is an

open-source driving simulation, which is widely in use for research

in autonomous vehicles(e.g., Caesar et al. [4], Codevilla et al. [5]).

We simulated some challenging driving scenarios and asked human

participants to drive in these situations. We defined four driving

task types and asked ten subjects to drive vehicles to handle tasks

of these types. The subjects were students of computer science - 5

women and 5 men aged 22 to 31 years (the average age was 25.2

years). The tasks included driving in extreme weather conditions,

turning left at a signalized intersection when cars were approach-

ing from the opposite direction, and passing static and dynamic

obstacles. The subjects (operators) showed different levels of skill in

their performance both in general and specifically for each type of

task. That is, the average time to complete a task depends on both

the operator and the type of the specific task. Among relevant data,

we collected the usage duration times and used them to predict

the duration, 𝐶𝜆 ∈ [𝑇 ], for each pair of a human operator and an

intervention request.

Arrival Distribution. Arrival rates were determined following the

data presented in [16], which describes the expected request rate

for remote operators to assist autonomous cars in "edge" driving

scenarios. The expected number of requests for intervention at a

given hour of a day was calculated based on the estimated mileage

that an autonomous car will drive in a given city (Table 1 in [16], the

distribution over the day (Figure 2 in [16]) and the estimation of the

number of requests for intervention per mileage specified in [16].

We considered a setting where the operators were responsible for

autonomous cars in the entire area of New York, NY, Washington

DC, Philadelphia, PA, and Atlanta, GA. We picked a time window

of 5 hours, from 3 pm to 8 pm, with different traffic loads.

Experiment scenarios. In order to evaluate ALG-LP, we gener-

ated three different scenarios where tasks arrived according to the

defined arrival time from Section 6 and the expected duration as

defined in Section 6. In particular, in each scenario, we sampled the

type of the arriving tasks, their parameters, and the usage duration

according to the described distributions. Assuming that for a certain

task type an operator performs tasks of this type differently each

time (due to the effects of the environment and the mood of the

operator, as well as basic variation in performance arising from

reality), we sampled the usage duration 5 times for each scenario.

So, in total, we created 15 different simulations for the 3 scenar-

ios. Since ALG-LP involves random sampling, we ran it 10 times

for each simulation and calculated the average among them. Each

task type 𝑗 was associated with a quality 𝑞 𝑗 . For an assignment

( 𝑗, 𝑡, 𝑖, 𝑡 ′), we refer to 𝑡 ′ − 𝑡 as the waiting time of task of type 𝑗 that

arrived at time 𝑡 . In the experiments, we bounded the waiting time

to make the scenario more realistic and to reduce the computation

time of solving the LP.

The algorithm performance is measured by a score function

that considers both the quality of the performed tasks which is

determined by the quality(importance) of their types as well as

the time it took to complete a task (including the waiting times).

We use two normalization functions. For time normalization, we

use 𝜙𝑡 (𝑦) = ln(𝑦)/ln(max-time) where max-time is the maximal

overall time including the actual performance and the waiting

time. For quality 𝜙𝑞 (𝑞 𝑗 ) = 𝑞 𝑗/max-quality where max-quality is

the maximum quality associated with any task type. Using these

functions, any request of type 𝑗 ∈ 𝐽 that arrived at time 𝑡 ∈ [𝑇 ],
was assigned at time 𝑡 ′ ∈ [𝑇 ] and its duration time was 0 < 𝑐 < 𝑇 ,

we associated a value using the following score function:

𝑣 ( 𝑗, 𝑐, 𝑡, 𝑡 ′) = −𝛾𝜙𝑡 (𝑐 + 𝑡 − 𝑡 ′) + (1 − 𝛾)𝜙𝑞 (𝑞 𝑗 ) + 1

where 0 < 𝛾 < 1. We aim at maximizing the sum of 𝑣 ( 𝑗, 𝑐, 𝑡, 𝑡 ′) for
all performed tasks.

For the LP (1) we set the reward to be

𝑤 𝑗,𝑡 ′,𝑖,𝑡 = −𝛾𝜙𝑡 (𝐶 𝑗,𝑡 ′,𝑖,𝑡 ) + (1 − 𝛾)𝜙𝑞 (𝑞 𝑗 ) + 1.

The datasets used in the experiments and the source code are avail-

able in a public repository
4
.

6.1 Heuristics
When the number of agents is much higher than the number of

arriving tasks, there are many solutions to LP (1). However, all

of the solvers that we considered generate solutions in which the

number of variables that are set to zero is maximized. As a result,

and since constraint (3) of LP (1) is relatively weak, it occurs that,

for several agents, all of their relevant variables are set to zero, and

therefore these agents are not used in the matching. This leads to

tasks being rejected even though there are agents that are available.

To mitigate this problem, we modify the LP (1) as follows: Let Ω be

the total expected reward achieved by the original LP (1), 0 < 𝜖 < 1,

0 < 𝛿 < 1 and 𝜅 : 𝐼 × 𝐽 ×𝑇 ×𝑇 × [0, 1] → [0, 1]. 𝜅 (𝑖, 𝑗, 𝑡, 𝑡 ′, 𝛾) was
determined using trial and error.

We add two constraints to LP (1) and refer to this heuristic as

ALG-LP-Non-Zero (ALG-LP-NZ).∑︁
𝜆∈Λ

𝑥𝜆 ·𝑤𝜆 ≥ Ω − 𝜖, (5)

𝑥 𝑗,𝑡,𝑖 .𝑡 ′ ≥ 𝑝 𝑗,𝑡 · 𝛿 · 𝜅 (𝑖, 𝑗, 𝑡, 𝑡 ′, 𝑟 ), ∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ′, 𝑡 ∈ [𝑇 ] (6)

We also slightly change the sampling method. For any 𝑖 ∈ A
following an order 𝜋𝑡𝑖 , let S𝑡𝑖 = {𝜆 = ( 𝑗, 𝑡 ′, 𝑖, 𝑡) ∈ Λ : ( 𝑗, 𝑡 ′) ∈ Q}.
Let𝜓 =

∑
𝜆∈S𝑡𝑖 𝑥𝜆 . We take a sample of 𝜆 with 0.5𝑥𝜆/𝜓𝛽𝜆 . That is,

nothing is skipped. When analyzing the competitive ratio of ALG-

LP-NZ, we consider the differences between the original ALG-LP

and ALG-LP-NZ. The first difference is the addition of constraints

(5) and (6). These constraints could reduce the ratio by at most 𝜖/2.
The other is the modified sampling (a boost-like). We hypothesize

that the change in sampling does not reduce the competitive ratio.

This hypothesis is supported by the experimental evaluation, where

the actual ratio was much larger than 0.5.

The other heuristic that we considered is a greedy heuristic that

does not use the arrival distribution. It uses 𝑤 as its evaluation

function. The suggested greedy heuristic, UKD-G, works as follows:

for each task ( 𝑗, 𝑡) that arrives or has not yet been assigned, and

4
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Figure 1: Average sumof scores as a function of the number of
operators when the maximum waiting time is 5-time units
in (a), and as a function of the maximum waiting time (6
operators) in (b) and as a function of 𝛾 (with 2 operators) (c).
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Figure 2: The average percentage of rejected tasks as a func-
tion of the number of operators (when themaximumwaiting
time is 5-time units in (a)) and as a function of the maximum
waiting time (with 6 operators) in (b).

for all available agents 𝑖 , it computes 𝑤 𝑗,𝑡 ′,𝑖,𝑡 . Out of all of the

options, the match with one of the highest values is selected. We

ran a preliminary experiment where we compare the UKD-G with

another heuristic that does not use the arrival distribution and is

based on the Hungarian matching method H.W. and B. [19], which

is an efficient algorithm for solving the offline weighted matching

problem in bipartite graphs. In this heuristic, for each time unit, we

use the Hungarian algorithm for assigning tasks to the appropriate

agents. Our results indicate that the UKD-G yields a higher average

sum of scores of the performed tasks and rejects fewer tasks than the

Hungarian-based heuristic. Therefore, we focused on the UKD-G

in our experiments.

Note that UKD-G does not use the arrival distributions (i.e., 𝑝 𝑗,𝑡 ),

therefore it could be used in both arrival types that we consider,
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Figure 3: Runtime of the ALG-LP as a function of the num-
ber of operators when the maximum waiting time is 5-time
units and 𝑇 = 360 rounds in (a), and as a function of 𝛾(2
operators,𝑇 = 360 rounds) in (b).
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Figure 4: Runtime of the ALG-LP as a function of the maxi-
mum waiting time (6 operators, 𝑇 = 360 rounds) in (a) and
as a function of 𝑇 (6 operators, maximum waiting time of 5
units) in (b).

known and unknown distributions. However, It does use the usage

duration 𝐶𝜆 ∈ [𝑇 ].

6.2 Results
We used 𝜖 = 0.1 in all of the experiments. In the experiments re-

ported in Figure 1, in graphs (a-b) we used 𝛾 = 0.1 as recommended

by our industrial consultants. In graph (a) the maximum waiting

time was set to 5 and we varied the number of operators. In graph

(b) the number of operators was set to 6 and we varied the maxi-

mum waiting time. The average score refers to the average sum of

𝑣 ( 𝑗, 𝑐, 𝑡, 𝑡 ′) for all performed tasks in all the runs of a given setting.

As can be observed in these graphs, ALG-LP-NZ always yields the

highest average scores. When the number of operators is large

(i.e., 8 and 10 operators), UKD-G yields the same results as the

ALG-LP-NZ. However, when the number of operators is relatively

small (2-6), ALG-LP-NZ does significantly better than the UKD-G.

Interestingly, when the number of operators is very small ALG-LP

yields a higher score than the UKD-G, but the ALG-LP-NZ still

yields statistically significantly higher scores than the LP. However,

when the number of operators increases, the ALG-LP yields much

lower scores than both the UKD-G and the ALG-LP-NZ. These re-

sults can be explained by observing the number of rejected tasks



presented in Figure 2. Graphs (a-b) of this figure correspond to the

same settings as those of (a-b) of Figure 1. It can be observed that

the number of rejected tasks by ALG-LP-NZ is always the lowest,

and when there are enough operators (8-10), neither ALG-LP-NZ

nor UKD-G rejects any tasks. However, ALG-LP rejects many tasks

even with 10 operators. Finally, we tested the effect of the change

in the balance between the time execution and the quality of tasks

in the score function, i.e., 𝛾 . The number of operators was set to 2

and the waiting time to 5, studying situations where there are not

enough operators. As can be observed from graph (c) in Figure 1,

for all values of 𝛾 , ALG-LP-NZ does significantly better than the

UKD-G. However, for 𝛾 ≥ 0.4 the differences between the results

yielded by UKD-G and those by ALG-LP-NZ are relatively small. In

addition, in many cases the gap between ALG-LP and ALG-LP-NZ

is quite small. We argue that for a significant distance between the

two heuristics, two conditions must be met. The first is that there is

a significant difference between the available operators. The second

is that there are enough scenarios in which waiting for an operator

to become free before making an assignment is beneficial. In some

problems, the combination of these conditions does not occur, and

therefore, the gap is small.

The runtimes of the application of the solver in ALG-LP were

shown in Figures 3 and 4. In graph (a) of figure 3, the time is

larger when there are 4-6 operators. The reason is that the problem

is simple when there are too few operators, since there are few

alternatives. On the other hand, the problem is also easy when there

are many operators, since it is easier to find an optimal solution. In

(b), we see that 𝛾 has no significant effect on the running time. In

graph (a) of Figure 4, as the waiting time increases, the running time

also increases. That is because as the waiting time increases, the

number of valid assignments increases and, therefore, the number

of variables 𝑋Λ in the linear program increases. Thus, the running

time of solving the linear program increases. However, there is a

threshold effect when the waiting time is at least 25. We assume that

in this case, the solver knows that it needs to perform optimization

and ignores the unnecessary waiting times when necessary. Finally,

we can see in (b) that as the number of rounds (𝑇 ) increases, so

does the running time.

6.3 Discussion
In the case where the arrival probabilities {𝑝 𝑗,𝑡 } of the tasks are
known, we presented an algorithm with a guaranteed competitive

ratio of 0.5 while the known upper bound of an achievable compet-

itive ratio is 0.823. Currently, it is still an open question whether

there is a better upper bound, and it is also unknown whether it is

possible to develop an algorithm with a better guarantee.

Regardless, the guarantee of the algorithm does not necessarily

lead to good practical performance. Indeed, it has been shown to

be practical only for a relatively small number of operators.

Consider situations where there are 10 operators that are enough

to perform all tasks in our settings as indicated by the performance

of the heuristics. In this case, indeed, the bound is respected, and

there is no situation where more than 50% of the tasks are rejected.

However, even rejecting 20% of the requests (as presented in Fig-

ure 2) when there are enough operators to perform all of them is

not acceptable. To understand the intuition behind these rejections

we present the following example.

Example 1. Suppose there are two agents, 𝐼 = {1, 2}, and one
type of task 𝐽 = {1}. Both agents can perform both types of tasks
and 𝑝1,1 = 𝑝1,2 = 0.25. Furthermore, suppose that Pr[𝐶 (1,𝑡,𝑖,1) >

1] = 1, i.e., the duration of the task, is always greater than one time
period. There are many solutions to the associated LP, but all of the
solvers that we checked will return a solution similar to the following:
𝑥1,1,1,1 = 0.25 and 𝑥1,2,1,2 = 0.25 and the rest of the 𝑥s will be set to
zero. Suppose tasks of type 1 will arrive both at time 1 and at time
2. Only the first one will be performed, but it could be performed by
the second agent. In ALG-LP the latter allocation has a probability of
zero, but any greedy algorithm will choose an assignment that will
lead to the completion of both tasks.

To handle this practical problem of rejecting too many tasks,

we proposed the ALG-LP-NZ heuristic which forces the solvers to

increase the number of non-zero variables. In some cases, this leads

to a very small decrease in the optimal value of the LP.

In this paper, we discussed two types of arrivals: known arrival

distribution and unknown distribution. The UKD-G can be used in

both cases and the results presented above demonstrate the perfor-

mance of teleoperation systems when the distribution is unknown.

Determining the arrival distribution, i.e., determining the 𝑝 𝑗,𝑡 , usu-

ally requires a lot of effort. Our results can help a decision maker

decide when it is beneficial to do so. In particular, when the number

of agents is large in comparison to the number of tasks, and all tasks

could be completed, the UKD-G yields only slightly lower scores

than ALG-LP-NZ in almost all cases. However, when the number

of agents is small, collecting data to determine the arrival time

distribution is beneficial and significantly increases the number of

tasks that are performed and the overall score.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have considered online stochastic matching, which

allows for delayed assignments. We first considered a situation

where the arrival distribution of dynamic tasks is known in ad-

vance. We have shown an algorithm with a guaranteed competitive

ratio for the problem and presented the gap between its ratio and

the best-known possible ratio. For a setting when arrival distribu-

tion is not known in advance we show that there is no algorithm

with a reasonable competitive ratio. For the case where the distri-

bution is known, we then showed that there are situations where

the algorithm with the competitive ratio rejects too many tasks

and therefore suggested a heuristic variation of the algorithm. We

then presented a greedy algorithm that does not use the arrival

distribution and compared the three algorithms. We ran experi-

ments on teleportation datasets and showed that in most situations

the heuristic that is based on the competitive ratio algorithm does

significantly better than the greedy heuristic.

In future work, we propose to improve our value and score

functions by adding a notion of fairness. The aim is to improve

human satisfaction while maintaining the system’s performance.

Finally, it is also interesting to handle scenarios in which both sides

of the bipartite graph are dynamic. In our domains, operators may

take some unexpected breaks and then return to the pool.
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