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Abstract 

Agents may sub-contract some of their tasks to 
other agent(s) even when they don’t share a com- 
mon goal. An agent tries to contract some of its 
tasks that it can’t perform by itself, or when the 
task may be performed more efficiently or better 
by other agents. A “selfish” agent may convince 
another “selfish” agent to help it with its task, 
even if the agents are not assumed to be benev- 
olent, by promises of rewards. We propose tech- 
niques that provide efficient ways to reach sub- 
contracting in varied situations: the agents have 
full information about the environment and each 
other vs. subcontracting when the agents don’t 
know the exact state of the world. We consider sit- 
uations of repeated encounters, cases of asymmet- 
ric information, situations where the agents lack 
information about each other, and cases where an 
agent subcontracts a task to a group of agents. 
We also consider situations where there is a com- 
petition either among contracted agents or con- 
tracting agents. In all situations we would like the 
contracted agent to carry out the task efficiently 
without the need of close supervision by the con- 
tracting agent. The contracts that are reached are 
simple, Pareto-optimal and stable. 

Introduction 
Research in Distributed Problem Solvers assumes that 
it is in the agents’ interest to help one another. This 
help can be in the form of the sharing of tasks, results, 
or information [Durfee, 19921. In task sharing, an agent 
with a task it cannot achieve on its own will attempt 
to pass the task, in whole or in part, to other agents, 
usually on a contractual basis [Davis and Smith, 19831. 
This approach assumes that agents not otherwise oc- 
cupied will readily take on the task. Similarly, in infor- 
mation or result sharing, information is shared among 
agents with no expectation of a return [Lesser, 1991; 
Conry et al., 19901. This benevolence is based on the 

*This material is based upon work supported by the Na- 
tional Science Foundation under Grant No. IRI-9123460. I 
would Iike to thank Jonathan Wilkenfeld for his comments. 

assumption common to many approaches to coordi- 
nation: That the goal is for the system to solve the 
problem as best it can, and therefore the agents have 
a shared, often implicit, global goal that they are all 
unselfishly committed to achieving. 

It was observed in [Grosz and Klaus, 19931 that 
agents may sub-contract some of their tasks to other 
agents also in environments where the agents do not 
have a common goal and there is no globally consis- 
tent knowledge. ’ That is, a selfish agent that tries to 
carry out its own individual plan in order to fulfill its 
own tasks may sub-contract some of its tasks to an- 
other selfish agent(s). An agent tries to contract some 
of its tasks that it can’t perform by itself, or when the 
task may be performed more efficiently or better by 
other agents. The main question is how an agent may 
convince another agent to do something for it when the 
agents don’t share a global task and the agents are not 
assumed to be benevolent. Furthermore, we would like 
the contracted agent to carry out the task efficiently 
without the need of close supervision by the contract- 
ing agent. This will enable the contracting agent to 
carry out other tasks simultaneously. 

There are two main ways to convince another self- 
ish agent to perform a task that is not among its own 
tasks: threats to interfere with the agent carrying out 
its own tasks or promises of rewards. In this paper 
we concentrate on subcontcracting by rewards. Re- 
wards may be in two forms. In the first approach one 
agent may promise to help the other in its tasks in the 
future in return for current help. As was long ago ob- 
served in economics, barter is not an efficient basis for 
cooperation. In a multi-agent environment, an agent 
that wants to subcontract a task to another agent may 
not be able to help it in the future, or one agent that 
may be able to help in another agent’s task may not 
need help in carrying out its own tasks. In the sec- 
ond approach a monetary system is developed that is 
used for rewards. The rewards can be used later for 
other purposes. We will show that a monetary system 

‘Systems of agents acting in environments where there 
is no global common goal (e.g., [Sycara, 1990; Zlotkin and 
Rosenschein, 1991; Kraus et aal., 1991; Ephrati and Rosen- 
schein, 19911) are called M&i-Agent Systems [Bond and 
Gasser, 1988; Gasser, 19911. 
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for the multi-agent environment that allows for side 
payments and rewards between the agents yields an 
efficient contracting mechanism. The monetary profits 
may be given to the owners of the automated agents. 
The agents will be built to maximize expected utili- 
ties that increase with the monetary values, as will be 
explained below. 

The issue of contracts has been investigated in eco- 
nomics and game-theory in the last two decades (e.g., 
[Arrow, 1985; Ross, 1973; Rasmusen, 1989; Grossman 
and Hart, 1983; Hirshleifer and Riley, 19921). They 
have considered situations in which a person or a com- 
pany contracts a task to another person or company. 
In this paper we adjust the models that were devel- 
oped in economics and game-theory to fit distributed 
artificial intelligence situations. 

We will consider varied situations: In the Sec- 
tion Contracts Under Certainty one agent subcon 
tracts a task to another one when the agents have full 
information about the environment and each other. In 
the Section Contracts Under Uncertainty, we consider 
contracting when the agents don’t know the exact state 
of the world. The situation in which an agent may 
subcontract its tasks several times to the same agent 
is considered in Section Repeated Encounters, and sit- 
uations of asymmetric information or when the agents 
lack information about each other is dealt with in the 
Section Asymmetric and Incomplete Information. We 
conclude with the case of an agent subcontracting a 
task to a group of agents. In all these cases, we con- 
sider situations where the contracting agent doesn’t 
supervise the contracted agents’ performance and sit- 
uations where there is a competition among possible 
contracted agents or possible contracting agents. 

Preliminaries 
We will refer to the agent that subcontracts one of its 
tasks to another agent as the contracting agent and 
to the agent that agrees to carry out the task as the 
contracted agent. The eflort level is the time and work 
intensity which the contracted agent puts into fulfilling 
the task. We denote the set of all possible efforts by 
E. In all cases, the contracted agent chooses how much 
effort to extend, but its decision may be influenced by 
the contract offered by the contracting agent. We as- 
sume that there is a monetary value a(e) of performing 
a task which increases with the effort involved. That 
is, the more time and effort put in by the contracted 
agent, the better the outcome. The contracting agent 
will pay the contracted agent a wage w (which can be a 
function of q). There are several properties we require 
from our mechanism for subcontracting: 
Simplicity: The contract should be simple and there 
should be an algorithm to compute it. 
Pareto-Optimality: There is no other contracted ar- 
rangement that is preferred by both sides over the one 
they have reached. 
Stability: We would like the results to be in equilib- 

rium and that the contracts will be reached and exe- 
cuted without delay. 

Concerning the simplicity and stability issues, there 
are two approaches for finding equilibria in the type of 
situations under consideration here [Rasmusen, 19891. 
One is the straight game theory approach: a search 
for Nash strategies or for perfect equilibrium strate- 
gies. The other is the economist’s standard approach: 
set up a maximization problem and solve using cal- 
culus. The drawback of the game theory approach 
is that it is not mechanical. Therefore, in our pre- 
vious work on negotiation under time constraints, we 
have identified perfect-equilibrium strategies and pro- 
posed to develop a library of meta strategies to be 
used when appropriate [Kraus and Wilkenfeld, 1991a; 
Kraus and Wilkenfeld, 1991b]. The maximization ap- 
proach is much easier to implement. The problem 
with the maximization approach in our context is that 
players must solve their optimization problems jointly: 
the contracted agent’s strategy affects the contracting 
agent’s maximization problem and vice versa. In this 
paper we will use the maximization approach, with 
some care, by embedding the contracted agent’s maxi- 
mization problem into the contracting agent’s problem 
as a constraint. This maximization problem can be 
solved automatically by the agent. 

The agents’ utility functions play an important role 
in finding an efficient contract. As explained above, 
we propose to include a monetary system in the multi- 
agent environment. This system will provide a way for 
providing rewards. However, it is not always the case 
that the effort of an agent can be assigned the same 
monetary values. Each designer of an automated agent 
needs to provide its agent with a decision mechanism 
based on some given set of preferences. Numeric repre- 
sentations of these preferences offer distinct advantages 
in compactness and analytic manipulation [Wellman 
and Doyle, 19921. Therefore, we propose that each de- 
signer of autonomous agents will develop a numerical 
utility function that it would like its agent to maxi- 
mize. In our case the utility function will depend on 
monetary gain and effort. This is especially important 
in situations where there is uncertainty in the situa- 
tion and the agents need to make decisions under risk 
considerations. Decision theory offers a formalism for 
capturing risk attitudes. If an agent’s utility function 
is concave, it is risk averse. If the function is convex, 
it is risk prone, and a linear utility function yields risk 
neutral behavior [Hirshleifer and Riley, 19921. 

We denote the contracted agent’s utility function by 
U which is a decreasing function in effort and an in- 
creasing function in wage w. We assume that if the 
contracted agent won’t accept the contract from the 
contracting agent, its utility, (i.e., its reservation price) 
which is known to both agents is 6. This outcome can 
result either from not doing anything or performing 
some other tasks at the same time. We denote the 
contracting agent’s utility function by V and it is an 
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increasing function with the value of performing the 
task (Q) and decreasing function with the wage w paid 
to the contracted agent. In our system we assume that 
the contracting agent rewards the contracted agent af- 
ter the task is carried out. In such situations there 
should be a technique for enforcing this reward. In 
case of multiple encounters reputational considerations 
may yield appropriate behavior. In a single encounter 
some external intervention may be required to enforce 
commitments. 

Contracts Under Certainty 
In this case we assume that all the relevant information 
about the environment and the situation is known to 
both agents. In the simplest case the contracting agent 
can observe and supervise the contracted agent’s effort 
and actions and force it to make the effort level pre- 
ferred by the contracting agent by paying it only in 
case it makes the required effort. The amount of ef- 
fort required from the contracted agent will be the one 
that maximizes the contracting agent’s outcome, tak- 
ing into account the task fulfillment and the payments 
it needs to make to the contracted agent. 

However, in most situations it is either not possi- 
ble or too costly for the contracting agent to supervise 
the contracted agent’s actions and observe its level of 
effort. In some cases, it may be trying to carry out an- 
other task at the same time, or it can’t reach the site 
of the action (and that is indeed the reason for subcon- 
tracting). If the outcome is a function of the contracted 
agent’s effort and if this function is known to both 
agents the contracting agent can offer the contracted 
agent a forcing contract [Harris and Raviv, 1978; 
Rasmusen, 19891. In this contract, the contracting 
agent will pay the contracted agent only if it provides 
the outcome required by the contracting agent. If the 
contracted agent accepts the contract, he will perform 
the task with the effort that the contracting agent finds 
to be most profitable to itself even without supervi- 
sion. Note that the outcome won’t necessarily be with 
the highest effort on the part of the contracted agent, 
but rather the effort which provides the contracting 
agent with the highest outcome. That is, the contract- 
ing agent should pick an effort level e* that will gen- 
erates the efficient output level Q*. Since we assume 
that there are several possible agents available for con- 
tracting, in equilibrium, the contract must provide the 
contracted agent with the utility L2 The contract- 
ing agent needs to choose a wage function such that 
w* 9 w(Q*N = 6 and U(e, w(q)) < ti for e # e*. We 
demonstrate this case in the following example. 
Example I: Contracting Under Certainty 
The US and Germany have sent several mobile robots 
independently to Mars to collect minerals and ground 

is indifferent 
preferred by 

samples and to conduct experiments. One of the US 
robots has to dig some minerals on Mars far from the 
other US robots. There are several German robots 
in that area and the US robot would like to subcon- 
tract some of its digging. The US robot approaches 
one of the German robots that can dig in three lev- 
els of e$ort (e): Low, Medium and High denoted by 
1,2 and 3 respectively. The US agent can’t supervise 
the German robot’s eflort since it wants to carry out 
another task simultaneously. The value of digging is 
q(e) = da. The US robot’s utility function, if a 
contract is reached, is V(q, w) = q - w and the Ger- 
man robot’s utility function in case it accepts the con- 
tract is U(e, 20) = 17 - z - 2e, where w is the payment 
to the German robot. If the German robot rejects the 
contract, it will busy itself with maintenance tasks and 
its utility will be 10. It is easy to calculate that the 
best eJjrort level from the US robot’s point of view is 
2, in which there will be an outcome of m. The 
contract that the US robot oglers to the German robot 
is 35 if the outcome is &66 and 0 otherwise. This 
contract will be accepted by the German robot and its 
effort level will be Medium. 

There are two additional issues of concern. The 
first one is how the contracting agent chooses which 
agent to approach. In the situation of complete infor- 
mation (we consider the incomplete information case 
in Section Asymmetric and Incomplete Information) it 
should compute the expected utility for itself from each 
contract with each agent and chooses the one with the 
maximal expected utility. 

Our model is also appropriate in the case in which 
there are several contracting agents, but only one pos- 
sible contracted agent. In such a case, there should 
be information about the utilities of the contracting 
agents in the event that they don’t sign a contract. 
The contracted agent should compute the level of ef- 
fort that maximizes its expected utility (similar to the 
computation of the contracting agent in the reverse 
case) and make an offer to the contracting agent that 
will maximize its outcome. 

Contracts Under Uncertainty 
In most subcontracting situations, there is uncertainty 
concerning the outcome of an action. If the contracted 
agent chooses some effort level, there are several pos- 
sibilities for an outcome. For example, suppose an 
agent on Mars subcontracts digging for samples of a 
given mineral and suppose that there is an uncertainty 
about the depth of the given mineral at the site. If 
the contracted agent chooses a high effort level but the 
mineral level is deep underground the outcome may be 
similar to the case where the contracted agent chooses 
a low level of effort but the mineral is located near the 
surface. But, if it chooses a high effort level when the 
mineral is located near the surface, the outcome may 
be much better. In such situations the outcome of per- 
forming a task doesn’t reveal the exact effort level of 
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the contracted agent and choosing a 
ma1 contract is much more difficult. 

stable and maxi- 

We will assume that the world may be in one of 
several states. Neither the contracting agent nor the 
contracted agent knows the exact state of the world 
when agreeing on the contract, as well as when the 
contracted agent chooses the level of effort to take, af- 
ter agreeing on the contract. The contracted agent 
may observe the state of the world after choosing the 
effort level (during or after completing the task), but 
the contracting agent can’t observe it. For simplic- 
ity, we also assume that there is a set of possible out- 
comes to the contracted agent carrying out the task 
& = bzl, 4fn) such that ~1 < qz < . . . < qn that 
depends on the state of the world and the effort level 
of the contracted agent. Furthermore, we assume that 
given a level of effort, there is a probability distribu- 
tion that is attached to the outcomes that is known 
to both agents. 3 Formally, we assume that there is a 
probability function 53 : E x Q + #Z, such that for any 
e E E, Cy a@, qi) = 1 and for all qi E Q, &e, qi) > 0.4 
The contracting agent’s problem is to find a contract 
that will maximize its expected utility, knowing that 
the contracted agent may reject the contract or if it ac- 
cepts the contract the effort level is chosen later [Ras- 
musen, 19891. The contracting agent’s payment to the 
contracted agent can be based only on the outcome. 
Let us assume that in the contract that will be offered 
by the contracting agent, for any qi i = 1, . . . , n the con- 
tracting agent will pay the contracted agent wi. The 
maximization problem can be constructed as follows 
(see also [Rasmusen, 19891). 

n 

Maximize,l,...,R x P(i7 qi)V(qi, W) (1) 

with the constraints: 
I 

e^ = argmaxeEE (2) 

Equation (1) states that the contracting agent tries 
to choose the payment to the contracted agent so as to 

3A practicall question is how the agents find the prob- 
ability distribution. It may be that they have preliminary 
information about the world, e.g., what is the possibility 
that a given mineral will be in that area of Mars. In the 
worst case, they may assume an equal distribution. The 
model can be easily extended to the case that each agent 
has different beliefs about the state of the world [Page, 
19871. 

*The formal model in which the outcome is a function 
of the state of the world and the contracted agent’s ef- 
fort level, and in which the probabilistic function gives 
the probability of the state of the world which is inde- 
pendent of the contracted agent’s effort level is a special 
case of the model described here [Page, 1987; Ross, 1973; 
Harris and Raviv, 19781. 

maximize its expected utility subject to the constraint 
that the contracted agent will prefer the contract over 
rejecting it (3) and that the contracted agent prefers 
the effort level that the contracting agent prefers, given 
the contract it is offered (2). 

The main question is whether there is an algorithm 
to solve this maximization problem and whether such 
a contract exists. This depends primarily on the util- 
ity functions of the agents. If the contracting agent 
and the contracted agent are risk neutral, then solving 
the maximization problem can be done using any lin- 
ear programming technique (e.g, simplex, see for exam- 
ple [Pfaffenberger and Walker, 19761.) Furthermore, in 
most situations, the solution will be very simple: the 
contracting agent will receive a fixed amount of the 
outcome and the rest will go to the contracted agent. 
That is, ‘uti = qi - C for 1 < i 5 n, where the constant 
C is determined by constraint (3) [Shavell, 19791. 
Example 2: Risk Neutral Agents Under Uncer- 
tainty 
Suppose the utility function of the German robot from 
Example 1 is U(w, e> = w-e and that it can choose be- 
tween two eflort levels Low (e=l) and High (e=2) and 
its reservation price is ti = 1. There are two possible 
monetary outcomes to the digging: q1 = 8 and q2 = 10 
and the US robot’s utility function is as in the previous 
example, i. e., V(q,w)=q-w. 

If the German robot chooses the Lower level eflort 
then the outcome will be q1 with probability 2 and q2 
with probability $ and if it takes the High level eflort 
the probability of q1 is $ and of q2 it is g. In such 
situations, the US robot should reserve to itself a profit 
of “5. That is, w1 = la and w2 = 3a. The German 
robot will choose the High level eflort. 

If the agents are not neutral toward risk, the problem 
is much more difficult. However, if the utility function 
for the agents are carefully chosen, an algorithm does 
exist. Suppose the contracted agent is risk averse and 
the contracting agent is risk neutral (the methods are 
also applicable when both are risk averse). Grossman 
and Hart [Grossman and Hart, 19831 presented a three- 
step procedure to find appropriate contracts. The first 
step of the procedure is to find for each possible effort 
level the set of wage contracts that induce the con- 
tracted agent to choose that effort level. The second 
step is to find the contract which supports that effort 
level at the lowest cost to the contracting agent. The 
third step is to choose the effort level that maximizes 
profits, given the necessity to support that effort with 
a costly wage contract. For space reasons, we won’t 
present the formal details of the algorithm here, and 
also in the rest of the paper. 

Repeated Encounters 

Suppose the contracting agent wants to subcontract its 
tasks several (finite) times. Repetition of the encoun- 
ters between the contracting and the contracted agents 
enables the agents to reach efficient contracts if the 
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number of encounters is large enough. The contract- 
ing agent could form an accurate estimate of the con- 
tracted agent’s effort, based on the average outcome, 
over time. That is, if the contracting agent wants the 
contracted agent to take a certain effort level 2, in all 
the encounters, it can compute the expected outcome 
over time if the contracted agent actually performs the 
task with that effort level. The contracting agent can 
keep track of the cumulative sum of the actual out- 
comes and compare it with the expected outcome. If 
there is some time T in which the outcome is below a 
given function of the expected outcome, the contract- 
ing agent should impose a big “punishment” on the 
contracted agent. If the function over the expected 
outcome is chosen carefully [Radner, 198 11, the proba- 
bility of imposing a “punishment” when the contracted 
agent is in fact carrying out the desired effort level can 
be made very low, while the probability of eventually 
imposing the “punishment” if the agent doesn’t do e 
is one. 

Asyrm-netric and Hxicomplete Hmformation 

In some situations the contracting agent does not know 
the utility function of the contracted agent. The con- 
tracted agent may be one of several types that reflect 
the contracted agent’s ability to carry out the task, its 
efficiency or the cost of its effort. However, we assume 
that given the contracted agent’s type, its utility func- 
tion is known to its opponent. For example, suppose 
Germany builds robots of two types. The specifica- 
tions of the robots are known to the German robots 
and to the US robots, however, the US robots don’t 
know the specific type of the German robots that they 
meet. 

As in previous sections the output is a function 
of the contracted agent’s effort level, and the prob- 
ability function p indicates the probability of each 
outcome, given the effort level and the agent’s type. 
The question remains which contract the contract- 
ing agent should offer when it doesn’t know the con- 
tracted agent’s type. A useful technique in such sit- 
uations is for the contracting agent to search for an 
optimal mechanism [Demougin, 19891 as follows: the 
contracting agent offers the contracted agent a menu 
of contracts that are functions of its type and the out- 
come. The agents chooses a contract (if at all) and 
announces it to the contracting agent. Given this con- 
tract, the contracted agent chooses an effort level which 
maximizes its own expected utility. In each of the 
menu’s contracts, the contracted agent’s expected util- 
ity should be at least as its expected utility if it doesn’t 
sign the contract. We also concentrate only on con- 
tracts in which it will always be in the interest of the 
contracted agent to honestly report, its type. It was 
proven that this requirement is without loss of gener- 
ality [Myerson, 19821. It was also shown that in some 
situations, an efficient contract can be reached without 
communication [Demougin, 19891, but we omit the dis- 

cussion here for space reasons. 
If there are several agents whose types are unknown 

to the contracting agent and it must choose among 
them, the following mechanism is appropriate: The 
contracting agent announces a set of contracts based 
on the agent’s type and asks the potential contracted 
agents to report their types. On the basis of these re- 
ports the contractin 

B 
agent chooses one agent [McAfee 

and McMillan, 1987 . 
In other situations, the contracting agent knows the 

utility function of the contracted agent, but the con- 
tracted agent is able to find more information on the 
environment than the contracting agent. For example, 
when the German robot reaches the area where it needs 
to dig, it determines the structure of this area. This 
information is known only to the German robot and 
not to the US robot. The mechanism that should be 
used in this context is the following: The contracting 
agent offers a payment arrangement which is based on 
the outcome and the message the contracted agent will 
send to the contracting agent about the additional in- 
formation it possesses. If the contracted agent accepts 
the offer, it will observe the information (by going to 
the area, or using any of its sensors etc.). Then it 
will send a message to the contracting agent and will 
choose its effort level. Eventually, after the task is 
finished and the outcome is observed, the contracting 
agent will pay the rewards. Also in this case [Chris- 
tensen, 19811, the agents can concentrate on the class 
of contracts that induce the contracted agent to send 
a truthful message. This is since for any untruthful 
contracts, a truthful one can be found in which the ex- 
pected utility of agents is the same. A maximization 
solvable problem can be constructed here, but we omit 
it for space reasons. 

Subcontracting to a Group 

Suppose that the task the contracting agent wants to 
contract for can be performed by a group of agents. 
Each of the contracted agents is independent in the 
sense that it tries to maximize its own utility. The 
contracting agent offers a contract to each of the pos- 
sible contracted agents. If one of them rejects the of- 
fer, then the contracting agent cannot subcontract the 
task. Otherwise, the contracted agents simultaneously 
choose effort levels. 

In other situations, the contracting agent can’t ob- 
serve the individual outcome (or such an outcome does 
not exists) but rather observe only the overall outcome 
from the effort of all agents [Holmstrom, 1982].Bere, 
even in the case of certainty, i.e., the state of the world 
is known, there is a problem in making the contracted 
agents take the preferred level of action, since there is 
no way for the contracting agent to find out the effort 
level of each of the individual agent, given the overall 
output. For example, suppose two robots agreed to dig 
minerals, but they both put the minerals in the same 
truck, so it is not possible to figure out who digs what. 
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If the contracting agent wants the contracted agents 
to take the vector of levels effort e* it can search for 
a contract such that, if the outcome is q 2 q(e*) then 
w(a) = bi and otherwise 0, such that U(ey , bi) 2 tii. 
That is, if all agents choose the appropriate effort level, 
each of them gets bi and if any of them does not, all 
get nothing. 

Conclusions 
In this paper we presented techniques that can be used 
in different cases where sub-contracting of a task by 
an agent to another agent or a set of agents in non- 
collaborative environments is beneficial. In all the sit- 
uations, simple Pareto-optimal contracts can be found 
by using techniques of maximization with constraints. 
In the case where the agents have complete informa- 
tion about each other, there is no need for negotiations 
and a contract is reached without a delay even when 
the contracting agent doesn’t supervise the contracted 
agent’s actions. If there is asymmetric information, or 
the a.gents are not sure about their opponents’ utility 
functions, a stage of message exchange is needed to 
reach a contract. 
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