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Abstract 

In a multi-agent environment, where self-motivated agents try to pursue their own goals, 
cooperation cannot be taken for granted. Cooperation must be planned for and achieved through 
communication and negotiation. We present a logical model of the mental states of the agents based 
on a representation of their beliefs, desires, intentions, and goals. We present argument&on as an 

iterative process emerging from exchanges among agents to persuade each other and bring about 
a change in intentions. We look at argumentation as a mechanism for achieving cooperation and 

agreements. Using categories identified from human multi-agent negotiation, we demonstrate how 
the logic can be used to specify argument formulation and evaluation. We also illustrate how the 
developed logic can be used to describe different types of agents. 

Furthermore, we present a general Automated Negotiation Agent which we implemented. based 
on the logical model. Using this system, a user can analyze and explore different methods to negotiate 
and argue in a noncooperative environment where no centralized mechanism for coordination exists. 
The development of negotiating agents in the framework of the Automated Negotiation Agent is 
illustrated with an example where the agents plan, act, and resolve conflicts via negotiation in a 
Blocks World environment. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In a multi-agent environment, where self-motivated agents try to pursue their own goals, 
cooperation cannot be taken for granted. Cooperation must be planned for and achieved 

through communication and negotiation. Negotiation often involves argumentution in the 

form of an exchange of messages or a dialogue. Arguments are utterances whose aim is 

to change the intentions (and consequently the actions) of the listener. Within the context 
of negotiating self-interested agents, this change of intentions could make agents more 

cooperative. There are different arguments that could be used by one agent to change 
the intentions of another. Irrespective of what argument is used, the recipient agent must 

evaluate the argument and decide whether or not to change its intentions and actions. 
For example, imagine two mobile robots on Mars, each built to maximize its own utility. 

RI requests R2 to dig for a certain mineral. R:! refuses. RI responds with a threat: “if you 

do not dig for me, I will break your antenna”. RI is faced with the task of evaluating this 
threat. Several considerations must be taken into account, such as whether or not the threat 
is bounded, what RI’S credibility is, how important it is for R2 to have its antenna intact. 
so on and so forth. R1 may take a different approach if R2 refuses to dig, and respond with 
a promise for a reward: “if you dig for me today, I will help you move your equipment 

tomorrow”. Here, R2 needs to evaluate the promise of future reward. 

Argumentation is essential to bringing about agreement in noncooperative situations 
when agents have incomplete knowledge about each other or the environment. In 
such situations, agents impart information to each other via the exchanged messages. 

Argumentation may also be called for when agents either do not have the ability or the 
time to make inferences. This is the case when agents have bounded inference systems 

which either may not be complete or may not be closed under inferences [7 l,lOSl. 
In order to negotiate effectively, an agent needs the ability to (a) represent and maintain 

a model of its own beliefs, desires, goals, and intentions. (b) reason with other agents’ 
beliefs, desires, goals, and intentions, and (c) influence other agents’ beliefs, intentions, and 
behavior. When agents are noncollaborative, the process of argumentation is an iterative 
exchange of proposals towards reducing conflict and promoting the achievement of the 

individual goals of the agents. 
Arguments are used by a persuader as a means to dynamically change the preferences, 

intentions, and actions of a persuadee, to increase the willingness of the persuadee to 
cooperate. Over repeated encounters, agents may analyze each other’s patterns of behavior 
to establish an analogue to the human notions of credibility and reputation. This may 
influence the evaluation of arguments, as we will see in scenarios such as the “threats” 
described later. By observing the reactions to the arguments, the sending agent can update 
and correct its model of the recipient agent, thus refining its planning and argumentation 

knowledge. 
In this paper we develop a formal logic that forms a basis for the development of a 

formal axiomatization system for argumentation. We offer a logical model of the mental 
states of the agents based on a representation of their beliefs, desires, intentions and goals. 
We present argumentation as an iterative process of exchanges among agents to persuade 
each other and bring about a change in intentions. Our work on the formal mental model 

overlaps with the work of others who have developed formal models for communicative 
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agents (e.g., [16,19,64,69,86,115,129,133,138,164]) and for mental models of agents (e.g., 
[75,152,162]). We will discuss related work in Section 5 and point out the differences of 

our work with respect to that of others. The main difference from previous work is that 

we have developed our formalization from the argumentation point of view. We present a 

set of axioms that allows the agents to automatically generate and evaluate arguments in a 

multi-agent environment. 
Based on our formalization, we have developed and implemented a general Automated 

Negotiation Agent (ANA) which acts and negotiates in a simulated multi-agent environ- 

ment. In the simulation system, several ANA agents can be defined and created. Each of 

these agents is assigned an initial set of mental states and inference rules which guide it 

in every step and decision that it takes (goal seeking, argument generation and selection, 

request evaluation, and so on). Once created, the agent will try to accomplish its desires. 

using arguments, if needed. 

Both the mental states and the different inference rules are based on our formal logic 

model. Each of the agents changes its mental states according to a rule which applies 

at the time of the change. The ability to define mental states for each of the agents. as 

well as to define different inference rules for argument generation, allows the user of the 

system to test different argument types and to assess their impact on the effectiveness of the 

agent’s negotiation capability. This also allows the user to evaluate ways of selecting the 

most appropriate argument at any stage of the negotiation. These capabilities are illustrated 

through an extensive example, where agents negotiate in a Blocks World environment. 

The paper is organized as follows. Section 2 presents the logical argumentation 

formalism and the various agent types which might be engaged in argumentation. Section 3 

describes the various argument types we have identified and how an agent can evaluate 

argument appropriateness. Section 4 discusses the general Automated Negotiation Agent 

(ANA) and its capabilities for argument generation and evaluation, based on the logical 

argumentation axiomatization. Section 5 situates our work within the related literature. 

Section 6 presents concluding remarks. 

2. The mental model 

We have a set of agents, not necessarily cooperative, with the ability to exchange 

messages. Their mental states are characterized by using the notions of beliefs, goals, 

desires, intentions, and local preferences. Each agent has a set of desires. The agent’s 
activities are motivated by the will to fulfill these desires. At any given time, an agent 

selects a consistent subset of its desires. This serves as its set of current goals. An agent 

ascribes different degrees of importance to different goals. It prefers to fulfill goals of 

higher importance. The set of goals motivate the agent’s planning process. 

The planning process may generate several intentions. Some of these are in what we 
would like to classify as the “intend-to-do” category and refer to actions that are within the 
direct control of the agent. Others are among the “intend-that” category [13,56,57,158]. 

These are propositions not directly within the agent’s realm of control, that it must rely 



on other agents for satisfying. 3 Often, there is room for argumentation when intend-that 
actions are part of a plan. Argumentation is the means by which an agent, the persuader, 
attempts to modify the intention structure of another agent. the persuadee, to include 
the actions the persuader wants it to do. While an agent tries to influence the intentions 
of other agents, other agents may try to convince it as well. The role of persuader and 

persuadee is not fixed, but dynamically assumed during the agent interactions. Thus, during 
a negotiation process, each agent may update its intentions and goals after receiving a 
message from another agent. If the argumentation happens to fail, the agent which sent it 
must revise its arguments. its plans, and/or seek other sources of satisfying the portion of 

its plan in question. 
An agent’s belief set includes beliefs concerning the world and beliefs concerning mental 

states of other agents. An agent may be mistaken in both kinds of beliefs. It may update 
its beliefs by observing the world and after receiving messages from other agents. Each 
agent’s actions are based upon its mental model of other agents. The types of arguments 

(see Section 3) that a persuader generates depend on its knowledge of a persuadee’s 
mental model. An important piece of knowledge for argument selection is a persuader’s 
assessment of the relative importance of a persuadee’s goals. For example, a threat is 
effective if it threatens an important persuadee goal. Incomplete information or information 
that is contrived by a deceitful agent may result in a discrepancy between the actual and 
portrayed mental models. Argumentation is especially crucial in these situations, since it 
can be used to establish a common platform of agreement despite these differences. 

2.1. The formal model 

We will use minimal structures [ I.51 style semantics for each of the notions of beliefs, 

desires, goals, and intentions. The modal operators have certain desired properties from 
the point of view of our axiomatization. We assume that the agent may not be omniscient 
(may not have as beliefs all consequences of its “primitive” beliefs [105.157]). Its set of 
beliefs may not be consistent. and it may not be aware of the inconsistency. As we discuss 

later. omniscience (or the lack of it) is very important in the context of negotiation and 
argumentation where agents usually transfer facts and their conclusions. 

The set of an agent’s desires may not always be consistent either. For example, an 

agent may desire to earn money today, but also to go on a vacation, and the two desires 
may lead to a contradiction (see also [ 1521). Usually, an agent has preferences among 
its contradicting desires.’ The set of goals is a consistent subset of the set of desires. 
Similarly. we have some implicit properties in mind for actions in the “intend-to-do” 
category. When an action serves to contribute to one or more of the agent’s desires, the 
agent may have the intention to act. The intention may contribute directly to the fulfillment 
of a desire, or indirectly, through another intention. The action may have a side-effect 
[ 12,161 that does not contribute to any of the agent’s desires. In such a case, the agent does 

3 The proposition may include 3 negation. When fulfillment of the proposition is beyond the control of the 

agent. it can be achieved by convincing another agent to abandon a relevant intention, or by convincing it to take 

an a&on that will make the proposition true. 

’ The issue of how an agent forms it\ original set of desires is not in the scope of this paper. However. this set 

may change ober time. a\ the agent patherh more information and updates its knowledge. 



S. Kraus et al. /Art$cial lntelligencv 104 (1998) 149 5 

not intend the side-effect. Thus we require that the intentions be consistent but not confined 

to side-effects. ’ 

Briefly, we have a set of time lines, each of which extends infinitely far from the past into 

the future (see [ 1521). We use time lines instead of more usual worlds because they provide 

a simple, useful way of incorporating time into our system. With each time point, time line 

and predicate, we associate a set of sequences of elements (intuitively, the sequence of 

elements that have the property of the predicate, at the time point of the time line). 

A notion of satisfaction of a sentence I/J in a time line of a structure, given an 

interpretation, is defined (denoted by M, 1, V + I,?, see Section 2.3). The intension of a 

sentence in the language is the set of time lines in which the sentence is satisfied, i.e., 

A sentence is a belief at a given time point at a given time line if its intension is belief- 

accessible. According to this definition, the agent’s beliefs are not closed under inferences; 

the agent may even believe in contradictions. We will later define different types of agents, 

in accordance with different properties of their beliefs. 

Similarly, we assume that accessibility relations associated with desires, intentions, and 

goals are between time lines and time points, and sets of time lines [ 1571. An agent intends 

(respectively, desires, has goal) @ at time t, if the intension of I/J (Il$ll) is a member of 

the set of sets of time lines that are intention-accessible (respectively, desires-accessible, 

goals-accessible) at time t. We further impose restrictions on the set of sets of time lines 

that are intention-accessible (respectively, desires-accessible, goals-accessible) to an agent. 

An agent intends I/I in order to contribute to q if it intends @, intends cp and intends that $I 

implies cp. An agent prefers $J over q at a given time t, if the agent prefers ll@ll at time t 
over lly~ll at time t. 

A message may be one of the following types: a request, response, or a declaration. 

A response can be an acceptance or a rejection. A message may carry an argument as 

a justification. Arguments are produced using special argumentation axioms. An agent 

can send and receive messages. Unlike Werner’s approach [164], we do not assume that 

receiving a message in itself changes the mental state of the agent. Even receiving an 

informative message does not change the agent’s beliefs, unless the agent evaluates the 

message and decides that it should add it to its beliefs. ’ Evaluating a received message 

is useful especially since we assume that agents are untrustworthy, and may even be 

untruthful. Only an evaluation process following an argument may change the internal 

state of the agent. 

’ While the issue of how to model the concept of intentions is a very involved topic removed from the main 

focus of our work, we devote some effort to tailoring our semantics of the intention and desire operators to reflect 

these desired properties. Our main concern remains identifying the process of change in these modalities during 

argumentation. 

’ Note that if two sentences have the same intensions ll$II = /IcJ~~, then they are semantically equivalent. 
’ The new information may be inconsistent with the agent’s current beliefs. We leave this for future discussion. 

See. for example, [6,22.26,27.53,66,96,103,125.166]. 



6 S. Kraus et al. /Artijicial lntrlligrnce 104 (1998) 149 

2.2. Syntax 

We denote by Agents the set of agents. We assume that there are four modal operators 

for agent i : Beli for beliefs, Desirei, for desires, Goali for goals and Znti for intentions. It 

may be the case that the agent is motivated by the need to satisfy its own goals or desires, or 

that it is convinced to perform an action following an argument. * In addition, we assume 

that there is another modal operator, Prefi which is associated with the agent’s preferences 

among goals, desires, and intentions. As we mentioned above, following [ 1521, the basis 

for our formalism is a simple temporal language. Informally, we have a set of time lines 

(which play the role of “worlds” in the modal logic). The set of time lines is infinite. We 

also have a set of time points. At every time in each time line, some propositions are true 

(and the rest are false). 9 

Our variables and constants are sorted. We have a set TC of time point constants, a 

set n/ of time point variables (t, t^, tl , t2, . .), a set AC of agent constants, a set AV of 
agent variables (i, j, . .), a set AcC of action constants and a set AcV of action variables 

(o, b, .), a set PC of preference values constants and a set PV of preference values 

variables (p, pt , ~2, . .), and a set Pred of predicate symbols including two special 2-ary 

predicates Do and Capable. We denote by Variables the set of all variables (including AV, 

AcV, TV and PV), by Constants the set of all constants (including AC, AcC, TC and PC), 

and by Terms the set of variables and constants. We also use the symbol nil. We first define 

the set of the well-formed formulas (wff) of our language. 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

If tl , t2 E TC U TV, then tl < t2 is a wff. 

If xl, x2 E Terms, then x1 = x2 is a wff. 

If P E Pred is a k-ary predicate, XI, ,x, are terms, and t E TC U TV, then 
[r, P(x), . . .,x,)1 is a wff (read as: P(xl, . .,x,) is true at time t). 

If cp is a wff and @ is a wff, then so are cp & $J and lcp. If cp is a wff and x E Variables, 

then Vxq is a wff. 3, V, -+ have their usual meanings. 

If cp and $ are wffs, t E TC U TV, i. j E AC U AV and p E PC U PV, then the 
following expressions are wffs: 

(a) [t, Beljq] (i believes q at time t), 

(b) [t, Desirei (cp, p)] (i desires p at time t with preference p), 

(c) [t, Goalicp] (i has a goal q~ at time t), 

(d) [t, Intip)] (i intends q), [t. Inti (cp, $)] (i intends q at time t to contribute to $I), 

(e) [t, Prefi((p, I/Y)] (i prefers q over $ ut time t), 

(f) [t,Agent(lC,. i)] (i is the agent of@). 

If (a and 1c, are wffs, then the following expressions are messages: 

(a) Request($. q) ($ is requested with the argument cp), 

(b) Reject( $. cp) ( $J is rejected with the argument cp), 

* Our intention model is closer to Shoham [ 1381’s Dee and Thomas et al. [ 1521’s Comit than to Cohen’s and 

Levesque [ 161’s “Intend’. 

y We have extended ]I521 to deal with the FOL case. We prefer this approach, where time can be expressed 

explicitly, over others where time periods cannot be expressed in the language (for example, [ 16]), since 

threats and arguments both evolve in time. We use an extension of first-order logic, rather than an extension 

of propositional logic since it is useful in the formalism of argumentation. 
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(c) Accept(Q, ~0) ($I is accepted with the argument cp). 

(d) Decl(@) (@ is declared), 

(e) Accept(+), Request(@), Reject($) (1c, ‘. ts ucc.epted (respectively, requested or 

rejected) with no argument)). 

(7) If m is a message. t E TC U TV and i, j E AC U AL', then [t, Receiveij m] (i receives 

m ,from ,j at time t) and [t, Send;;m] (i sends m to j ut time t) are wffs. 

We assume that there are two, 2%~ predicates in Pred, Do and Capable, where 

[t. Do(i, a)] is read as (;Y is done by i at time t and [t. Cupuble(i, w)] is read as at 

time t agent i is able to perform a. We will sometimes use the abbreviation [t, q~ & $1 
for [t. cp] & [t, $1 and will freely interchange [t. -cp] and -[t,cp]. We will use similar 

abbreviations for v and -+. 

Requests and responses may include arguments. For example, an agent a may send its 

opponent, agent b. a message at time period t, requesting b to let him use its printer at time 

tl ; with the threat that otherwise a will break it at time t2. Formally, it can be expressed 

as 

]t. Request([tl, Do(b, let.use.printer)], --[tl , Do(b. let.use.printer)] + 

[tz. Do(a. breuk.printer)])]. 

As can be seen from the example. the operator Do is useful in requests, responses, and 

arguments and was added to the language to be able to explicitly specify the agent who 

will carry out an action. 

2.3. Semantics 

We start with the semantics of the various sentences of our language. This will be 

followed by the semantics for our modal operators. 
Time is a pair (T, +), where T is a set of time points and -C is a total order on T 

(unbounded in both directions). 
A BDIG model M is a structure 

(3, L, Agents, A, B. G, D. It. P. RECEIVE, SEND, @. v, M), 

where 

( 1) E is a set of elements in the agent’s environment, and M is a set of messages. 

(2) L is a set of time lines. 

(3) Agents is a set of agents. 

(4) B : L x T x Agents + 2 2L is the belief-accessibility relation. 

(5) G : L x T x Agents + 22L is the goals-accessibility relation. 

(6) It : L x T x Agents + 2’L t IS the intention-accessibility relation. 

(7) D : L x T x Agents + 2 2L is the desire-accessibility relation. 

(8) P : L x T x Agents x 2”’ -+ Iw indicates for each agent the value (preference) it 
associates with different propositions at a given time. 

(9) @ interprets predicates and u interprets constants. 



x 

(10) 

(11) 

RECEIVE : L x T x Agents x Agents -+ M indicates the messages received by 

the agents: SEND : L x T x Agents x Agents + M indicates the messages sent 
by the agents. in 

A : L x T x 2’l. + Agents U (nil) associates an agent or nil with each proposition 

for any given time period. 

The domain of quantification is 0 = 3 U T U Agents U M U R. Given this, @ : 
Predk x L x T + 8”. V is the extension of v to all Variables. If for any extension U’ 

of u M. 1, U’ + @, we say that M, I satisfy @ (M, 1 + Q). Given a structure M, and a wff 
@, we denote by II$I[ the set (I 1 1 E L, M. 1. 17 + 3). The definition of satisfaction is as 
follows: 

(1) Iftt,t2ETCUTV,then 
M, 1, ti /= tl -c t2 iff ti(rt) < C(tz). 

(2) If xl, x2 E Terms, then 

M, 1, V ~XI =x2 iff 17(x1) = U(Q). 

(3) If P E Pred is a k-ary predicate, xi. , x, are terms, and r E TC U TV, then 

M.1. ti + [t. P(Xl,. .,Xk)] iff @(Xl), . ., 6(Q)) E @[P, 1, i(t)]. 
(4) If cp is a wff, $I is a wff and x E Variables, then: 

(a) M,l,ti~-cpiffM,1,17~q1; 

(b) M.l.u~cp&1CIiffM,I,u~cpandM,l,u~~; 

(c) M, 1, V + Vx q~ iff for every 5’ which agrees with V everywhere, except possibly 
on x M, 1. V’ + cp. 

(5) If cp and $J are wffs, t E TC U TV, i, j E AC U AV and p E PC U PV, then: 

(a) M, 1, V + [t. Belicp] iff ]]q]] E B(1. c(t), U(i)); 
(b) M, 1, U k [t. Desirei(cp, p)] iff ]]q]] E D(1. 6(t), U(i)) and P(1, 6(t). c(i), IIqII) 

= V(p); 

(c) M, 1, V /= [t, G&iv] iff (/VI/ E G(1, i(t), 5(i)); 

(d) M. 1, V /= [t, Inticpl iff ]]v]] E It(1. v(t), V(i)); 

(e) M.1, V I= [t. Prefi(q. @)I iff P(1. c(t), V(i), IIqII) > P(1, v(t), V(i). III/II); 

(f) M, 1. V /= [t,Agent(y, i)] iff A(/, 6(t). llqll) = V(i). 

(6) If m is a message, t E TC U 7’V and i. ,j E AC U AV, then: 

(a) M, 1. V b [t, Receive;jm] iff ii(m) E RECEIVE(1, v(t), V(i). c(j)); 

(b) M, 1. V + [t, Sendijm] iff v(m) E SEND(l, c(t). c(i). V(j)). 

We extend the semantics to deal with intending r,k to contribute to cp as follows: 
M, 1, 17 + [t, Inti ($, cp)] iff M, 1, V + [t, &($)I, and M. 1, U + [t, h;(v)] and M, 1, V + 

[t, Znti ($ + q)]. Note that in our model the domain of quantification for al1 the time lines 
(that play the role of possible worlds) is the same [81]. We also assume that the constant 
symbols are rigid designators. 

A BDIG model M = (E. L, Agents, A, B, G, D, I, P, RECEIVE, SEND, @, v, M) is 

said to validate a formula rp if for every 1 E L, M. 1 + cp. A formula q is valid if it is 
validated by any BDIG model. 

The agents in our general framework have very little reasoning power, and their 
attitudes do not have any appropriate properties, as stated in the next proposition. First, 

‘(‘We note that if’ for all I t L. f E T and i, ,j E A,qmt.s, RECEIVE(/. t. i. ,j) = SEND(1. t, j. i). then the 
communication is reliable. See also [40]. 
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all tautologies and inference rules of first-order logic are valid in BDIG models. Second, 
by virtue of a model that is based on intensions of formulas, it is difficult to distinguish 
between semantically equivalent beliefs, intentions desires and goals. Therefore, the 

following inference rule (Rl), is always sound in a minimal model structures. It indicates 
that if an agent believes cp, and cp is equivalent to $, then the agent believes I/J. ” 

Proposition 1. The following ,formal system is sound and complete ,for validi in BDIG 

models: 

(AO) All tautologies ofjirst-order logic. 

(MP) From cp and cp + I/I infer Q. 

(GR) From (p infer Vxcp. 

(1) 

(2) 

(3) 

(RI) From cp * $ infer 

[t, Beli cpl ++ [t, Be4 $1, [t. Giqj t, [t, G;$], 

[t, [fit; cp] ++ [t, Intj *I. It. D;(~p,x)l ++ [t, Di(@,x)]. 

The proof is done using the canonical model technique (e.g., [15]) and ideas from 
[47,106,157]. Note that since in our model the domain of quantification for all the time 

lines is the same, and, similarly, the constant and variable assignment is the same for all 

the time lines, we do not run into the classical problems of “quantifying in”. 
Even though the agents in our model are so simple. this model can be the basis for 

introducing different properties to the attitudes, given specific features that the designer of 
an agent would like to impart to the agent. Furthermore, different types of agents can satisfy 

different axioms, which can be characterized in a precise way by appropriate conditions 
with respect to the accessibility relations of the models. We will discuss this issue in the 

following sections. 

2.3. I. Properties of the modalities 

In all the following axiom schemas, we will assume that the unbounded variables are 
universally quantified as follows: Vl E L. a E Agents, 5, r’ E T. In addition, in all the 

axiom schemas, we assume that i E ACUAV, t E TCU TV and that $I and q can be replaced 
by any wff in the language. 

Let us start with the semantics for the intention operator (It). Following Bratman [ 121, 
we would like the intentions to be consistent. This can be achieved by introducing two 
constraints on the intention-accessibility relation It: 

(CINTl) fl $Zt(l, t, a). (4) 

(CINT2) If U E Zt(l, T. a) and V E Zt(l. 5. a) then U n V # fl. (5) 

’ ’ The introduction of the agent’s language G to the system as was suggested in [ IO61 will reduce the effect of 

this rule; the agent will believe, desire, intend, or have a goal e only if e is in its language. 



The following axiom (schema) and inference rule are sound with respect to the above 
conditions. I2 

Proposition 2. A BDIG model that satis$es conditions (CINTl:4) and (CINT2:5) vuli- 

dutes the axiom 

(INTl) [t. -Znt; false] 

und validutes the inference rule 

(INT2) From cp -+ -I,L!J infer [t, Inti p] + -[t, lnt; $1. 

(6) 

(7) 

The consistency of the set of intentions at any given time is a basic premise for the 
argumentation system. For example, suppose an agent wants its opponent to intend-to do 
(;Y which contributes to its intentions and goals. This intention (a) may contradict other 

intentions of its opponent. Due to the consistency requirement, the agent must convince 

its opponent (using argumentation) to give up its original contradictory intentions to make 
place for (Y. As we will see later, the consistency requirement can guide the persuader’s 

argument generation process. 

There are several other properties of intentions that are controversial, for example when 
an agent intends q and intends @, whether it intends the conjunction, and vice versa, i.e.. 

if the agent intends cp & +, whether it intends each of them separately. The first property is 
more acceptable (see [73]). If, for example, an agent promised another agent to do al, and 
it intends to do it and also promised it to do ~2, and it intends to do it, then it is reasonable 

that the agent intends to do both actions. 
In our system this is captured by the following property: 

(CINT3) If U E Zt(l, t, u) and V E Zt(/, 5. a) then I/ f? V E Zt(l, t, a). 

The following axiom (schema) is sound with respect to the above condition. 

(8) 

Proposition 3. A BDIG model thut satisjes condition (CINT3:8) validutes the axiom 

(INT3) [t, Inti $1 & [t, In& cp] -+ [t, lnt; I,!/ & ~1. (9) 

Adopting the axiom in the reverse direction, i.e., adopting [t, Znti (cp & I/J)] + [t, Znt; cp] & 
[t , Inti $1 seems less reasonable. Suppose an agent promised to move block A to location 
s and to put block B on block A. It is not clear that it intends to do each one of the actions 
separately. In many cases, there is no benefit in performing each action separately, but only 
doing them together is beneficial (see also [ 1271). 

If one would not adopt the axiom that requires splitting a conjunctive intention, one 
cannot require the agent’s intentions to be closed under consequences. However, if such an 
axiom is appropriate in a specific application, the following axiom may also be sound: 

(INT4) [t. Int; $1 & [t, Int; pb + cp] + [t. Int; cp]. (10) 

” When referring to a con&on or an axiom we use both its name and the equation aerial number. For example. 

in (CINTI :4), 4 specifies the equation number of the condition labeled with (CINTI). 
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Closure under consequence warrants, in addition to (CINT3:8), another restriction on It. 

Proposition 4. A BDIG model that satisfies condition 

(CINTS) ZfU E Zt(l. r. a) and U 5 V, then V E Zt(l, t. a) 

validates the a.riom 

(INTS) [t,Znti(p&&)] + [t,Inticp] & [t,Znti $1. 

(11) 

(12) 

It is clear from Propositions 3 and 4 that closure under consequence of intention 

(lNT4: 10) is valid in models that satisfy conditions (CINT3:8) and (CINTS: 11). 
(INTS: 12), is a special case of the following inference rule which is also valid in models 

that satisfy condition (CINTS: 11): 

(RINTS) From cp -+ @ infer that [t. Znt; cp] -+ [t, Znti $1. (13) 

We will make similar restrictions on G and obtain similar properties for goals. Intentions 

and goals are consistent, since the agent needs to act and plan according to its intentions 
and goals. l3 However, desires may be inconsistent, as mentioned above. An agent may 
desire to dig on Mars, but also to conserve its battery power, and the two desires may lead 

to a contradiction (see also [I 521). However, we do not want the agent to desire falsely. I4 
Usually, an agent has some preferences among its contradicting desires. 

We impose the following restrictions on the desires (0) operator: 

(CDl) B 4 D(1, r, a). 

(CD2) If U E D(l, 5, a) and U 2 V, then V E D(1, r, a). l5 

These restrictions yield axiom schemas similar to (INT1:6) and (INT4: lo), where Int; is 

replaced by Desirei. 

We take a different approach concerning preferences and desires than Wellman [ 1621. 
We assume that the agent’s preferences are over the sets of time lines, while Wellman’s 

[162] preferences are over single models. An agent prefers p over I/J if it associates a 
higher value to the intension of cp (llqlj) than to the intension of I,+ (ll$ll). In different 
models, different restrictions may be put on P. 

The agent’s desires are not derived from its preferences (see also [69]), but we make the 
following restriction on the model: 

(CPD) VU, U’ E 2L. If U E D(1, a, 5) and P(1, t. a. U) < P(1, 5, a, U’) 

then U’ E D(1. 5. u). 
(14) 

Hence, in our model the following axiom is sound. 

” Another good property for agents is that their intentions and goals be consistent with respect to their beliefs. 

We discuss this in Section 2.6. 

” Note that there is a difference between [t. Desire; (cp, pj)] & [t. Desirei (-9. pz)] and [t, Desire; (cp & -cp, p)]. 
We allow the first case, but not the second one. 

” (CDI) is similar to (CINT1.4) and (CD2) is similar to (CINTS: 11). 
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Proposition 5. A BDIG model that satisjies the condition (CPD: 14) vulidutes the,following 
axiom : 

(PD) [t. Desirei(@. p)] & [t, PreJ’;(cp. +)I + 
(15) 

@P’)((P 3 PI 8~ [t, Desire;((o, ~‘11). 

The property that desires may not be consistent plays a role in argumentation. In some 

situations, an agent tries to convince its opponent to perform an action that contradicts 
the opponent’s current set of goals. However, it may contribute to one of the opponent’s 
desires. We discuss this case in Section 3.7. 

2.4. Agent types 

Within the general framework defined above, it is possible to define various types of 

agents. In the following subsections, we define the additional conditions on the models 
that these agents must satisfy in order to have a particular character. In addition, we define 

properties of the model associated with changes over time, as well as agent types that 

arise from different assumptions as to interrelations among modalities of the model. In 
Section 3.8, we discuss how agent types may be guiding factors in the selection of argument 

categories and the generation of arguments. 

2.4.1. Properties associated with reasoning power 

The minimal properties we would like an agent to have with respect to its beliefs is that 
it will not believe in “false”. However, as was discussed above, an agent whose beliefs are 
not closed under consequences may believe in a contradiction, without being aware of it. 

This leads us to the definition of the following simple agent. 

Bounded agent 

We would like a bounded agent to have the following axiom: 

(Bl) [t, -Beli false]. (16) 

So that an agent does not believe in “false”, we need to impose additional restrictions on 

its belief-accessibility relation. 

Proposition 6. A BDIG model that satisfies the condition 

(CBl) fl$ B(l, 5, a) 

validates axiom (B 1: 16). 

(17) 

We further assume that all the other types of agents do not believe in “false”, either. 

The beliefs of a bounded agent are not closed under consequences, i.e., an agent may 
believe that cp and that p + $, but it may not believe in +. However, as we discussed in 
Section 2.3, it cannot distinguish between semantically equivalent formulas. 



An omniscient agent 

An agent whose beliefs are closed under inferences is said to be omniscient. For 

omniscience we impose the following additional conditions on the belief accessibility 

relation. These render its model equivalent to a Kripke structure. 

(CB2) L E B(1, r, a). (18) 

(CB3) If ci E B(I, r, a) and U C V then, V E B(I. r. ~1). (19) 

(CB4) If I/ E B(I, T, a) and V E (I, T. a) then, U n V E B(I. t, a). (20) 

A BDIG model that satisfies conditions (CB2:18)-(CB4:20) corresponds to a Kripke 
structure, and every Kripke structure corresponds to a BDIG model that satisfies conditions 
(CB2: 18)-(CB4:20) [157], and thus such BDIG models validate the axioms of the modal 
logic K (e.g., [ 151). 

Proposition 7. BDIG models that satisfy: conditions (CB2: 18)-(CB4:20) validate the 

,following axioms: 

(B2) [t. Bel; true]: (21) 

(B3) [r. Be/i + & cp] + [t. Bel; $1 & Lt. Bel; cpl; (22) 

(B4) [t. Beli @] & [t, Be/i up] + [t, Be/; I/J & ~1. (2.3) 

There may be other types of agents that may have only a partial set of the axioms of 
the omniscient agent, for example, an agent that does not believe in tautologies (without 
axiom (B2:21)), but can reason using axioms (B3:22) and (B4:23). 

While we assume that there are agents whose beliefs are not closed under consequences, 
we do assume that all agents’ intentions and goals are closed under consequences. This is 
justifiable, since the set of intentions is much smaller than the set of beliefs. The agent is 

aware of its intentions, since it needs to search for plans to achieve them. Therefore, its 
intentions are under its scope, and it is reasonable to assume that the agent can compute 
their closure under consequence. 

A knowledgeable agent 

An agent is knowledgeable if its beliefs are correct. The corresponding axiom schema 
is: 

(B5) ]I 1 (Beli CP) + ~1. (24) 

The related condition, which makes this axiom sound. is specified in the following 
proposition: 

Proposition 8. BDIG models that satisfy the condition 

(CB5) if U E B(1. r. a). then 1 E U 

vulidutes axiom (B5:24). 

(25) 



2.5. Properties associated with chunge in modalities over time 

So far, the agent typology, namely omniscient and knowledgeable agents, has considered 
only properties local to the agent at a particular time interval. In an open world 
environment, however, agents’ intentions can change over time. Change in intentions 

can be the result of knowledge that an agent keeps track of as time changes, or 

new knowledge and/or beliefs that an agent obtains by observing its environment, or 
through communications from other agents. The following agent typology takes into 
consideration how the passage of time interacts with an agent’s beliefs and intent- 

ions. 

An unforgetful agent 

An agent who does not forget anything follows the following axiom: 

(BUF) Vt, t’((t’ 3 t) + [t. Be& lo] + [I’. Beli cp]). (26) 

An agent who does not forget anything can be characterized according to the following 
proposition: 

Proposition 9. BDIG models thut sati& condition 

(CBUF) $s < r’. then B(I. r. a) C B(1, r’, a) 

validates axiom (BUF:26). 

(27) 

A memoryless agent 

We would like to characterize agents that do not have memory and cannot reason 
about past events. An agent does not have a memory under the following condition: ” 

if I/ E B(1, r. a) and 1’ E CJ then for every T’ x r (i) for every P E Pred, @[P, 1, r’] = ti; 

(ii) B(I’, r’. a) = !A; (iii) G(l’, r’u) = k3; (iv) Ir(l’, r’a) = VI; (v) D(1’. r’a) = M; (vi) for 

every al. CI? E Agents. RECEIVE(1’. r’. al, a?) = OI and SEND(l’, r’. al, ~2) = ti. 

A non-observer 

In some situations, it is useful to assume that an agent’s beliefs change only as a result 

of message evaluation; i.e., the agent does not observe things, and its only source of 
information is communication with other agents. 

We make the following restriction on the model of such an agent: if an agent does not 
receive any message at a given time period, then if it believes in something, it will keep 
believing in it during the next time period, and the agent will not adopt new beliefs. 
If Vh E Agents. RECEIVE(I, r. a. h) = ti, then B(1, r, a) = B(1, r - 1, a). 

” Other reasonable restrictions can he chosen for characterizing a memoryless agent. 



Cooperative agents 

A group A of agents A C Agents is cooperative I7 in a BDIG model M, a time line 1 a 

time point t and an interpretation V, if it shares common goals. This imposes the following 

condition: 

n G(I, t. (2)) #(II. 

0 E A 

Furthermore, we require that the goals are common belief. ” That is, let A be the set of 

common goals, i.e., 

A= 9 I II@111 E (-) G(1,t.a) . 

1 UEA 1 

and A” C AC are the “names” of the agents of A according to V, then M, 1. 17 b 

Ctq c/&d A\jeAL Goalj @I. It is easy to see that the set of common goals of cooperative 
agents is consistent. 

Cooperative agents may have contradictory goals, e.g., Lt. G&l & [t. Gj-Q]. These 
goals do not belong to the set of common goals. Our definition of the cooperativeness of 

agents may be time-dependent. A set of agents that are cooperative at a given time period 
may become adversaries at a later time period, when their common goals do not exist any- 
more. Our notion of cooperative agents is less restrictive than the notion of Shared Plans 
of 1561, the notions of Cohen, Levesque and Nunes [85] of joint persistent goals, and joint 
intentions or collaborative activity of [ 1431. However, as demonstrated in the example pre- 
sented in Section 4.7, even this weak notion of cooperation may enhance the negotiation. 

2.6. Inter-relations among modalities 

So far we have presented axioms and semantics conditions to define properties of each 
modality. Now we will move to investigate inter-relations among the different modalities. 
First, every goal is also a desire. I9 

(GD) It, Goal;( -+ [t. (3p)Desire;(cp. p)]. (28) 

The correspondence restriction on the goal and on the desire-accessibility relations is 
described in the following proposition: 

Proposition 10. A BDIG model that sutisjes the condition 

(CGD) ifU E G(I. r. LE), then U E D(1. T, a) 

dilutes axiom (GD:28). 

(29) 

” Among cooperative agents. as among noncooperative agent\. conflicts may occur, and negotiation may be 

required. However, the argumentation is of a different nature, and we shall not dwell on that here. 

‘* We denote by EI,!T the property that all the agents of A believe @. @ is common belief at time t if everyone 

in A believes I), everyone believes that everyone believes I/I and so on 1751. C$ denotes that $ i\ common 

knowledge [60]. 

I’) In Cohen and Levesque’s framework [16]. all the agent‘s beliefs are also Its goals. We do not ha\e such a 

property. An agent may believe p. but may not desire p and may not adopt it as one of its goals. 
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An agent adopts all its goals as intentions: 

(GINT) [t, Goals q~] --+ [t. Znti p]. (30) 

The correspondence restriction on the goal and on the intention-accessibility relations is 
similar to (CGD:29). 

Proposition 11. A BDIG model that satisfies the condition 

(CGINT) if Cl E G(1. 5, a), then lJ E It(1, 5, u) 

validates axiom (GINT:30). 

(31) 

However, there may be intentions that are not goals. An agent may hold an intention 
in response to a threat or promise for a reward. During the argumentation, the agent may 

come to have an intention to prevent the opponent from carrying out a threat, or to convince 
it to give a reward, which only indirectly contributes to one of the agent’s goals. An agent 

is aware of its intentions and, moreover, its beliefs about its own intentions are correct: 

(INTBl) [t, Znt; cp] * [t, Beli[t, Znt; (p]]. (32) 

The correspondence restriction on the structure is as stated in the following proposition: 

Proposition 12. A BDIG model that satis$es the condition 

(CINTBl) CJ E It(1, T. a) ifl{l’ / U E It(l’, r, a)} E B(/, T. a) 

vulidutes axiom (INTB 1:32). 

(33) 

We assume that an agent’s intention does not contradict its beliefs: 

(INTB2) [f, Anti up] + [t. -Beli 1~1. 

The corresponding restriction on the It and B relations is as follows: 

(34) 

Proposition 13. A BDIG model that satisfies the condition. 

(CINTB2) (f U E It(1, 5. u), then L \ U 4 B(1, 5. a) 

validates axiom (INTB2:34). 

(35) 

In order to understand the intuition behind axiom (INTB2:34), we compare our notion 

of intention with Cohen and Levesque’s [ 16,181 persistence goal (P-GOAL). ” Cohen 
and Levesque assume that if an agent has a P-GOAL toward a proposition, then the 

agent believes that this proposition is not true now, but that it will be true at some time 
in the future. The agent will drop a persistent goal p only if it comes to believe that 
p is true or that p is impossible. In their logic, time does not explicitly appear in the 
proposition; thus, they cannot express P-GOAL toward propositions that will be true at 
some specific time in the future or consider situations where a proposition is true now, 

*(I Cohen and Levesque’s concept of intention is based on their notion of P-GOAL 
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but which the agent believes will become false later and therefore has a P-GOAL to make 
it true again after it becomes false. Since time is explicit in our logic, we can express 
such intentions, in addition to expressing Cohen and Levesque’s attitude P-GOAL. For 
example, t -c tl & [t.Znt;[rl. On(A, B)]] intuitively means that at time r, agent i intends 

that block A will be on block B at some later time tt. In our framework, there is no 

relation between this intention and whether agent i believes, at time t, that On(A. B) 
is not true at time t. Furthermore, we may express intentions toward propositions with 

different time points. In such intentions, the propositions may include the same predicates, 
e.g., t < tl < tz & [t, Znti[tl, On(A. B)] & -[tz, On(A. f?)]], or different predicates, e.g., 

t < tl < tl & [t,lnt;[tl. On(A. B)] & [tI, On(C. B)]]. In both cases, [t. Beli[t, On(A. B)]] 

may be true or may be false. However, we require, in axiom (lNTB2:34), that at time t 
the agent will believe that it is possible that at time rt block A will be on block B, i.e., 

-[t. Be/j-[tl, Otz(A, B)]]. 

This expressibility of our system enables us to characterize different types of agents. 

according to their beliefs about their intentions. We may characterize an agent as confident 

if it believes that it will succeed in carrying out its intended actions. 

(Conf) [f. Beli([t. Inti cp &Agent(cp. i)] --f cp)]. (36) 

The correspondence restriction on the model is as follows: 

Proposition 14. A BDIG model thut satisfies the condition 

(CConf) VU C L. 
(37) 

(1’ / I/ +Z It(l’. r. a) or A(/‘. r. I/) #u or I’ E U} E B(I, t. a) 

v&dates axiom (CONF:36). 

For example, a confident agent may believe that if it intends to move block A on top of 

block B, then it will really do so, i.e., 

[t. Be&It, Inti([tl, Do(i, move(A. B))]) -+ [tl. Do(i. move(A, B))]]]. 

A confident agent which is omniscient (B 1: 16)-(B4:23) and aware of its intentions 

(INTB1:32) believes in its intended actions. Before presenting this proposition, we 
consider the agent’s beliefs about the agent of a given action. We assume that an agent 

knows whether it is the agent of a proposition or not. 

(AGBl) [t.Agent(cp. i)] ++ [t. Bel;[t,Agent(cp. i)]]. (38) 

The correspondence restriction on the structure is as stated in the following proposition: 

Proposition 15. A BDIG model that satisjies the conditiotl 

(CAGBl) A(1. T. I/) = a ifl{l’ 1 A(/‘. r. U) = a} E B(I. T, a) 

v&dates axiom (AGBl:38). 

(39) 

We are now ready to present the proposition on confident agents. 



Proposition 16. BDZG models that validate (INTB1:32). (Conf:36), (AGBl:38) und 

(B 1: 16)~(B4:23) also validate 

(ConfB) [t. hzt; cp] & [t. Agent(cp. i)] + [t. Bel; cp]. (40) 

A confident agent that is not omniscient (i.e., does not satisfy axioms (B2:21)-(B4:23)) 
may not believe that its intended action will succeed. However, we can characterize such 

agents by imposing an additional restriction on It and B. 

Proposition 17. A BDIG model that satisfies the condition 

(CConfB) fA(I. T, U) = a arid I/ E Zt(1, 5. a), then CJ E B(1, T, U) 

v&dates axiom (ConfB:40). 

(41) 

An agent that is sure that it will be able to satisfy all its intentions, including the ones 
that are not under its direct control, can be said to be oveucoqfident. 

(OverCod) [t. Bel;([t. Anti cp] + cp)]. (42) 

The correspondence restriction on the model is specified in the following proposition. 

Proposition 18. A BDIG model that scrtisfies the conditiorl 

(Cover Conf) (/’ ) lJ 6 Ml’. T. N) OY 1’ E Cl} E B(1. T. a) 

~~alidates axiom (OverConf :42). 

(43) 

For example, an overconfident agent may believe that if it intends that block A will be 

on block B, then block A will actually be on block B, even if the agent is not capable of 
moving block A and does not intend to move it, i.e., 

[t,Bel;([t.Znti[tl. On(A, B)]] + [tl. On(A, B)])]. 

A proposition that is similar to Proposition 16 is true for an overconfident agent. 

Proposition 19. BDIG models that validate (INTB 1:32), (OverConf :42), and (B 1: 16)- 
(B4:23) also validute 

(OverConfB) [t. ht; cp] --f [t. Bel; cp]. (44) 

An overconfident agent that is not omniscient may not believe in its intentions. However, 
(OverConfB:44) is sound in structures that have additional relations between It and B. 

Proposition 20. A BDIG model that satisfies the condition 

(COverConfB) $’ U E Ml. 5. a), then U E B(1. T. a) 

validates (OverConfB:44). 

(45) 

An omniscient agent which is overconfident will not adopt intentions that conflict 
according to its beliefs. That is, its beliefs about the side-effects of its intentions will 
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influence its intentions. If [t. Inti ~1, then i believes that cp. Therefore, if the agent is aware 
of some side-effects (e.g., [t. Be& (cp -+ I/T)]), then it cannot intend the negation of the side- 

effects (e.g.,[t, -lnt; -@I). ” 

Proposition 21. BDZG models thut validate (INTB 1:32), (OverConf :42), (B 1: 16)-(B4:23) 

also validate 

(INTB3) ([t. hi cp] & [t, Beli(cp --, $11) + -[r. Int, -$I. (46) 

Proposition 21 is not true for nonomniscient agents. That is, the intentions of non- 
confident agents or (over)confident agents that are not omniscient may be contradictory 
according to their beliefs. Intuitively, this is because their beliefs are not closed under 

consequences and they do not realize that they believe in a contradiction, or because they 

do not check their intentions carefully, in light of their beliefs. This is quite common among 

humans. For example, a researcher may intend to finish a paper by a specific deadline, 

and believes that finishing the paper will prevent her from attending meetings on the day 

before the deadline. Nevertheless, she still intends to go to a faculty meeting on that day. 
To prevent such behavior, we may wish to restrict our attention to agents that satisfy 

axiom (lNTB3:46), regardless of their reasoning power. This requires adding additional 
restrictions on the belief- and intention-accessibility relations. 

Proposition 22. A BDIG model that satisfies the corldition 

then UI n U2 n U3 # Cn 

vulidutes axiom (INTB3:46). 

The above axioms and propositions put some constraints on when an agent can abandon 
its intentions. It is clear that according to axiom (lNTB2:34), if an agent starts believing 

that one of its intentions is not possible, it must abandon this intention, i.e.. 

[t, Into cpl 8~ [t + 1, Bel; -cpl --, -[t + 1. Znt; cp]. 

Similarly Cohen and Levesque [ 161 also require that an agent will give up a persistent goal 

toward a proposition it considers impossible. However, Cohen and Levesque also assume 
that an agent will forgo its intention when it believes the intended proposition is true (unless 
it is a maintenance goal). Their requirement is based on the attribute of their system that 

there is no explicit time associated with their intended proposition (as we explained above). 
However, in our case an agent may believe that as a result of its own intended actions 

the intended proposition (that is associated with a specific time) is true. In particular, an 
overconfident agent always believes that its intentions are true. In such a case, it cannot 

forgo this intention. For example, suppose 

” Similarly, a confident agent will not adopt intentions that it believes contradict its own actions 



which intuitively means that, at time t: agent i intends that block A will be on block B at 

time ~1. and it intends to move A on top of B in order to achieve this intention. Suppose 

that agent i also believes that if it intends to do something, it will really do it, e.g., if it 

intends to move block A, it will really move it, and that moving block A on top of B wiil 

have the result that at the next time point O&A. B) will be true. In such a case, agent i 
believes that, given its intentions and beliefs, On(A, B) will be true at time tl However. 

its belief is based on its intended action to move A which is motivated by its intention that 

On(A, B) will be true at time 11. Thus, the agent must keep its intentiol~ 111, Qn(A. B)] 

even though it believes [tl . Opl(A. B)] to be true. 

Cohen and Levesque also require that an agent does not abandon a persistent goal unless 
it believes it is true or believes that it is impossible. We do not require that an agent keep 

its invention until it believes it is impossible. In OUI‘ system an agent may abandon an 

intention due to other reasons. such as a request received from another agent or because of 

an observation. The ability for an agent to revise its intentions is very important in making 

argumentation effective. An agent may drop an intention because of a direct request from 

another agent, or because a request from another agent may conflict with the intention. 

Also, an agent may drop an intention as a result of a change in the environment. The 

commitment of an agent to its goals and intentions may greatly affect its performance and 

such a study is beyond the scope of this paper (see [ 681). However, different types of agents 

may be characterized in our framework. 
For example. an agent that does not change its intentions, unless it received a message 

from another agent may be characterized as follows: if Vh E Stgmts, RECEIVE{!. t, LI. b) 

= M, then Ir(i. 7. (I) = Ztll, r - 1, a). 

It is also easy to see that if an agent adopts a new intention that it believes conflicts 

with its previous ones, it will drop the original intentions. This is a simple corollary of 

axiom (lNTl33:46): 

Corollary 2.1. BDlG nwdels thut validate axiom (INTB3:46) also validate t!ze,followin,g 
fzimt 

(INTB4) [r. hti +I &L It + 1. Znti qJ & [t -t 1. Belitcp -+ -911 -+ 
(48) 

-[t + I. 1ntj $1. 

Similarly, from axiom (INTB1:32). it is easy to conclude that if an agent comes to 

believe that its intention is not possible, it will drop this intention. 
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3. Axioms for argumentation and for argument evaluation 

The formal model can be used in two ways. One use is as a specification for agent design 
1561. In this role, the model constrains certain planning and negotiation processes. It can 

also be used to check the agents’ behavior. Another use of the model is by the agents 

themselves. In this section we demonstrate how the logic presented in the previous section 
can be used by a designer of an agent for the specification of the arguments it will use. In 
the next section we will describe an automated agent which uses our logic. 

Arguments serve either to add an intention to the persuadee’s set or to retract an intention 

or to change the preferences of the persuadee. Below we present a list of several argument 

types which we use (a) to demonstrate the expressiveness of our logic, and (b) in the 
development of an automated negotiator. These argument types are not meant to constitute 

an exhaustive typology of arguments. Indeed, it has been pointed out [ 1561 that it is not 

possible to present such an authoritative classification, since arguments must be interpreted 
and are effective within a particular context and domain. The six argument types that we 
present are ones that are commonly thought to have persuasive force in human negotiations 

[65,110,124]. Argumentations which were shown to be successful in human negotiation, 
may be also successful in automated agents’ negotiations. Furthermore, we want our 
agents to be able to negotiate with humans. and therefore they need to be able to at least 

understand human argumentation. Moreover, the designers of the agents can follow the 
negotiation of the agents, if it is similar to human negotiation. The argument types we 
present are: 

( 1) Threats to produce goal adoption or goal abandonment on the part of the persuadee. 
(2) Enticing the persuadee with a promise of a future reward. 

(3) Appeal to past reward. 
(4) Appeal to precedents as counterexamples to convey to the persuadee a contradiction 

between what she/he says and past actions. 

(5) Appeal to “prevailing practice” to convey to the persuadee that the proposed action 
will further his/her goals since it has furthered others’ goals in the past. 

(6) Appeal to self-interest to convince a persuadee that taking this action will enable 
achievement of a high-importance goal. 

Threats and promises are the most common arguments used in human negotiations [ 111. 
An appeal to prevailing practice is the most common argument used in the legal system. 

Furthermore, it was found that presenting example instances (prevailing practice cases) is 
much more persuasive than presenting statistical summaries [6 1,70,107,15 11. An “appeal 

to past promise” is supported by the cognitive dissonance theory [ 1 lo] that assumes that a 
person seeks to maximize the internal psychological consistency of his/her cognition, and 
thus will be willing to keep his/her promises. This argument is also important in repeated 

interactions since agents prefer to maintain their credibility. The other two arguments, 
“an appeal to self-interest” and “a counterexample” are examples of arguments useful to 
persuade bounded rational agents which have limited inferential resources. 

Each of the above arguments will be discussed in the following subsections. For each 
type we present examples that are borrowed from human argumentation, as well as 
examples of automated agents’ interactions. Axioms for creation of such arguments will 
also be presented. Examples of argumentation among automated agents presented below 



are based on the following scenario. Agents with different spheres of expertise may need to 
negotiate with each other for the sake of requesting each others’ services. Their expertise 
is also their b~g~ning power. As an example, consider a robot R, who has a better “eye” 

(has a powerful camera) while Rh has a better “hand” {has skilled functions with dextrous 

fingers enabling it to isolate mineral chunks). Yet another agent R, has specialized maps 
and terrain knowledge and is adroit at navigation. Imagine these three self-motivated 

robots with goals to obtain samples from Mars. R,, Rh and R, are looking for different 

mineral samples. We can imagine these three agents facing the need to argue with each 
other. 22 

3.1. Arguments involving threats 

Suppose agent j intends that agent i should do to at time ? and i refuses. Based on its 
own beliefs, j assumes that i refused to do Q probably since o! contradicts one of i’s goals 
or intentions. If there is an action j3 that j can perform, that contradicts (as per j’s beliefs) 

another goal of i, and this last goal is preferred by i (again according to j beliefs) over the 

first one, j threatens i that it will do /3 if i will not do a. This type of argument may appear 
in several different forms. For example, suppose agent j intends that agent i should not do 
fy, at time r, and i insists to maintain its intention of doing cr. Here, agent j threatens i that 

it will do #I if i will clo IX. 
A labor union insists on a wage increase, The management says it cannot afford it, 

and asks the union to withdraw its request. The management threatens that, if it grants 

this increase, it will have to lay off employees to compensate for the higher operational 

cost that the increase will entail. The outcome (i.e., whether the union succumbs to the 
threat or not) depends on the union’s preferences. If preserving employment is more 

impo~ant than wage increases, the union will accept the argument (assuming it believes 
that the management will carry out the threat). If a wage increase is more important, 
then the union will not accept the argument and insist on a wage increase (here, whether 

or not it believes the management will carry out its threat is irrelevant to the union’s 
decision.) 

One of the questions related to generating a threat is: how does j choose B? If j wants 

the threat to be effective, carrying out B should be painful for i and conflict with one of its 

goals or intentions (as we stated above). However, the threat should be credible according 
to i’s beliefs (see our discussion concerning the evaluation of threats below). First of all, 

doing @ should be within the power of j (at least in i’s view). Furthermore, usually, 
carrying out a threat may contradict some of j’s intentions or goals. These intentions and 
goals should be less preferred by j than the goal that cx contributes to (again, at least in i’s 

view). 
There may be several such ,9s that ,j may choose from. The fi that is chosen depends on 

whether the persuader, j, wants to inflict a very strong threat (i.e., a ,B which contradicts 

a preferred goal or intention of i), or to start with a weaker threat (i.e., one which 
will contradict a less preferred goal of i) and, if i refuses it, to escalate with sponger 

2 Similar needs for argumentation can be envisaged when automated agents seek different goals at the site of a 

nuclear accident, or at the site of a forest fire. 
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threats (wearing i down). Argument evaluation is an important aspect of argumentation as 

discussed in the next section. 
Here is an axiom scheme specifying the generation of a threat ~gument in the logic 

presented in Section 2. 23 

& iti. .Sen~jiRrqZlest(li. Ek>(d. a)])] 

& [tz, RereiVe,jiReject(li, DO(i. CC)])] 

--f [fj. SmdjjRequest([t, Do(i. a)], -[i, Do(i. a)] -+ [t4, Do(j, j3)])]}. 

Cred is a meta-predicate which stands for an axiom that j will use for estimating whether 

B is a credible threat for i ta do a. Appr~priute is a meta-predicate which stands for axioms 
that will specify how to choose /3, when several such gs exist. 

In the example of the robots on Mars agent Rh must explore in a dimly lit area while 
digging for its mineral. Some help from R, in scanning the area with a high resolution 
camera would greatly contribute towards this goal. Rf, requests from R, the use of its 

camera. R, refuses, since the time spent in fu~hering Rh’s goals will interfere with its own 
goal-to dig for its own mineral. Rh then threatens that it will smash R,‘s camera lens if 
R, does not accede to this request. 

3.2. Evuluation of threats 

In this section we demonstrate factors affecting the evaluation of a threat. Since we do 
not assume that agents are honest, the main problem in the evaluation is how to decide 
whether the threatening agent will carry out its threat. Usually, executing a threat will 

affect the agent that threatens to carry it out, and this has a bearing on the evaluation. 
Suppose j had requested i to do (Y at a given time point t, and it had threatened i that if 

it does not do LX, ,j would do /3. Now, i should consider several issues. First of all, how bad 

is the threat? If CY contradicts one of i’s goals and @ contradicts another goal g, which goal 
does i prefer? But then again, i should evaluate whether j will carry out its threat at all. We 
may assume that /l has negative side-effects on ,j as well. The question is whether j prefers 

the benefit for itself from a! over the losses resulting from the side-effects of b in case it 
carries out the threat. Another issue relevant here is how important is it for j to preserve its 
credibility and re~utati~~n. Another issue for i to consider is whether the threat is a ~~~.~iz~~~~ 

3 fZll the axioms listed in this section are only suggested possibilities for producing the relevant argumentations. 

We demonstrate tile expressibility of the logic in formalizing such axiom% 



threat. A bounded threat is always credible since i is aware of prior arrangements made by 
j to execute the threat should i default. Usually, j will convey this information to i in a 

prior exchange. If i believes that j may carry out its threat and decides that it is wo~hwhile 
for it to do (Y, it still needs to update its goals and intentions. Here i will intend cx in order 

to contribute to preventing j from doing ,6 which contradicts R. Note that here i intends 
a, without /I being a goal. Furthermore, since any goal is also an Intention (GINT:30), i 
should abandon the goal that cz contradicts, as well as the related intentions. 

(WI. t2, t3, t, a, j3, i, j)(2l < t2 < f < t-, & i # j 

In this axiom we have listed one way to evaluate whether a threat is credible. Here, i 

believes that if j carries out threat 6, this will contradict i’s goal f$\) as well as some 

possible goals of j (sj‘). If i believes that 61 is one of j’s goals, and if it believes that j 

prefers the goal that cz contributes to over gi then it will believe that B is a credible threat. 
A similar axiom can be specified which considers cases where j asks i not to do c~. 

Agent j entices agent i to do action 01 (alternately, avoid doing a) at time t by offering to 
do an action p at a future time, as a reward. Agent j believes /!I to cont~but~ to the desires 
of i . 

An example is a sales agent trying to persuade a customer to buy a VCR by offering a 
free servicing plan and a set of blank cassettes. 

(vtl,t2.t~,t4.t,i,j,CY,p)Itl <t2<t<t<t~&i#,j 

& [tl, SendjjRequest([t, Do(i, a)])] 

& [TV. RcTx+V~j~Rejc?Cf([t, DO(i, a)])] 

& [t3, Belj (It33 Goah If. gll& Goah IQ* ~211)l 

6% [t3, Bekj ([t3, Pd(lfT R21, [t4, RI 111)l 

& [Q, Bdj[f, Do(i, CX) -+ -gll& If43 Wj, B) --, x211 

8~ [tx, Rel,;[tg, Cred(B, a. i, )I1 & Et+, Beljlts, Aw-opriate(B, a, i)ll 

+ [Q. ~~~~~~~Req~{~.st([~, Du(i, a)), [t. Do(i. a)] + IQ, Do(j, ,B)])]}. 
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Consider the scenario described in the threat example above involving robots. Instead 
of responding with a threat, Rh could offer to contribute towards R,‘s goal by helping it 
to isolate its samples from the debris better by using its sorting skills by means of skilled 
fingers. This would reduce the weight of the samples that R, now plans to collect, and 

greatly increase the ratio of mineral to debris for R,. 

3.4. Appeal to past promise 

In this case agent j had requested i to do an action c~ based on a past promise. If i 

refuses, j reminds him of the past promise. For example, a child has promised her parent 
to clean the house, in order to convince them to buy her something. When she is later asked 

by the parents to clean the house and refuses, the parents may remind her of the promise. 

(Vru. tl, t2. tj, t& i, i, j, cx. #l){to c tl c t2 c t3 c i < t4 & i # j 

& [tl, SendjiRequest([i, Do(i. a)])] 

& [tz, Receivej;Reject([i. Do(i, a)])] 

& [tj. Belj [to, ReceivedjiRequest([th, Do(j. /3)]. [t& Do(j. p)] -+ [i, Do(i, cr)])]] 

+ [tg. SendjiRequest([i. Do(i. a)], [to, Sed;jRequest([th, Do(j. /?)I, 

ItA, Do(j. /VI--+ [t Do(L ~>l)l)ll. 

For example, if as in the previous case, Rh offered to contribute to R,‘s goal by helping 

it to isolate its samples later, when the time for sample isolation arrives, R, may use this 

argument as an argument for a request from & to help it in isolating samples. 

3.5. Countere.xample 

Here, agent j had intended that i do (II at time i, requested it from i, but i refused. 

Now j believes that the reason i refused is that u contradicts one of its goals or intentions. 
However, j believes, that in the past, i had done another action B that also contradicted the 

same goal or similar intention, and brings it up as a counterexample. 
As an example, consider a parent trying to persuade a teenager to stay up until midnight 

to study for an exam. The teenager refuses on the grounds that she may suffer bad health 

from staying up late. The parent points out that the teenager had stayed up until 2 a.m. 
for a party the previous week, without suffering any ill-effects, and brings it up as a 
counterexample to the argument. 

Wt’, tl, t2. t3, i, i, j, (11. B)(t’ < tl < t2 < tg < i&i # j 

& [tl. SendjiRequest([i, Do(i. w)])] 

8~ [tz. ReceivejiReject([i. Do(i, w)], [f, Do(i, a) + -g])] 

8~ [tg. Belj([t’, Do(i, /?) & Do(i, p) -+ -g])] 

+ [tx, SendjiRequest([i, Do(i. w)]. [t’, Do(i, /I) & Do(i, 8) -+ -g])]}. 



The following is an example from the robots on Mars. Suppose, RI, requests R,,, to 
survey the terrain using its navigation skills. R,,, ‘s temperature sensors indicate that in some 
areas there may be high temperature pockets and these may harm its electronic circuitry. 

R,n refuses on these grounds. & points out that in the past two days, R,, has withstood 

much higher temperatures created during the explosions used in the digging process, 
without any evidence of harm to its circuitry. Rh brings this up as a counterexample to 

convince R, to undertake the survey. 

3.6. Appeal to “prevailing practice ” 

In this case, j receives a refusal from i to do o on the grounds that it contradicts goal g 
of i. If j believes that another agent h had done the same u and it did not contradict the 
same goal g held by h at the time, it uses it as an argument. For example, a teacher intends 
that a student talented in baseball should stay after school for extra curricular activity. This 
will contribute to the teacher’s desire to build a good baseball team at school. He asks the 
student to do so, but the student refuses on the grounds that this will adversely affect his 

academic performance. The teacher points out that last year the star baseball player of the 
class was also an ‘A” student, and that several good players are also good students, and 

encourages the student to take up the activity. 

(Vt’. t. tl, t2, t3.1. i, .j, 12, a)( 

tf<tl <t~<t~<t&i#,j#h 

& [tl, Sendj;Request([T, Do(i, a)])] 

& [t2, Receivej;Reject([l, Do(i, a)], [F, Do(i, a) + -g])] 

& [tg, Belj([t’, Do(h. (Y) & -(Do(h, (Y) + -g)])] 

-+ [t3, SendjiRequest([f, Do(i, a)], [t’. Do(h, a) & -(Do(h, a) + -s)])]}. 

With the robots on Mars, consider the following mention of prevailing practice in an 
argument. As in the counterexample scenario, &, requests R,n to survey the terrain using 
its navigation skills. R,n's temperature sensors indicate that in some areas there may be 
high temperature pockets and these may bring harm to its electronic circuitry. R, refuses 
on these grounds. Rh points out that both R, and itself were exposed to much higher 

temperatures two days ago, and had withstood them quite well. 

3.7. Appeal to .se(f-interest 

In this case j believes that cz implies one of i’s desires and uses it as an argument. This 
is a useful argument when j believes that i is not aware of the implication. For example, 
an employee has a goal to study Japanese, but wants to save money as well. She intends for 

her company to pay for the Japanese lessons and asks the company. The company refuses. 
The employee points out that having an employee with knowledge of Japanese is a great 
asset to the company, especially in the coming years when the company will face stiff 
competition from the Japanese. 
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In another setting, agent j requests agent i to give up its intention to do (11 by pointing 
out that either u or its side-effect /3 contradicts one of i’s desires. 

(Vtl,t2,Q,t,i,j){tl <t:!<t3<i&i#j 

&[t] ,SOldjiReqZMSt([i, Do(i,cr)])] 

& [tz. ReceiVejiReject([t. Do(i, a)])] 

& [tj. Belj ([f, Desirei (dl , p)])] 

& [tx, Belj([i. Do(i, a) + dl])] 

+ [tj. SendjiRequest([t. Do(i, a)], [i, Do(i, a) + dl & DeGrei(dl, p)])]). 

For example, suppose R, and & both plan to dig at site X on Tuesday. If they both dig 
at the same site, clearly, there will be destructive interference, leading to a malfunctioning 

of the procedures of either. R, makes a proposal to Rh to divide their digging time so 
that R, digs in the morning while & digs in the evening. Rh refuses, since obviously, 

this proposal reduces its product. However, R, points out, that if &, refuses, it will 
result in near zero product for Rh and R,. Instead, sharing the time will further Rh’s 
self-interest much better, since getting half the work done is better than getting no work 

done. 

3.8. Selecting arguments by an agent’s type 

A persuading agent, faced with a particular situation, must decide which argument to 

use. In order for an argument to be effective, it must address beliefs and intentions of the 
persuadee. Therefore, the beliefs of an agent about the persuadee can be used as guidelines 
for argument generation. One type of belief pertaining to a persuadee is the type of agent 
the persuadee is believed to be. This can influence the argumentation. 

For example, nonbounded threats or future rewards are not applicable if an agent is 
memoryless. 24 Suppose agent j asks a memoryless agent k to do a! and threatens it with 

/I. Let us assume that /I is expensive to j. If k will not do (Y, there is no benefit to j 
to carry out the threat (i.e., do B). The only reason that j may do B is to maintain its 
credibility. However, if agent k does not have a memory of past encounters, there is no 

notion of credibility. In future encounters, k will not remember whether j carried out its 
past threats or not. But then again, if it is clear that j will not carry out its threat (or will 
keep its promise for future reward), there is no sense in making threats to begin with. 
It seems that in case of memoryless agents only bounded threats or rewards are applic- 
able. 

On the other hand, the counterexample argument is appropriate in the case of a 
memoryless agent. In this case the agent does not remember the counterexample, and 

the purpose of the argument is to bring it to its notice. Of course, a “memoryless” agent 

24 Note, that this discussion is specific to automated agents. Human negotiators always have at least some 

memory of the past. 



may evaluate a counterexample type argument as noncredible exactly because the agent is 
memoryless. 

Counterexamples may also be useful as an argument for an agent that is not omniscient. 

This agent may not have realized in the past that its action contradicted its goal. However, 

the nonomniscient agent may respond with a counter-argument that had it realized the 
implication, it would not have taken the action in the past either. 

Appeal to self-interest is more appropriate in cases where the agent is not omniscient or 

in cases when the agent’s beliefs are incomplete. In both situations the agent may not be 
aware of its self-interest, and such an argument may change its intentions. 

It seems that the arguments used among cooperative agents would tend to be 
different from those used among noncooperative self-motivated agents. Here, we have 

concentrated mainly on arguments that are appropriate in noncooperative environments. 

All the arguments consider goals and desires of self-motivated agents. In a cooperative 
environment additional arguments may be made, such as “appeal to a universal principle” 
(e.g., fairness) or “appeal to authority” [ 1481. There is no sense in talking about fairness 

with a “self-motivated” agent. However, cooperative agents that were built by the same 
designer, or that belong to the same organization, may be influenced by such an argument. 
On the other hand, threats seem inappropriate in cooperative environments. If the agents 

have common goals, standing in the way of another agent may cause damage to both 

agents. 

3.9. An example: labor union versus management negotiation 

We will consider the labor union example we presented in Section 3.1. The union 
insists on a wage increase. The management says it cannot afford it, and asks the union 
to withdraw its request. The management claims that if it grants this increase, it will have 
to lay off employees to compensate for the higher operational cost that the increase will 

entail. 
We will simplify the issues and describe only part of the negotiation process here. Let 

us suppose that it is October 2nd, the union (u) has the goals to have an increase in wages 
(wage.increuse) become effective December 1, and also to prevent causing unemployment 

(- unemployment). We assume that the management(m) wants to save money (suve). We 
also assume that in the exchange that took place between the union and the management on 
the previous day, i.e., on October 1, the union had received a message from the management 
requesting it to call off asking for a December 1 st wage increase (ask. wage. increase), with 
a threat that, otherwise, the management will lay off employees (luy.o#). Evidently, if there 
will not be a request for a wage increase on December I, then there will not be a wage 

increase and the management will save money. On the other hand, laying off employees 
will cause unemployment. We also assume that the union believes that the management has 
a goal to save money on December 1, but it does not have the goal to preserve employment. 
The union prefers to preserve employment over obtaining a wage increase. From these 
assumptions, one can conclude, using the evaluation of the threats axioms, that the union 
will intend not to ask for a wage increase. The union will revise its goals, and will send the 
management an appropriate message. Note, that the union may still continue to hold the 

desire for a wage increase. 
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Prior to Ott 1 (in the recent past): union requests a wage increase. 

Ott 1 (yesterday): 

[Octl, Receive,,Request([Decl, -Do(u. ask.wage.increase)], 

[Decl, Do(u, ask.wage.increase)] + [Drcl. Do(m, lay.qf)])] 

Ott 2 (today): at start of argument: 

[Oct2, Goal,[Decl, wageincrease] & Goal,[Decl, -unemployment]] 

[Oct2, Goal,[Decl, save]] 

[Oct2, Bel,[Oct2, Goal,[Decl, save] & -Goal, [Decl . -unemployment]]] 

[Oct2, Pref,,([Decl, -unemployment], [Decl, wage.increase])] 

[Oct2, Bel, [Decl. -Do(u, ask.wage.increase) -+ -wage.increase & save]] 

[Oct2, Bel,[Decl, Do(u. ask.wuge.increase) -+ wage.increase & -save]] 

[Oct2, Bel,[Decl, Do(m, lay.off) + unemployment]] 

On evaluation of argument: 

[Oct2,Znt,[[Decl, -Do(u, ask.wage.increase)], [Decl, -Do(m, luy.of)]] 

-[Oct2, Goal,[Decl, wage.increase]]. 

3.10. Contract net example 

Assume a contract net kind of situation [ 1421 where agents make their bids indepen- 
dently, but also communicate to resolve any conflicts, in case two agents a and b opt to do 
a particular task. An argument from one agent to another (or of an arbitrator agent to one of 
the contestants) could be: agent a says to agent b, if you insist on doing the task (tusk.b), 

then the overall system goal will suffer (e.g., the overall task will not be on time (ontime)). 

Formally, the following message will be sent, using the axiom “appeal to self-interest”: 

[t, Send,b(Request([t’, -Do(b, task.b)], [t’, tusk.b + -ontime]))]. 

We note that there is a difference between this example and the previous one in that agent 
a is not threatening to do an action such as delaying the overall task, on account of being 
upset over b doing the task. Rather, agent a simply explains to agent b, the deleterious 
consequences of agent b’s action that presumably agent b could not deduce itself (due to 
lack of knowledge or inferential power). This is a case of appealing to self-interest. 

There is also a similarity to the previous examples in that, if agent b prefers his goal of 
the “overall task being on time” than doing the particular subtask itself (which could bring 
him some reward), then agent b will accept agent a’s argument (assuming b trusts a). 

4. Automated Negotiation Agent (ANA) 

In the previous section we demonstrated how the formal model can be used as a 
specification for agent design. In particular, we demonstrated how axioms specifying the 
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generation of arguments can be expressed. Another use of the formal model, which we 
present in this section, is that the agents themselves use the formal model and the axioms. 
For example, if agent i derives “Do(a, i)“, it would try to perform o. Similarly, the agents 
would use axioms and rules to evaluate messages, to send arguments and to update their 

knowledge bases. In order to demonstrate this aspect of our formal model, we implemented 
an Automated Negotiation Agent (ANA) that acts in a simulated environment.25 The 

simulation system complies with the definition of an Agent Oriented Programming (AOP) 
system [138]. This term denotes several ideas: (i) The agent is represented using notions 

of mental states. (ii) The agent’s actions depend on these mental states. (iii) The agent’s 
mental state may change over time. (iv) Mental state changes are driven by inference rules. 

ANA gives an additional layer of design flexibility. The system infrastructure gives the 

user the ability to define the agents and to set a different mechanism as its mental state 
engine for each agent. Therefore, the user can control the agents’ mental state behavior. In 
addition, the user can test different methods of negotiation between the agents and evaluate 

the effectiveness of various arguments in the negotiation. We demonstrate the properties 
of the system in a Blocks World environment. The ability to provide infrastructure for 
controlling agent’s mental state behavior could be useful for constructing “believable 

agents” [7.62]. 

4.1. The structure of an agent and its life cycle 

The general structure of an agent consists of the following main parts (see Fig. 1): 
l Mental state (beliefs, desires, goals, intentions). 
l Characteristics (agent type, capabilities, belief verification capabilities). 

l Inference rules (mental state update, argument generation, argument selection, request 
evaluation). 

The designer of a specific agent can influence its general behavior by providing the 

following input at agent creation time: 
(1) Mental state update rules: belief verification rules, goal selection rules and intention 

generation mechanism (the planner of actions). 
(2) Argument generation and selection mechanism. 
(3) Request evaluation rules. 

In addition, when the user creates an agent, he/she assigns it initial beliefs and desires. The 
general inference rules and the specific beliefs and desires are the driving force behind the 
agent behavior. Once an agent is created, it operates in a loop. We call this loop the agent 

l$z cycle. 
The agent life cycle includes the following steps: 

(1) Generating goals for the current time interval. 

(2) Generating intentions for selected goals. 
(3) Performing all possible intentions-to. 
(4) Generating requests (with or without arguments) for an intention-that. 
(5) Selecting one best request from those generated. 

(6) Sending that request. 

25 ANA was implemented in LPA Prolog for Windows. See [37,144] for a user guide 
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AGENT 1 

MENTAL STATE: beliefs. desires: goals. intentions. 

INFERENCE RULES: 

IR for updating mental state: goals selection, planner. 
belief verification 

IR for argument generation 

IR for argument selection 

IR for argument evaluation. 

CHARACTERISTICS: agent type. capabilities. 

AGENTN 

MENTAL STATE: beliefs. desires, goals, intentions. 

Fig. I ANA structure. 

(7) Reading incoming messages. 
(8) Evaluating incoming messages. 
(9) Updating beliefs, goals and intentions. 

(10) Responding to incoming messages. 

(11) Continuing from step (3). 
As we said above, when the user creates an agent, he/she assigns it initial beliefs 

and desires. The agent associates a utility with each of its desires and uses its ranked 

desires and its beliefs to select its goals. These are the initial goals for the current time 
interval. From these goals the agent generates its intentions for the current time interval 
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using a planning mechanism. Each of these intentions is categorized as intention-that or 
intention-to, according to the capabilities or lack of capabilities of the agent to perform the 
actions defined in the intentions. 

The generation of an agent’s intentions completes the first stage in the agent’s life cycle. 

The agent will try to fulfill each and every one of its intentions. If there are intentions that 
should be performed and can be performed by the agent, then it will execute them, unless 
these actions can be used by the agent in future negotiations as a bargaining card. If the 

next intention to be performed cannot be executed by the agent (it is an intention-that), 
then the agent will generate a request message to one of the other agents that, according 
to the agent’s beliefs, can execute it. The agent will now wait for a response. Note that the 
agent will remember that it issued the request. Later on, the agent will be able to use this 
information. 26 

According to the response, the agent will continue handling other intentions or will 
have to generate another request, this time using some type of reasoning. Actually, the two 
agents will start negotiation over this request. If argumentation is needed, the agent will 

generate all kinds of arguments that can be used in the negotiation. It will then select one 

of these arguments, which it determines to be most suitable, and will send it in a message 
to that other agent. Again, the agent will wait for a response. If the response is positive, 

the agent will wait for its execution and continue from that point on. Otherwise, the agent 
will try to generate a more persuasive argument and use it in a new request. This cycle will 
continue until there are no more arguments to be used, in which case, the agent will have 
to revise its intentions and possibly its goals. 

This is a typical scenario for an agent life cycle. However, there might be cases in which 
the agent will generate its goals from scratch. Assume that a second agent issues a request 

for help which contradicts one of the agent’s goals. If as a consequence of some argument, 
e.g., a threat, the first agent agrees to help the second agent, then the agent should select 
a new set of goals from its desires. This time, the selected set of goals will not contradict 

that second agent’s request. 
As we discussed in the theoretical section of this paper, time increments play a major 

role in the process of negotiation. As time passes, agents become more aware of their 
environment and can reason about each other’s credibility. In the implementation, we 

divide the time line into several intervals. The number of time intervals is not known to 
the agents. We believe that the stages of negotiation are more relevant to argumentation 
than the length of each negotiation phase. We make this restriction, under the assumption 
that the agents have sufficient time to negotiate efficiently and take action in the same 
time interval. However, during negotiation, the agents can take into consideration past and 

future time intervals. This is based on the agents’ ability to remember past events. 
Thus, assume that during the negotiation phase of the first time interval, the time interval 

expires. The agent will have to generate its goals and intentions for the next time interval 
and start all over again. As mentioned above, starting a new time interval is not the same 
as starting the whole scenario from scratch. This time the agent has more information and 
knowledge about other agents and about the world. Moreover, the agent usually remembers 

26 Given the general framework described in this paper, more sophisticated agents can be constructed (see [144]). 

Here we describe the simplest agent which we developed. 
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previous promises, threats, and actions. Now, it will be better able to evaluate requests 
in the new time interval. Promises that were not fulfilled will damage the other agents’ 
credibility in the eyes of the agent. The next time the agent will have to consider such 
a promise, it will not be that naive. The idea is to be able to conduct a more efficient 

negotiation as time progresses. 
We have described the life cycle of the agents and their capabilities in conducting 

negotiation with each other. Note that our model places no restrictions on the agents’ 

behavior during the negotiation. The logical negotiation protocol between the agents has 

a loose definition, as it adapts itself to the situation in which the agents are operating. 
An agent has no obligation to respond to any of the messages it receives. On the other 
hand, an agent can send as many requests as it wishes for one action. Although the model 

does not impose the restriction that an agent has to wait for a response before sending any 
new requests, an agent presumably will want to wait for and evaluate how the reply to a 
response fits into its current plan before sending another request. In our implementation 
we allow the agent to send one argument in each message. It is possible to relax this 

restriction, but it will require the development of rules for deciding when to send more 
than one argument, which arguments to send in such situations, and how to evaluate 
messages which consist of more than one argument. However, sending one argument at 
a time is considered a good negotiation policy [ 1651: arguments reveal information about 

the sender and may lead to commitments (e.g., the need for keeping promises). Also, in our 
environment communications take significantly less time than computations. In particular, 
finding a good argument is complex, and thus. it is worth trying one argument and only if 
the opponent is not convinced, more time should be spent on finding and selecting a better 
argument, which can be sent in a new message. 

4.2. Inference rules for mental state changes 

As described earlier, every agent has inference rules, provided by its designer, for 
changing and updating its mental states according to various inputs. The details of the 
syntax of these rules can be found in [37]. In the following subsections, we present the 
form of these rules and the general rules we implemented which specify the behavior the 
agents exhibit. We also demonstrate the instantiation of theses rules in the Blocks World 
environment in Section 4.6 and Section 4.7. 

4.2. I. Belief veri$cation rules 

The agent is assigned an initial set of beliefs by the user of the system. These beliefs 
change over time, according to new information the agent receives from the environment 
or from other agents. The agent uses its belief verification rules to conclude a new belief 

according to existing beliefs. The syntax of these rules is as follows: 

agent_believes(AgentName, Belief, TimeInterval, TruthValue):-Condition. 

where AgentName is the name of the agent. Belief is any data, information or a fact 
statement that is being generated (or evaluated) by the inference rule. Timelntervul is the 
time interval for which the Belief’s TruthValue is relevant. TruthValue is the truth value 
that is being generated by the inference rule. Condition is the body of the inference rule 



(Prolog clause). Once the Cunditio?l is found to be true, then the agent considers the belief 
to be correct or incorrect at time TimeInterval, according to the TruthValue generated by 
the Condirion. 

Currently, we have defined and implemented two types of negotiating agents, ~~aso~~ble 

and knowledgeable, that are omniscient. In the implementation of these agents we 
distinguish between the agent’s explicit and implicit beliefs [84]. The agent’s explicit 

beliefs are the ones that are specified in its knowledge base. The implicit beliefs of a 

reasonable or knowledgeable agent are the beliefs it can conclude using its inference 
rules. That is, the reasonable agent’s implicit beliefs satisfy axioms (B 1: 16)-(B4:23) of 

Section 2.4 and the beliefs of a knowledgeable agent also satisfy axiom (B5:24). The 

agent’s beliefs are changing over time. However if the agent believes that a sentence is 
true, it will not change this truth value unless it receives some new relevant information. 

In addition, at any given time point, we make the closed world assumption, i.e., an 

agent always implicitly believes a sentence or its negation, but this implicit belief may 
change over time. 27 When a reasonable or knowledgeable agent needs to check whether 

it believes a sentence to be true at a given time point, it will try to infer this sentence 

with respect to the given time point. If it fails, it will conclude t.hat this sentence is false 
and that its negation is true. However, when considering a different time period, it may 

reach a different conclusion. Fu~hermore, the agent can revise its past and future beliefs 
after observations or after evaluating messages received from another agent. For example, 
suppose, during the negotiation, a reasonable agent needs to find out whether its opponent 

desires, at time tl , that block A will be on block B at time 12. It will check its knowledge- 
base and if this desire of the opponent is not explicitly stated and it cannot be inferred from 
other explicit beliefs, it will conclude that its opponent does not desire that A will be on B 

at the relevant time. However. if, for example, later its opponent asks the agent to put A on 

B, the agent will revise its beliefs. 

4.2.2. Goal selecrion 

An agent’s desires may conflict with one another (see Section 2.3.1.) When a new time 
interval is reached (or just after the. agent has been created), the agent will look for a subset 

of its desires in order to set these as its goals for the specific time interval. In order to 
do so, the agent may use the preference values that is assigned to each and every desire. 
The selected desires (called goals) should not conflict with each other. The syntax for goal 

ge~~erating rules is as follows: 

generate_goals(AgentName, ListQfGoals, 

Tin~eltzterval~AgentNamefGonLState~GoalsTimefnten~al) :-Condition. 

where AgentName is the name of the agent; ListQfGoals is the list of the agent’s goals, 

which is a subset of its desires; TimeInterval is the current time interval; GoalState is 
a different representation of the selected goals. This representation depends on the world 
environment example as it is used by the user. This will later be used to generate the agent’s 

?’ The appropriate semantic restriction on the structure of Section 2.3 is the following: VI E L, R E Agents. z E 
T. ii & L. ftl E B(/. T. u) or L \ U E &i. T. a>). 
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intentions. GoalsTimeInterval is the time interval in which the goals being selected should 
be achieved. Condition is the body of the rule which defines the way to generate the agent’s 

ListOfGoals. 
In our case example of the Blocks World environment, we used the simplest way to 

generate the agent’s goals. We generated all possible subsets of the agent’s nonconflicting 
desires. Then we selected the subset which has the maximum sum of preference value for 
all of the agent’s desires, regardless of the number of desires in that subset. 

4.2.3. Intention generation-planning 
A set of rules should be assigned to an agent to be used to generate intentions for 

the agent’s selected goals. Performance of the intended actions will lead to satisfying the 
agent’s goal. 

search(AgentName, GoalState, Path, Intentions) :-Condition. 

where AgentName is the name of the agent. GoalState is the output from the goal 
generation rule that was previously executed by the agent. Path is a set of steps that 
lead to the intentions. Intentions is a list of actions that are to be executed. Each action is 
accompanied by its generating cause. The following structure is formed: Action/Source. In 
addition, each intention is assigned an ZntentionZD which is a numeric ID of the intention. 
We added this ID for easier reference to the associated intention. Finally, each intention 
is associated with Precondition which is a statement that should be verified before that 
intention is carried out. Only if this precondition is found to be correct will the agent try to 
fulfill that intention. Here again, Condition is the body of the rule which defines the way to 
generate the agent’s Intentions. Once created, the system infrastructure will check each of 
the intentions to verify whether the agent is capable of carrying out that Action. According 
to the agent’s capabilities, each intention is classified as intention-to or intention-that. 

4.3. Argument production and evaluation 

In order that an agent be able to negotiate with other agents, it must be provided with 
three sets of rules: (1) argument generation rules; (2) argument selection rules; (3) request 
evaluation rules. We discuss them below. 

4.3.1. Argument generation rules 

Each agent in the system is assigned a list of possible argument types. Each argument 
type defines preconditions for its usage. Only if all of these preconditions are met, will the 
agent be allowed to use that argument type. These preconditions are verified against the 
agent’s mental state. An agent cannot be certain of another agent’s goals. It simply holds 
beliefs about the other agent’s goals. Such information can be accumulated by the agent 
during negotiation. The rules require that the agent be able to use historical data and to 
evaluate the relationship between actions. 

The argument generation rule is used when an agent identifies an intention that it cannot 
execute (it is an intention-that). The syntax for argument generation rules is as follows: 

generute_one_argumentger_intention(AgentName,Argument, IntentionID, 

CurrentTimeInterval, Precondition, Action, GoalTime, Source) :-Condition. 
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where AgentName is the name of the agent; Argument is the generated argument resulting 
from use of the rule (as defined above); ZntentionZD is the numeric ID of the intention 

which motivates the search for an argument; Action is the intended activity that should be 
performed according to the intention and Precondition is a condition state that should be 
satisfied before the action is executed; GoalTime is the time interval in which the intention 

is to be achieved and Source is the source cause for that intention; CurrentTimeIntervul 

is the current time interval. As before, Condition is the body of the rule which defines 
the way to generate the Argument. We have developed specific simple rules for the six 

types of arguments identified in Section 3. These simple rules can be replaced easily 

by more complex rules (see [ 1441) but we present them here to demonstrate the main 
mechanisms of ANA. We will demonstrate their use in a specific scenario of the Blocks 
World environment in Section 4.7. 

An uppeal topastpromise. As was discussed in Section 3.4 in this case, the agent expects 

the opponent agent to perform an action based on a past promise. This type of argument 
should not be used with a memory-less agent since it cannot remember past promises. We 

assume that before generating an argument the agent has checked that the opponent can 
execute the intended action. The main steps in finding such an argument are as follows: 

( 1) Check whether the opponent is a “memoryless” agent according to your beliefs. 28 

If so, then this kind of argument cannot be used against it, since it does not remember 

past events. 
(2) Check that you received a request from the opponent in the past, which included a 

future reward argument. If that reward was the intended action right now, then this 

argument type can be used. 

,411 Liypeul to self-interest. As was discussed in Section 3.7, in this case, the agent believes 
that the requested action will serve one of its opponent’s desires. This is a useful argument 

when the agent believes that the opponent agent is not aware of the implications. Therefore, 
this should not be used with a knowledgeable or reasonable agent, since the inferences of 

such agents are closed under consequences. 
The main steps in finding such arguments are as follows: 

(I) 

(2) 
(3) 

(4) 

Check whether the other agent is a ‘reasonable’ or ‘knowledgeable’ agent (according 
to your beliefs). If so. then this kind of argument cannot be used against it, since it 
is already aware of its own interests. 
Find one desire that you believe the opponent has. 
Generate the list of actions, the plan, which will lead from the current world state to 
a state which satisfies the opponent agent’s selected desire. This can be done using 

your own planning procedure. 29 
Check whether the action (which is to be executed as a result of the argument which 
is being generated here), appears in the plan generated in the previous step. If SO, 

2x Currently. the agent does not learn about its opponent’s type, but uses beliefs given to it. Future 

implementation could be that an agent, while conducting a long-range negotiation with another agent, will learn 

and gueu whether that other agent is a “memoryless” agent or not. 

“) In the Blocks World scenario. we use a STRIPS-like planner (see Section 4.6). 
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use the selected desire in your argument, since the opponent, once carrying out the 
requested action, will get closer to fulfilling its own desires. This is how the self- 

interest condition is being checked in this rule. 

An appeal to prevailing practice. In this case, the agent believes that the opponent agent 

refuses to perform the requested action since it contradicts one of its own goals. However, 
the agent gives a counterexample from a third agent’s actions, hoping it will serve as a 

convincing method. The main stages are: 
(1) Find a third agent which you believe has executed the same action in the past. 

(2) Make sure that, according to your beliefs, this third agent had the same goals as the 

current persuadee. If so, use this third agent as an example. 

A counterexample. This argument is similar to “appeal to prevailing practice”; however, 

the counterexample is taken from the opponent agent’s own history of activities. Here, it is 
assumed that the agent has had a chance to observe the actions of the current persuadee in 

the past, or somehow has access to the persuadee’s past history. 

A promise of afuture reward. In this case, the agent promises its opponent a future reward 

as a condition for the opponent agent to help it execute the requested action. This should 

not be used with a “memoryless” agent, since it cannot remember any promises. The basic 
steps to generate this type of argument are: 

(1) Find one desire of the other agent for a future time interval. Consider first joint 

desires, i.e., a desire of both agents. Also, try to find a desire which can be satisfied 

through actions that you can perform while your opponent cannot. 

(2) Perform step (3) as in the production of arguments of the type, “an appeal to self- 
interest.” 

(3) This step results in a set of actions. Out of this set select an action which you can 

perform but your opponent cannot and that will cause you minimal cost. This action 
will be offered to the other agent as a reward in the future time interval, if it executes 

the action needed right now. 

A threat. In this case, the agent threatens to execute an action which will conflict with its 

opponent’s plans, if the opponent agent will not help the agent in executing the requested 

action. The basic steps to generate a threat are: 

(1) Find one desire of the opponent agent for a future time interval. Consider first desires 
with the highest preference value for the opponent which are not included in your 

desires set. Also, try to find a desire which involves actions that you can perform 
while your opponent cannot. 

(2) Find a contradicting action to the desire. 3o 

3o For example, a contradicting action in the Blocks World, is an action which results in a block being placed 

in a different position than it was desired. So, for example, if according to the agent’s desire BlockA should be 

in LxI, then putting BlockA in 10~2 is a contradicting action and putting Bloc!& in lot 1 is also a contradicting 
action. 
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(3) If you are not able to find a contradicting action: 

Perform step (3) as in the production of arguments of the type, “an appeal to 
self-interest.” This results in a list of actions that can lead from the current state 
to a state believed to be desired by the opponent. 

Select one action from the many actions that were generated in the previous 
step. 

Choose a threatening action with respect to the selected action. A threatening 

action is one that undoes the effects of actions that would bring about a world 

state believed to be desired by the opponent. ” 
chosen action (either in step (2) or step (3) above) will be presented to the 

(4 

(b) 

Cc) 

The 

opponent agent as a threat for a future time interval, if the opponent refuses to 
execute the requested action right now. 

4.4. Argument selection rules 

The agent may generate several arguments for any specific situation. Only one of these 

should be used for each step of the negotiation. Therefore, it is required that an agent be 
supplied with a means for choosing one of the arguments. The syntax for such rules is as 
follows: 

select_and_send_one_urgument(AgentName, ArgumentList) :-Condition. 

where AgentName is the name of the agent; ArgumentList is a list of all arguments that 

were generated using (the previously introduced) rules and from which one argument is to 

be selected; Condition is the body of the rule which defines the way to select and send one 
argument from the list of ArgumentList. 

Currently, we implemented only one rule of selecting an argument. We order all 
argument types by their severity. That is, we order all of the argument types on a continuum 
from the weaker ones to the most aggressive ones, following the argument severity ordering 

of [ 1481. Our mechanism of choosing an argument is simple. The agent will first try to use 
the weakest argument and if it does not succeed, it will follow with stronger arguments 

(see [52]). The order is set as follows: 

(1) An appeal to prevailing practice. 
(2) A counterexample. 
(3) An appeal to past promise. 
(4) An appeal to self-interest. 

(5) A promise of a future reward. 
(6) A threat. 
We choose this progression since a negotiation usually begins with a simple request. 

Once a rejection is received, then an argument should be used. Such an argument should 
take into account two things: the immediate efficiency and the long term efficiency. 

3’ For example, in the Blocks World, suppose the opponent’s desired state is for Block4 to be in location 1~x2. 

Suppose, that now BlockA is in location loci An action that can bring about the opponent’s desired state is “move 

BlockA from loci to 10~2”. A threatening action then could be any one of the following actions: (i) move BlockA 

away from 10~2. (ii) move another block to loc2, or (iii) move another block on top of BlockA. 
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Certainly a threat has the best immediate effectiveness. However, it may be costly for 
the agent to carry it out. If threats are not carried out, in the long run, they lose their 

effectiveness. On the other hand, appeals to an agent’s common sense (i.e., an appeal to past 
promise, an appeal to prevailing practice, and a counterexample) have the least immediate 

effectiveness (these are too naive). However, these kind of arguments are not costly and 
can be used regularly. Among them, appeal to past promise is the most convincing, since 
refusing may reduce the opponent’s credibility. The agent first tries a promise for future 

reward and only in case it fails, it threatens its opponent, since we believe that rewards 
contribute to cooperation (both for short and long run) and that, in general, all parties gain 
from cooperation ] I 651. 

4.5. Request evaluation rules 

Upon receipt of a request (or a counter-request), an agent should be able to evaluate it. 

That is, the agent should be able to analyze a request and decide whether to accept or reject 
it. Moreover, the agent should be able to update its mental state resulting from new requests 

received and subsequent actions taken. 
The syntax of such rules is as follows: 

evaluate_message(AgentName, Message) :-Condition. 

where AgentNume is the name of the agent; Message is the request message sent from the 
other agent; Condition is the body of the rule which defines the way to evaluate and react 
upon receiving the Message. 

In our implemented agent, we defined a set of rules for evaluating the request messages. 
First, the agent checks if the requested action can be done according to its capabilities. 32 

If not. it generates an appropriate rejection message. Next, it checks if the requested action 
can be done according to its beliefs about the world state and the domain. If not, it generates 
an appropriate rejection message. If the action can be done, the agent should evaluate the 

request and its argument. Since taking any action has a cost, an agent is not likely to agree 
to every request. For this reason, we have defined three parameters that assist in deciding 
whether to accept or reject a request as follows: 

A Collision_Flag indicating whether the results of the requested action conflict with the 
agent’s current goals. Possible values: TRUE or FALSE (calculation of this value is 
obvious). 

A Convincing_Factor indicating how convincing, if at all, is the argument given for the 
requested action. Possible values: any integer value (positive or negative). The way to 
calculate this value will be shown later on. 

An Acceptance_Value indicating the overall preference of the results of the requested 
action as opposed to all the other desires of the agent. Possible values: any integer value 

(positive or negative). The way to calculate this value will be shown later on. 

” An important Gde-effect is that the agent learns that the requesting agent is not capable of performing the 

requested action. 
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Table 1 

Request evaluation criteria 

Collision_Flag = TRUE Collision_Flag = FALSE 

Convincing_F < 1 Convincing_F > 1 Cunvincing_F d I Convincing_F > I 

Request is rejected If Acceptance_Value > Performance~ThresholcI, Request is accepted. 

with the explanation request is accepted. 

“contradicts a current Add the requested action as an intention. Add the requested 

god.” action as an intention 

Else, request rejected with the explanation 

“not worth performing.” 

When the agent needs to decide on the response to the other agent’s request, it will first try 
to make a decision using the first two parameters. Computing the third parameter is time 
consuming and will be used only when the first two are not helpful. Table 1 specifies under 

which conditions a request is to be accepted by an agent and when it should be rejected. 
In general, the Collision_Flug and the Convincing_Factor are enough to determine the 
response in two extreme cases. The first case is when there is a conflict between the results 
of the requested action and the agent’s current goals, and the argument is not convincing 
(first column of Table 1). In such a case the request is refused. The second case is when 

there is no conflict and the argument is convincing (last column of Table 1). However, for 

the other cases, the agent will use the third parameter-the Acceptance_VaZue. 

The Convincing_Fuctor is calculated as follows. A more convincing argument should 
increase the Convincing_Factor and vice versa. A “do not care” argument or a missing 
argument will be given the score of 0. In the implementation we used the following simple 

heuristics to determine the Convincing_Factor. 

If the argument is an appeal to past promise, then the agent checks the past events. If 

a reward was indeed promised by the agent then the Convincing_Factor calculated is 
equal to I. 33 If there was no past promise, then the value given is 0, meaning that the 

agent is not convinced. 
If the request is an appeal to self-interest, then the agent checks whether it is indeed 
beneficial for it to carry out the requested action. If so, a value of 1 is given to the 
Convincing_Factor, otherwise zero is given. 

Similar checks for verifying the truthfulness of the argument are done in the case of 
prevailing practice argument and a counter example argument. If the agent believes 
the argument is valid, it assigns 1 to the Convincing_Factor, and otherwise 0. 
For the future reward argument and for threats, the Acceptunce_Ikzlue factor is always 
used. Thus, Convincing_Factor is set at 1 when the Collision_Flag is true and to less 
than 1 when the Collision_Flug is false. 

Calculating the Acceptance_Kzlue is needed when there is no clear cut decision using the 
Collision_Flag and the Convincing_Factor. Accepting or rejecting a request can influence 

33 Meaning, that the agent will accept the request if it does not conflict with its current goals, and if the request 

conflicts with its goals, it will need the Accrptance_Value to make a final decision. 
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two things. First, the total preference value that the agent will gain. Second, the number 

of actions that should be performed by the agent (referred to below as the intention list 

length). Accepting a request means doing another action in addition to the planned ones 

(as was determined using the rule of Section 4.2.3). It also means regenerating a completely 

new, and probably longer intentions list, which is time consuming. Such a list is also 

likely to achieve a new subset of goals, with a smaller preference value than the original. 

Rejecting a request seems to save the agent future unnecessary actions but it may cause 

the loss of a reward action offered by the other agent or lead to punishment by the other 

agent’s threat execution. In both cases, the agent may have to go a longer route towards 

reaching its goals, in terms of time and number of intentions. This, too, might conclude 

with a smaller preference value than the original. Here is a list of parameters that the 

agent considers when computing the Acceptance_Value. Not all the parameters apply to all 

argument types: 

(I) LX (doing length): the number of total intentions needed if the agent will accept the 

request. 

(2) NDL (not doing length): the current number of total intentions needed. 

(3) DTL (doing that length): the number of “intention-that” needed if the agent will 

accept the request. 

(4) NDTL (not doing that length): the current number of “intention-that” needed. 

(5) PL (punishment length): the number of total intentions needed if the agent will reject 

the request and therefore, the other agent will execute its threat. 

(6) PTL (punish that length): the number of “intention-that” needed if the agent will 

reject the request and the other agent will carry out its threat. 

(7) DP (doing preference): the preference value that the agent will gain, if it accepts the 

request, i.e., the sum of the preference values of the goals which will be achieved. 

(8) NDP (not doing preference): the preference value that the agent will gain, if it does 

not accept the request. 

(9) PP (punishment preference): the preference value that the agent will gain, if it does 

not accept the request and the opponent will carry out its threat. 

The idea is to add ratios of parameters pairs such as NDLIDL which should equal to one 

when there is no effect and increase when it pays to yield to the request. There are some 

characteristic agent parameters that are also taken into consideration: 

l RL: the agent’s reliability. 

l ORL: the other agent’s reliability for keeping promises. 

l OTE: the other agent’s percentage of threat executing. 

The RL parameter is given to the agent by its designer when it is created. ORL and 

OTE are computed by the agent based on its beliefs about its opponent. Below we 

provide the formulas computing the acceptance value for several argument types. The 

acceptance value must always be more than a pre-defined limit, which is defined as the 

Pq%rmance_Threshold agent’s parameter, in order for the agent to accept the request. 

This parameter belongs to the characteristics which are determined by the designer when 

he/she creates the agent. 
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4.5.1. The basic formula for Acceptance-Value 

The basic formula of this section is used as the basis for calculating the Accep- 

tance-value of all the argument types. In cases discussed below, additional factors are 

added to the following basic formula. 

Basic_Acceptance_Value = 
NDLI-1 
---+2+2 
DL+ 1 

The agent adds ratios of not performing the request over performing it. The addition of 
1 in the formulas prevents dividing by zero. As was mentioned, accepting or rejecting a 

request may generate a new set of intentions with more intentions than the original. When 

considering the number of intentions it will eventually have to perform, the agent should 
differentiate between “intention-that” and “intention-to”. The reason for this is that another 
“intention-that”-instead of an “intention-to”-will complicate the situation. “Intention- 
that” means that the agent has to persuade another agent to perform that action. This 

task takes time and does not always succeed. Therefore, the agent gives twice as much 
importance to the “intention-that” ratio. 34 It then multiplies the result by the ratio of DP 

over NDP in order to consider the preference value gained in each way. We denote the 

result by Basic_Acceptance_Value. 

In the case of an appeal to past promise, the reliability parameter of the agent (RL) 

is taken into consideration, and it is added to the Basic_Acceptance_Value to get the 

Acceptance-Value. 

4.5.2. A promise of a future reward 

The other agent’s reliability should be taken into consideration in this case. In particular, 
the number of intentions that the agent will have, if the agent accepts the opposing agent’s 

request, depends on the other agent’s reward-keeping promises. 
If the other agent fulfills its promise of reward, our agent can then subtract (at least) 

one intention from its overall set of intentions, because that intention will be performed 
by the other agent. Since the agent cannot be certain that the opposing agent will perform 

the reward action, the agent subtracts one intention multiplied by the opposing agent’s 
reliability parameter (URL). 

Acceptance-Value 

( 

NDL+l-ORL.RD+l 
= 

DL+l 
+2 

NDTL + 1 

DTL+ 1 -ORL.RDTA+ I 1 
DP+l 

‘NDP+ 1’ 

In the formula, RD is a flag which is equal to 1, if the action proposed by the opponent 
is really a reward, and 0 if not. RDTA indicates whether the reward is toward satisfying 
the intention-that, which is preferred by the agent. An action is considered to be a reward 
(i.e., RD is set at 1) if the action is in the agent’s original intentions list, or establishes a 
precondition for one of the agent’s intentions or has the same result as one of the actions 

j4 The exact form of the formulas were determined by a trial and error process. 
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in the agent’s original intentions list. It is considered RDTA if the agent is not capable of 

performing that intention. 
For example, consider a situation where BlockA is in loci and BlockB is in 10~2. Suppose 

that Agent 1 desires to have BlockB at loci and is capable of moving BlockB, but is not 

capable of moving BlockA. Its intentions list may include moving BlockA to 10~3 and 

moving BlockB to 10~1. A reward could be moving BlockA to 10~3, but can also be moving 
BlockA to another location, say 10~4. Moving BlockB to loc3 would not be considered as a 

reward. 

An agent’s (AgentY) reliability in keeping promises (ORL) is calculated by another agent 
(AgentX) in the following way: AgentX looks for the percentage of AgentY’s history of 
keeping its promises as is recorded in AgentX’s knowledge-base. ORL is set to be this 

percentage. 

4.5.3. Acceptance-Value of a threat 

If the opponent will carry out its threat, the number of actions that the agent will need 
to perform will possibly increase and its preference value will decrease, given that the 

opponent will carry out its threat. 

Acceptance-Value 

( 

NDL + (PL - NDL)OTE + 1 NDTL+ (PTL - NDTL)OTE+ 1 
= 

DL+l 
+2 

DTL+ 1 > 
DP+l 

x NDP - OTE(NDP - PP) + 1. 

The agent adds to the “not doing” portion of the ratio the number of intentions that 
will be added if the other agent carries out its threat. This addition is multiplied by 

the probability of the threat execution (OTE). That is, (PL - NDL)OTE is added in the 
“intention-to” ratio and (PTL - NDTL)OTE in the “intention-that” ratio. We calculate 
the preference of rejecting the request by taking into account the loss if the opponent 

will carry out the threat and the probability of the threat execution (OTE), i.e., NDP - 

OTE(NDP - PP). 

The other agent’s percentage of threat execution (OTE) is calculated in a way similar to 
the calculation of ORL, but with respect to threats. 

4.6. The blocks world environment 

The Blocks World (see, for example, [35,104,170]) has been selected as an example for 
our implementation. Consider a table with unlimited size and a set of blocks. All blocks 

have the same size. A world state is one of all possible combinations of blocks placed on 
the table or on each other. A block must be placed on the table or on another block. A block 
cannot be taken from the table or from another block unless immediately placed back on 

the table or on another block. No other action can be performed simultaneously by any of 
the agents. Some blocks are initially placed on the table. 

We will use the notation (blockname), (horizontalposition)l(verticalposition) to specify 
a block position. We will omit the blockname when it is clear from the context. A state of 
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the world will be a sequence of block positions between squared brackets. We will use the 
predicate world_stute(s) to indicate that the world is in state s. For example, 

world_stute([BlockA/5/1, BlockB/6/1]) 

indicates that Block4 is in horizontal position 5 and is on the table, and that BlockB is also 

on the table, near BlockA in location 6. When clear from the context, we will drop the 
predicate name and write [BlockA/S/ 1, BlockB/6/ I]. 

Each agent is given a set of desires. Each desire represents a subset of all possible world 

states which the agent will try to reach. In the Blocks World environment, we define two 

desires to be conflicting in the same time interval, if one of the two following cases is 

valid: (a) if two different blocks are to be placed in the same position according to the two 
desires, or (b) if a block should be placed in two different positions according to the two 
desires. In these cases the desires are considered to be conflicting and cannot be achieved 

simultaneously. 

An intention, in the Blocks World case, is equal to an atomic change to the world state, 

in which one block changes its position and thereby creates a new world state. 35 In our 

example of the Blocks World environment, planning, i.e., the generation of the list of 

intentions is performed using a simple depth-first STRIPS-like algorithm (described in 
[43]). We supply the algorithm with three input parameters. The first is the current world 
state of blocks (see Fig. 3). The second is the desired world state that was generated by 

the goal generating procedure. Last, we supply the algorithm with actions that change the 
world state. The algorithm will generate a list of intentions. These intentions, step by step, 

change the state of the world from its current state to the desired one according to the 
selected goals. In our implementation, for simplicity, the STRIPS-like planning algorithm 

uses two very simple rules when needed: 
(1) Pick a block which is not placed in its desired position. If it can be moved to its 

desired position, and this action will not conflict with some other block’s position, 

then change it. If not, place that block in any position on the table which is not being 
used and should not be used by any other block in the desired world state. 

(2) Pick a block which blocks the movement of another block which is not in its place 
and move it to a neutral position, as described above. 

Each of the generated intentions is now categorized into one of two values: intention-to or 

intention-that. This is done according to the ability of the agent to perform this intention, 

as described above. 
Consider a situation of four blocks as presented in Fig. 2. Suppose that Agent 1 has 

the following goals: It would like BlockA to be in 3/l, BlockB in 2/l, BlockC in 4/l and 
BlockD in l/ 1. Agent 1 is capable of moving BlockB and BlockC but cannot move Block4 

or BlockD. 
Agent 1 generates the following intentions: 

(1) move BlockB from l/2 to 2/l (intention-to), 
(2) move BlockA from l/ 1 to 5/l (intention-that), 

(3) move BlockD from 3/2 to l/l (intention-that), 

35 In [ 1441 we allow more abstract intentions, similar to the ones in our general model. 
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Initial configuration 

Fig. 2. The initial world state for the example in Section 4.7. 

Agent l’s desires of interval I 

3 4 5 6 

Fig. 3. The desired world state for Agent 1 interval I. The numbers above the blocks indicate the desires’ 

preferences. 

(4) move BlockC from 3/ 1 to 4/ 1 (intention-to), 
(5) move BlockA from 5/l to 3/l (intention-that). 

The most well-known weakness of the STRIPS algorithm is its tendency to get into an 
endless loop while trying to achieve two goals at the same time. This occurs when the 
two goals do not conflict, while the way to achieve them does. However, the action rules 

provided by the algorithm in our system ensure that each new state in the world which is 
generated by the algorithm is different from any of the previous steps and that no one step 
will be generated twice. This ensures that the STRIPS search will not enter into an infinite 
loop. In the next section ANA’s behavior will be demonstrated using a specific scenario of 
the Blocks World environment. 

4.7. Simulation of a Blocks World scenario 

As an example, suppose there are two agents in the Blocks World environment, each with 

different capabilities. We assume that the agents hold beliefs about each other’s desires and 
that each agent has desires for the next two time intervals. 

In this scenario there are four blocks: BlockA, BlockB, BlockC and BlockD. The initial 
state is described in Fig. 2, where BlockA and BlockC are on the table in locations 1 and 3, 
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Agent 2’s desires of interval I 

Fig. 4. The desired world state for Agent 2, interval I 

Agent l’s desires of interval I1 

(25) 

(25) c (25) 

D B A 

112 3 456 

Fig. 5. The desired world state for Agent I. interval 11. 

respectively, BlockB is on BlockA and BlockD is on BlockC. Agent 1 is capable of moving 
BlockB and BlockC and Agent 2 is capable of moving BlockA and BlockD. 

For time interval I, Agent 1 has desires, as shown in Fig. 3, and Agent 2 has desires, as 
shown in Fig, 4. For time interval II, Agent 1 has desires, as shown in Fig. 5 and Agent 2 

has several desires, as shown in Fig. 6. 

As presented in Fig. 3, Agent l’s desires for the first time interval are that Block4 will 
be in location 3, BlockB in location 2, BlockC in location 4, and BlockD in location 1, all 

on the table. Agent l’s preferences for its desires concerning BlockA, BlockC, and BlockD 

is 15, and its preference for BlockB being in location 2 is only 5. Since this set of desires 
is consistent, Agent 1 adopts all of them as its goals. These goals require the movement of 

all the blocks; however Agent 1 is capable of moving only BlockB and BlockC. Therefore, 
it cannot fulfill its goals without the help of the other agent. 

Agent 2 also cannot fulfill its goals without the help of the other agent. It would like 
BlockA, BlockC and BlockD to be in the same locations as Agent 1 would like (i.e., 

locations 3, 4 and 1, respectively), but would like BlockB to be in location 6 (Fig. 4). 
As in Agent l’s case, all these desires are consistent, thus Agent 2 adopts them as its goals. 
Since Agent 2 is capable of moving only BlockA and BlockD, it must get help in moving 
BlockB and BlockC. Also, the agents will need to reach an agreement where to put BlockB. 
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Agent, 2’s desires of interval II 

20 

rl A 

1 2 3 4 5 6 

(16) 

B A 

1 2 3 4 5 6 

(15) 

B A 

1 2 3 4 5 6 

Fig. 6. The desired world states for Agent 2, interval II 

The negotiation in the first time interval is affected by the agents’ desires in the second 
time interval. Agent 1 would like BlockA, BlockB and BlockD to be in locations 6, 5 and 1, 

respectively, on the table and BlockC to be on BlockB (Fig. 5). The preferences of all these 
desires is 25. Again, this is a consistent set of desires, but agent 1 may need help in moving 

BlockA and BlockD. 
Agent 2’s desires for the second time period is more complicated (Fig. 6.) They concern 

only BlockA and BlockB, but conflict with each other. Agent 2 has a desire that BlockA will 
be in location 2 on the table with preference 20. Its desire to have BlockA at location 6 and 
BlockB at location 5 (on the table) has preference 16. Another desire is that BlockA will be 
at location 6 and BlockB at location 2, and its preference is 15. The set of desires conflicts, 
and thus Agent 2 will need to choose only one of them. At first, it chose the first desire 
(BlockA in 2/l) with the higher preference to be its goal, which conflicts with Agent l’s 
goals. Only the second desire of Agent 2 is compatible with Agent l’s goals. 

In the beginning of the first time interval, both agents searched for plans to satisfy their 
chosen goals. Agent 1 found the following plan: 

(1) move BlockB from l/2 to 2/ 1, 
(2) move BlockA from l/l to 5/l (temporarily), 
(3) move BlockD from 3/2 to l/ 1, 
(4) move BlockC from 3/ 1 to 4/ 1, 
(5) move BlockA from 5/ 1 to 3/ 1. 



As we mentioned above, Agent I was not capable of moving BlockA and BlockD, and 

therefore, the intentions with respect to steps (2), (3) and (5) of its plan were of the type 

intention-that. 

Agent 2 found the following plan and adopted the relevant intentions: 
(1) move BlockB from l/2 to 6/l, 

(2) move BlockA from I/ 1 to 2/ 1 (temporarily), 

(3) move BlockD from 3/2 to I/ 1, 

(4) move BlockC from 3/ 1 to 4/ 1, 

(5) move BlockA from 2/ 1 to 3/ 1. 

Since Agent 2 could not move BlockB and BlockC, the intentions in steps ( 1) and (4) of its 

plan were intention-that. 

Figs. 7 and 8 describe the main steps of the negotiations and activities of the first time 

interval. The steps of the negotiation, which are indexed by the numbers in the first column, 

are only to note the order in which the agents sent their messages and took their actions. If, 

on the same step, both agents have an entry, that means that Agent 1 sent a message and, 

just after, Agent 2 sent its message. If one of the agents is missing from a step, that means 

that this agent did not send a message while the other agent sent two messages in a row. 

We highlight some interesting points of these steps. After step 2 Agent 2 revised its plan, 

since whenever there is a change in the world state which the agent did not expect, then 
the agent re-considers its plans and intentions for the current time interval. Therefore, after 

Agent 1 at step 2 moves BlockB to 2/l, Agent 2 re-generates its intentions and changes 

its plan, so that it intends to move BlockA to position 5/l and not to 2/l, as in its original 

plan (since location 2/l is not empty any more). Also, Agent 2 intends-that BlockB be 

moved from location 2/ 1 and not from l/2, as it originally planned (and also requested at 

step 1). 
In step 3, Agent 1 asked Agent 2 to move BlockA to its temporary location 5/l so that 

BlockD will be moved to BlockA’s old position at 1 / 1 (see Agent 1 ‘s plan above). 

In step 6, Agent 2 moved BlockD to 5/l before it read the request sent to it by Agent 1 

in the same step. Thus, after it has finished the movement, and sent a request to Agent 1 
(step 7) it read its message concerning BlockD, and, of course, sent an acceptance message 

(step 8). 
Until step 13, no argumentation was needed, since the requests were exactly according 

to the plans of the active agent. One request was rejected, at step 4, which concerned the 

conflict block, i.e., BlockB. Agent 1 moved BlockB to its desired location 2/l and rejected 

Agent 2’s request to move it to 6/ 1. In step 13, Agent 2 requests again to move BlockB (now 

from its new location 2/l) to 6/l. Agent 1 rejects the request again. Therefore, Agent 2 

generates a promise of future reward. Note that for keeping this promise, Agent 2 will need 

to give up a desire of preference 20 in the next time interval, and instead will be able to 

fulfill a desire of preference 16. In return, it fulfills a desire of preference 5 in the first time 

interval. 
Agent 1 evaluates this argument and is convinced that getting help from Agent 2 to 

fulfill a desire of preference 25 in the next time interval, is worth not fulfilling a desire of 

the current time interval of preference 15. Agent I also believes that Agent 2 will keep its 

promise. Thus in step 16, Agent 1 moves BlockB to 6/ 1. 
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lved 

L 

I 

Agent 1 Activities c Agent 2 Activities 

1 Request_; Agent 1 to move BlockB 

from position l/2 to position 6/l. 

2 Moves BlockB from posit,ion l/2 

to position 2/l. 

3 Requests Agent 2 to move BlockA 

from position l/l to position 5/l. 

4 Rejects Agent 2 request to move BlockB, Accepts Agent, l’s request t,o move 

since it conflicts with its desire of locating BlockA. 

BlockB to position 2/l. 

r, Moves BlockA from position l/l 

to position 5/l. 

6 Requests Agent 2 to move BlockD htoves BlockD from position 

from position 3/2 to position l/l. 
~_. ~~. 

7 

+ 

3/2 to position l/l. 

Requests Agent 1 to move BlockC 

from position 3/l to position 4/l. 

8 Arcepts Agent l’s request) to 

move BlockD from position 3/2 to 

to position l/l (since it has already m( 

BlockD ro l/l). 

9 Accepts dgent 2’s request, to move BlockC 

from position 3/l to position 4/l. 

10 Moves BlockC from position 3/l 

to position 411. 

11 Requests iigent 2 to move BlockA Accepts Agent l’s request to move Blo 

from position 5/l to position 3/l. from position 5/l to position 3/i. 

12 RIoves Block-4 from position 5/l 

to position 3 /I. 

Fig. 7. The main steps of the negotiation in interval I 

7 ckA 

The first time period ends after step 16. The state of the world after step 16 is as desired 
by Agent 2 (Fig. 4). At the beginning of the second time interval, both agents consider their 
desires, generate goals, and generate plans for the new time interval. Agent l’s desires are 
consistent; thus it chooses them all as its goals and generates the following plan: 



Agent 1 Activities Agent 2 Activities 

13 

14 1 Rejects Agent 2’s request to move 

BlockB since it conflicts with its desire 

of locating BlockB at position Z/l. 

15 Accepts Agent 2’s request to move BlockB 

from position 2/l to position 6/l, since it 

evaluates the argument and finds it convincing. 

16 Moves BlockB from position 2/l 

to position 6/l. 

Requests Agent 1 to move BlockB 

from posii,ion 2/l to posit,ion 6/l. 

Requests Agent 1 to move BlockB from 

position 2/l to position 6/l. The request is 

justified with a promise for future reward 

in the next time interval, of moving BlockA 

from position 3/l to position 6/l 

Fig 8. The main steps of the negotiation in interval 1 (cont.). 

( 1) move BlockB from 6/ 1 to .5/ 1, 
(2) move BlockA from 3/I to 6/ I, 
(3) move BlockC from 4/ 1 to 5/2. 

Since Agent 1 cannot move BlockA, the second move turns into an intention-that. Agent 1 

must get some help from Agent 2. 
Agent 2’s plan is as follows: 
(1) move BlockA from 3/ I to 2/ 1, 

(2) move BlockB from 6/ 1 to S/ 1. 
The main steps of the negotiations are listed in Fig. 9. In step 18, Agent 2 moves BlockA 

to position 2/ 1 before reading the request of Agent 1 to move BlockA to position 5/l. 
After reading this message. Agent 2 rejects the request, since it conflicts with its goal 

that BlockA be in 2/ 1. At step 21, Agent 1 sends the request again, with an argument 
reminding Agent 2 of its promise in the previous step. After receiving the argument, 

Agent 2 decides to keep its promise and accept the request. It re-generates its goals for the 
time interval and selects the second desire (see Fig. 6). It re-generates a plan for achieving 
the new goal which consists of moving BlockA from 2/ 1 to 6/ 1. It performs this action at 

step 24. 
We will demonstrate the use of the argumentation rules described in Section 4.3 using 

the above scenario. An argument of an appeal to past promise is used in step 21 above. 
An appeal to self-interest could be used in step 6 above. In this step, Agent 1 requests that 
Agent 2 move BlockD from 3/2 to 1 / 1. It could have used an argument that this act is in 

the interest of Agent 2, since it follows from its desires (Fig. 4). 
An appeal to prevailing practice could have been used if the scenario had been expanded 

to include additional agents Agent 3 and Agent 4 and an additional time interval. Suppose 
this expansion is done and suppose that Agent 3 has a desire to have BlockA at location 
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Agent 1 Activities Agent 2 Activities 

17 Moves Blocks from position 6/l to 

position 5/l. 

18 Requests Agent 2 to move Blockh Moves BlockA from position 3/l to 

from position 3/l to position 6/l. position 2/l. 

19 Requests Agent 2 to move BlockA 

from position 2/l to position 6/l. 

20 Rejects Agent l’s request to move BlockA? 

from position 6/l to position 5/l. 

since it conflicts with its preferred desire 

of having BlockA in position 2/l. 

21 Requests Agent 2 to move BlockA Evaluates the request and 

from position 2/l to position 6/l. accept Agent. l’s request to move 

The request is justified by the BlockA from position 2/l to position 6/l. 

promise made by Agent 2 to 

Agent 1 in the previous time interval. 

23 Moves BlockA from position 2/l 

to position 6/l. 

i 

Fig. 9. The main steps of time interval II. 

2/ 1, and Agent 4 has a desire to have BlockA at 6/l. Furthermore, Agent 3 is the only 
agent that is capable of moving BlockA, where the initial world state is: BlockA at l/ 1. 

A similar situation occurred in the first interval. In the first interval, Agent 1 was convinced 
by Agent 2 to move BlockA to 6/ 1, even though it conflicted with its desires. Agent 4 can 
now use the activities of Interval I, as prevailing practice to convince Agent 3 to place 

BlockA on 6/ 1 instead of 2/l. 
A counterexample argument could be used in an example similar to the previous one, 

where Agent 2 (rather than Agent 3) has a desire to have BZockA at location 2/l and 
Agent 4 has a desire to have BlockA at 6/l. Agent 4 can use the activities of Interval I 
as a counterexample. 

A promise for future reward is used in step 14 above. A threat could be used by Agent 2 
in the scenario above. Agent 2 could threaten Agent 1 that in the next time interval it will 

move BlockD from position l/ 1 to position 3/ 1. This threat is credible, since it will not 
conflict with any of Agent 2’s desires in the second time interval, but will prevent Agent 1, 
who cannot move BlockD and wishes it to stay at position l/l, from satisfying one of its 
desires. 
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5. Related work 

Our work on negotiation and argumentation combines a formal model, an implemented 
testbed for developing general negotiation agents, and an instantiation of the model in 
the Blocks World environment. Therefore, the work shares common research issues with 

four main Distributed Artificial Intelligence (DAI) areas: formal models of mental state of 
an agent, agent oriented languages, multi-agent planning, and negotiation research. Other 

related areas of research are defeasible reasoning and computational dialectics, negotiation 
models in game theory, and social psychology research on persuasion. In the following 

subsections, we present related work in these areas and situate our research in the relevant 

literatures. Reader interested in detailed surveys of these areas may consult papers such as 

[10,14.167]. 

5. I. Mental state 

Numerous works in artificial intelligence research try to formalize a logical axiomatiza- 

tion for rational agents (see [ 1671 for a good survey). This is accomplished by formalizing 
a model for agent behavior in terms of beliefs, desires, goals etc. These works are known as 

BDI (belief, desire, intention) systems (see [128]). Many similar definitions are presented 
in the research community for BDI systems. 

The first difference which is noted when comparing existing research is the varying 

usage of attitudes and pro-attitudes. Cohen and Levesque [16,18] use only two attitudes, 
beliefs and goals, and define other attitudes, such as intentions, using these attitudes 
only. Rao and Georgeff [ 126,128] use a wider definition of attitudes: beliefs, goals and 

intentions. Both Shoham [ 1381 and Thomas [ 1531 use the same set of mental states: beliefs, 
commitments and knowledge. In [ 1.521, they consider an extended set which also includes 

desires. In all of these cases, the definitions are not suitable for our needs of describing 
a more complex behavior of the agents which is required for addressing the issues of 

producing and evaluating arguments. We use four basic attitudes: beliefs, desires, goals 
and intentions. Desires, which are originally given to the agent, may be inconsistent. The 

goal set is a consistent subset of its desires, which the agent would like to satisfy. The 
intentions are formed to make the goals true. 

Most of the BDI research adopts Kripke possible worlds semantics (e.g., [16,59,75]). 
This yields the known problem of logical omniscience for belief and knowledge and the 
side-effect problem for intentions that we discussed in Section 2.1. Considering agents that 
are not omniscient is important in the context of negotiation. Nonomniscient agents may 
use arguments, such as appeal to self interest, that are not useful for omniscient agents. In 
order to allow considering a wide variety of agents, we adopted the approach of minimal 

structures [ 151 for all our modalities. We still have the problem, in our logic, that if an agent 
believes p, and 9 is logically equivalent to it, then the agent also believes q. However, the 

agent may believe p but not 9, even if p -+ q. 
Other approaches that attempt to solve the problems associated with omniscience in- 

clude [33,38,39,71,84]. Works for appropriate semantics for intentions include [28,69,1261 
and [73] which also take the minimal structure approach. The advantage of our approach 
is that we deal with all the modalities in the same manner, which addresses both issues 
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(omniscience and side-effects for intentions), and also allows for contradicting desires, a 

condition that is critical for negotiating agents. 
In addition, since time plays an important role in negotiation, we do not use simple 

minimal structures as in [73], but rather our possible worlds are time lines [152]. This 

enables us to consider agents’ attitudes toward past and future events and their change 

over time. Georgeff and Rao [ 126,129] consider complex possible worlds semantics (but 

not minimal structure models). In their formalism, the belief-desire-intention accessible 

worlds are branching time structures. We preferred time lines that also allow uncertainty 

about the past, not only about the future, as in their model. 

In our framework, an agent can reason about other agents’ mental states in terms of 

its beliefs, intentions, and goals. Not all systems allow this behavior (for example, see 

[16,18,58]). However, most of the latest systems do allow such reasoning (for example, 

see [ 128,138,153]). This is the exact difference between first-order intentional systems 

(where agents reason only about their own mental states) and second-order intentional 

systems (where agents reason about other agents’ mental states, as well) as stated in [25]. 

In our system, reasoning about other agents is a necessity in order to address the needs 

of argument generation. In addition, in our logic, every goal of an agent is also one of its 

desires. This is a unique relationship between the two attitudes, since in most other systems 

agents do not hold both mental states. 

In our logic, every goal is also an intention. Additional intentions are steps to satisfy 

goals. However, there may be some intentions that are not motivated by an agent’s own 

goal, but rather by a request from another agent. Researchers who did not consider multi- 

agent environments with negotiation (e.g., [ 1261) assumed that every intention is also a 

goal. 

Another difference concerns the relations between intentions and beliefs. As discussed 

in Section 2.6, Cohen and Levesque [ 16,181 assume that if an agent holds an intention 

toward a proposition, then the agent believes that this proposition is not true, but that it will 

be true some time in the future. According to their logic, time does not explicitly appear in 

the proposition. In our logic, we only require that the agent believes that its intentions are 

possible (axiom (lNTB2:34) of Section 2.6). Since time is expressed explicitly in our logic, 

we are able to present different types of agents with different levels of self-confidence and 

characterize the appropriate semantic constraints on their accessible relations. Georgeff 

and Rao [ 1261 also consider interesting relations between an agent’s beliefs about possible 

histories and its intentions. 

As described in Section 4.1, in ANA we distinguish two types of intentions (intention- 

to and intention-that). Many other systems, such as that of Cohen and Levesque, do 

not make this distinction. In Cohen and Levesque’s system, once an agent adopts an 

intention, the agent will look for ways to achieve it by itself. Moreover, the agent believes 

that the intention can be achieved. In contrast, in our case, the agent, once creating an 

intention, knows whether it is capable of executing it on its own or not. However, the 

agent is uncertain whether there is another agent which is able to successfully execute that 
intention. Here, we follow the logic as presented in [55-571. 

Since our agents are self-interested, we do not try to provide formal specification for 

agents working together on a joint goal [SS], team activity [ 17.1431, or SharedPlan [55,56]. 
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We concentrate on agents that have their own desires and negotiate to obtain help or to 
resolve conflicts in order to maximize their own utility. 

5.2. Agent oriented language,s 

The idea that agents are modeled in terms of their mental states led to Shoham’s [ 1381 

definition of an Agent Oriented Programming paradigm. Shoham first implemented an 

AOP language called the Agent0 system. It enables modules to process knowledge and 
beliefs about others and about the world. In order to be considered an AOP language, 
a program must allow its user to define agents and to assign to each of them a set of 
capabilities, initial beliefs, initial mental states, and some mental-change rules (to update 
their mental states over time). A few years later Thomas presented a second language which 

is the descendant of AgentO, called PLACA [ 1531. Its main contribution is the ability of its 
agents to plan their activities. 

Our system ANA can be viewed as an AOP language as well. Our main concern when 

building ANA was to allow its user to define the environment, set of rules for negotiation, 

and inference on different stages of the negotiation. As in the case of PLACA where a 
planning mechanism is added to the Agent0 language, our contribution is to enable a user 

to define a planner with the ability of conducting a negotiation between the agents. Our aim 
is to allow argumentation in order to fulfill each of the agents’ desires and resolve conflicts 
during planning so that successful plans can be found. 

In the Agent0 system, the agents act according to their commitment rules. Each 
commitment rule contains a message condition, a mental condition, and an action. The 

agent acts only when these two conditions are met. More specifically, the agent acts only 
when it receives a message from other agents. This is not the case in ANA. Our agents are 
motivated by their desires, and their activities are almost solely caused by their own wishes 
and desires. The more obvious difference between ANA and the two systems Agent0 and 

PLACA is the negotiation and argumentation ability, and the concept of agent life cycle 

being supported by our system. 
The Concurrent Metatem language by Fisher [44] presents a system in which multiple 

agents can work simultaneously. Each agent is assigned a unique behavior specification and 

it acts according to these behavior rules. ANA is similar to the Concurrent Metatem system 
with respect to these two features. However, there are two major conceptual differences 
between ANA and Concurrent Metatem. The first is that Concurrent Metatem allows and 
supports grouping of several agents together. Agents can be grouped together and form a 
group, agents can be added (removed) to (from) an existing group, and messages can be 
sent to all members of a specific group. We do not support such a feature in our system 
since we are interested in examining single agents that handle negotiation on their own. 
The second difference is the fact that the behavior rules in Concurrent Metatem are based 
on general condition-result rules and not on a BDI logic. 

Wavish [161] presents the Agent Behavior LanguagE-ABLE system which is a two- 
level agent behavior system that supports user definition of agents. The first level defines 
behavior rules for an agent, while the second level can be used to define behavior for a 
group of agents. These rules of behavior are called licenses, schemas, and functions, and 
can correspond to different kinds of forward chaining production rules. In ANA such rules 
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do not exist. Since we are interested in negotiation, we present rules for behavior that 

relate to negotiation only. Another difference between the two systems, is the fact that the 

ABLE system can execute several rules for the same agent in parallel. These rules can be 

nested and can also be limited in time. These features and capabilities are missing from our 

system. but are not needed at this stage of the research. As in the case of the Concurrent 

Metatem system, the ABLE system is not a BDI system. 

Rao, Ramamohanarao and Weerasooriya [ 1301 present a distributed autonomous system, 

called AgentSpeak. In its environment, agents are organized in families, offering services 

to other agents, as well as data sharing functionality. This language supports concurrent 

object oriented languages and well developed communication capabilities. Although called 

AOP, strictly speaking it is not, since it does not support well defined BDI features for its 

agents. 
The Agent PRocess Interaction Language-April [98] is a multi-agent system. Its main 

purpose is to construct a means for facilitating pure multi-tasking and communication, in 

parallel to pattern matching and symbolic processing capabilities. Trying to cover all of 

these issues produces difficulties in specifying and implementing agents, since the user 

must use only basic April primitives. ANA uses the Prolog programming language in 

order to get the underlying logic part of the system working, while the multi-agent part 

was developed on top of the logic infrastructure. This enables the user of ANA to define 

the agents in a more intuitive way. Yet another difference between the two systems is the 

ability of an ANA agent to plan its actions in advance. an ability lacking in the April agents. 

In order to demonstrate the usage of ANA, we implemented a simple planner for the 

Blocks world environment. This planner can be easily replaced by other planners. It is 

important to remember that the aim of the planning activity executed by the agents in 

ANA is to seek ways for reaching their goals. An agent only tries to satisfy its desires by 

generating a list of actions which will lead it to its goals. This definition of planning is 

different from many other DA1 systems in which the term planning indicates planning for 

multiple agents’ activities, that is, planning several agents’ actions in order to reach some 

kind of agreement or to schedule tasks between the agents (see Section 5.3 below). Such 

tasks can be seen in ANA as one of the goals of the argumentation process, but the planning 

mechanism and process which is carried out by each of the agents is meant to generate a 

list of steps which the agent will use to satisfy its own goals. 

Rao and Georgeff [ 1281 also consider the problem of planning in their system. In their 

case an agent was given a set of predefined plans which can be used to satisfy several goals 

at the same time. Their agent chooses one of the plans and in that way assigns itself a set of 

actions to be performed. The selection is based on the agent’s beliefs about the side-effect 
of the plan, its desires, and intentions. Their planning activity fulfills a purpose similar to 

ours. However, they also impose on the agent the belief that its goals are achievable if all 

agents act in appropriate ways. This is a very strong assumption (or limitation) that do not 
hold in our system. 

As mentioned above we implemented a very simple mechanism for planning an agent’s 
intentions from its goals. This is accomplished by executing the STRIPS-like algorithm 

(as described in [43]). The algorithm is adjusted for our needs and world example. Similar 

usage is presented in [l]. Since planning is not a main task of our system, we will not 
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present a thorough overview on the subject. For a well presented survey on planning, the 

reader is advised to see Allen, Hendler and Tate [2]. 

5.3. Multi-agentplanning 

Multi-agent planning in DA1 research has evolved along a number of different 

dimensions. One dimension focuses on agents that cooperate to solve subproblems of 

a given problem and integrate the results [20,21,24,30,36,114]. Other lines of inquiry 
concerns planning for task allocation, so that effective execution will result [9.5,141], 

centralized planning for multi-agent execution [67,113], or centralized planning to avoid 
execution time action conflicts [50,51]. Another area of research has concentrated on 

multiple agents’ mental attitudes for coordinating their activities [ l6,.55,150,154J. 
Another area of investigation has focused on multiple agents each of which is self- 

motivated, i.e., has its own goals, which could be in conflict with the goals and/or actions 
of others [ 134,136]. This literature has not concentrated on deriving the plan steps; instead, 

it assumes that the agents are capable of deriving plans, and only concentrates on resolving 
the conflicts in goals and utilities through forms of coordinated negotiation [20,17 11. 

Our work combines plan generation with negotiation and argumentation during planning 
as an explicit mechanism for plan adjustment and conflict resolution during planning. 

Argumentation has been used as a method to represent interactions in a multi-agent plan 
development process [42] in a mixed-initiative context. In particular, Ferguson and Allen’s 
work [42] aims to define plans as arguments, in the sense of [90], so the agents can reason 
defeasibly whether a certain course of action under certain explicit conditions will achieve 
certain goals. In our work instead, we use arguments as a mechanism to influence the 

intentions of other agents so that effective plans can be produced. 

5.4. Automated negotiation 

Negotiation is usually referred to as a communication process used to achieve 

coordination and resolve conflicts (see discussion in [147]). Two main approaches are 
introduced in previous research. The first approach suggests that by communicating, agents 
can influence each other’s goals and intentions. This influence should lead to resolution of 

goal and plan conflicts and better cooperation (see [148]). The agents exchange proposals, 
counterproposals and arguments and incrementally reach an agreed upon solution. Our 
work follows this line. The agents simulated in our system try to convince each other 

using argumentation to change their intentions and perform actions which are beneficial 
to the other negotiating party. The PERSUADER system by Sycara (see [ 146-1481) is a 
similar system which involves a multi-agent program that operates in the domain of labor 

negotiation. It contains three agents: a company, its union, and a mediator. The negotiation 
model of the PERSUADER has also been applied to the domain of concurrent engineering 
[ 1491. Our paper tries to create a more general solution for any domain, without limiting 
the number of agents which can perform negotiation. Our system inherited many of the 
ideas presented in PERSUADER. Some of these are the use of utilities to change the 
agent’s beliefs and behavior, several types of arguments, setting levels of strength for each 

argument type, and the argumentation strategies. 
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The second approach suggests that incremental suggestions performed by the agents can 
find a plan that will satisfy all agents (refer to [74,78,1361). Here one of the main issues 
is time and how it influences the negotiation. As time passes, some agents may benefit 
since, for example, they may continue performing their tasks. However, other agents may 
lose, since each of their goals is aimed for a certain time. Therefore, each agent will 

have a different approach to the negotiation process. In [78], a distributed negotiation 
mechanism is introduced which is used by the agents. Using this mechanism, the agents 

conduct negotiation and can reach efficient agreements without delays. Moreover, it is 
shown that the individual approach of each agent towards the negotiation time, affects 
and even determines the final agreement that is reached. The main conclusion is that 

delaying agreements causes inefficiency in the negotiation. Our current paper does not 
consider the overall negotiation time, since we are interested in creating a general system 
for automatization of the negotiation process. In ANA, we assume that there is enough 

time to perform the negotiation and that each agent’s utility does not change over time. 
Therefore we do not analyze the impact of time on the negotiation. 

The Diplomat system by Kraus and Lehmann [76] presents a general model for a 
negotiating agent and handles the issues of who to negotiate with, how to generate 
suggestions, how to evaluate counter suggestions, and how to form coalitions among the 

players. Yet this system was implemented for one specific domain-the game Diplomacy. 
Our system, though intended to be a more general system, did not address difficult issues 
such as coalition building. We focus on allowing the user to define his/her own set of rules 

that will perform his/her own kind of desired negotiation and argumentation. 
Research by Lesser and Durfee and colleagues [23,3 1,821, addresses the issue of agents’ 

communication in distributed problem solving systems. Here, the main purpose of the 
research is to combine information from several agents (usually sensor data) in order to 
reach a conclusion for the entire group. The information exchanged between the agents 
is usually based on partial solutions for various levels of the problem. Later these will 

contribute to the global solution. In other research (e.g., 120,83,89]) negotiation is used as 
a metaphor for a group of heterogeneous agents that use different search operators to try 

to arrive at a global conflict-free solution. In other negotiation models (e.g., [ 163]), agents 
negotiate through an arbitrator who resolves the conflicts that arise. Our approach differs 
from this line of work. In these works it is assumed that the agents are designed as part 

of a global system and are working towards a global system wide goal. In our work, each 
agent is trying to achieve its own goals. We do not assume any common knowledge or 

goal. nor any immediate will to cooperate. On the contrary, we assume that the agents are 

self-motivated and that cooperation should be pursued and achieved via negotiation and 
argumentation. 

Negoplan by Matwin, Szpakowicz and Koperczak [97] is a decision support system 
for conducting negotiation. Through simulating both parts of the negotiation process, its 

main task is to give one party of the negotiation an advantage. Its main model presents 
the current situation of the negotiation and by using a Goal Representation Tree (GRT) 
it is able to suggest paths for the negotiation process in which a better outcome could be 
achieved for the party using the tool. Although this is a general system. its main task is 
to support the user in negotiation and to suggest actions. It does not represent different 
negotiation strategies nor use argumentation. In contrast, our system allows its user to 



simulate several agents together, each of which uses different kinds of argumentation. 
resulting in an analysis of the negotiation and argumentation process. 

Liu and Sycara [88] have modeled negotiation as a constraint relaxation process where 

the agents are self-interested in the sense that they would like to achieve an agreement 

that gives them highest utility, but are also cooperative in the sense that they would accept 
lower utility to facilitate reaching an agreement. The model does not use argumentation for 
mental-state revision. 

Parsons and Jennings [ 1121 have followed our formalism described in [77] to construct 

arguments to evaluate proposals and counterporposals in negotiation. A recipient agent 
evaluates a proposal by constructing arguments for and against it. Their notions of 
argument defeat are based on the work of (34,45,79,90]. 

Gasser [48] discusses the social aspects of action in multi-agent systems. In his 

view, different social mechanisms can dynamically emerge, resulting in changing the 

communication language between the agents, and forming different communities of agents. 
This approach is most effective when the agents’ structure is continuously changing or no 

structure exists at all. In our system, this is not the case. Although we are interested in 
environments in which no pre-defined protocol exists (for solving the conflicts between 
the agents), we do assume a formal means for interfacing between the agents. 

Zlotkin and Rosenschein [ 134,170-1721 lay the ground for a domain theory of 

negotiation. They describe a way of classifying interactions between agents. This 
classification helps designers of agents to choose appropriate negotiation mechanisms and 

strategies. They use the Nash solution which maximizes the product of the agents’ utilities 
and call it the Unified Negotiation protocol (UNP) so it can be used in different types of 
encounters. The main domain in which their research is concentrated is the Blocks World 
environment, which we also used as an example domain. However, there is a significant 

difference between the two works. We base the negotiation part of our work on a formal 
logic model, based on the agents’ mental state. We did so, since we wanted to analyze 
scenarios in which there is no pre-defined protocol or mechanism for solving the conflicts 
between the agents. This is not the case in the work of Zlotkin and Rosenschein. In addition. 
they do not deal explicitly with the construction of a sequence of plan steps but assume 

that the agents have somehow constructed their plans and are choosing among them to 
satisfy conflicting notions of utility. In contrast, we show how explicit communication of 

arguments and the change in mental states of the agents are part of the plan construction 

process. 
Recently, there has been increasing interest in integrating learning into the negotiation 

process (e.g., [32,11 1,123]). Zeng and Sycara [ I68,169] have developed an economic 
bargaining negotiation model, where the agents are self-interested. The model emphasizes 

the learning aspects. The agents keep histories of their interactions and update their beliefs, 

using Bayesian updating, after observing their environment and the behavior of the other 
negotiating agents. 

5.5. Dgfeasible reasoning and compututinnul dialectics 

Many argumentation logical systems have been proposed in defeasible reasoning. The 
main purpose of these logics is to construct “defeasible proofs”, called arguments that can 
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be partially ordered by relations expressing differences in conclusive force. Arguments 

are primafacie proofs that may make use of assertions that one sentence is a (defeasible) 

reason for another. They indicate support for a proposition, but do not establish warrant 

[ 1.561 once and for all; it matters what other counterarguments there may be. Arguments 

may have structure [90,116], or may just be collections of supporting sentences [49,122]. 

In general, this body of work has focused on formalizing the “strength of arguments” 

and criteria for determining difference in strengths among arguments so that undefeated 

arguments can be found and presented. This body of work assumes that an argument that 

is logically undefeated is the most persuasive. In other words persuasion is viewed on only 

syntactic grounds with no explicit links and representation of agents’ objectives, actions or 

preferences (utilities) [94]. 

A large number of formal argumentation systems exist. Pollock [ 116-1211 developed 

the argumentation system OSCAR that can reason with suppositional arguments. Nute 

[ 108,109] developed the LDR system where adjudication among competing arguments is 

performed via so called top-rules. An argument defeats another if and only if the antecedent 

of the top-rule of the first argument is strictly more specific than the antecedent of the 

top-rule of the second. Loui [90-931 presented a system of argumentation where defeat 

among arguments is defined recursively in terms of interference, specificity, directness and 

evidence and introduced a new defeasible operator [ 1391. In addition, Loui developed an 

implementation for this rule system to compute defeat among arguments [92]. 

Horty and Thomason [63] presented a theory of mixed inheritance in nonmonotonic 

proof nets that resembles symbolic argumentation, where arguments are called paths. 

Paths are one-dimensional lines of reasoning and are therefore simpler than argumentation 

systems where arguments are trees. Lin and Shoham [87] developed an argument 

system that captures some well-known nonmonotonic logics (e.g., Reiter’s default logic. 

McDermott and Doyle’s nonmonotonic logic, etc.). In their system, they do not have 

logical hierarchy among arguments. So, it is not possible to determine which argument is 

undefeated. Konolige [72] proposed a solution to the Yale Shooting Problem in the context 

of which he discussed important issues in defeasible argumentation. His formalism is based 

on situation calculus, where properties are attached to situations. Dung [29] presented a 

mathematical argumentation theory where an argument is accepted by S if and only if S 

attacks all attackers of that argument. 

Vreeswijk [ 1601 presents a thoughtful critique of existing argumentation systems. We 

present some of his critique. For example, in some cases, (e.g., [ 1161) fallacious arguments 

are produced that defeat lines of reasoning; or (e.g., [90]) cyclic sets of arguments can 

be constructed where each argument defeats its successor. In general, most systems have 
difficulty in situations where it cannot be unambiguously determined which argument 

should win. Various attempts to fix this have given rise to approaches such as credulous 

reasoning [96,99,13 11, skeptical reasoning [90,109,12 l] and others. Almost all systems 

include detailed specification of defeat. However, it is possible to construct arguments 

that are syntactically isomorphic but, for different semantic situation descriptions, an 

undefeated argument is correct for one situation but wrong for the other [ 1591. Vreeswijk 

[ 1601 presents an abstract argumentation system where it is not attempted to prescribe 
how argumentation should be performed, what arguments are in force, or how defeasible 
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information should be manipulated, but rather present a general framework in which basic 
notions of argumentation (e.g., defeat) take on well-defined meaning. 

Our work differs from this body of work in that in our system we do not focus on 
the logical defeasibility or on which arguments to present in legal reasoning. Rather, 

concentrate on how argumentation can guide negotiation by supplying a mechanism to 
agents to influence the beliefs and actions of others and achieve coordination in situations 
where agents are self-interested. In this respect, our research also touches upon research 

on game theory and multi-agent planning. 
AI work in legal reasoning has concerned itself with legal disputation, arguments and 

their refutations, based on rules or cases. Much of this work has been case-based [3,4, 

132,140]. In particular, this work is concerned with criteria for argument strength based 

on factors of a case, and when and how to combine rules and cases to support claims. 
Additional work in this vein includes [94] whose focus is reasoning by representing 

argument rationales, defining rationale types and providing a formal account of how they 
change legal disputation. Case-based argument is exactly our argument type of “appeal 
to prevailing practice” and is the most frequently used argumentation method in legal 

reasoning. 

5.6. Game theory’s models of negotiation 

Game theory work [46,101,155] concerns itself mainly with determining conditions 
under which the outcomes of a game can be predicted. In particular, solutions in game 

theory consist of equilibrium strategies. The notion of Nash equilibrium [102] is heavily 
relied upon. A profile of strategies forms a Nash equilibrium if each player’s strategy is 

an optimal response to the other players’ strategies. In a Nash equilibrium, the players 
take their opponents’ strategies as given and therefore do not consider the possibility of 

influencing them. 
In games in which a player chooses actions after observing some of his opponents’ 

actions, this conjecture leads to some absurd Nash equilibria [155]. Selten [46] proposed 

a more restrictive equilibrium concept, the subgame perfect equilibrium. The basic idea of 
subgame perfect equilibrium is to select Nash equilibria that do not involve noncredible 

threats, i.e., a threat that would not be carried out if the player were put in the position to 

do so, since the threat move would give the player lower payoff than he would get by not 
doing the threatened action. In many games of complete information, this notion turns out 
to be very powerful [135]. However, it was limiting for games of complete information. 

In games of incomplete information a player who observes another’s move can extract 
information. The inference process takes the form of Bayesian updating from the second 
player’s supposed equilibrium strategy and the observed action. For such games, Selten 
[ 1371 introduced the notion of perfect Bayesian equilibrium. The outcomes of such games 
depend on what one party believes the second will do in response to actions by the first. 
However, for information sets that are not reached, Bayes formula does not hold. Thus, 

along the equilibrium path, a move by a player can be designed to influence his opponent’s 
beliefs, but a move off the equilibrium path is considered a zero-probability event, so it 
cannot be chosen. However, Selten’s equilibrium notion could not adequately restrict out- 
of-equilibrium beliefs, thus enabling the players to establish credibility for “too many” 
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threats. In other words, equilibrium could be supported for threatened behavior through 
incredible beliefs [54]. The unrestricted proliferation of equilibria also occurs in games 

with communication (e.g., signaling games). 
To be able to pose restrictions on beliefs so that unreasonable equilibria could be 

eliminated, game theorists more closely examined notions of credibility of threats and 

consistency of beliefs (e.g., [41,54,100]). Grossman defines the notion of metastrategy 
which prescribes for each player’s information set and his beliefs over the information 

set, the set of actions the player will follow. A metastrategy specifies a player’s action 
when his beliefs are given by a probability distribution and he has observed a message sent 

by the other player. An updating rule specifies the belief that a player has at each of his 
information sets as a function of his belief in the past. Based on these notions, Grossman 
defines credible updating rule and consistent belief. Using these notions, he generalizes 
the idea of a game node to include a belief as well as a history. Using his mathematical 

definitions of these notions, he is able to show that he can restrict the set of resulting 

equilibria. 
The main focus of game theoretical research is on defining appropriate notions of 

equilibria and the conditions under which they can be obtained. Communication is 
considered but is not explicitly and exogenously represented. In our framework, we 

do not focus on the presence of equilibria solutions, but rather concentrate on a logic 
framework for explicitly representing and evaluating communications (arguments) where 
arguments are connected to an agents’ mental attitudes. Arguments are exogenous to the 

game. Myerson [ 1001 put it well: “the theory of noncooperative games with signaling and 
communication (based largely on Aumann’s [5] correlated equilibrium and Kreps and 
Wilson’s [80] sequential equilibrium) derives the meaning of all statements and signals 

from the equilibrium in which they are used. In fact if the mere act of saying something 
does not directly affect any payoffs, then there is always a “babbling” equilibrium in 
which every player randomizes over the set of his possible statements independently of 
his information and his payoff-relevant actions, and in which all other players ignore his 

meaningless statements. Such analysis suggests that communication can only increase 
the set of equilibria, and cannot provide a way to select among equilibria. To escape 
from this conclusion, we must introduce the assumption that negotiation statements have 

literal meanings that are exogenously defined”. Myerson, then proceeds to define the 
notion of the credibility of negotiation statements in terms of “tenability”, “reliability” 
and “plausibility”. These are defined precisely and mathematically. He defines negotiation 

statements in terms of an allegation that describes a negotiator’s private information. a 
promise that describes how the negotiator plans to choose his future actions and messages. 
and a request that describes strategies for the other players that the negotiator may want 
or expect them to use thereafter. We see a deep connection between our own work on 
arguments especially in viewing them as mechanisms effecting change in belief and 

behavior of players and Myerson’s framework. Our logical framework provides a language 
and inference mechanism for modeling and deploying a broader range of argumentation 
strategies, however we do not explicitly provide a solution concept formulation. In 
addition, we integrate the argumentation framework within a process oriented model of 
agent interactions. It is interesting to note that Myerson’s mathematical formulation of 
conditions for credibility of negotiation statements (although computational issues are not 
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addressed in his work) could be integrated into our framework and used to determine the 
convincing power of an argument and its evaluation by the receiver agent. 

5.7. Social psychology 

A large part of the literature in social psychology and in particular in social judgement 

theory deals with persuasion. The basic tenet of social judgment theory is that attitude 
change is mediated by judgmental processes and effects. Persuasion is seen as a two- 

step process in which the receiver assesses the position advocated in the message, and 
changes attitudes [ 1 lo]. This literature presents theoretical hypotheses that are then tested 
through controlled experimentation with human subjects to investigate the factors that 

affect receiver’s judgement and cognitive attitude change. 

The research most relevant to our paper includes a number of investigations. Experi- 
ments have found that threats (“fear appeal”) are very effective [ 11,14.5]. Within this con- 
text, some researchers have examined the fear appeal content of the message, whether, for 
example, it contains gruesome pictures etc. But there is no conclusive evidence that such 

messages are persuasive. Another set of findings relates to presenting particular examples 

versus statistical summaries. Robust experimental findings show that presenting examples 

is much more persuasive [61,70.107,15 11. This relates to our argument type of “appeal to 
prevailing practice”. 

Other issues that social judgment theory examines are the notion of whether increased 
credibility of the source of the argument (the persuader) increases the persuasive force 
of an argument. This finding is robust [8,9]. In addition, research has been performed 
concerning argumentation strategies (presentation of sequences of arguments). Though the 

experimental evidence is not absolutely conclusive, it seems that the climax strategy (i.e., 
present the weakest argument first and follow with increasingly stronger arguments) works 

best [52]. This is the strategy we adopted for our model. 

6. Conclusions 

In a multi-agent environment, where self-motivated agents try to pursue their own goals, 
cooperation cannot be taken for granted. Persuasive argumentation has been advocated as 
a general mechanism for planning how to influence agents’ intentions in order to increase 
their cooperativeness and reduce disparities and conflicts. In this paper we have presented 
a formal framework for argumentation and a simulation environment in which the user can 
develop and test various algorithms and mechanisms for establishing communication and 

negotiation between self-motivated agents. In addition, this explicit representation of and 
reasoning about argumentation has been interleaved in the process of constructing joint 
plans where the agents may have different goals and where plan steps may give agents 
differing amounts of utility. 

A formal mental model of the agents based on minimal-structure of possible worlds 
(time lines) has been developed using modal operators for beliefs, desires, intentions 

and goals having an appropriate set of properties. Under different assumptions of agent 
properties and conditions on the agent models, different types of agents have been 
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defined. A formal axiomatization scheme has been constructed for argument generation 
and evaluation based on argument types identified from human negotiation patterns. In 
addition, suitability of the various types of arguments for the different agent types has been 

described. A persuading agent uses its model of another agent, the persuadee, in order 
to generate persuasive arguments that are suitable for the negotiation situation and the 

particular persuadee type. 
As distributed systems become more widespread, and as humans become part of human- 

agent systems, the need for persuasive argumentation formalisms will become apparent, 
especially when agents constrained by incomplete knowledge and bounded rationality will 

be forced to interact. One obvious and immediate application of such formalisms is agents 
that negotiate to provide services on the Internet-based environment. 

In summary, the main contributions of this paper are: 
l Formalizing to some extent the “semantics” of argumentation and linking to mental 

attitudes of the agents. 

l Unlike game theory, we explicitly represent and reason about arguments as mech- 
anisms for influencing others’ beliefs and behavior in interactions of self-interested 
agents (in situations of incomplete information). 

l The reasoning about argumentation is integrated in a multi-agent planning system 
where it is used to reconcile conflicting goals and plan steps and guide plan adjustment 
and adjudication. 

One aspect of our future work includes a more detailed investigation of the relations 
between different modalities. Another future focus will be investigation of change in the 
modalities over time in the course of the argumentation process, and as the result of 
external events and observations from the environment. An analysis of the credibility and 
reputation of adversaries based on repeated encounters is currently being incorporated into 
the argumentation process. 

Most importantly, future research will comparatively evaluate various arguments in 
different negotiation settings and for different types of agents. Creating new arguments 
and verifying their effectiveness under different conditions may lead to effective criteria 
for selecting one best argument in a specific situation, thereby getting the most out of the 
negotiation. 
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