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Abstract 

Agents me.y contract some of their tasks to other agents even when they do not share a common 
goal. An agent may try to contract some of the tasks that it cannot perform by itself, or that may 
be performed more efficiently by other agents. One self-motivated agent may convince another 
self-motivated agent to help it with its task, by promises of rewards, even if the agents are not 
assumed to be benevolent. We propose techniques that provide efficient ways for agents to make 
incentive contracts in varied situations: when agents have full information about the environment 
and each other, or when agents do not know the exact state of the world. We consider situations of 
repeated encounters, cases of asymmetric information, situations where the agents lack information 
about each other, and cases where an agent subcontracts a task to a group of agents. Situations 
in which there is competition among possible contractor agents or possible manager agents are 
also considered. In all situations we assume that the contractor can choose a level of effort when 
carrying out the task and we would like the contractor to carry out the task efficiently without the 
need of close observation by the manager. 

1. Introduction 

Agents acting in non-collaborative environments may benefit from contracting some of 
their tasks to other agents. In this paper we present techniques for efficient contracting 
that can be used in different cases of multi-agent environments where the agents do 
not have a common goal and there is no globally consistent knowledge. We consider 
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situations where a self-motivated agent that tries to carry out its own individual plan in 
order to fulfill its own tasks may contract some of its own tasks to another self-motivated 
agent(s), An agent may benefit from contracting some of its tasks that it cannot perform 
by itself, or when the task may be performed more efficiently by other agents. 

The central question of this paper is how one agent can convince another agent to 
do something for it when the agents do not share a global task and the agents are 
not assumed to be benevolent. Furthermore, we consider situations where the contractor 
agent can choose different levels of effort when carrying out the task. The manager 
agent would like the contractor agent to carry out the task with the level of effort that 

the manager prefers without the need of close observation of the manager, enabling the 
manager to carry out other tasks simultaneously. 

There are two main ways to convince another self-motivated agent to perform a task 
that is not among its own tasks: by threatening to interfere with the agent carrying out 
its own tasks, or by promising rewards [49]. This paper concentrates on subcontracting 
by rewards which may be accomplished in two forms: The first approach is a bartering 
system, where one agent may promise to help the other with future tasks in return 
for current help. However, as has long been recognized in economics, bartering is not 
an efficient basis for cooperation, particularly in a multi-agent environment. An agent 
wishing to subcontract a task to another agent may not have the ability to help it in 
the future, or one agent that can help in fulfilling another agent’s task may not need 
help in carrying out its own tasks. The second approach is a monetary system which 
is developed for the provision of rewards, and which can later be utilized for other 

purposes. 
In this paper we present a model of automated agents where incentive contracting 

is beneficial, We propose to use a monetary system in a multi-agent environment that 

allows for side payments and rewards between the agents, and where profits may be 
given to the owners of the automated agents. The agents will be built to maximize 
expected utilities that increase with the monetary values, as will be explained below. 
Assuming that each agent has its own personal goals, contracting would allow the agents 
to fulfill their goals more efficiently as opposed to working on their own. 

The issue of incentive contracting has been investigated in economics and game theory 
during the last two decades (e.g., [ 2,3 1,40,56,88,9 1 ] ) . These works in economics and 
game theory consider different types of contracts for different applications. Examples 
of these are contracts between: a firm and an employer or employers (e.g., [ 6,7,64, 
781) ; a government and taxpayers (e.g., [ 91) ; a landlord and a tenant (e.g., [2] >; an 
insurance company and a policy holder (e.g., [ 34,58,93,102] ) ; a buyer and a seller 

(e.g., [ 70,771); a government and firms (e.g., [ 721); stockholders and managements 
(e.g., [ 21); a professional and a client [98], etc. In these situations two parties usually 
exist. The first party (called “the agent” in the economics literature) must choose an 
action or a level of effort from a number of possibilities, thereby affecting the outcome 
of both parties. The second party (named “the principal”) has the additional function of 
prescribing payoff rules. Before the first party (i.e., the agent) chooses the action, the 
principal determines a rule (i.e., a contract) that specifies the fee to be paid to the other 
party as a function of the principal’s observations. Despite the similarity of the above 
applications, they differ in several aspects, such as the amount of information that is 
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available to the parties, the observations that are made by the principal, and the number 
of agents. Several concepts and techniques are applied to the principal-agent paradigm 
in the relevant economics and game theory literature. 

We consider varied situations of automated agent environments; situations of certainty 
vs. uncertainty, full information vs. partial information, symmetric information vs. asym- 
metric information and bilateral situations vs. situations where there are more than two 
automated agents in the environment. For each of these situations we fit appropriate 
economics mechanisms and techniques, from the game theory or the economics litera- 
ture, that can be used for contracting in environments of automated agents. We adjust 
these results to the automated agents environment and present all of them using uniform 

concepts that are appropriate to automated agents, i.e., translating the different concepts 
used in the various economics and game theory papers into a uniform framework. In 
all the situations that we consider, the agent that designs the contract is provided with 
techniques to maximize its personal expected utilities, given the constraints of the other 
agent(s) . Throughout the paper, we use a robotics domain and an example of software 
agents to demonstrate the contracting techniques introduced above. 

2. Related -work in DA1 

Research in DA1 is divided into two basic classes: cooperative distributed problem 

solving and multi-agent systems (MA) [ 8,281. Research in cooperative distributed prob- 
lem solving (e.g., [ 12,18,59,61,101]) considers how the work involved in solving a 
particular problem can be divided among a number of modules or “nodes”. The modules 
in a cooperative distributed problem solving system are centrally designed to improve 
the following properties of the system [ 81: 

l Performance: Concurrency may increase the speed of computation and reasoning, 
and may allow the system to solve large problems faster. 

l Reliability and stability: The modules may provide redundancy, cross-checking and 
triangulation of the results. In case of failure of one of the modules, the other 
modules can fulfill its tasks. 

l Modularity: Each module can be developed separately, making it easier to develop 
and extend the system. 

The modules include the development of cooperating mechanisms designed to find a 
solution to a given problem. 

Research in MA (e.g., [ 20,29,48,104,107,1 lo] ) is concerned with coordinating 
intelligent behavior among a collection of autonomous (possibly heterogeneous) intelli- 
gent (possibly pre-existing) agents. In MA, there is no global control, and no globally 
shared goals or success criteria. There is, however, a possibility for real competition 

among the agents. 
The MA and the cooperative distributed problem solving systems are the two poles 

of the DA1 research. Our research falls closer to the MA systems pole. We consider 
the problem of a self-motivated agent (the manager) that tries to make another self- 
motivated agent (the contractor) fulfill one of its tasks. We assume that the contractor 
can choose between different levels of effort when trying to fulfill the task. The main 
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problem that we address is how the manager should motivate the contractor to choose a 
level of effort that the manager prefers. 

The provision of incentives is in general not essential in cooperative distributed prob- 
lem solving systems. It is assumed that it is in the agents’ interests to help one another. 
This help can take the form of sharing tasks, results, or information [ 191. In task shar- 
ing, an agent, which cannot fulfill a task on its own, will attempt to pass the task, in 
whole or in part, to other agents, usually on a contractual basis [ 1011. This approach 
assumes that an agent not otherwise occupied will readily take on the task and do it to 
the best of its abilities. Similarly, results and information are shared among agents in 
such environments with no expectation of reciprocation [ 12,59,61]. This benevolence 
is based on an assumption common to many approaches to coordination: that the sys- 
tem’s goal is to solve the problem as best it can, thereby giving the agents shared, often 
implicit, global goals that they are all unselfishly committed to achieving. 

One of the techniques that is used in cooperative distributed problem solving for task 
allocation is automated contracting. In this paper we concentrate on situations where 
the contractor needs to choose an effort level, and the main purpose of the contracting 
mechanism is to convince the contractor to agree to do the sub-task while choosing 
the effort level preferred by the manager. In contrast, in automated contracting the 
contractors do not need to choose effort levels when carrying out tasks, and thus there 
is no need for incentive contracts. However, work on automated contracting considers 
other problems essential to distributed problem solving as we discuss below. 

A well-known framework for automated contracting is the contract net protocol [ 100, 
1011. In the contract net protocol a contract is an explicit agreement between an agent 
that generates a task (the manager) and an agent that is willing to execute the task 
(the contractor). The manager is responsible for monitoring the execution of a task and 
processing the results of its execution, whereas the contractor is responsible for the actual 
execution of the task. The manager of a task announces the task’s existence to other 
agents. Available agents (potential contractors) then evaluate the task announcements 
made by several managers and submit bids for the tasks they are suited to perform. As 
we explained above, since all the agents have a common goal and are designed to help 
one another, there is no need to motivate an agent to bid for tasks or to do its best 
in executing it if its bid is chosen. The main problems addressed by [99-1011 are as 
follows: 

l Tusks decomposition: how to break a large task into smaller ones. 
l Sub-tasks distribution: how to match sub-tasks with problem solvers capable of 

handling them. 
l Synthesis of the overall solution: how to synthesize the individual results of sub- 

tasks into a single overall solution. 
In addition, they consider problems such as which information a possible contractor 
should send to a manager when it bids for a task and how the manager should evaluate 
bids, In this paper we consider incentive contracting in situations where there is only 
one task per contractor and therefore the problems of task decomposition and synthesis 
of the overall solution mentioned above do not arise. In some situations we consider the 
problem of distribution of a given task where there are several agents in the environment 
that compete for the job (see Section 5.7). However, while in the contract net the agents 
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that bid for a task voluntarily provide the manager with correct information about their 
capabilities and situation, in our framework the manager needs to construct a mechanism 
to make the possible contractors reveal their capabilities honestly. 

The contract net protocol is a very general protocol for task distribution, and sev- 
eral refinements of the protocol were made in the last ten years. Malone et al. [67] 
developed a distributed scheduling protocol (DSP) based on the contract net protocol. 
The most important way in which DSP differs from the original contract net protocol 
is by its criteria for matching between tasks and agents (i.e., the problem of sub-tasks 
distribution). It includes two primary dimensions: ( 1) contractors select managers’ tasks 
in the order of tasks’ numerical priorities, and (2) managers select contractors on the 
basis of estimated completion times from among the contractors that satisfy the mini- 
mum requirements to perform the job. In addition to the problems addressed by Smith 
and Davis, Alalone et al. considered problems such as how to estimate the processing 
time of a task and, if people supply their own estimation, how to encourage them to 
report honestly, and how to assign priorities to tasks in order to achieve various global 
scheduling objectives. Similar to the original contract net protocol, in Malone et al.‘s 
model there is also no need to motivate the agents to bid or to make decisions in order to 
maximize the global expected utility of the system, and it is assumed that workstations 
voluntarily put their machines into a mode where the machines responds to requests for 
bids from the network. Also, the workstations don’t need to choose effort levels; they 
either carry ‘out a task or not. The DPS was tested using simulation of workstations on 
a network in a wide variety of situations (e.g., different processor speeds, system loads 
and message delay times). The results obtained in these simulations are as follows: 

( 1) Substantial performance improvement results from sharing tasks among proces- 
sors in systems with more than light loads. 

(2) In many cases these benefits are still present, even when message delay times 
are as much as 5 to 20 percent of the average task processing time. 

(3) In many cases, the additional benefits from pooling tasks among more than eight 
or ten machines are small. 

(4) Large errors in estimating task processing time cause little degradation in the 
scheduling performance. 

A modified version of the contract net protocol for competitive agents in the trans- 
portation domain is presented in [ 941. It provides a formalization of the bidding and the 
decision awarding processes, based on marginal cost calculations based on local agent 
criteria. More important, an agent will submit a bid for a set of delivery tasks ’ only if 
the maximum price mentioned in the tasks’ announcement is greater than what the deliv- 
eries will cost that agent. A simple motivation technique is presented to convince agents 
to make bidls; the actual price of a contract is half way between the price mentioned in 
the task announcement and the bid price. As in other automated contracting systems the 
contractor either honors its commitment to carry out a task or it does not. There are no 

’ Announcing one delivery at a time is not sufficient in general. This is due to the fact that the deliveries 

are dependent. For example, for two disjointed delivery sets Tl and Tz, the marginal costs that are saved by 

removing botkl Tl and Tz are usually larger than the sum of marginal cost that was saved by removing each 

of them alone 
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different levels of actions in order to perform the task (e.g., the time it takes to carry 

out the task, the quality of the delivery), as in the incentive contracting framework that 
we consider. Therefore, there is no need for monitoring (beside checking whether the 

deliveries were done or not) or incentives to the contractors to choose an efficient level 
of action. On the other hand, in 194 1, Sandholm deals with the following challenging 
problems that are not considered part of our incentive contracting model: * 

l how to choose which tasks to contract out, 
l how to cluster tasks into sets to bargain over as atomic bargaining, 

l how to bid when multiple bids and awards should be handled simultaneously, 
l how to handle a large amount of messages consisting of bids and awards from 

other agents and how to prevent the agents from receiving announcements at a 

faster pace than they can process, 
b how to decide to whom to award a set of tasks. 

In [ 941 a set of experiments is described which demonstrates that the approach presented 
in that paper reduces the total transportation costs among autonomous dispatch centers. 

In [ 821 a language for specification of complex relations among agents in cooperative 
distributed problem solving is described. By using this language, a designer of a system 
can define hierarchical relationships among the agents and specify to one agent the other 
agents’ authority on it. The “authority” parameter indicates how much emphasis the 
agent should give to requests that arrive from different agents. Since the agents are not 
self-motivated, their willingness to help another agent will depend upon the designer’s 
instructions. Pattison et al. suggest focused addressing as an additional mechanism of 
contracting to the one presented in the contract net protocol. This would mean that in 
addition to broadcasting requests for bids, an agent has the option of asking for help 
from another agent directly if it knows that the other agent can help it in its task and if 
it knows the other agent’s address. In this paper, we also allow both of these addressing 
methods. 

Subcontracting in cooperative distributed problem solving also appears in the paradigm 
of planning for multiple agents, where a single intelligent agent (usually called the 
master) constructs a plan to be carried out by a group of agents (the slaves), and 
then hands out the pieces of the plan to the relevant individuals [ 13,60,90]. Werner 

[ 1091 presents a formal logical model for a master-slave relationship by one-way 
communication. Also in the master-slave model there is no need to choose a level of 
effort and there is no need for incentive contracting. That is, the main problem for 
a master is finding the best plan and synchronizing the agent’s actions, rather than 
convincing other agents to carry out the plan appropriately without its observation. The 
simple master/slaves model was extended by Ephrati and Rosenschein [21] to allow 
the “slaves” more freedom in carrying out the plans. However, the slaves’ main goal is 
still to satisfy their master’s wishes. 

In the last 35 years, mathematical economists have developed market mechanism 
models describing how resources in an economy may be optimally shared in informa- 
tionally and computationally decentralized ways (e.g., [ 3,4,39,45,66] ). Researchers 

* Some of these problems were considered by [67,99,101] but they are revisited in [ 941 while taking into 

consideration the specific domain. 
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in distributed lsystems and distributed artificial intelligence (e.g., [41,53,106,107]) ap- 
plied these models to resource allocation and task distribution problems in computerized 
environments, where one of their main goals was to improve the overall performance 
of the system. For example, Wellman [ 1071 uses market price mechanisms for coordi- 
nation and task distribution in distributed planning systems. The agents are divided into 
consumers and producers and use an iterative method to adjust prices and reach an equi- 
librium. This method is applicable under the “perfect competition” assumption, which 
is appropriate when there are numerous agents, each of which is small in relationship 
to the entire economy. We consider incentive contracting when there is usually a small 
number of agents in the environment. We also deal with situations where agents are un- 

certain about the world, and the contractors (the producers in Wellman’s terminology) 
may not carry out the tasks as promised. 

In our incentive contract model and in the automated contracting frameworks [99] 

there is a hierarchical relationship among the agents. In most of the multi-agent sys- 

tems (MA) where agents are self-motivated, there is no hierarchy among the agents 
that communicate and cooperate. For example, Sycara [ 104,105] presents a model of 
negotiation that combines case-based reasoning and optimization of the multi-attribute 
utilities. This model is used in labor management negotiations where two agents need to 
reach an acceptable agreement. In [50-521, a strategic negotiation model is presented 
for situations where a set of self-motivated autonomous agents have common goals that 

they want to satisfy as soon as possible. Each agent, while wanting to minimize its 
costs, prefers to do as little as possible and therefore tries to reach an agreement over 
the division Iof labor. This model is also applicable when the agents need to share a 
resource. Zlotkin and Rosenschein [ 11 l] present a theoretical negotiation model for two 
rational agenlts which have symmetric capabilities and identical costs for their actions. 

Contracting in multi-agent systems was previously studied in [ 321. A formal definition 

of the mental state of an agent (or a group of agents) that would like to contract out 
one of its tasks was presented. Contracting depends mainly on an agent which believes 
that by taking some action (and thus bringing about a certain state of affairs), it 
can get another agent to perform an action. However, a detailed algorithm for finding 
the “motivating” action and the appropriate contractor is not presented in [ 321. Also, 
the issue of choosing the appropriate effort level by the contractor is not explicitly 
considered. The main contribution of the present paper is the presentation of techniques 
for drafting beneficial contracts in situations where the contractor agents need to choose 
an effort level when carrying a task. 

3. A framework for incentive contracting 

In the environments to be discussed below, there are two types of agents. We will 
refer to the agent(s) that subcontracts one of its tasks to another agent or agents as the 
manager(s) , and we will refer to the agent(s) that may agree to carry out the tasks as 
the contractor(s) . In order to convince the contractor to do the task and motivate it to 
do it well, the manager needs to provide the contractor with a beneficial contract. The 
contractor’s success in carrying out the task depends on the time and work intensity 
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which it will put into fulfilling the task. We will refer to the contractor’s time and work 
intensity as its effort level. We propose constructing a monetary system in the multi- 
agent environment, which will provide a way for allocating rewards and evaluating 
outcomes. 

The following are the conditions that a contracting multi-agent (CMA) framework 
should satisfy (for any specific distributed multi-agent domain), in order for it to be 
accepted by all the designers of agents (for that specific domain): 

l Simplicity: The contract should be simple and there should be an algorithm to 

compute it. That is, the agents will be able to compute the details of the contract. 
For example, if finding the awards for the contractor requires solving a set of 

inequalities, then the agents need to have a procedure to state these inequalities and 
a procedure to solve them. 

l Pareto-optima@: There should be no other contracted arrangement that is preferred 
by both sides over the one they have reached. This means that there will be no 
other contract where the utilities of both agents are greater than their utilities in the 
contract agreed upon. 

l Stability: The results should be in equilibrium3 and the contracts should be reached 

and executed without delay. 

3.1. Agents ’ utility functions 

A designer of an automated agent, in any environment, needs to provide the agent with 
a decision mechanism based on some given set of preferences. Structures of symbolic 
goals provide the agents with a good framework for planning, when the world is perfectly 
controlled by the agent and the effects of all the operators are known completely and with 
certainty to the agent [ 17,331. Symbolic goals are easily communicated, they guide the 
search for alternative plans and the projection process, and they also solve the horizon 
problem (see [ 331 for detailed discussion). However, symbolic goals do not give any 
information about the relative merits of different desirable alternatives. In addition, when 
the agent is uncertain of the past, present, or future environment and is uncertain of 
the result of its actions, then the structures of symbolic goals are not satisfying. In 
such situations numeric utility functions and decision theory offer a normative model 

for choice under uncertainty by providing support in evaluating multiple objectives and 
value tradeoffs [46,108]. 4 We therefore propose that each designer of autonomous 
agents develop a numerical utility function that it would like its agent to maximize. 

In situations where there is uncertainty and the agents need to make decisions under 
risk, the designers need to decide on their agents’ attitude toward risk. There are three 
types of behaviors toward risk. An agent is risk averse if it always prefers to receive an 
outcome equal to the expected value of an uncertain situation over entering an uncertain 
situation. An agent is risk prone if it always prefers to enter an uncertain situation over 

.’ A pair of strategies (c, 7) is a Nash equilibrium if, given 7, no strategy of Agent 1 results in an outcome 
that Agent I prefers to the outcome generated by (u, 7) and similarly for Agent 2 given (T. We discuss the 
notion of Nash equilibrium and other equilibria concepts in Section 3.2 below. 

4 The problem of integrating goals and utility is considered in [33]. 
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receiving an outcome equal to its expected outcome for entering an uncertain situation. 
An agent is risk neutral if it is indifferent between the two options. Decision theory 
offers a formalization for capturing risk attitudes. If an agent’s utility function is concave, 
it is risk averse. If the function is convex, it is risk prone. A linear utility function yields 
risk neutral behavior [ 23,461. 

We propose that a utility function of an automated agent in our contracting multi- 
agent (CMA) environment depends on the agent’s monetary gain and effort. Developing 
a quantitative evaluation of effort and world states and assigning numerical values to 
these is a difficult problem. However, in situations where the agents (or their owners) 
are paid according to the outcomes of their activities and there is a direct relationship 
between effizn-t and expense, it is easier to develop such evaluations and numerical utility 

functions. Elxamples of such domains include the transportation domain of [94] where 
agents may be paid according to the value of the deliveries they make and their expenses 
may depend on the number of miles they travel, their speed, weather, etc. In a software 
agents domain, where users query an information center (see Example 4.2 below), 
the value of the references and documents provided by the information center as a 
response to a query may depend on their monetary value to the user. The information 
center’s efforts may be measured by the time and resources spent on searching for an 
answer. 

Our framework does not restrict the designer of an agent to any specific utility function 
since we assume that the personality of the designer (e.g., his/her attitude toward risk) 
will affect his/her choice of the agent’s utility function. However, we do provide the 
designer with ways to evaluate how the choice of a utility function may affect the 
possible outcomes of his/her agent’s interactions with other agents, how the type of 
a utility function may affect the contract that will be reached, and the complexity of 
finding a contract. 

3.2. Equilibrium concepts in multi-agent environments 

The manager’s strategy in our CMA environment specifies which contract to offer 
to the contractor and the contractor’s strategy specifies how it should respond to a 
given offer. Our desire is to obtain strategies which are in equilibrium, since if the 

agents use these strategies, the interaction among the agents may become more stable. 
As we consider different situations, we use different concepts of equilibrium to gain 
stability.5 

In simple situations, with complete information, we use the Nash equilibrium concept. 

If there are n agents in the environment, a set of strategies ( $1, ~2,. . . , s,) is in Nash 
equilibrium if no agent can benefit from deviating from its strategy (i.e., choose another 
strategy), given that the other agents do not deviate. For example, suppose (s,, s,) are 
a pair of strategies for a manager and a contractor respectively. If ( s,,~, s,) are in Nash 
equilibrium, then if s,, specifies a contract that the manager should offer the contractor, 
the contractor will not have a better response than to act according to sc. On the other 

s We assume that if an agent is indifferent between two options, but the other agents prefer one of these 

options, therl the agent will choose the option preferred by the other agents. 
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hand, given the possible responses of the contractor according to s,, the manager’s best 
strategy is to offer the contract indicated in s,. 6 

When there is incomplete information, e.g., agents do not know their opponents’ exact 
types, the notion of Bayesian-Nash equilibtium is useful. This equilibrium includes a 
set of beliefs (one for each agent) and a set of strategies. A strategy combination and a 
set of beliefs form a Bayesian-Nash equilibrium if the strategies are in Nash equilibrium 
given the set of beliefs, and the agents update their beliefs, according to Bayes’ rule 

r371. 
When there are several stages of interaction among the agents, the Nash equilibrium 

strategies may involve threats that in certain senses are not credible. In order to rule out 
such equilibria we use the concept of perfect equilibrium [97]. It can be said that a set 
of strategies is in perfect equilibrium if the agents’ strategies induce an equilibrium at 
any stage of the interaction. 

There are two approaches for finding equilibria for the type of situations we consider 
in this paper. The first is the straight game theory approach: a search for Nash strategies 
or for perfect equilibrium strategies. In this approach the researcher makes a guess 
that some strategy combination is an equilibrium and then checks to see that it is 
so. The second is the economist’s standard approach: set up a maximization problem, 
and solve using calculus. The drawback of the game theory approach is that it is not 

mechanical and the number of possible guesses is very large (and possibly infinite) and 
therefore it is difficult to develop a computer program that will find the Nash equilibrium 

strategies. 7 The maximization approach, on the other hand, is much easier to implement. 
However, the problem with the maximization approach in our context is that the players 
must solve their optimization problems together: the contractor’s strategy affects the 
manager’s maximization problem and vice versa. 

In this paper we will use, whenever possible, the maximization approach, with some 
care. This means that the maximization problem of the designer of the contract (usu- 
ally the manager) will include, as a constraint, its opponent’s (usually the contrac- 
tor) maximization problem. The maximization problem of the contract’s designer agent 

can be solved automatically by the agent. That is, the contracts which we provide 
maximize the expected utility of the designer of the contract (usually the manager). 
However, when designing the contract, the agent must take into consideration the pos- 

sible responses of its opponent, which is also trying to maximize its own expected 
utility. 

3.3. Notation 

We use the following notations in the rest of the paper. A summary of this notation 
is given in Fig. I. 

6 As we see in Section 7. I, there are situations where there is more than one equilibrium. In specific cases, 

an agent’s strategy may belong to two equilibria. If it is the first to take an action, it needs to take into 

consideration the possible behavior of its opponent in all equilibria. 

7 In our previous work on negotiation under time constraints, we have identified perfect equilibrium strategies 

and proposed to develop a library of meta strategies to be used when appropriate [ 50-52 1. 
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Meaning Comments 

Set of efforts of the contractor e,et,...,ei E Effort 

Set of possible monetary outcomes 4,4t, . , qj E OUtCoffle; q(e) E OUfC0me 
for carrying out a task when q is a function of e E Efort 

Set of possible monetary rewards to r,rl,...,riERewardsr(q) when 

the contractor r is a function of q E Outcome 

The contractor’s utility function 

The manager’s utility function 

Contractor’s utility from outside options (Reservation price) 

Efficient effort level for the manager Given contractor constraints 

Efficient outcome for the manager Given contractor constraints 

Fig. I. Notation used in the paper. 

Effort kvel: Given a task, there are several effort levels that the contractor may 
adopt when trying to perform that task. We denote the set of these efforts by Effon. 

We use e, ei E Effort to denote specific effort levels. In all cases, the contractor 
will decide how much effort to expend, but its decision may be influenced by the 
contract offered by the manager. 

Outcome: While the contractor’s expected utility depends on its effort level in 
performing a task, the expected utility of the contracting agent depends heavily on 
the outcome of the performed task. The set of possible outcomes is denoted by 
Outcome. We assume that in the CMA environment, the outcome depends on the 

effort level expended by the contractor and that it can be expressed using a monetary 
system. We denote the monetary value of performing a task by q E Outcome. Given 
an effort level e E Esfort, q(e) denotes the monetary outcome of performing a task, 
as a function of e. This function increases with the effort involved. That is, the 
more e:ffort put in by the contractor, the better the outcome. 
Rewartis: In order to convince the contractor to carry out a task, the manager offers 
to pay the contractor a reward using the CMA monetary system. We denote the set 
of possible rewards by Rewards and its elements by r. The reward I E Rewards 

may be a function of the outcome from carrying out the task (i.e., q E Outcome). 

Utility functions: We denote the contractor’s utility function by UC : Effort x 
Rewards -+ Iw. We assume that in the CMA environment the contractor prefers to 
do as little as possible and gain the highest rewards; therefore, UC is a decreasing 
function in effort and an increasing function in rewards. We denote the manager’s 
utility function by V” : Outcome x Rewards -+ Iw. The manager prefers to give 
lower rewards and obtain larger outcomes. Thus, V”’ is an increasing function with 
the outcome and a decreasing function with the reward being paid to the contractor. 
Outsicr!e options: If the contractor does not accept the contract from the manager 
and does not carry out the task, then it can either perform another task (its own 
or others’) or remain idle. Its expected utility in such a situation is its reservation 
price and we refer to it as 2. 

In the rest of the paper, in order to simplify the presentation of formulas, when the scope 
of a variable is clear from the context and the above notations, we will omit the precise 
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definition of the variable. For example, when using r-i we will not always mention that 
ri belongs to Rewards. 

In our system, we assume that the manager rewards the contractor after the task is 
carried out. In such situations there should be a technique for enforcing these rewards. 
In the case of multiple encounters, reputational considerations may yield appropriate 
behavior. Some external intervention may be required to enforce commitments in a 
single encounter, e.g., the responsibility of the manager’s owner for its contracts toward 
the contractor’s owner. Our last definitions are concerned with the value of the contracts 

to the manager. The jirst best contract will provide the manager with a profit that is 
equal to a profit it could get when there is complete information and the manager can 
observe the contractor(s)’ actions. The second best contract is Pareto-optimal given 
information asymmetry and constraints on writing contracts, e.g., the manager does not 
observe the contractor(s) ’ actions. 

4. Full information 

At first we assume that all the relevant information about the environment and the 
situation is known to both agents. In the simplest case the manager can observe the 
contractor’s effort and actions and force it to perform at the effort level preferred by the 
manager by paying only when the required effort is made. The amount of effort required 
from the contractor will be the one that maximizes the manager’s outcome, taking into 
account the task fulfillment and the rewards that need to be made to the contractor. 
However, in most situations it is either not possible or too costly for the manager to 
observe the contractor’s actions and its level of effort. In some cases, the manager may 

be either trying to carry out another task at the same time, or it cannot reach the site of 
the action. We consider two cases in such situations: 

l In Section 4.1 we consider the case where there is no uncertainty with respect to 
the result of the contractor’s actions. 

l In Section 4.2 there is uncertainty concerning the outcome of an action taken by 
the contractor. 

4.1. Contracts under certainty 

Suppose both agents have full information about the world and about each other, but 
the manager does not observe the contractor’s actions. Under these circumstances, there 
is no uncertainty concerning the results of the contractor’s actions, i.e., the outcome 
is a function of the contractor’s effort. If this function is known to both agents, then 
the manager can offer the contractor a forcing contract [ 16,34,88], which means that 
the manager will pay the contractor only if it provides the outcome required by the 
manager. If the contractor accepts the contract, then it will perform the task with the 
effort level that the manager finds to be most profitable to itself, even without the 
manager’s observation. Note, the outcome won’t necessarily be a result of the highest 
effort on the part of the contractor, but rather a result of the effort which provides the 
manager with the desired outcome. 
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We assume that either the manager or the contractor is one of several similar perfect 
competitors. In the background other managers are competing to subcontract some tasks 
to the contractor, so that the manager’s equilibrium profit equals zero, or many possible 
contractor agents compete for the manager’s task, so that the agent’s equilibrium utility 
equals its reservation price-the minimum that induces it to agree to perform the task. 8 
Suppose the contractor is one of many agents that compete for the manager’s task. 
The manager should pick an effort level, e* E Effort, that will generate the efficient 
output level, q* E Outcome. As we explained above, since there are several possible 
agents available for contracting in equilibrium, the contract must at least provide the 
contractor with the utility ii. The manager needs to choose a reward function where 

V(e*,r(q*)) = i; and U”(e,r(q)) < ii for e # e*. ii is the minimal reward that 
will make the contractor accept the contract. Since the manager would like to pay the 
contractor as little as possible, but wants the contractor to accept the offer, then if the 
outcome reveals that the contractor provided the required effort level, the manager will 
pay the contractor ii. If the contractor accepts the contract, but does not choose the 
appropriate effort level, its reward will be even less than a. We demonstrate this case in 
the following example. 

Example 4.1 (Contracting under certainty). Two robotics companies, CompM and 
CompC 9 are responsible for cleaning and garbage collection in adjacent cities (e.g., 

Tel-Aviv and Ramat-Gan) . Each of the companies has several autonomous mobile robots 
that carry oust the cleaning tasks in these cities. lo 

Most of th’e garbage collected by these companies is used for recycling, and therefore 
the companies are paid mainly according to the amount of garbage they collect and its 
value for recycling. The amount of garbage collected by a robot depends on the effort 
level with which it carries out the task, and the distribution of garbage in the area it 
tries to clean. 

Suppose one of CompM’s robots has to collect garbage far from the other robots 
of CompM, but close to several of CompC’s robots. The CompM’s robot would like 
to subcontract some of its garbage collection tasks and therefore approaches one of 

’ Note that if this assumption is not made, there may be several equilibria. In such situations the designers 
of the agents m,ay agree upon regulations that will make all agents in the environment focus on one of them. 
For example, they may agree that the manager will serve as a focal arbitrator. A focal arbitrator is an agent 
who can determine a focal equilibrium in the environment. In such a case, the equilibrium will be similar 
to the case where many possible contractor agents compete for the manager’s task. One way of making the 
manager a foca’l arbitrator is by imposing regulations in which the contractor cannot negotiate the details of 
a contract; it can either accept the contract offered to it by the manager, or reject it. 

’ The robots of company CompM will play the role of the managers and the robots of CompC will play the 
role of the contractors. 
I” Most of the autonomous robots up today operate indoors (e.g., Plakey’s of SRI, Polly’s of MIT, Schimmer 

of Stanford 1 II ,44,80] ). Mobile robots that operate in rougher terrain are usually less autonomous (e.g., 
DANTE II that was developed by NASA and CMU and explored the crater on Mt. Spurr volcano in Alaska) 
or act in well-defined environments (e.g., CALMAN-a computerized articulated lawn mower with automatic 
navigation that was developed at Lulea University of Technology in Sweden). It seems that on-going research 
on perception, mapping, and navigation in a changing environment will contribute to the construction of 
“cleaning” automated agents, but it is likely to be a few years before such robots are operational. 
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CompC’s robots. The CompC robot can collect garbage in three levels of effort (e) : Low, 
Medium and High respectively denoted by 1, 2 and 3. CompM’s robot cannot observe 

the effort of the CompC’s robot since it wants to carry out another task simultaneously. 
The value of garbage collection is q(e) = &@6. The utility function of CompM’s 
robot, if a contract is reached, is U”‘(q, r) = q - Y and the utility function of CompC’s 
robot in the case that it accepts the contract is V(e, r) = 17 - 10/r - 2e, where I is 
the reward to CompC’s robot. If CompC’s robot rejects the contract, it will busy itself 
with maintenance tasks and its utility will be 10. It is easy to calculate that the best 
effort level from CompM’s robot’s point of view is 2, in which there will be an outcome 
of &?%. The contract that CompM’s robot offers to the CompC’s robot is 3f if the 

outcome is v@% and 0 otherwise. This contract will be accepted by CompC’s robot 
and its effort level will be Medium. 

Another issue of concern is how the manager will choose which agent to approach. 

In a situation of complete information (we consider the incomplete information case in 
Section 5) it should compute the expected utility for itself from each contract with each 
agent and choose the one with the maximal expected utility. 

Our model is also appropriate in the case where there are several managers with 

the same utility functions, but only one possible contractor. In such cases, there should 
be information about the utilities of the managers in the event that they do not sign 
a contract, i.e., the managers’ reservation price. The outcome to the manager in this 
case should be equal to its reservation price. In this case, the contractor” will offer a 
contract, trying to maximize its expected utility under the constraint that the manager 
will gain its reservation price. 

4.2. Contracts under uncertainty 

We continue to assume in this case that the agents have full information about each 
other, and that the manager does not observe the contractor’s behavior. However, in most 
subcontracting situations, there is uncertainty concerning the possible outcome of an 
action. If the contractor chooses some effort level, then there are several possibilities for 
an outcome. For example, suppose a cleaning automated agent subcontracts its garbage 
collection task and suppose that there is uncertainty about the distribution of the garbage 
at the site. If the contractor chooses a high effort level and the garbage is distributed 
all over the area, the outcome may be similar to the case where the contractor chooses 
a low level of effort and the garbage is all in one place. However, if the contractor 
chooses a high effort level when the garbage is located in one area, the outcome may be 
higher and, thus, better to the manager. In such situations the outcome of performing a 
task does not reveal the exact effort level of the contractor, and consequently, choosing 
a stable and maximal contract is much more difficult. 

Assuming that the world may be in one of several states, neither the manager nor the 
contractor knows the exact state of the world when agreeing on the contract. There is the 
possibility that the contractor may gain more information about the world during or after 

I ’ Here the contractor is the focal arbitrator. 



S. Kraus/Artifcial Intelligence 83 (1996) 297-346 311 

completing the task, but only after signing the contract and choosing the effort level. 
The manager, however, is not capable of gaining more information about the world. 

Following [34], we also assume that there is a set of possible outcomes to the 
contractor carrying out the task Outcome = (41,. . . , q,,} such that q1 < q2 < + . . < 

q,, depends upon the state of the world and upon the effort level of the contractor. 

Furthermore, we assume that, given a level of effort, there is a probability distribution 
attached to the outcomes that is known to both agents. t2 Formally, we assume that 
there is a probability function p : Effort x Outcome -+ R, such that for any e E Effort, 

Cr=, 64e,qi) = 1 and for all qi E Outcome, p(e, qi) > 0. I3 This characterizes the 
situations where the manager is not able to use the outcome to determine the contractor’s 

effort level unambiguously. 
The manager’s problem is to find a contract that will maximize the manager’s ex- 

pected utility, knowing that the contractor may reject the contract or, even if it accepts 
the contract, the effort level will be chosen later [88]. The manager’s reward to the 
contractor ca.n be based only on the outcome. Let us assume that in the contract that 
will be offered by the manager, for any q;, i = I,. . . , n, the manager will pay the 
contractor the reward ri. The maximization problem can be constructed as follows (see 

also [88]).‘4 

Maximi:ze,, ,..,, r,l c p(Z,qi)U”‘(qi,r;) 

i=l 

with the constraints: 

n 

(IR) .. c p(~9qi)uc(e^,ri) 3 2, 

i=l 

(1) 

Equation ( 1) states that the manager tries to choose the reward for the contractor, so 
as to maximize its expected utility subject to two constraints. First, the rewards for the 

contractor must be large enough to motivate the contractor to prefer the contract rather 
than to reject it. Constraint (2) is called the individual rationality (IR) constraint. This 

constraint requires that the expected utility of the contractor will be at least as much as 
its reservation price (i;). The second constraint (3), which is called the participation 

‘* A practical question is how the agents find the probability distribution. It may be that they have preliminary 

information ab’out the world. In the worst case, they may assume an equal distribution. The model can be 

easily extended to the case that each agent has different beliefs about the state of the world, i.e., has its own 

probability function, which is known to its opponent [ 811. 

“The formal model in which the outcome is a function of the state of the world and the contractor’s 

effort level, and in which the probabilistic function gives the probability of the state of the world which is 

independent of the contractor’s effort level, is a special case of the model described here 134.8 I, 9 I 1. 
I4 As we mentioned above, we omitted the definitions of the variables in some of the formulas. In the formulas 

below, as well as in the rest of the paper, ri E IR and qi E Outcome. 
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constraint (IC), provides the contractor with the motivation it needs to choose the effort 
level that the manager prefers, given the contract it is offered. This means that given the 
agreed rewards, e^ will provide the contractor with the highest outcome. 

In order to be able to use the above framework in the CMA environment, the agents 

should be able to solve the above maximization problem. The algorithms that should be 
used depend primarily on the utility functions of the agents, as we will describe in the 
next two sections. 

4.2.1. Risk neutral agents 
If the manager and the contractor are risk neutral, then solving the maximization 

problem can be done using any linear programming technique (e.g, simplex, see for 
example [ 83,103] ). Furthermore, in most situations, the solution will be very simple: 
the manager will receive a fixed amount from the outcome, and the rest will go to the 
contractor. That is, ri = qi - C for 1 < i < n, where the constant C is determined by 
constraint (IR) (2) [ 981. 

Example 4.2 (Risk neutral software agents under uncertainty). Suppose there is an 

information center that has several large databases (e.g., the Earth Science Data and 
Information System (ESDIS) of the National Aeronautics and Space Administration 
(NASA) ). The information center receives queries from users (possibly automated 
agents) and answers the queries by providing references and documents that are rele- 
vant to the query. Given a query, both the information center and the user are uncertain 
about the number of documents in the information center’s databases that are relevant to 
the query. However, they both know that if the information center uses more resources 
(e.g., CPU time) searching its databases, then its probability of finding more documents 
will increase. The amount of resources that the information center uses in answering 
a query will be referred to as its effort level. In particular, based on previous expe- 
rience, the user and the information center have some probabilistic estimation of the 
number of documents that will be found given a specific effort level of the information 

center. 
In order to simplify the problem we assume that there are only two effort levels 

possible for the information center, Low (e = 1) and High (e = 2). Suppose the user 
asked a query such that the user and the information center estimate that there are either 
30 or 100 related documents. I5 In addition, both the information center and the agent 
estimate that if the information center chooses the Low effort level, then the probability 
that it will find 30 documents is f and the probability that it will find 100 documents is 

f. On the other hand, if it searches with the High effort level, then the probability that 

it will find 30 documents is h, and the probability that it will find 100 documents is 3. 
If the user gets 30 documents it is worth 50, while locating 100 documents is worth 75 

to the user. The user’s l6 utility function is Urn (30, r) = 50 - r and U”( 100, r) = 75 - r. 

Is In real situations we expect that the set of possible numbers of documents will be much larger (but finite 
and discrete) and also that the number of possible effort levels will be much larger. However, this small 

example demonstrates the technique. 
I6 Note that the user plays the role of the manager and the information center plays the role of the contractor. 
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The information center’s utility function is UC (r, e) = r - 10e; if it doesn’t respond to 
the user’s query, it works on maintaining its databases, and its expected utility will be 
5, i.e., Li = 5. 

In solving the maximization problem above, we reach the conclusion that the user 
should offer the information center the reward 2& if it provides only 30 documents and 
27& if it provides the user with 100 documents. The information center should choose 

the High level of effort and the user will always gain a profit of 47%. 

Similar situations may occur between the cleaning automated agents. 

Example 4.3 (Risk neutral robots under uncertainty). Suppose the utility function of 
the CompC’s robot from Example 4.1 is Uc( r, e) = r - e, and suppose that it can 
choose between two effort levels: Low (e = 1) and High (e = 2), and suppose that 
its reservation price is ii = 1. There are then two possible monetary outcomes to the 
garbage collection scenario: q1 = 8 and q2 = 10. The utility function of CompM’s robot 
remains as it was in the previous example, i.e., U’“(q, r) = q - r. 

If CompC’s robot chooses the Lower level of effort then the outcome will be q1 with 
probability i and q2 with probability $. If it takes the High level effort the probability 
of q1 is $ and of q2 it is i. In such situations, CompM’s robot is able to ensure itself a 
profit of 6%. That is, r-1 = l$ and r-2 = 3:. The robot of CompC will choose the High 
level effort. 

4.2.2. The contractor is risk averse 
When the agents are not neutral toward risk, then solving the manager’s maximization 

problem becomes much more difficult. However, if the agents’ utility functions are 
carefully chosen, then an algorithm does exist. 

Suppose the contractor is risk averse and the manager is risk neutral (the methods 
are also applicable when both are risk averse). Grossman and Hart [ 311 present a 
three-step procedure in order to find appropriate contracts in such situations. The first 
step of the procedure is to find for each possible effort level, the set of reward contracts 
that will induce the contractor to choose that particular effort level. The second step of 
the procedure is then to find the contract which supports that effort level at the lowest 
cost to the manager. The third step of the procedure is to choose the effort level that 
maximizes profits, keeping in mind the need to support that effort with a costly reward 
contract. Formally, step one and two are as follows: Suppose the manager wants the 
contractor to choose the effort level e’ E Efsoort, it will need then to solve the following: 

n 
C(e’> == Minimize, ,...., r,, C gde’, qilri (4) 

i=l 

with the constraints: 

n 

(IR) c P(e',qi)V(e',ri) b & 
i=l 

(5) 



314 S. Kraus/Artificial Intelligence 83 (1996) 297-346 

II n 

(IC) c a(e’,qi)U”(e’ ,ri> 2 Cp(e,qi)UC(e,ri) for all e E Effort. (6) 
i=l i=l 

The first constraint (5) requires that the expected utility for the contractor will be at 
least as good as its outside options (its reservation price). The second constraint (6) 
requires that given the contract, the contractor will prefer to take the effort level e’. 
The minimization problem states that the manager is looking for a contract where it 
can pay as little as possible to induce the contractor to choose e’. For this minimization 
problem there is an algorithm if UC satisfies several properties, including the property 
that the preferences of the contractor over entering uncertain situations are independent 
of its actions [ 31,83,89]. I7 That is, the contractor’s preferences over reward lotteries 
are independent of its actions and effort level. 

After finding a set of possible values, II,. . . , r, for every e E Effort (where the set 
may be empty since there could be effort levels which the manager cannot make the 
contractor choose), and after finding the minimum expected reward C(e) , for any effort 
level, the manager is ready to move to the third step, which is easy to compute. The 
manager will then choose the effort level that will provide it with the maximal outcome: 

(7) 

The contractors computational task is easier. After being offered a contract, the contractor 
only needs to check the validity of the inequalities that appear as constraints in the 
manager’s maximization problem. That is, when the contractor needs to check the 

validity of the individual rationality constraint (IR) in order to decide whether to accept 
the contract or not. When the contractor needs to decide which effort level to provide, 
it should consider its expected utility from its effort level, similar to the maximization 
problem described in the participation constraints (IC). In both cases, since all variables 

are known, based on the suggested contract, these checks are very easy. 

Example 4.4 (Risk averse contractor under uncertainty). Suppose the situation is ex- 
actly as in Example 4.3 but the designer of the robot determines that the contractor will 
be risk averse and its utility function is as in Example 4.1: Uc( r, e) = 17 - IO/r - 2e 
and fi = 1. 

The maximization problem that the manager should solve is: 

n 

M~imizf+, ,... ,r,, c fJ(z9 4i) (qi - ri> (8) 
i=l 

with the constraints: 

” In [ 89 1 the problem of finding a contract when the manager can choose an effort level from a real interval 
is considered. Rogerson identifies the sufficient condition in which the constraints (IC) can be replaced with 

the requirement that the effort level be a stationary point for the contractor. In such situations a solution can 
be calculated using the Kuhn-Tucker Theorem. 
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2 

(IR) c 
&d,qi) 

i=l 

(IC) 

315 

(9) 

(10) 

Grossman and Hart’s three-step procedure [ 3 l] requires that the manager first deter- 
mine the minimal reward needed to make the contractor choose et = 1 and what the 
minimal reward is that will make it choose e2 = 2: 

C(el) = Minimize,,,,, ir1 + ir2 (11) 

with the constraints: 

(IR) ;(17-;-2)+;(17+2)>1, 

(IC) ;(17-+2)+;(17-$2) 

,;(17+4)+;(17-$4). 

(12) 

(13) 

The results of solving this minimization problem using Lagrangian multipliers is that 
the minimal reward to make the contractor choose et = 1 is rl = r2 = f. A similar 
minimization problem can be stated and solved for e2 = 2. In this case the minimal 
reward to make the contractor choose effort level e2 = 2 is r{ = 1 and r; = 15. Finally, 
the manager should check which effort level it prefers, given the above rewards, i.e., 

it should compare @(et,qt)(qt - rl) + &el,q2)(q2 - r-2) and Ia(e2,ql)(qt -r’,) + 
p( e2, q2) (612 - r$>. The conclusion is that the manager can obtain the largest expected 
utilities by offering r{ = 1 and ri = 16. The contractor will then compute its expected 

utility from choosing effort level et (i.e., +(17-10/r:-2)+:(17-10/r;-2)) and 

from choosing effort level e2 (i.e., $(17-10/r’,-4)+~(17-10/r~-4)),anditwill 
then realize that its expected utility from both effort levels is the same. The contractor 
will then verify that its expected utility from the offered contract is greater than ii (i.e., 

$( 17 - 10/r: - 4) + i< 17 - 10/r; - 4) 2 l), and will then accept the contract and 
choose effort level e2 since its expected utility from both effort levels are the same and 
e2 is preferred by the manager. I8 

4.2.3. Obtaining imperfect information about the contractor’s behavior 
Even in situations where the manager cannot observe the actions of the contractor, 

it may be able to gain some information about its behavior. For example, it can gain 

‘s In the rest of the paper we will not specify the contractor’s computation procedures, since in most of the 
situations, given a contract, the contractor needs only to check the validity of the inequalities that appear 

as constrain& in the manager’s maximization problem, similar to the check done in this example. Since all 
variables are known, based on the suggested contract, this check is straightforward. 



316 S. Kraus/Art$cial Intelligence 83 (1996) 297-346 

information by setting up a camera in the garbage collection site. This information may 
be imperfect, and the process of getting this information is called an imperfect (noisy) 

monitoring process. In particular, if the contractor takes effort level e, then the result of 
such a monitoring mechanism may be e + 6 where S is a random variable drawn from 
[(~a, ai ] for some finite ae, LYI . These results will enable the manager to obtain some 
estimation of the contractor’s effort level. The main question is, however, whether using 
such monitoring is beneficial. 

We continue to assume that the assumptions described in the beginning of Section 4.2 
hold. That is, the agents have full information about each other, the manager does not 
observe the contractor’s behavior, there is uncertainty concerning the state of the world 

and neither agent knows the state of the world, but both agents observe the outcome of 
the contractor carrying out the task. Under the above conditions, it has been shown that 
if the contractor is risk neutral, there are no gains (to either agent) from the use of any 
monitoring mechanism [ 351. This claim holds when the manager is either risk neutral 
or risk averse. I9 However, according to the above conditions, if the contractor is risk 

averse, there are potential gains to monitoring. This is the case, particularly, if a contract 
of the following form is an optimal monitoring contract: If the contractor’s action is 
judged acceptable on the basis of the monitored outcome, the contractor will then be 

paid according to a prespecified schedule. Otherwise, it will receive less preferred, fixed 
rewards [ 351. To demonstrate this idea we use a modification of an example that appears 
in [35]. 

Example 4.5. Suppose the utility function of CompC’s robots from the previous ex- 
4 1.25 amples is UC (e, r) = P-‘.*~ - 5e , its reservation price is li = 0 and the utility function 

of CompM’s robot is, as in previous examples, Um(q, r) = q - r. Suppose the world’s 
situation is 0 which is uniformly distributed on [0, 11 and the outcome function is 

4(c, 0) = e + 8. The monitoring technology then includes only monitors, which are 
uniformly distributed on [e - E, e + E] for some E > 0. That is, if the contractor chooses 
effort level e, the monitor will provide an equal probability number (Y, between e - E 

and e + E. 
The contract that will be offered by the CompM robot is a function of the outcome 

and the monitored information cy: 

r(s,n) = 
i&, if ff 3 2e + 2-6e-3 - e, 

0, otherwise. 

The effort level chosen by the CompC’s robot depends on E. If E < 2-‘.*‘, then it will 
choose 2e +2-6e-3. In such situations the CompC’s robot will always get the reward $E 

and its expected utility is 0. The expected utility of CompM’s robot is f +2-5 +E-~ + :E. 

If E Z 2-I.*“, then CompC’s robot will not choose the required level of effort, but rather 
will take a lower level effort, 5 * 2-6~-3. It may be that the monitoring value (Y will be 
lower than 2e + 2-6e-3 - E and CompC’s robot won’t get any reward. The probability 

I9 The manager’s utility function should be monotone increasing with q - r, concave and continuously 
differentiable. The proof to the claim appears in [ 35, Proposition 31. 
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In addition, in each of the n contracts offered by the manager the contractor’s utility 
should be higher than its reservation price. The manager should find a set of such 
self-selection contracts that will maximize its expected utility, based on its probabilistic 
beliefs. Formally: 

subject to: 

(SS) Eq. (14), 

(IR) V(f?i,ri) >/ 2, where f(ei, ei) = qi, 

We demonstrate this maximization problem in the next example. 

(15) 

(16) 

Example 5.1 (Contracting under asymmetric information (sofnvare agents) ). Similar 
to Example 4.2, the user asks the information center a query. However, the user is 

uncertain as to whether the databases of the information center were updated recently 
or not. That is, the user believes that the databases can be either in state 131 = 1 or in 

state 192 = 2. The information center, of course, knows the state of its databases. The 
number of documents that will be found by the information center depends on the state 
of its databases and the effort level it will choose to search with. The outcome function 
is f(e, 0) =: e0, the user’s utility function is lJ”(q, r) = q - r and the information 
center’s utility function is Uc( e, r) = r - e2. Hence, with f( e, 0) = e0, the information 
center’s utility function is a function of the output, reward and the state of the databases 

is r/“(s,r,e) = r - (q/0)2. We also assume that the information center’s (i.e., the 
contractor’s) reservation price is fi = 1, and the user (manager) believes with probability 
0.25 that the state of the databases is 01 (i.e., 41 = 0.25)) and it believes with probability 

0.75 that the state of the world is 02. 
In such a situation the user should solve the following maximization problem: 

Maximize(,,,,,),i,l.2 0.25(ql - r-1) + 0.75(q2 - r-2) (17) 

subject to: 

rl - 4: 2 r2 - 4& 

r2 - (q2/2j2 Z rl - (q11V2, 

rI -4: > 1, 

r2 - (q2/212 3 1, 

0 < ri < qi, i = 1,2. 

If the output function f is twice differentiable in e, with fe > 0 and fee < 0 for 
all 8, 2’ then there is an interesting result concerning the manager’s preference over the 

21 .f; denotes the first derivative of f by e and fee is the second derivative. 
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information available to the contractor. If the contractor has full information about the 
state of the world before signing the contract, then the manager’s expected utility is 
lower than in the case where it and the contractor have symmetric beliefs (either perfect 
or imperfect) about the state of the world before signing the contract [ 6, 151. This 
conclusion is a result of the fact that when they share the same (perfect or imperfect) 
state of information, the contractor can be held to its reservation level of expected utility. 

5.2. Asymmetric information after reaching an agreement 

In some situations, the contractor is able to collect more information before it performs 
the agreed upon task but only after signing the contract. For example, when CompC’s 
robot reaches the garbage collection site, it may find out what the exact state of the 
world is and know for sure what the outcome will be if it takes a specific level of effort. 

If agreements are enforced, i.e., if the contractor cannot opt out of the agreement after 
it is signed, then the only difference between the previous case and the current one is, 
that constraints (IR) ( 16) should be about the expected utility of the contractor, rather 
than its eventual utilities, since at the time of the contract, the exact utility is not known 
to the contractor. If the agents have similar probabilistic beliefs about the state of the 
world when signing the contract (i.e., $i), then the constraint is as follows: 

n 

(IR) c 4iU’(ei, ri) 2 fi, where f(ei, ei) = qi. (18) 
i=l 

We demonstrate this in the following example. 

Example 5.2. (Risk neutral agents under asymmetric information (cleaning automated 
agents). Suppose the situation is exactly as in Example 4.3, and CompC’s robot can 
find out more information after the robots have reached a contract, but before choosing 
its level of effort. As in Example 4.3 the contractor can choose between two effort 
levels Low (e = 1) and High (e = 2) and its reservation price is ii = 1. There are then 
two possible monetary outcomes to the garbage collection: q1 = 8 and q2 = 10. The 
agents’ utility functions are the same as in Example 4.3. The world can be in one of 
eight possible states 81,. . . , 88 with equal probability. The outcome function is defined 
asfollows:For1<i<6,f(19t9i)=qt,for7<i<8 f(l,Bi)=qz, f(2,8t)=qtand 
for 2 < i < 8, f (2, f+) = 42. Note that this yields the same probabilistic outcome as in 
Example 4.3. 

There are two possibilities for constructing the contracts, depending on which effort 
level the contractor will choose if the state of the world is either 82,. . . , &. It is clear 
that if the state is 81, 87 or 6s the contractor will choose the Low effort level. If the 
manager would like the contractor to choose High effort level in states 82,. . . , o& then 
the manager should solve the following minimization problem (we list only the binding 
constraints) : 

Minimize,,T,, $r] + ir2 

subject to: 

(19) 
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of this happening is 1 - 2-5e-4, and CompC’s robot’s expected utility is still 0, while 
the expected utility of CompM’s robot in this case is 1 + 5 * 2-7~-3. In both cases, 
CompC’s expected utility is more than 1, which is what it can expect if it does not use 
a monitoring mechanism. 

From the above results, it follows that when e > 2-‘.25, the rewards to CompC’s robot 
increase with E, its effort level decreases with E, and the expected utility of CompM’s 
robot decreases with E. These results fit the belief that as monitoring becomes less 
precise (i.e., E increases), the manager’s expected utility decreases. 

5. Asymmetric and incomplete information 

There are some situations in which the contractor may have more information than 
the manager. First, the contractor may have obtained more information concerning the 
environment, e.g., the information center from Example 4.2 may know the exact state 
of its datalbases, while the user in that example may only have some probabilistic 
beliefs about the databases based on previous experience. Second, in other situations 
the manager may not know the utility function of the contractor. The contractor then 
may be one of several types that reflect the contractor’s ability to carry out its task, 
its efficiency or the cost of its effort. However, we assume that given the contractor’s 
type, its utility function would be known to its party. For example, suppose the cleaning 
company CompC builds robots of two types. The specifications of the robots are known 
to CompC’s robots and to CompM’s robots; however, CompM’s robots do not know the 
specific types of CompC’s robots they will encounter. 

In both cases, the manager could simply ask the contractor for the additional in- 
formation, i.e., its type or the state of the world, however the contractor will not tell 
the truth unless the manager provides it with a monetary incentive to do so. This will 
often cause inefficiency from the manager’s point of view. The search for an equilib- 
rium in such situations may often be extremely difficult, but there is a useful technique 
that, in using it, the manager can reduce the number of contracts it needs to consider, 
as we explain below. The manager should search for an optimal mechanism [ 141 as 
follows: the manager offers the contractor a menu of contracts indexed by the agent’s 
type (or the state of the world). The contractor can then decide whether to accept 
the menu of contracts or not. If it accepts the offer it sends a message to the man- 
ager reporting its type. The manager is then committed to the contract indexed by this 
type. The rewards of the contractor in each of these contracts are the functions of the 
outcomes. *O 

The big advantage of this mechanism is the revelation principle: For every contract 
that leads to lying, there is a contract with the same outcome for the contractor (given 
its type or the state of the world) but without inducement for the contractor to lie. 
Therefore, without loss of generality, it is enough for the manager to consider only 

*(’ Given the chosen contract, the contractor chooses an effort level which maximizes its own expected utility. 

In each of the menu’s contracts, the contractor’s expected utility should be at least us high as its expected 

utility if it does not sign the contract. 
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contracts where it is in the contractor’s interest to honestly report its type [ 761, There 
are two main limitations in using the revelation principle. First, there is a need for 

communication since the contractor needs to send a message to the manager specifying 
its type. Second, this mechanism requires strong precommitment capability on the part 
of the manager. After the contractor reveals its type honestly, it is often in the manager’s 
advantage (sometime the contractor’s as well) to re-negotiate the contract, and offer a 
different one. We discuss these issues in Sections 5.4 and 5.6. We will consider several 
situations of asymmetric information. 

l In Section 5.1 we consider the case where the state of the world is known to the 

contractor, but not to the manager. 
l In Section 5.2 neither agent knows the state of the world before signing the contract. 

The contractor finds out that information after signing the contract, but before 

choosing its effort level. 
l In Section 5.3 the contractor’s information is initially better than that of the manager, 

but it knows the exact state of the world only after a contract is signed (but before 

choosing the effort level). 
l In Section 5.4 the contractor cannot predict the outcome, based on its private 

information, either before or after signing the contract. 
l In Section 5.5 both agents have some private information, e.g., they have some 

private information about their types. 

5.1. Asymmetric information about the state of the world 

Suppose the world can be in one of several states, 81,. . . ,8,. If the contractor chooses 
a level of effort e and the state of the world is 0, then the outcome will be f( e, 0) 

[ 361. As in previous cases the contractor’s utility function (UC (e, r) ) increases with the 
reward it gets from the manager (r), and decreasing with its effort (e). The manager’s 
utility function (U”(q, r) ) increases with the outcome, and decreases with its reward 
to the contractor. We assume that the contractor knows the state of the world 8, but 
the manager has no definite knowledge about the state ‘of the world, having only a 
probabilistic belief. We denote its belief that the world is in state Bi, i = 1,. . . , n by & 
and assume that ~~=, 4i = 1. 

As we described above, in the first step of the agents’ interaction, the manager will 
offer the contractor n pairs (one for each state) for an outcome and a payoff (qi, ri). 
The contractor will then report its private information, i.e., the state of the world, to 
the manager. According to this message, the corresponding contract is implemented. In 
the third step the contractor chooses its effort level, and is paid according to the chosen 
contract and the outcome. As was mentioned above, based on the revelation principle, 
we will restrict our attention to direct mechanisms under which the contractor reports 
the situation of the world honestly, motivated by the contract. That is, if the state of the 
world is Of, then (qi,ri) is the best contract among the ones offered by the manager. 
This constraint is called “self-selection”. Formally, 

(SS) ViE {l,...,n} u’(ei, ri> B u’(e,j,r,j) 

where 1 < j < n, f(Oi,ei) =qir f(f?i,ej) =qj. (14) 
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UR) +<r, - 1) + i(rZ - 2) + i(r* - 1) > 1, (20) 

(IC) r2 - i-1 >, 1. (21) 

By solving this problem we can conclude that the manager can always keep 7; of 
the outcome and pay the contractor rl = i and r2 = 2:. Similarly, we can formalize the 
problem where the contractor chooses effort level Low in states 02 - &j. The rewards 
should be r{ = ri = 2 and the expected utility for the manager is 6;. In order for the 
manager to maximize its expected utility, the first option is better since it yields the 
manager an expected outcome of 7$. This is higher than in Example 4.3, where its 
expected outcome is 6%. 

We would like to consider the option of monitoring in such situations. It was proved 
in [35] that if the contractor is risk neutral, and if it is able to get information about 
the exact state of the world after signing the agreement, then monitoring is not valuable. 
If the contractor is risk averse, monitoring may be beneficial as we will explain in 
Section 5.6, The manager can design a contract that will make the contractor choose the 
Pareto-efficient effort level for the real state of the world. 

If it is possible for the contractor to cancel the contract after obtaining the information 
about the state of the world, then this possibility should be taken into consideration when 
the agents agree on the contract [95]. When the contractor can opt out of an agreement, 
the question is what are its alternatives at that point. It may be that it can still gets 
its original outside options, i.e., its reservation price ii. In other situations, however, it 
may have already lost the original outside option, and therefore gain less from a new 
option. Let us denote the contractor’s new reservation price by inew. In such situations, 
the manage:r needs to add an additional constraint to its maximization problem. That is, 
in addition to constraints (14) and (18), the following constraint should be added: 

Vi, 1 < i < n such that f(0i,ei) = qi, U”(ei,ti) >, Pew. (22) 

This constraint verifies that even when the contractor finds out more information about 
the environment before it chooses its level of effort, it will benefit from choosing the 
level e; and will consequently keep the agreement. Of course, these constraints reduce 
the manager’s expected utility, and it will need to suggest to the contractor higher 
payments to make sure it won’t opt out. We will demonstrate this in the case where the 
contractor is risk neutral as in Example 4.3. 

Example !L3. (Risk neutral agents under asymmetric information with opting out 
(cleaning automated agents) .) Suppose the situation is exactly as in Example 5.2, but 
before choosing its level of effort, CompC’s robot can opt out of the agreement and get 
its original reservation price (i.e., aneW = ii = 1) . Therefore, instead of constraint (20), 
the following should be stated: 

7-I - 1 > 1, r2-2 3 1. (23) 

The manager should then offer rl = 2 and t-2 = 3. The expected outcome for the manager 
will be 6.875 which is lower than in the case where the contractor cannot opt out. 
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5.3. Asymmetric and impegect information before contracting 

We consider the situation where the contractor’s information is initially better than 

that of the manager, but that it knows the exact state of the world only after a contract 
is signed. For example, CompC’s robot may initially have better information about the 
garbage distribution than CompM’s robot. However, it does not have full information 
about the state of the world. Only after reaching the garbage collection site (after 
signing an agreement), does it find out about the real garbage distribution. Note that in 
the previous section (Section 5.2), both agents have the same preliminary beliefs about 
the state of the world, and the asymmetry in information arises only after reaching an 
agreement. On the other hand, in Section 5.1, the contractor already knows the state of 
the world before signing the contract. That is, the situation of this section is between 
that of Section 5.1 and Section 5.2. 

As in previous situations, we assume that the outcome is a function of the contractor’s 

effort level and the state of the world, i.e., q = f (e, 8). At no time can the manager 
observe either e or 8. Suppose that the possible states of the world are 8i,&,. . . , O,,, 
such that 8; < @;+I for 1 < i ,< n. Furthermore, the manager does not know the exact 
probability distribution of 0, but rather knows that there are D possible probability 

distributions #, and it believes with probability 4d that the real distribution is pd. 
Before signing the contract, the contractor does not know the actual state of the world 
either, but it does know which probability distribution function is the correct one. We 
assume that the utility function of the contractor can be written as a function of q and 
r as follows: lJ”( q, r) = r - e( q, 6) where f (e(q, 0)) 0) = q. In such situations the 
optimal strategy for the manager [36] is to design at most D distinct contracts from 

which the contractor can make a binding choice by sending a message to the manager. 

Thus the maximization problem of the manager is as follows [ 961: 

D n 

Maximize( Cy ;,r;, ,..., (q;,,r;,,} 1..., (cq:‘,r:,,....cyp.r,)} pd(Bi)U”(qi, ri> (24) 
d=l i=l 

subject to: 

n 

(IR) c pd(&)(rf - e(qf,f$)) 2 ii Vd = 1,. . .,D, (25) 
i=l 

(SS) Cd(ei)(rf - 4qfd4)) 2 Cpd(ei)(r; - e(q[,4)) 

i=l i=l 

Vr,d= l,..., D, (26) 

UC) r” - e(qf,&) 2 i-y - e(qf,&) 
Vi,j=l,..., nforeachd=l,...,D, (27) 

where pd (0i) is the probability that the state of the world is Bi according to distribution 
d ( pd (0;) > 0 Vi, d), q” is the output produced by the contractor in state 0i under 
contract { (4, rc)} and $ is the reward to the contractor under that contract. 
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The first set of constraints (IR) (25) guarantees that any contract selected by the agent 
provides him with a level of expected utility that is at least as good as its reservation 
price. The se’cond set of constraints (SS) (26) ensures that the contractor will report 
honestly about the actual distribution (i.e., will choose contract {(k, ~4)) when Q’ is 
the actual distribution). The third set of constraints (IC) (27) guarantees that the agent 
will produce 4: in state 8i if it chooses contract {(d, rf)}. Note, that if D = 1 the 
maximization problem is as in Section 5.2. 

5.4. Asymmei?ic information and uncertainty 

There are some situations that are characterized by both private information and 
uncertainty. This means that the contractor cannot predict the outcome based on its 

private information, since the private information only provides a better estimation of 
what the outcome may be. One example of such a situation is as follows [lo]. In 
the first stage of the interaction, the manager offers the contractor a menu of contracts 

based on a message it will send in addition to the observed outcome. The contractor 
may reject the offer or agree to it and sign a contract. In the second stage, the contractor 
may gain some private information 5 about the world, after signing a contract, but 
before sending a message or choosing an effort level. This information will help the 
contractor to improve its prediction as to what the outcome will be, given its level of 
effort. For example, when the robot of CompC reaches the area that it needs to clean, 
it determines the garbage distribution of this area (i.e., it collects information about the 
world’s state). This information may not be complete, but it is not known to the robot 
of CompM at all. In the third stage, the contractor sends a message to the manager and 

chooses a level of effort. In the fourth stage the outcome is observed by both agents, 
and the contractor is paid according to the outcome and its earlier message. Note that 
in such situations, the contractor has committed itself not to leave the agreement once 
it has observed 6. ** Also in this case [ lo], the agents can concentrate on the class of 
contracts tha.t induce the contractor to send a truthful message to the manager. This is 
due to the fact that it has been shown [ lo] for any untruthful contracts, a truthful one 
can be found in which the expected utility of the agents is the same. The maximization 
problem of the manager is similar to the one in Section 5.2; the contractor’s utility that 
appears in the constraints is replaced by its expected utility given 6. 

5.5. Both parties have private information 

There are some situations where both the manager and the contractor have private 
information, e.g., both agents have private information about their own types. To be able 

to concentrate on the effect of the private information of the agents, we assume that the 
actions taken by the contractor are observable by the manager. However, we continue 
to assume that there is uncertainty about the outcome. That is, we assume that, given a 

level of effort, there is a probability distribution of p which is attached to the possible 

** In most of the situations the manager is better off making such a commitment. However, in some situations, 

both agents can be made better off through re-negotiation [ 14,26,3&M 1. 
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outcomes that is known to both agents (as in Section 4.2). Furthermore, we assume 
that the agents can agree on probabilistic actions, i.e., they will agree that the contractor 
will choose its level of effort, using an agreed upon probability distribution. 

Suppose that each of the agents has some probabilistic beliefs about its opponent’s 
private information, then, in order for an informed manager to do better than an uni- 
formed one, it must actively participate in the contract selection and not only in the 
mechanism design. We describe here an interaction procedure that satisfies the following 

properties: The revelation principle holds, there exists a perfect Bayesian equilibrium 
which is Pareto-optimal for the different types of managers, and the manager generically 
does strictly better than when the contractor knows the manager’s private information 
[ 681. There are up to four possible stages in an interaction. 

(1) In the first stage of the interaction, the manager offers a mechanism to the 
contractor which specifies: 

(a) a set of possible messages that each party can choose, 
(b) for each pair of messages mnr, m, that can be chosen simultaneously by 

the manager and the contractor respectively, a corresponding probabilistic 
function of the effort level will be chosen by the contractor (note that the 
probabilistic choice mechanism and the effort level are observable by the 
manager), 

(c) pairs of outcomes and rewards. 
(2) In the next stage the contractor accepts or refuses the mechanism. If it refuses 

the mechanism, it receives its reservation price a, and the interaction ends. 
(3) The agents can send each other the messages simultaneously. 
(4) The contractor performs the task at the appropriate effort level and is paid 

according to the outcome. 
For example, suppose there are two types of managers (a and b) and two types 

of contractors ( 1 and 2). The set of possible messages can include the agents’ types 
(i.e., the manager can send the messages “a” and “b” and the contractor can send 
the messages “1” and “2”). The manager should offer a menu of contracts that in- 
cludes four possibilities, one for each combination of the agents’ types. For example, 
C~lltL”~:[a,l:e~,‘,(q,,r~,‘),...,(q,,r~,’ ) ] indicates that if the manager sends the mes- 
sage “a” in step (3) and the contractor sends the message “l”, then the contractor will 
choose effort level ecr*’ ( w ic can also be a probabilistic function of possible effort h’ h 
levels) and its reward will depend on the outcome. For example, if the outcome is qn, 
its reward will be rgv’. Similarly, C&3’: [b, 1: eh,i, (ql,rF’), . . . , (qn,$‘)] specifies a 
contract when the manager sends the message “b” and the contractor sends the message 
“ >> 1 . 

As in previous cases, the agents can limit themselves to honest reports. In situations 
where the exact type of the manager does not directly influence the contractor’s utilities, 
[ 68,771 show that the manager can profit from the contractor’s incomplete information. 
The intuition behind these results is as follows. When the manager proposes a contract, 
it is subject to two types of constraints. The (IR) constraint requires that the expected 
utility of the contractor, when accepting the contract, will be higher than the contrac- 
tor’s reservation price. There are also constraints to ensure that when the contract is 
carried out, the contractor behaves in the appropriate way, given its private information 
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(IC) . When the manager does not have private information, the constraints must hold 
individually for the manager’s specific type. If the contractor has incomplete informa- 

tion about the manager, the constraints need to only be held in “expectation” over the 
suggested contracts which are functions of the manager’s type. That is, the expected 
utility of the contractor that appears in the constraints is the sum of the expected util- 
ities for each of the manager’s types, multiplied by the probability that the manager 
is of this type. For example, suppose in the example described above, EUQ (ConP~‘) 
denotes the contractor’s expected utility if its type is 1, and it accepts the contract 

ConP’ above. Similarly, ElP ( Cm&’ ) denotes the contractor’s expected utility from 
the contract Co&‘,‘. Then, if the contractor knows that the manager’s type is a, the 
constraint (IR) with respect to the contractor of type 1 will be EW (Conta~‘) 2 ii, 
and if the contractor knows that the manager’s type is b, the constraint (IR) will be 
EU”’ ( Cm& ) 3 12. However, if the contractor believes that with probability p0 the 
manager’s type is a and with probability pb its type is b, then the constraint (JR) is 

pa EZJ”’ ( Conf’, ) + p/,EU”’ ( Con&’ ) 2 ii. 
For this reason, if the contractor is not informed about the manager’s type, the manager 

of a given t,ype can increase its utility above its possible utility in situations where the 
contractor is fully informed, by violating some of its constraints, as long as they are 
offset by constraints of the other types of the managers. Actually, it was proved in [ 681 
that in most of these situations, there exists a mechanism in which all types of managers 
do strictly better than in the instances where the contractor is fully informed. However, 
in order to take advantage of the contractor’s incomplete information, the manager must 
refrain from revealing its type at the mechanism proposal stage (i.e., stage (1) above). 
Otherwise, the constraints must hold for the revealed type, rather than for just the 

expected tylpes. Note, that since all types of managers do better in the case that the 
contractor is not informed, the manager can’t benefit from pretending to be a different 
type. This means that if the selection of the mechanism by the manager depends in any 
way upon the manager’s individual type, then the selection of the mechanism itself will 
convey information about its type to the contractor. Therefore, any manager, regardless 
of its type, should offer the same mechanism. 23 

Cases in which the manager’s private information influences the contractor’s utili- 

ties are more complex [ 691. In such situations it is no longer true that, without loss 
of generality, the manager can postpone revealing its type until the third stage of the 
interaction. The manager may wish to disclose information about itself in order to 

influence the contractor’s actions; if so then the manager’s proposal should balance 
between total disclosure and complete concealment. Furthermore, the manager’s ex- 
pected utility when it has private information which influences the contractor’s utility, 
may be even lower than in a case where the manager does not have any private in- 
formation at all. This is because the contractor’s expected utility may be low, given 
some of th’e manager’s types denoted by “bad” types. Therefore, when the contrac- 
tor’s probabilistic belief that its opponent’s type is “bad” is high (even if the actual 

*? Maskin and Tirole I68 1 show that any equilibrium of the mechanism design presented here can be computed 

as a Walrasiar~ equilibrium of a fictitious economy. In this economy, the traders are the different types of 
manager. For more technical and formal details see [ 681. 
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type is not “bad”), the contractor must be paid correspondingly high rewards to en- 
courage it to accept the contract. Note that in the first case we considered, where the 
contractor is not directly influenced by the manager’s type, its original beliefs do not 
play an important role since the contractor cares only about how the manager’s type 
will affect its behavior in the implementation of the mechanism, but no more than 

that. 

5.6. Value of information and communication 

There are two important questions related to asymmetric information situations [ 10, 
741: 

( 1) Will the manager always be better off, the more the contractor knows about the 
world? 

(2) Is communication beneficial to the manager? Meaning, is it better for the manager 
to suggest a menu of contracts to the contractor and ask it to send a message 
informing the manager of the current state of the world, or will it be better off 
offering only a single contract, based only on the joint observed outcome? 

The second question is essential when communication is costly to the manager. Intu- 
itively, it seems that both communications and a knowledgeable contractor will allow for 
more efficient contracting. The contractor may use its knowledge to choose the correct 
actions, and with a menu of contracts the contractor may select the rewards tailored to 

the actual situation. Surprisingly, the answer to both questions is that it is not always the 
case that communications and knowledgeable contractors will improve the managers’ 

benefits, rather their effect depends on the exact details of the situation. There are even 
situations when less information by the manager is preferred to more [ 301. 

As we explained in Section 5.1, when the contractor has full private information 
before signing the contract, the manager’s expected utility is lower than if they have 
symmetric beliefs. If the contractor acquires its information ajier signing the agreement, 
then its effect on the manager varies. The contractor may use its additional information 
in two ways: It may use its information to take a low effort level, thereby reducing the 
benefits for the managers, or it may use the information to improve the outcome (see 
two demonstrating examples in [ lo] ). If the manager gains information after signing 
an agreement, then the information is only valuable if it is affected by the contractor’s 
level of effort (see Section 4.2.3)) and can therefore be used to estimate the contractor’s 
effort level [ 301. For example, information gained by setting up a camera in a garbage 
collection site provides the manager with an estimation of the contractor’s effort level 
and may therefore be useful to the manager. 

The disadvantage of communications is that the “self-selection” constraint can some- 
times be very restrictive so that the information received by the manager is not beneficial. 
This occurs particularly if the contractor has perfect private information about the world, 
i.e., given an action, it can anticipate the exact outcome, for any “appropriate” menu of 
contracts. The manager can then replicate its benefits, using a single contract. Further- 
more, even if the contractor does not have perfect information, there are many situations 
in which there is no value for communication [ 14,741. These situations are such that 
the stochastic outcome is informative. 
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If the outcome is not informative, however, 24 then communication is valuable. It is 
valuable for two reasons; because it allows the manager to implement a more efficient 

level of effart without having to pay the contractor for making it choose correctly, and 
alternatively, menu contracts can be valuable even though the contractor’s action choices 
are unchanged. In such situations, the value of communication results from the rewards 
given to the contractor. There are, of course, situations where the manager can use the 
information gathered in the menu contracts for other purposes (e.g., later contracts with 
other agents). In such a case, it may prefer the menu of contracts, even if it cannot 
benefit in the current interaction. 

5.7. SeveraI contractors compete for the job 

There may be a situation where there are several agents in the environment, and the 

manager can choose one of them to do the job. The agents may each be of a different 
type (measuring, for example, efficiency and ability), or independently drawn from a 
set of possible types. If the manager does not know the types of the other agents, the 
following mechanism is appropriate: The manager announces a set of contracts indexed 
by agents’ types and asks the potential contractors to report their types. On the basis of 
these reports, the manager chooses one agent [ 73 I. *’ The agent that is chosen, chooses 
a level of effort that is not observable by the manager. The rewards to the chosen 
contractor depend upon the contractor’s reported type and the observed outcome. As in 

previous cases, the manager can use, without loss of generality, contracts in which the 
agents report their types honestly [ 761. 26 

An important aspect in the design of the contracts is the marginal return to the 
manager by increasing the probability that a specific type (e.g., zi) will be chosen. 
This marginal return consists of the outcome minus the rewards that the contractor 
receives, and minus the increase in the expected rewards to the other types of agents. 
The latter effect arises because, by increasing the probability that a report of zi will be 
chosen, the manager makes it more attractive for higher types to pretend to be zi. To 
prevent thus, the manager must improve the rewards for all the types that are higher than 

Z;. 
If the agents’ types satisfy the appropriate conditions (see details in [ 731) that are 

related to the above described aspect, and if the highest reported type is chosen, then 
the contract may be optimal for the manager. However, the manager’s benefits will be 
lower than in the case where it can observe the contractor’s effort level (i.e., it gets only 
the “second best” benefits). 

24 See I74 1 for exact conditions. 

” There am situations where the agents’ types are multi-dimensional. That is, the manager is uncertain 
about different aspects of the contractor that are independent; for example, its capabilities and its disk space. 

Techniques to formalize the maximization problem in such situations, and methods to solve it can be found 
in 1.54.71 I. 
*’ The measure of risk aversion will influence the agents’ behavior when there are more than one possible 

contractor in the environment. A less risk averse agent will usually have the ability to win over more risk 
averse agents in service of any risk averse manager [ 921. 
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6. Repeated encounters 

Suppose the manager wants to subcontract its tasks several (finite) times. Two types 
of contracts are possible in such situations: Long term contracts, where one contract 
is signed before the repeated encounters start, and short term contracts, i.e., in the 
beginning of each encounter a new contract is agreed upon by the agents. 

6.1. Short term contracts 

Repetition of the encounters between the manager and the contractors enables the 

agents to reach efficient short term contracts if the number of encounters is large 
enough 27 and if the contractor can be “punished” sufficiently [ 27,43,65,85,84], 

Based on the average outcome, the manager could form an accurate estimate of 
the contractor’s effort over a certain amount of time. That is, if the manager wants 
the contractor to make a certain effort level of & E Effort in all the encounters, it can 
compute the expected outcome over that certain amount of time if the contractor actually 
performs the task with that effort level. The manager can keep track of the cumulative 
sum of the actual outcomes and compare it with the expected outcome. If after several 
encounters the manager realizes that the cumulative outcome is below a given function 

of the expected outcome, it should impose a severe “punishment” on the contractor. If 
the function over the expected outcome is chosen carefully [ 851, then the probability of 
imposing a “punishment” when the contractor is in fact carrying out the desired effort 
level, can be made very low. Meanwhile, the probability of eventually imposing the 
“punishment” if the agent does not do C is 1.0. 

Suppose there is asymmetric information where we assume that in each of the encoun- 
ters the situation is similar to that of Section 5.1, meaning that in each encounter t, the 
outcome q’ is a function of the contractor’s effort level e, and the state of the world’s 8, 
(which may change from one encounter to the other). The outcome at time t does not 
depend on the contractor’s actions in previous encounters, and the states of the world 
in the encounters are independently and identically distributed. 28 In each encounter, the 
manager offers a reward function of Y, (q’), and the contractor chooses its effort level 

based on the state of the world, i.e., et(&). If there is a single encounter, then only 
second best contracts can be achieved and we denote the reward function and the effort 

?’ In I85 I the number of encounters should be larger than some thresholds, but finite and known to the agents. 

Fudenberg et al. I271 assume that there is a terminal date, T, such that after T the manager’s profit will no 

longer depend on the contractor’s actions, that there will be no additional information arriving, and that the 

manager won’t give the contractor any further rewards. However, the contractor may be inactive for some of 

the periods, and in particular, the contractor may opt out before date T. They don’t assume that T is large, 

but rather make other assumptions such as that there is common knowledge of technology and preferences, 

and equal access to banking. Also, Holmstrom and Milgrom [43 ] Malcomson and Spinnewyn [ 65 I don’t 

assume that T is large, but make additional assumptions about the agents’ utility functions and about the 

environment. For example, Holmstrom and Milgrom assume that the contractor has access to unlimited saving 

and borrowing at the same interest rate as the manager. 

‘s In I27 1 it is assumed that past actions and signals can affect current outcomes and signals, as long as these 

dependencies are publicly revealed. 
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level function by (r*, e*> . We denote the first best solution by (3, e^) and the expected 
outcome in this case for the manager and the contractor by D and 2, respectively. 

The notion of an epsilon equilibrium [ 851 will be used, although it imposes weaker 
restrictions on the agents’ strategies than the restrictions imposed by the Nash equilib- 
rium. For any positive number epsilon, an epsilon equilibrium is a pair of strategies 
that allows the average of each agent’s expected utility to be within epsilon from the 
expected utility of the best response to the other agent’s strategy. One rationale for 
epsilon equilibrium is, that if the agents have sufficient inertia, they will not bother to 

realize possible small gains [24]. The main motivation for using the epsilon equilib- 
rium concept is as follows: In every perfect equilibrium (defined in Section 3.2) of 

the (finite) T-period game, the outcome in every period is a Nash equilibrium of the 
one-period game. On the other hand, in infinite multiple stage games (i.e., T is infinite), 
in which each agent can observe the other agent’s one-period strategies, there are perfect 
equilibria of the game which result in the use of “cooperative” pairs of strategies (in 

our situations, the first best strategies) in each one-period game, particularly in the use 
of Pareto-optimal pairs of strategies. In the same situation, it was shown that for any 
positive epsilson, if T is sufficiently large, then there are epsilon equilibria of the T-period 
game (i.e., 7 is finite) which results in cooperative behavior in all or most of the com- 
ponent one-period games. That is, for epsilon equilibria, infinite horizon repeated games 
may be well approximated by long finite horizon games. Unfortunately, the number of 
perfect equilibria in infinite horizon repeated games is very large, as is indicated by the 
“Folk Theorem”. 29 However, the number of possible equilibria strategies can be limited 
by considering “trigger strategies” [ 841, and first best strategies can be sustained in 
epsilon equilibria of the multiple encounters situation by the “trigger strategies”. The 

trigger strategy for the contractor, denoted by p, is very simple: It uses the effort level 
function C until the first encounter where the manager does not use the reward function 
i; at that encounter and in each encounter thereafter the contractor will optimize against 
the reward function announced for each encounter. 

The suitable trigger strategy for the manager is a little more complicated. In each 
encounter t, based on the history of outcomes through encounter t - 1, the manager must 
decide whether to make the reward i or switch to the reward function r*. If its switching 
rule is too lax, then the contractor may be able to accumulate a large enough extra 

expected utility by cheating before getting caught, thereby making cheating attractive. 
On the other hand, if the switching rule is too strict, then there will be a substantial 
probability that the manager will switch to r* before the contractor ever starts cheating. 
We define C, = f(e,( 0,), O,), i.e., C, is the outcome in encounter t if the contractor 
uses the effort level function e, and the state of the world is 8,. We define S,, to be the 
sum of outcomes in periods 1 to n, that is, S,, = Cl + . . . + C,,. We let C, denote the 
outcome in period t if the contractor uses e^, and let 3” be the corresponding cumulative 
sum of outcomes by the end of encounter n. The random variables C, are independent 

29 This theorem is called “Folk Theorem” because no one remembers who should get credit for it I 51. The 
theorem says that under certain conditions (see [ 1,5,25] ) in any infinitely repeated n-person game, with 

finite action sets at each repetition, any combination of actions observed in any finite number of repetitions is 

a unique outcome of a sub-game perfect equilibrium. 
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and identically distributed since the 8, are so. Their expected value is 2. We let b, 
be a strictly increasing sequence of positive numbers (n > l), and define the random 
variables fi and N by: 

fi = min{n 3 1 / S,, - n2 6 -b,}, N = min{fi, T}. (28) 

The following trigger strategy should be used by the manager: Pay the contractor i in 
each period through N and thereafter use the reward function r*. We shall denote this 

strategy by U( (b,,)). We define B as the class of positive sequences (6,) that satisfy 

([851): 
l b,, are strictly increasing, and lim,,, b,/n = 0. 

l There exists A > 1 such that b, 3 Abz, n > 1. 

The main result of [85] on these strategies is as follows: For any E > 0 there exists a 
sequence (6,) in B and T,, such that for all T 2 T, the pair of strategies (a( (6,) ) , p) 
is an .s equilibrium, and yields the manager and contractor average expected utilities 
respectively of at least (D - E) and (2 - E). ” 

6.2. Long term contracts 

In the previous section we assumed that the number of encounters between the 
manager and contractors may be very large. This enables the manager’s strategy for 
offering a contract in a given time period t, to depend on the average outcome in the 
prior t - 1 encounters. If there is a limited number of encounters the contracts need to 
be more complicated since there is not enough information that has accumulated. 

For example, suppose that the agent is evaluated according to its average performance, 
there is uncertainty about the state of the world (i.e., each single encounter is as in 
Section 4.2) and the number of encounters is small (e.g., two encounters). If the 
contractor is “lucky” in the first encounter, the outcome will be high, and in the second 
encounter it can take a low effort level without adversely affecting the sum of both 
encounters. The contractor, therefore, is motivated to adjust its effort over time as a 
function of its previous performance. As a result of this phenomenon, the optimal 

contracts in situations where the number of encounters is small, will not be a simple 
function of the average outcomes [57] in general. The problem of the contractor trying 
to adjust its effort over time as a function of its previous performance, may also arise 
when the number of encounters is very large. However, if the number of encounters is 

very large, such behavior will eventually be detected. 
The problem of subcontracting when the number of repeated encounters is small is 

considered in [57]. It is assumed that the manager can commit itself before the first 
encounter to a long term contract that will be implemented during all their encounters. 
The outcome of each encounter depends on the contractor’s effort level (which is 
unobservable to the manager), and the state of the world in that encounter, which is not 
known to either agent, as in Section 4.2. Suppose there are only two encounters [57], 

xl In 1861 the situation of symmetric information with uncertainty is considered. That is, the situation of 
a single encounter is as in Section 4.2. It provides Pareto-optimal strategies only in the case that there are 

infinite encounters. 
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and before the first encounter the manager offers a binding contract. Then the reward in 
the first encounter will depend upon the outcome of that encounter, but the reward of 
the second encounter will depend upon the outcomes of the first and second encounters. 
If the contract is accepted by the contractor then it should choose the effort level of 
the first encounter. The outcome of the first encounter is observed by both agents, and 
the contractor is paid according to the contract. In the second encounter, the contractor 
chooses an acffort level which is a function of the outcome of the first encounter. The 
outcome of the second encounter is also observed by both agents and the rewards are 
given. When the manager chooses the contract, it should solve a maximization problem 
similar to that of Section 4.2. However, the manager’s expected utility that appears 

in the maximization expression ( I) should be replaced by its expected utility in both 
encounters. Similarly, it should consider the appropriate constraints (i.e., IR and IC) on 
the effort le~~els chosen by the contractor in both encounters. Subject to these constraints, 
the manager is able to update the contractor’s rewards over time in any fashion that it 

desires. It was shown in [57] that the rewards in the second encounter should be an 
increasing function of the outcome of the first encounter. 

7. Subcontracting to a group 

Suppose ,:hat the task the manager wants to contract out can be performed by a group 
of agents. Each of the contractors is independent in the sense that it tries to maximize its 
own utility. The manager offers a contract to each of the possible contractors. If one of 
them rejects the offer, then the manager cannot subcontract the task. 3’ Otherwise, the 
contractors can simultaneously choose effort levels. As in previous sections, the manager 
cannot observe the effort levels and the members of the group while they carry out the 

task. 

7.1. Individual outcome is observed 

In this section we assume that each contractor yields an observable outcome of 9; 
and that the overall outcome will be equal to the sum of the 9i. The advantage of using 

the multipl: outputs to form the basis for a reward to each agent is that usually some 
information about the state of the world can be concluded from observing the whole 
array of 9; s [79], i.e., in such a situation, the individual actions can be estimated by 
comparing the performances of the different agents. 

7.1.1. One agent’s effort does not influence the other agents’ outcomes 

7.1. I. I. The contractors have symmetric information. Suppose the outcome for an agent 
is a probabilistic function of its effort level ei, that the state of the world is 0, and 
that the individual aspects are Ei, i.e., 9; = f(e;, d,ei). For example, in the cleaning 
automated agents case, 8 could reflect the garbage distribution in the whole site, while 

” We will also consider below the situation where. if an agent accepts the contract, it will be implemented 

regardless of the other agents’ responses. 
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E; represents the garbage distribution in the exact location of contractor i. Each of the 

contractitrs observes 8 before it chooses its effort level, but it does not observe ei before 
making its choice. 32 We assume that the contractors are identical, i.e., have the same 
utility function UC(e, r) = U(T) - c(e) and the same abilities. We will assume that 
f( ei, 8, ei) = e$ + &i and that &, are the distribution functions of ai. 

In the first model, there is no exchange of messages between the agents. Since only 
the outcome is observed, this is the only thing the rewards depend upon. The main 
question to be asked is: Is it better to make a contract based on all the outcomes, or is 
it better for a contractor’s reward to depend only on its own outcome? 

When the contractors’ outcomes are independent, then observing all the qi provides 
no additional information about the contractor’s effort. In this case, the rewards should 
depend only on the individual outcome. Sometimes it is possible to find enough statis- 
tics from 41,. . . , q,,, denoted by T( (41,. . . , q,,}), about the state of the world. The 
rewards of a specific agent should then depend upon its individual outcome and on 
V{ql*... , q,,}) [79]. For example, if both 8 and E are normally distributed random 
variables, then the average value of {ql , . . . , q,,} provides sufficient statistical informa- 
tion for 8. When the number of contractors becomes very large, the estimation of 6 
converges to the true value. In such situations, the rewards should depend on qi and on 
the estimation of 0. 

Another option when designing a contract for a group of contractors is to pay the 
contractors according to their ordinal positions alone and not according to the actual 
size of their output, i.e., to encourage a contest among the agents. Suppose there are 
two contractors; using the contest approach, there is a winner’s reward rw and a loser’s 
reward r/. The winner’s output qw is not necessarily worth rw, so that the winner is 
actually paid more than its contribution to the overall outcome. This is done in order 
to motivate the contractors to choose greater effort levels. A larger prize for the winner 
motivates greater effort by all agents and increases the manager’s outcome [79]. 

If the first contractor chooses effort level el, and the second chooses effort level e2, 
then the first one will “win” if BeI + ~1 > Oe2 + ~2. Each of the contractors tries to 
choose higher levels of effort in order to be paid r,,,. However, even though they both 
choose higher effort levels, it does not increase their probability of winning (which 
is, if we speak of symmetric equilibrium, $ ). The expected utility of a contractor i is 
therefore, 

i [u(y,) + U(Q) 1 - dei). (29) 

The details of how to compute rw and t-1 in a given situation are described in [79]. 
An interesting result from this is that in some situations it is possible to make the 
contractors choose an effort level, using the above “contest” mechanism, which is even 
larger than when the manager can observe the agent’s effort levels, i.e., better than the 
first best contract. A variation of this method is when the “winner” must win by an 
amount greater than a certain margin. That is, instead of ranking contractors solely on 
the basis of the relative position of their outcomes, the manager can rank one contractor 
above another if that agent’s outcome is greater than its opponent’s by a positive margin. 

32 We consider the case where a contractor cm alter its effort level ufer observing q in the next section. 
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The introduction of “margins” can lower the probability that any “prize” will be paid 
while maintanting the same level of motivation for choosing high levels of effort. 

There are several other methods for possible rewards for members of a group. For 
example, giving a reward only to the agent whose output is the highest or punishing 
the agent that came in last [ 791. Rewards that are based on relative performance are 
generally more flexible, and reduce the risk taken by the contractors 1781. 

7.1.1.2. The contractors have private information. In this case we assume that each 
of the contractor’s outcomes is affected by different aspects of the state of the world, 
in which each agent can only observe its own private “aspect” of that world. There 
is a probabilistic correlation between these aspects, but agents cannot observe each 
other’s aspects and the manager cannot observe any of them. For example, if a robot 
of CompM subcontracts its garbage collection task to a CompC’s robot and a robot 
of a third company, then each of them can observe the garbage distribution in its own 
garbage collection site before signing the contract, and since they gather the garbage 
in adjacent sites, the garbage distribution at their sites are correlated. CompM’s robot, 

however, does not know either distribution. 
Suppose there are only two agents, A and B, and two output functions f’( e’, 0’), I= 

A, B [ 631. Then we also assume that 13~ can be 0: or 0: (i.e., the world can be in four 
different states with two possibilities for each variable). For I = A, B let @(of) be the 
probability that 8’ = 0; for i = 1,2. We denote this probability by of and assume that 

pf > 0 and that @(e{) + @(ok) = 1. As in previous sections, the level of effort, e’, is 
not observable. We do assume, however, that for each I, f’( el, (3: ) < f’( e’, 0:) for all 
e’, therefore., 0: represents a “good” state and 0: a “bad” state. The state variables are 

positively but imperfectly correlated. We denote by sp the probability of @ = 0!, given 
that BA = B,! and similarly SF denotes the probability of BA = 0; given that 0’ = 0:. 
We assume that 1 > s: > sk > 0. 

Agent I (= A, B) privately observes 8’ before signing a contract with the manager. 
The manager is risk neutral and the contractors are risk averse. Their utility functions 
are similar to that which appears in Section 7.1.1. Given the utility function of the 
contractor 1, and the state of the world, one can compute the “disutility” of producing 
an outcome such as q’. The contractor’s utility can, therefore, be expressed as a function 
of the rewards and the outcome (as we did, for example, in Section 5.3). We will 
assume thal: UC,’ (q’, rl) = d ( r’) - d’ (q’, 0’) and that the contractor’s reservation price 

is fi’. A typical contract that can be offered by the manager to agent A in this case, is 
of the following form [63]: 

You may choose to produce either q;\ or q2. * Your reward, r* will depend not only 
on your output, but also on what agent B will produce. If you choose to produce 
qf (i E {1,2}), then 

l if agent B produces qf, you will be paid r-i, 
l if agent B produces qf, you will be paid r$, 
l if agent B does not sign the contract, you will be paid r$,. 

In [ IS] the maximization problem of the manager was stated. It restricted the con- 
tractor’s output choices to a Bayes-Nash equilibrium, given that they are guaranteed at 
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least their reservation price (conditional on their private information). This is done for 
1= A, B. 

Maximize,l.,~,,i,.i~{,.2} pfrs’,(q: - r’I,) + (1 - s’,)(q’l - &)I 
+P:b:(q: - r:,> + (1 - s:Hq: - &>I (30) 

subject to: 

(IR) &+(Yf, > + (1 - S(>U++z) - d”(qf,Bf) 2 fi’, i = ],2, (31) 

(IQ S;uI(Tj,) + (I - Sf)L’l(r;z) - d’(qf,@) 

asfu’(rf,) +(I -sj)u’(r$2) -d’(q:,@f), i,j= 1,2;i #j. (32) 

The result of this maximization provides the manager with rewards that discourage a 
contractor from choosing the output qi when it observes 0:. The reward will satisfy 
r{ , > r{., and ri, = & = r-2. These contracts yield to the manager the highest possible 
expectedoutcome. If the manager offers each agent I = A, B the choice of 

l producing qf and receiving a probabilistic reward of {r’, I) r’,,}, or 
l producing q: and receiving a sure reward of rk, 

then the manager will get the maximum outcome if both agents respond as the manager 
desires, i.e., sign their respective contracts and produce the output qf when they observe 

0:. In the case of a single agent, the constraints ensure that the contractor will choose 
the desired effort level. However, if there are two agents, there exists another pair of 
equilibrium strategies whose outcome, from the contractors’ point of view, is better to 
both agents than the outcome in the equilibrium that the manager wants to implement. 
The outcome for the manager, if they choose that level of effort is, however, low [ 151. 
In particular, there is an equilibrium for both contractors to always choose the outcome 
q{ (regardless of their observed state), and in all states they will both be strictly better 
off than in the equilibrium preferred by the manager (i.e., choose q{ if the state is Sf 
and qi if the state is 02). Of course, in this case, the manager will definitely be worse 
off. It was suggested in [IS] to strengthen the incentive constraints of one contractor, 

so that its chosen strategy will provide a better outcome for the manager. But although 
this method does guarantee a unique equilibrium, it is also costly to the manager. 

A costless method of making the contractors choose the “correct” strategies is sug- 
gested in [ 631. This method, however, makes the contracts more complicated. The main 
idea is that the manager offers one of the contractors, e.g., A, a range of extra possible 
output options q?(E), indexed by E, where 0 < E < 1 - sp. If agent A chooses one 
of these options q?(c), then it essentially produces qf, except that q;\(c) has some 
inconsequential modification “E” which is costless for agent A to effect. The importance 
of E is that it acts as a signal that agent A sends to the manager: 

“Agent B is cheating; from my perspective, the probability that B is choosing qf3 
is at least sf + E.” 

In light of such a signal from agent A, if agent B chooses qf, the manager will pay 
it an amount FB, where uB(Pf) = $#(rf,) + (1 - st)uB(rf2). That is, the manager 
pays agent B the equivalent of its expected utility as if it had observed 0;. However, 
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Fig. 2. The contractors payments according to Ma et al.‘s mechanism for making the contractors choose the 

equilibrium preferred by the manager. y > 0, S(E) and I(E) are continuous functions that are both strictly 

positive for 0 < E < 1 - s;“. 

if agent B actually chooses &, and agent A signals some E > 0 by choosing qf ( E), 
then agent B is compensated by receiving a higher payment (r.f + y). 33 The details 
of the payments to the agents described in [63] are specified in Fig. 2. The continuous 

functions S(E) and t(a) that appear in A’s payments in Fig. 2 are both strictly positive 
for 0 < E <: 1 - st, and satisfy 

(3:’ -t- 8) (qf, - rf, + S(E)) + (1 - s;’ - e) (9;: - r;4 - t(c)) 
= (s;’ +.5)(qfl -r-f,) + (1 - $ - e)(q$ - rfl). 

(33) 

The idea ‘of this “reward scheme” is as follows. Consider contractor A which has 
observed t$“. Suppose it assesses that agent B is choosing qf’ more than B would be 
choosing 4’7 in the equilibrium preferred by the manager that is described above, e.g., 
with probability S > s;‘. Using construction (33), together with the fact that S(E) and 
t(c) are both positive, we can conclude that for all 0 < E < (3 - s;‘) agent A prefers 

to choose q?(E) rather than qf. On the other hand, if B chooses the output as in the 
equilibrium preferred by the manager, then A does not have an incentive to signal some 
E > 0. The proof that this mechanism provides a unique equilibrium that guarantees the 
manager its second best outcome can be found in [ 631, 

7.1.2. The contractor’s effort injluences others 
In this zsection we consider situations where the output of a contractor depends both 

on its level of effort and the other contractors’ levels of effort. In addition, there is 

33 The increase y > 0 must not be too great, since it turns out that too high a compensation (Rf + y) might 

admit unwanted equilibria. See [ 631 for more details. 
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symmetrical uncertainty about the state of the world. Suppose there are k possible 
contractors, and for each contractor i there is a finite set of possible outputs Outcome’ = 

{q;, . . . ,q1,} and a finite set of possible effort levels, Effort;. We denote the vector of 
the possible outcomes by Outcome, i.e., Outcome = { (ql, q2,, . . , qk) 1 q’ E Outcome’}. 

The output of contractor i depends on some unknown (by all agents) features of the 
world B;, in addition to its level of effort and the other contractors’ level of effort as we 
mentioned above. The outcome function is denoted by fi(ej, . . . , ek, O;), and 81,. . . , ok 
has a joint probability distribution ~(OI,. . . , ok). This probability distribution induces 

another probability distribution over vectors of outcomes, for any given vector of actions, 
as in Section 4.2. This means, that we extend @ of Section 4.2 to fits the multi-contracted 
case; ga : Effort, x Effort2 x . . * x Effortk x Outcome + R, such that for any e’, . . . , ek, 

ei E Effort;, )&ou,come gde’, . . . ,ek,4> = 1. 
If the manager can observe the actions chosen by the contractors then, as in Sec- 

tion 4. I, it can offer the contractors a forcing contract. If the manager cannot observe 

the effort levels, then the contract it should offer will specify for any vector of outcomes 
(91, , . . . , qk,), a vector of k rewards denoted by (rf ,,,,,, it, rz ,,,,, ir,. . , rt ,,,,, J. Similar to 
the maximization problem in the case of one contractor, the manager should maximize 
its expected utility given similar constraints to (IC) (3) and (IR) (2). A three-step pro- 
cedure, similar to the one contractor case of Section 4.2, can then be formalized. Given 

any effort level’s vector e’, . . . , ek, the manager should find the rewards, r’, . . . , rk, 

that minimize the expected rewards it should pay the contractors, subject to the reser- 
vation utility constraint (IR) (5) and participation constraint (IC) (6) meaning, that 
given r’ , . . . , rk, the contractors will prefer e’ , . . . , ek over their other options. In some 

situations, depending on the probability function Q (e.g., if there is perfect correlation 
between the B;), and the contractors’ utility functions34 the manager may gain similar 
expected utility as in the case where it can observe the agents’ effort levels (i.e., as in 

a first best contract) [75]. 
In some situations, however, the contracts found by the above maximization problem 

may fail to uniquely implement the manager’s preferred actions, as in the previous 
section. There may be other actions according to the contract that are better to the 
contractors, as in the previous section, where the agent’s effort does not influence the 

others. 
The main question is how the manager can make the contractors choose the set of 

actions it prefers. One approach is to try to strengthen the constraints that are related 
to the contractors, but this, of course, is costly for the manager. Another possibility, 
as in the previous section, is to construct a sophisticated contract. We may distinguish 
between two situations: 

( 1) Actions are mutually observed by the contractors (but not by the manager). 
(2) Actions are only privately observed. 

In the first case, the contractors pick an effort level simultaneously, and afterwards they 
(but not the manager) can observe each other’s actions. There is some delay after the 
observation and the realization of the outcome, which is then used for message exchange. 
The manager can try to extract information about the effort levels from the agents and 

j4 The exact restrictions on the contractors’ utility functions and the environment can be found in [ 75 I. 
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although the contractor can provide false information, the accuracy of this information 

is known to the other contractor. The manager may then appeal to the other agents for 
verification. 

We will consider the case where there are only two contractors [62], denoted by 
A and B, with the same utility function UC( e, Y) = u(r) - ccc). Suppose by using 

the techniques of previous sections, and assuming the manager can observe the agent’s 
actions, the manager would then like the two contractors to choose effort levels e: and 
et, respectively, in order to maximize its own expected utility, taking into consideration 
their reservation prices. ri can be the payments that will be awarded to contractor A if 

the manager can observe efforts, i.e., UC( e:, I,*) = ii, and similarly, rz can be the reward 

for the second contractor. Note, that since U’(e, r) = u(r) -c(e), u(r;) = ii + c(e:). 

The aim of the manager is to make sure the agents find (e(:, ei) attractive and then 
the above utilities will be awarded in a unique equilibrium. The main idea is to ask A 

to report the effort levels chosen by the agents, and then ask B to confirm the report 
or to declare that A did not report honestly. We assume that for all e,,, e,“, E EfsortA, 

eh,, eh,, E EJj%orte, q’ E OutcomeA and 9’ E OutcomeB, the following holds: 35 

(&e,,,,eb,, (9i,9i)))i,j # (63(e,o,,,e6,,, (9iv9i)))i,j 

t&never (et,, v eh, > + ( e,,, , eb,, ) . (34) 

Note that by condition (34)) for any pair of effort levels (e,, , eb, ) , where e,, E Efforts 

and el,, E f$ffortB, are chosen by the agents, A cannot announce (&, e$,) # (eo,,eh,) 

with (Q(Q, eh,, (9’, 9i)) )i,,i = (P( e^,, e’j,, (q’, qi) ) )i,j. TO see how the manager can use 
one agent’s report to examine the truthfulness of another’s, we will suppose A reports 
(e^,. e>) where &, E EffortA and &b E Efforte concerning the pair of effort levels 
chosen by the contractors. Subsequently, B is allowed an opportunity to “challenge” 

A’s report. If B challenges, then it announces an alternative pair of effort levels. On 
reporting (&, 61~) where Co E EffOrtA and t?b E Eff01-t~ the manager uses the following 
function E to give B an incentive to tell the truth. Let E be a function such that 
E : Outcome x EffortA x EffortB x EffortA x Efforts + lk and E satisfies 

(35) 

As we mentioned above, by condition (34), for any pair of effort levels (e,,,, eb,), A 

cannot announce (&, Ljj) # (e,,, , eh,) with 

Suppose the actual effort levels pair is (e,,, eb,). B’s behavior will then depend on A’s 

report ( &, t&h ). First, if A reports (&,&j,) # (e,,, eh,), then B prefers to challenge A. 
If B reports (e;l, Q,) = (e,,, eb, ) then it gets additional expected reward (as described 

below) of~~~y~,yj~EOurcomee((qi,9i),~,ej,,ent,e~,)~(ent~eb,~(9i~~)) which by (35) is 

” Below, ( ~4 e,,, , ef,, , (q’, qj)))i,j denotes the vector of probabilities for any (q’,~$) E Outcome. 
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A’s announces e> = a* 

B “agrees” C 
B “challenges” r,* - Y 

Fig. 3. A’s rewards; 6 > 0, y > ra - f’ + S > 0. 

A’s announces e-1, = h* If{, + h’ 

B “agrees” 

B “challenges” 

Fig. 4. B’s rewards; 6 > 0, y > r,* - f’ + 6 > 0. 

positive. Second, if A has reported truthfully that (E?~, e^b) = (eak, eb,), then by (35) the 

expected value for B from C(q,,d)EOutcome&((qi,4.i),eat,eh,,e;?,~)~(ea~,eh,, (q’,&) 
is negative. Hence, B will avoid (falsely) accusing A, and B’s “challenge” is a signal 
to the contractor that A has been lying. Using these ideas the manager should offer the 
following mechanism: 

Stage 1: Both contractors take actions simultaneously. 
Stage l+: Contractors observe each other’s action. 
Stage 2: Agent A announces a pair of effort levels: (&, e^b) where (e^,, &) E EffOrtA x 

Effortg . 

Stage 3: Agent B can either “agree” or “challenge”. If B “challenges” A’s announce- 
ment then it announces (e”,, e”b) where (&,e”b) E Efforts X Efforte but (c”, e”b) # 

(eG,ei,). 

The rewards, as a function of the outputs q’ and qj, are described in Figs. 3 and 4. 

We denote the reward that satisfies o(a) = fi + min,{c(e,) ( e, E Efsort~} by c’, 
and similarly for B we denote the reward that satisfies u($‘) = ii + min,,{c(eb) 1 eh E 

Effort,,} by Lo. 
It was shown in [62] that the following strategies form a unique perfect equilibrium 

of the described mechanism: Agent A chooses ez at Stage 1, and reports honestly at 
Stage 2 which action pair was chosen at Stage 1. Agent B chooses ei at Stage 1 and 
“agrees” at Stage 3 if and only if A is honest at Stage 2. The intuition behind this proof 
is as follows. The manager elicits information from agent A-and uses B’s reaction as 
a policing device as we explained above. If B accuses A of lying, then its outcome 
depends on E. However, due to assumption (35), the expected outcome from E to B is 
valuable if and only if A has lied. In addition, given that the contractors report honestly, 
the rewards will motivate them to choose the required actions. These results can easily 
be extended to the case of more than two contractors [ 621. 

In the case that actions are only privately observed, it is not possible to implement 
the results of perfect observation (i.e., the first best contract, where the result is that 

the manager observes the contractors’ actions). However, even the implementation of 
the second best is not so simple. The rewards that were suggested in the beginning 
of the section are appropriate only if the agents follow the actions prescribed by the 
manager. It is possible, however, that the contractors may be better off (given the 



S. Kraus/Artijiciul Intelligence 83 (1996) 297-346 339 

suggested rewards) if they all deviated from the required actions. In [62] a multi-stage 
mechanism is presented that makes the contractors choose the appropriate actions of the 

second best contract. 

7.2. Individual outcome is not observed 

There are other situations in which the manager cannot observe the individual outcome 

(or such an outcome does not exist), but rather can only observe the overall outcome 
of all the agents’ efforts [42,87]. Even in the case of certainty, i.e., the state of the 
world is known, there is a problem in making the contractors take the preferred level 

of action, since there is no way for the manager to find out the effort level of each of 
the individual agents, given the overall output. For example, suppose two robots have 
agreed to collect garbage, but they both put the garbage in the same truck; it is not 

possible to then figure out who collected what. If the manager wants the contractors 
to take the vector of effort level e*, then it can search for a contract such that if the 
outcome is 4’ 2 q( e* ) , then r-i(q) = bi and otherwise 0, such that UC (ef , bi) 2 ii. That 

is, if all agents choose the appropriate effort level, each of them gets bi, and if any of 
them does not, none of them gets anything. 

In some c:ases the contractors take sequential actions. That is, agent 1 chooses its 

effort level and performs its part of the task which is observed by the other contractors, 
but not the manager. The second contractor then, chooses its effort level, based on the 
first agent’s actions, and its effort level is observed by the other contractors, and so 
on. After the last agent finishes its part, the outcome of the whole vector is figured 
out and observed by all agents (including the manager). If, in addition, there is also 
some uncertainty in the environment, the outcome function may be similar to the one 

presented in Section 7.1.1: f(e’,. . .,e”) = z(e’,. . . , e*) + E. If, no matter how low the 
effort levels exerted by contractors 1,. . . , i are, it is possible for the rest of the agents 

i+ I,..., n to compensate for the slack and if for fixed effort levels el, . . . , ei, z is a 

monotonic function of the effort level of the rest of the contractors, then the manager 

can construct a contract in which it can obtain its first best outcome [ 71. The contract 

enables agent i, whose choice of effort level is a function of the effort levels of agents 
1 ,..., i - 1, to use its monitoring capability effectively. 

Another interesting situation is when a group of contractors can commit themselves 
to cooperate. Although they can still be individually motivated if they can agree upon 
a cooperation level, the outcome (under appropriate conditions) can be better for all of 
them. An ev’cn more efficient result may be obtained if the contractors work as a team 
and share the outcome. Such a situation may occur, for example, if all the contractors 

are robots of CompC, that have the same general task to maximize CompC’s profits 

1641. 

8. Conclusions 

In this paper we presented techniques that can be used in different cases where 
incentive contracting of a task by an agent to another agent or a set of agents in non- 
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coliaborative environments is beneficial. These techniques are useful when the contractor 
can choose an effort level to carry out the task, and the manager tries to find an 

incentive to convince the contractor to choose the effort level that the manager prefers. 
We considered several such situations and described the maximization problems that 

should be solved by the manager in order to design a beneficial contract for itself. 
The contractor’s computational task is easier than that of the manager. In most of 
the situations, given a contract, the contractor needs only to check the validity of the 
inequalities that appear as constraints in the manager’s maximization problem. The 

contractor needs to check the validity of the individual rationality constraint (IR) in 
order to decide whether to accept the contract, and since all variables are known, based 
on the suggested contract, this check is very easy. When the contractor needs to decide 
which effort level to provide, it should consider its expected utility from its effort 
level, similar to the maximization problem described in the participation constraints 

(IC). 
The maximization problems the manager needs to solve are much more difficult. 

In most of the situations we presented procedures that can be used as the basis for 
solving these maximization problems. In general, solutions of optimization problems 
by a single, all purpose, method is cumbersome and inefficient. Optimization problems 

are therefore classified into particular categories, where each category is defined by the 
objective function of the maximization and the constraints; special purpose procedures 
were developed for each case. Currently, there are several computer optimization pack- 
ages available using a variety of practical optimization methods [22] that can be used 
for automating those procedures. The designer of the automated agent should build an 
interface between the chosen package and its agent’s software. 

The agents’ utility functions influence the efficiency of the subcontracting itself and the 
computation time required for finding efficient contracts and solving the maximization 

problems. It is clear, that when the agents are risk neutral, all the maximization problems 
presented in this paper are much easier to solve. In this case the objective function of the 
maximization problem, as well as its constraints, are linear, and there is a polynomial 

algorithms to solve the maximization problem. Furthermore, more efficient results are 
obtained in such situations. 

However, if the designer would like its agent to be risk averse, then not all utility 
functions are appropriate for incentive contracting. In order to support most of the results 
presented in this paper, the contractor’s utility function shofild be additively separable 
in rewards and efforts in the form Uc( e, r) = u(r) - c(e) where v’ > 0, U” < 0, c’ > 0 
and c” 2 0. However, a large set of utility functions satisfies these requirements, and 

these properties of the utility functions seem useful also in other settings, therefore, 
it seems reasonable that agents’ utility functions will satisfy these conditions. In these 
cases, the objective function of the maximization function may be nonlinear, as well 
as the constraints. The library routines in available computer packages for solving such 

maximization problems, generate an iterative sequence that converges in to the solution 

in the limit.36 The agent that uses the routines may stage the convergence conditions 

36 In all the cases that we considered, if the utility functions satisfy the above conditions, there exist solutions 

to the maximization problems described in the paper. 
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that will fit its computation and time limitation. Below we present a summary of the 
results for the different situations considered in this paper. The results of contracting 
with symmetric information situations are as follows: 

( 1) If the manager can observe the contractor’s actions (Section 4)) then it can force 
the contractor to provide the effort level preferred by the manager, and thus the 

manager maximizes its utility, and the contractor obtains its reservation price. 
(2) If the manager does not observe the contractor’s actions, but there is full infor- 

mation and no uncertainty concerning the outcome of the contractor’s actions 
(Section 4.1) , then the expected utility to both agents is as in the previous case. 
That is, in this situation, there is no need for the manager’s observation. 

(3) If there is uncertainty in the environment but the contractor is risk neutral (Sec- 
tion 4.2.1), then the manager’s utility will be as in the previous two cases (i.e., 
the ,agents reach a first best contract). The expected utility of the contractor will 
be equal to its reservation price; however, its actual outcome may be less or 
more than its reservation price. 

(4) If there is uncertainty as in the previous case, but the contractor is risk averse 
(Section 4.2.2), then the manager’s expected utility will be lower than in the 
previous case (i.e., the agents reach a second best contract). The contractor’s 
expected utility is higher than its reservation price. 

(5) Monitoring (Section 4.2.3) cannot improve the manager’s utility in case (3) 

above, but it may increase its utility in case (4), when the contractor is risk 
averse. 

If there is asymmetric information then the contracts should include a menu of options 
and there is a need for the exchange of messages. However, in all the situations, the 
agents can consider only contracts in which it is in the interest of the contractor to 
honestly rlsport its private information. Below is a summary of the results of the main 
cases in asymmetric information situations: 

( I ) If the contractor knows the state of the world but the manager does not (Sec- 
tion 5.1) , then the manager’s expected utility is lower than if they have symmetric 
beliefs and the contractor’s expected utility is higher. 

(2) If the contractor is able to collect more information before it performs the agreed 
upon task but only after signing the contract, and the contractor cannot opt out 

after signing an agreement (Section 5.2), then the manager can get its second 
best utility if the contractor is risk neutral. 

(3) If the manager also has private information (Section 5.5), but its private infor- 
mation does not directly influence the contractor’s utilities, then in most of the 
situations, there exists a mechanism in which all types of managers do strictly 
better than the fully informed contractor (i.e., even better than in the first best 
contract). 

(4) If there are several agents in the environment (Section 5.7)) then in most situa- 
tions, the manager can design a second best contract. 

When there is more than one encounter between the agents (Section 6), then they 
can reach either short term contracts or enforceable long term contracts. The contracts 
in the first case are similar to those of one encounter; however, the strategies used by 
the agen’ts are more complicated. 
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( I ) If the agents agreed upon short term contracts, and the number of encounters 
is large enough, even in asymmetric information situations, they can reach first 
best contracts. 

(2) If the number of encounters is small, then enforceable long term encounters are 

more beneficial to the manager. However, it is still difficult to design an efficient 
contract. 

The last set of situations considered in this paper are of contracting to a group. The 

type of contracts that are used depend on the following factors: Whether the individual 
outcome of each contractor is observed by the manager, whether the effort level of one 
contractor influences the other agents’ outcome, and whether each of the contractors 
possesses private information. In some of these situations an efficient contract for the 
manager may be quite complicated and may require two rounds of message exchanges. 

We are now in the process of applying the techniques presented in this paper to the 

performance of robots in a simulated environment. 
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