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Abstract:

Decision procedures are provided for checking the
satisflability of a formula in each of the three systems
TCg. TCb and TCf defined in [LS]. The procedures for TCg
and TCf run in non-deterministic time 2F™ where n is the
size of the formula and ¢ is a constant. The zprocedure

for TCb runs in non-deterministic time 22" . A deter-
ministic exponential lower bound is proved for the three
systems. All three systems are also shown to be
PSPACE-hard using results of [SC]. Those decision pro-
cedures are not as efficient as the deterministic {one or
two)-exponential time procedures proposed in [BMP] and
[EH1] for different logics of branching time that are
weaker than ours in expressive power. No elementary
decision procedure is known for a logic of branching
time that is as expressive as ours. The decision pro-
cedures of the probabilistic logics of [HS] run in deter-
ministic exponential time but their language is essen-
tially less expressive than ours.

1. Introduction

In [LS] an extension of the propositional logic of
linear time was described and claimed useful for reason-
ing in an uncertain world, i.e. a world in which time flows
and in which the transition from one instant of time to
the next is probabilistic in nature. Three logical systems
of axioms and rules of inference were proposed and
proved deductively complete with respect to different
classes of models. One of these systems, TCb, was
claimed to be most adequate for stating and proving pro-
perties about a large interesting family of probabilistic
algorithms, such as those of [CLP], [LR] and [Ra3]. Al
three systeémis had impressive expressive power, since
they are similar in expressive power to the system CTL’
described, for branching time, in [EH2]. This last system
is the most expressive of those defined in [EHR] and no
elementary decision procedure is known for it. It is even
possible that methods similar to ours could yield eflicient
decision procedure for CTL®, We assume familiarity with
the basic notions and notations of [LS] (see ICALP 83,
Springer Verlag Lecture Notes in C.S. for an extended
abstract): the models, the language (I') and validity.

2. The logical systems

In [LS] three different logical systems: TCg, TCb and
TCf were proposed, each one of them corresponding to
one of the notions of y-validity defined there (yisg, b or
7). The symbol | denotes provability in the system

corresponding to 9. The following completeness result
was proved.
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Theorem 1: For any y<{g,bS] and for any a el
l:u. L — }1— a.

3. The lower bounds

Our first result is .that all three aystems are
PSPACE-hard. In [SC] the temporal logic of linear time is
shown to be PSPACE-hard. Let a be a formula of the
temporal logic of linear time. It is also a formula of I'. If
a is valld in the logic of linear time then it holds for
every path of a g-model and it is g-valid. Any g-valid
formula is b-valid and any b -valid formula is f -valid. Let
us call a g-model deterministic if for any state s there is
a state ¢ such that p(s,t)=1. If a formula a is f-valid
then it is, in particular, satisfied by all finite determinis-
tic models. But finite deterministic models are exactly
finite linear models. Since the logic of linear time has
the finite model property any formula of the logic of
linear time that is f -valid is valid.

Our second result is that no decision procedure for
any of our three systems can work in less than exponen-
tial time.

Theorem 2: There is a constant ¢>1 such that the
velidity problems for TCg, TCb and TCf are not members
of DTIME(c™), where n is the size (#) of the formula.

The proof is by reduction to one letter PDL. Let us
call PDL™ the restriction of PDL obtained by restricting
oneself to a single basic program { |- ) and not allowing
sequential composition ( ; ) or non-deterministic choice (
U ). Notice that PDL™ has essentially only two programs:
t- and |*. In [FL], it is shown that the validity problem
for PDL™ requires exponential time. Define UB~ as the
subset of UB (see [BMP)) defined when one allows Y@
and ¥ X as the only temporal connectives (i.e. Y F and 3@
are disallowed, classical connectives are allowed). The
simple translation of PDL~ te UB™ that translates [ |-] by
YX and [}°] by Y& shows that the validity problem for
UB~ requires exponential time (this result seems to be
part of the folklore of the subject). Our remark is essen-
tially that UB™ is so restricted that the branching time
interpretation is equivalent to the probabilistic interpre-
tation,

More precisely, we translate UB~ into a subset I' of
I' by translating VX by VO and ¥ G by V1 1t a is a tor-
mula of UB~, its translation in I' will be denoted by &.
Let now Y/ be a g-model (probabilistic), we shall denote
by # the branching time model obtained from % by
allowing those transitions that have positive probability
in ¥ (and forgetting the probabilities).



ILemma 1: if a is a formula of UB~ and % is a g-
model, theny @& => Y  -&.

Proof: An easy induction on the structure of a, rea-
soning at the same time on a formula and its negation.

Lemma 2: Let a be a formula of UB~ and ¥ be a g-
model, then?¥ Fa < Y E&.

Proof: An easy induction on the structure of a.

Lemma 3: Let a be a formula of UB™, then the fol-
lowing propositions are equivalent:
a) a is valid for branching time logic
b) @ is g-valid
cg @ is b-valid
d) @ is f-valid

Proof: a) => b) by lemma 2. b) => ¢) and ¢) => d)
are obvious. Suppose d) is true. By lemma 2 for any f-
model ¥ we have %/ | a. Given a finite model for branch-
ing time ¥, one may always give numeric positive proba-
bilities to the transitions of ¥ to obtain an f-model ¥
such that ¥/ =¥. We conclude that a is satisfled in all
finite models for branching time. Since UB™ enjoys the
finite model property, we may conclude that a is valid.
Q.E.D.

4. Upper bounds

All three completeness results of [LS] proceed by
building a "universal” meodel, i.e. a model in which points
are labeled by traces of a suitable size and every trace of
that size labels some point of the model that is built in
such a way that the standard generic paths out of a
point satisfy exactly those formulas that appear in their
label. In all three cases those models, though infinite in
the cases g and b, may be finitely (and succinctly)
described. The basic idea is to collect a set of properties
enjoyed by the universal model that is rich enough to
guarantee that the standard generic paths out of a point
satisfy exactly those formulas that appear in their label.
We may know guess a model satisfying those properties
and look out for a label containing formula Va. It one is
found then a is satisfiable. If no model contains such a
label, then the universal model contains no such label
and a is not satisfiable,.

5. A decision procedure for TCg

First we shall define the small set of formulas to be
considered.

Definition 1: If a €T\, we define Cl (a) to be the
smallest subset of I" satisfying:
a)Va € ~(a)
b) (1~ (a) is closed under sub-formulas
¢) Ct~(a) is closed under negation
d) p € Ct(a) ( p stands for a propositional variable )
= Vp ea(a)
e)Jb et (a) = O0b € i (a)
1) _ dyntie € 1 (e) => Olbyntilc|e Cl(e) and
-0-c e a(a).
We shall also assume that double negations are automati-
cally removed. It is easy to see that the size of (2~ (a) is
linear in the length of a.

Similarly to what must be done in the completeness
proof we need to define a set of formulas that is larger
than Cl~(a). The labels considered will be subsets of this
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larger set of formulas.

QA (a) or of the form Vb -b,| where
b‘Ea(a).i=1,-°-Jc.

Notice that Cl(a) contains only 2°® formulas. Now,
we want to restrict our attention to those subsets of
Ci(a) that are reasonable candidates for labels. Notice
thaz. t):ur requirements deal only with the formulas of
Cct (a).

Definition 2: A formula b is in Cl(a) iff it ii either in

Definition 3: D c CI(a) is a standard set (for a) if it
satisfles:
a)iftbell™(a), ~-beD<>bgD
bgifbvcea'(a).thenbvc eDe>beDorcelD
)b eDe> b epandOb € »
d)if Vbect(a).then Vb e D=>b €D
e)peD=>VpecD
f)byntilc € D => -[d-cep
gbyntilc €D <> ceDorb epandO[bunmc]eD

We d)eﬁne 2 to be the set of all the standard subsets of
a(a

Remark: & contains at most
constant ¢

We define, now, the successor relation # on &. Notice
again that only formulas of Cl (a) are considered,

22°?®) olements, for some

Definition 4: Let D, and D, be standard sets (ie
D, €D) we say that D, RD, iff for all b €' such that
Ob € c1(a), we have db €D, <>b €D,

Similarly we define a relation £ on 3. It is crucial
here that our requirement is only for formulas of Cl~(a).

Definition 5: Let D, and Dy be in 3. We say that
D, E Dy iff for all b €I such that V& € 07 (), we have
Vb €D, < Vb €D,

Now we may define the pseudo-models for the case
g.

( Defipition 8: A pseudo-model (for a) is a triple
W,r,~

satisfying:

1) W is a set of standard sets (i.e W € D)

2) r is a binary relation on W that is contained in &, i.e,
Dyr Dy => D\ RD;

3) ~ is an equivalence relation on W that is contained in

) (r~)c(~R) (ieif Dy,Dy D3geW such that D7 Dy,
and Dy~ Dy , then there exists Dy € W such that Dy ~D, ,
and D, R Dg). )
5) for all D € W , there existgs a D' € W such that Dr D
8) for all D €W and for allLlb €Cl~(a) ,if LIb & D then
there exists a D' € W such that Dr*D ' and b € D’ where
r* denotes the reflexive and transitive closure of
7)forall D €W andforall Vb e A~ (a) it Vb # D then
there exists a D €Y such that D~D and d g D

Lemma 4: If a is a g-satjsfiable formula, then there
are a pseudo-model <w,'r ,~) tora and a D €W such

that Va € D,



Proof: Let {4 be the set of all D's for which there is
a g-consistent and complete theory 7T such that
D=TNCl(a). Notice that here we consider Cl(a) not

(~(a). One may see that{ 4,s.e" ), is a pseudo-model

for @, where s and e are defined below and e” is the
reflexive and transitive closure of e. The relation s is
defined by D;s Dy iff there is a g-consistent and com-
plete theory 7T, such that D; =7, N Cl(a) and
Dy =Tt N Cil(e) where + is defined as in [LS]. The rela-
tion e is defined by D, e D, iff there are g-consistent and
complete theories 7; and 7T, such that 7= T,
D, =T, N Q(a) for i=1,2, where = is defined as in [LS].
The only delicate points are verifying conditions 4 and 8
of definition 8. Condition 6 is proved exactly as in sec-
tion 11.8 of [LS]. We shall sketch the verification of con-
dition 4. We should show that se’cCe’R. Indeed we
shall show that se’ ce R. Suppose D,s Dp and Dye’ Dg.
We Kknow that there is a g-consistent and complete
theory T, such that D, =T, " Cl(a), De=T} N A(a). and
tor any Vb € Ci(a) (the larger set, not only Cl=(a)),
Vb € Dp <> Vb € D, Let U=fb | Vb eTy

U {Od |d e Dsna(a)}. One easily sees that U is
g-consistent. Now one may extend U to a g-consistent
and complete theory T, ( T,=T; ) and take
D4 = T4 N a (ﬂ).

One also sees that if a is satisflable so is Va and
that there is a g-consistent and complete theory that
contains Va and therefore a D € 4 such that Va € D.
Q.E.D.

We must now show that in a pseudo-model, the rela-
tions r and ~ have all the properties needed to perform
the construction of a g-model that to prove that it
enjoys properties similar to those of the universal model
built in [LS] (we are able to carry out the proof of lemma
[21 t])f [LS]). First we prove the equivalent of lemma 8 of

LS].

Lemma 5: Let ( W.r ,~> be a pseudo-model and let
k>0 and Do Dy, - D €W such that Y
1,0€i<k, D, ~r D;,,. There are S, for 1=0, - .k, such
that 5; € W and
1) S, ~D; Vi, O<i<k
R) S; R S;41.¥1i, 0=i<k

Proof: By induction on k. For k& =0 the result is
clear. For k>0 use the induction hypothesis for the
sequence D;,..D, to ind S, ' .,Sg. Now Dg~r ~S; and
by definition 6 parts 4 and 3 Do~ R S;. Q.E.D.

We may know prove the main lemma.

Lemma 8: If there exist a pseudo-model ( w,r .~>

and a €€ %W such that Va € C, then there exists a model
fora.

Proof: The model % = (5’ vuw ,p). is defined the
following way:

1) & =NxW

R) u=<0,C>

8) I(<i,D>)=fp |p €D}

4) Let us say, first, that the only transitions with non-
zero probability are those that increase the first
coordinate by one and use ~r to move along the
second coordinate, In other terms,
p(<i,D><j F3)r0 <> j=i+land D~r F. If Dr F
let us call the transition from <i,D0> to <i+1,F> a
normal transition. A transition of positive probabil-
ity that is not normal, will be called exceptional.

Our goal is to give increasing ( with the first coordi-
nate ) weight to the normal transitions, and ensure
that, with probability one, after a certain time, only
normal transitions occur. Therefore we choose a
sequence ay of real numbers between 0 and 1, such

that Ha; > 0. From state <i,D>, we give equal pro-

i=0
bability to all normal transitions, so as to give them
total weight a;, and equal probability to all excep-
tional transitions, so as to give them total weight
1—-oy.

I o=<j.,D;> is a sequence of states (any
sequence) we say that o is standard iff D, R D;,; for any
i>0. A sequence of normal transitions is standard. We
say that ¢ is ultimately standard if for any i>0
D, ~R Dy, and o has a standard tail. Our goal is to show
that the model ¥/ satisfles a. With the changes just made
lemma 19 of [LS] still holds. The proof is unchanged.

If o= {<k;,0;>} and T = {<j;.F;>} are sequences of

states, we say that o and T are equivalent and write ¢ £ 7
iff for every 1 €N, D; E F;, Generic sequences are defilned
as in [LS], replacing p by r. Lemma 20 of [LS] still holds,
and for the same reasons.
Notice that, if a sequence of states o = {<k;,D;>} is gen-
eric and if F' € W/ appears an infinite number of times in
the sequence (as a second component ) then every
G €W such that Fr’ G also appears an infinite number
of times,

Our basic result concerning ¥ is the following.

Lemma 7: Let beCl~(a), ¢ a generic standard
sequence of states ( of % ), and T and 7' two equivalent
sequences of states, then
a) b |i‘; = true <> b €Dy, where oy = <k;,D;>

r
b) bly=bly
Proof: The proof is by induction on the size of b, i.e.

#(b), at each induction step, we prove a) first, and then
b).

b=p o
a) p|u=truc <> pellog) <> pely
b) pl, =true &> peF, where To = <i,F> &>
Vp €F, by conditions d) and e) of definition 3 <>
VperF', where 79=<i,F'>, since FEF' by
definition § <> p €F', by condition e of definition
38 <>pl, =true.

b =-c u
By condition a) of definition 3.

b =cvd
By condition b) of definition 3.

b =0¢ '
8 Oc |y =true <> c|y =true <> ceD <=

¢ €Dy, since Do R D) and by definition 4 (since o is

a standard sequence).
b) Obvious.

v =0

[+

a) UeceDy=> VieN,Oc €D, using condition c)
of definition 3 and definition 4 since ¢ is a standard
sequence =» VieN,c €D, by condition c) of
definition 3 =>VieN,c |’ = true, by the induc-
tion hypothesis and since evend part of a generic
sequence is generic => [lc |, = tru
now that [lc €Dy It that

Suppose follows
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FieN,cgD, or VieN Uec#D (byinduction on i
using condition ¢ of definition 3 and definition 4 ).
We want to show that the first alternative is true.
In the last case, there is a member of W/, say F, that
appears an infinite number of times, and Llc £ F'.
Since the sequence ¢ is generic, any G € W such
that Pr’G appears an infinite number of times in
the sequence. By condition 8 of definition 6 then,
there is an i €N, for which ¢ £ D;. We conclude that
JieN such that cgpD; and by the induction
hypothesis ¢ |1';‘ = false and [lc If; = false,

b{ Obvious.

b = cYntild

a) Suppose cYntild €Dy, By condition f) of
definition 3 ~lJ-d € Dy and by the induction
hypothesis there exists an index & for which d €D,.
Let 7 be the smallest such k. Using definition 4 and
property g) of definition 3 one sees that for any 7,
J <1i, we have c € D;. We conclude by the induction
hypothesis.

Suppose now that c ¥/ntild £ Dp. If for every k, we
have d £ D, we conclude straightforwardly by the
induction hypothesis. Suppose i is the smallest
index for which d € D;. Using definition 5 and pro-
perty g) of definition 3, one sees that there is an
index j, j <1 for which b £ D; and we conclude by
the induction hypothesis.

b) Obvious.
b=Ve
a) Suppose Ve €Dy. We want to show that, for

.= true.
almost all sequences 7€ P, We have c lu
Since almost all sequences of £, are generic (by
lemma 20 of [LS]), it is enough, by lemma 19 of [LS]
to show that if T is generic and ultimately standard,
then c |, = true. Let T be standard from index
on. By ?emma 5, there are S, €W ,0<m<i such
that Sy, ~Dp, for m=0, - ,i~1 and Sp K Sn+1. for
m=0, ' ,i—2. Let us define the sequence 7' by:
Tm =<kp , Sp>, for m=0, - ,i-1 and 7'y =Ty ,,
for m>i. The sequence T is equivalent to T,
Tht;retore,,. by the induction hypothesis, part b),
cl, =¢c | . It is generic since it is identical with 7
fro'{n indgx i on and since T is generic. It is also
standard. Since 7' is standard and generic, we con-
cluge, by the induction hypothesis part a), that:
c li/ =true <> ceD', where To=<k,D'> But
since T £ 7', and V¢ €Dy, we conclude that c €D,
by definition 5 and condition d) of definition 3.

Suppose now that Ve Dy, We must find a set § of
sequences that begin at o, and do not satisty c,
such that @ has a positive measure. Remember
that 0g = <ko,D¢> By condition 7 of definition 8,
there is a F' € W such that Do~ F and ¢ £F. Let F
be any member of W such that Fr F, Condition 5
of deflnition 8 ensures the existence of such an F'.
We have Dg~7 F', and by the definition of our
model p (<kgq,Dp> <kg+1,F'>) > 0. Let us define @
as the set of all sequences 7 such that: 19 = 0o,
T, = <k,,F'> and the sequence 7! is standard and
generic. By lemma 19 of [LS], we have f,4,(@) > 0.
It is left to us to show that no sequence of @
satisfies ¢. Let T be any sequence of & Let 7' be
the sequence <kg, F>, T, T2, ‘' . It is a generic
standard sequence. By the induction hypothesis,
part a) we have c '1/ = false. But since Dy~ F,
7 E 7'. We conclude, by the induction hypothesis,
part b), that ¢ l{l = false.

205

b) Let o be any generic standard sequence starting
at To. Since the truth value of V¢ depends only on
the first state of the sequence we have Ve |,

Ve lz; By the induction hypothesis, part a) ?ust
above: Ve |7 =true <> VceD, where 7¢=u0,
= <ko,D>. 4 ilarly Ve Il’; =true <> VceD
where T9= <ko,D0'> " But, since DED

VeeD <> VeeDn' QED.

We may now conclude the proof of lemma 6. Since
Vo €D, and Dy is the initial state of our model ¥,
we conclude from lemmas 19 of [LS] and lemma 7
that §y(a)=1 and % Fa. QE.D.

'l'h.eoremMB: Satisflability in TCg is decidable in
NTIME(2*™) for some constant ¢ =0 where n is the
size (#) of the formula . '

Proof: Algorithm 1.

To test if a is satisfiable:

(1) Guess a pseudo-model < w,r .~>‘
() Testit3 D € W such that Va € D .

Notice that the task of checking if a triplet is a
pseudo-model is polynomial in the size of W and
that the correctness of the algorithm is clear from
lemmas 4 and 8. Q.E.D.

8. A decision procedure for TCf

Since we must consider terminal theories and their
traces we must enlarge somewhat the set of formulas to
be considered, therefore we replace definition 1 by the
following.

Definition 7: Let a €T, we define Cl (a) to be the
smallest subset of I' satisfying conditions a)-d) of
definition 1 and

a ﬁ b €Cl~(a) that does not begin by [J then
~Ub ect(a).

We shall assume that two simplifications ar de
automatically: ﬁg is simplified to and -ET—-hPEﬁ is
simplified to L~ With those assumptions one may see
that the size of C1~(a) remains linear in the length (#) of

a. Let a be a formula in TCf ,the closure of a, (Cl(a))
and standard sets for o are defined as in the case of TCg.

We need to define terminal subsets of Ci(a).

Definition 8: Dc Cl(a) is a terminal set (for a) if it
satisfles:

tvbea(a), bgp=0-Osep

We may now define pseudo-models.

Defipition 9: An f-pseudo-model for a is a triplet
W,r,~) satistying:
1 l‘M/ciO.ll X such that <1,0> €W => D is termi-
na

B) r is a binary relation on W such that

<i,D1>7<j D> => D,RD, and such that

1, D1>7r<j Dg> =>j=1

8) ~ is an equivalence relation on W such that

<, Dy1>~<j D> =>D,FEDgni=j and ch that
1,D0:>~<1 D> => for any bell(a),
beD, <> UbeD,

4) if wy, wp and wy = <i,Dg> are members of W such



that w, 7w, , and wp~wg , then there exists an
w, = <J, D> €W such that w;,~w, , and D R Ds.
5) for all w €W , there exists an w' €W such that
wrw' and an w" €W of first coordinate 1 such that
wr’w" where r* denotes the reflexive and transitive
closure of 7
for all w =<i,D>eW and for all o ea—(a) , it

b # D then there exists an w'=<j,D €W such that
wr'w'andb g D
7) for all w =<i,D>eW and for all Vbe O (a) , it
Vb # D then there exists an s’ = <i,D’> € W such that
s~s'andb £ D'

Now we may proceed as in the case of TCg.

Lemma 8: If o is an f -satisfiable formyla, then
there are an f-pseudo-model for a, { W,r.~), and a
D €W such that Va € D,

Proof: One sees that { 4,s,¢") is a suitable f-
pseudo-model where
A contains the pairs <0, 7N Ct1(a)> where T is an f-
consistent and complete theory and the pairs
<1,TNCl(a)> where T is such a terminal theory. The
relation s is defined by:
a) <0,D;>s <i,Dy> iff there is an f -consistent and com-
plete theory T such that D, =TnNCl{z) and
Dy = T+ N Ci(a)
b) <1,D;>s <1,Dg> iff there is a terminal, f-consistent
and complete T as above.

The relation e is defined by:

a) <0,D,>e <0,Dp> iff there are f-consistent and com-
plete theories 7,.k=12 such that 7T),=T7,,
D.=T.nCA(a)fork=1,2

tng)l \D1>e <1,Dy> iff there are terminal such theories.

Lemma ©: If there are an f-pseudo-model

W.r.~) and aw = <i,C>€W such that Va € C then
there exists an f -model for a.

Proof: The model %/ ={S ,u , 1 ,p), is defined the

following way:

1) $=W

R u=C

8) {(D)=tp |p €D}

4) We decide that p (w;,w3) # 0 iff wy ~7 wy and that all
transitions of positive probability from w; have
equal probabilities.

Let m be a natural number. Let o be a sequence of
states of ¥ (any sequence). Suppose o= <z;,D;> We
shall say that o is an m-standard sequence if there
exists an n €N such that: for any i such that 0<i<n we
have 2; =0, for any i=n, 2; =1, for any ¢ such that
O<i<n+m, we have D; R D;,; and for any i=n+m. we
have o; ~7T 0741, A sequence is ultimately m-standard if
it has some m-standard tail.

We see, using conditions 2 and 5 of definition 9, that

the set of m-standard sequences beginning at a state s

has positive weight and that the set of ultimately m-

standard sequences beginning at a state s has weight 1,

%:guivalent ( E ) sequences are defined as in the case of
g.

We shall now need a stronger definition of generic

sequences (it is needed in t.heNO case below). Let g be a
sequence of states of ¥/ (o0 €S"), o is said to be generic iff
for any so €S that appears an infinite number of times
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in o and for any finite sequence of 5; €S 50,81, ' * Sy
such that s;7 s¢,;. for every 1 such that 0=<i<m the
sequence above appears in o (in this order) an infinite
number of times. Clearly the weight of generic
sequences is 1.

Our basic result concerning ¥ is the following.

Lemma 10: Let b €1~ (a) . ¢ an Q(b)-standard gen-
eric sequence of states ( of % ) (and let the second coor-
dinate of o; be 1)) and T and 7' two equivalent sequences
of states, then
a) blu=tmu® b €ag

b) b|{,=b|§.

Proof: The proof is very similar to that of lemma 7,
and we signal only the differences.
b =0ec
a) Oc|, =true <> c|; =true. The sequence
o! is generic since o is. Siﬁlce o is Q(b)-standard, o!
is (Q(d)-1)-standard. But Q(d)—1 = Q(c). There-

fore, by the induction hypothesis:
c|) =true <> ceD, Since Qb)=1, the first
t.ra'ﬂsttion of o is an R-transition and Dy RD,. We

conclude thatc €D, <> Oc eby.
b =l
a) Suppose [c € Dy. Since ¢ is 0-standard, we have
YieN, Uc €D;. Our goal is to use the induction
hypothesis on c. We notice that ¥i€N, o' is gen-
eric. Let 1 be given. In general ¢' is not Q(c)-
standard. Let m =((c). Now we have to distin-
guish between two cases following whether the first
coordinate of o; is 0 or 1. If it is 0. o' is clearly
Q)(c)-standard and we may use the induction

hypothesis part a) to conclude: ¢ | = true.

On the other hand, suppose the ﬂyst coordinate of
0; is 1. By lemma 5 (mutatis mutandis), we may
find w, €W, for n =1, - i+m~-1, (let F, be the
second coordinate of w, ) such that

1) w, ~oy,, i<=n<i+m—1

2) F,RF,,, fisn<i+m-1. By condition 3 of
deflnition 9, the first coordinates of the w,’'s are 1,
and therefore the F,'s are terminal. By the same
condition Ue € F;, Let the sequence T be defined
by: ™ =0'*™ | and T, = <1.Fisn> ¥n Osn=m -1,

By construction o* and 7 are equivalent s‘nd there-
fore by the induction hypothesis b) ¢ |!{1= clop

But 7 is a generic m.-sta.ndafrd sequence ahd by tlgle
induction hypothesis a) ¢ IU = true <> ccF. We
| ¢ = true:

conclude that (e y

Oe £ Dy Following the line of reasoning used in
lemma 7 one may see that 31 €N such that ¢ g0 .
Now, as just above, we must distinguish two cases.
If the first coordinate of a; is 0, a* must be m-
standard and one may use the induction hypothesis
part a). If the first coordinate of o; is 1, the proof
is more delicate. In this case D; is terminal and
does_ not contain ¢, therefore it does contain

~-UOe (this last formula is in C1~(a). We may then
show that for all indexes j>i, Li-Llc € J;, since o*
contains only transitions of "type" R and ~r.
Therefore there is an F €2 that contains -LUle
and appears an infinite number of times in ¢ (as a
second component). Since @ is generic, we con-
clude, by condition 8 of definition 9 that there is a
G € that does not contain ¢ and that appears an
infinite number of times in ¢ (as a second com-
ponent). Since o is generic, G must appear in ¢ an



infinite number of times followed by at least {)(c)

r-transitions. Let j be such a point in o, with y=i.

At j, we may apply the induction hypothesis part a)

and see that c| 2'/’ = false. We conclude that

Oe I;; = false.

b=Ve
a) Suppose Ve €D, We want to show that, for
almost all sequences T€P,, we have cl = frue.
Since almost all sequences of Py, are generic and

Q(c)-ultimately standard it is enough to show that
it T is generic and {)(c)-ultimately standard, then
|, =true. Let m = Q(c). Since T is m-ultimately
stazﬂdard it has an m-standard tail. Using lemma 5
(mutatis mutandis) as we did in the corresponding
part of lemma 7 we may build a sequence 7' that is
equivalent to 7, generic and m-standard. By the
induction hypothesis, part b). ¢ |, =c|,;. We con-
clude by using the induction hypol%esis. gart a).

Suppose now that -Vc €Dy, We must find a set @
of sequences that begin at op and do not satisfy ¢,
such that @ has a positive measure. By the condi-
tion 7 of definition 9, there exists a w~op (say
w = <2 ,F> such that c ¢ F. Let F be any member
of W such that Fr F'. Notice that, by condition 5
definition 9 there is such an F. By the construc-
tion of our model, we have
p(<2o,Dp> ,<2zg,F') > 0. Let us define @ as the
set of all sequences T such that: Ty =0y,
T, = <2o.F' and the sequence T' is generic and
)(c)-standard. We have F,,(@) > 0. It is left to us
to show that no sequence of @ satisfies c. Let 7 be
any sequence of @. Let T be the sequence
w,Ty,Tz, ' -+. It is a generic Q(c)-standard
sequence, By the induction hypothesis, part a) we
have ¢ = false. But since gg~w, TEZT. We
conclude, by the induction hypothesis, part b), that
c ’u = false. QED.

The proof of lemma 9 is completed as in the previous
case,

Theorem 4: Satisflability in TCf is decidable in

NTIME(2%) tor some constant ¢ >0 where n is the size
(#) of the formula .

Proof: The proof is like in the previous case. Q.E.D.

7. A decision procedure for TCb

We need to enlarge the set of formulas to be con-
sidered. The definition of C1~(a) is as in definition 7. For
the definition of Cl(a) we replace definition 2 by the fol-
lowing.

Definition 10: A formula b is in Cl{a) iff it is in
i (a), of the form V[b AR b,,] where

mwo¢
byeC(a),i=1, -,k or of the form A[p/-_-\o O(")Vuk], for
meN, Va, in Cl(a) and § <#(a) for any k<m.

One may see that the size of Cl(a) is 2® where
n = #(a).

Our new notion of a pseudo-model is the following.
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Defipition 11: A b-pseudo-model for a is a triplet
W,r,~) satisfying:
1) W 0.1} xD such that <1,0> €W => D is termi-
nal
2) r is a binary relation on %W such that
<i,D\>r <j,Da>=> D;RDy )
3) ~ is an equivalence relation on % such that
<i,Dy>~<j D> => D F Dy and su(a that
[f]l D1>~<l D> => for any belli(a),
beD, <>UbeD,
4) if w,, wp and wg = <i, D3> are members of W such
that w;rw,; , and wy~wyg , then there exists an
w, = <j, D> €W such that w;~w, , and D R Dg,
5) tor all w €W , there exists an w'€ W sueh that
wrw’, for all w’s of first coordinate 1 there is such a w’
of first coordinate 1, and for all w's of first coordinate 0
there is a w' €W of first coordinate 1 such that wr w"
where r° denotes the reflexive and transitive closure of »
for all w =<i,D>€W and for all LIbeQ~(a) , if
b # D then there exists an w’' = <7 ,D'> € W such that
wr'w'andb gD
7) for all w =<i ,D>eW and for all Vbe Q@ (a) , it
Vb # D then there exists an s' = <0,D'> € W such that
s~s'andb gD’
8) for any wow,;.w, €W where k<#(a) such that wy
has first coordinate 1, for j=0, ' - &k and w; ~T wj4q, for
Jj=0,-- k~1 there exist v; €W of first coordinate 1,
j =0, -k satisfying
a) Vg™~ Wo
b) vs Ewy, for §=1, - k, where £ is interpreted on the
second coordinate only
c) vy Rvj4y, for j=0, - k—1, where R is interpreted on
the second coordinate only.
9) for any v,w €W such that v ~w and for any k <#(a)
there are v; ,wy, for =0, - - - .k such that
a) vo=v and wg = w
b) vy Fw; for j=0, . k where £ is interpreted on the
second coordinate only
e) wy~TUsyy, for §=0, - k-1
d) wy; Rwyyy, for j=0, - k~-1.

lemma 11: If a is a b-
there are a b-pseudo-model
D eW such that Va € D.

tisfiable formula, then
W.r,~) for a and a

Proof: One sees that (,d.s .e') is a suitable b-
pseudo-model where
A contains the pairs <0,7 N Cl(a)> where T is an b-
consistent and complete theory and the pairs
<1,TN C(a)> where T is such a terminal theory. The
relation s is defined by:
a) if i=0 or j=0 <i,D;>s <j,Dp> iff there is an b-
consistent and complete theory 7 such that
Dy=TNC(a)and Dy = T* N Cl(a)
b) <1,D;>s <1,D,> iff there is a terminal, b-consistent
and complete T as above.

The relation e is defined by:

a) if i=0 or j=0 <i,Dy>e<j,D> iff there are b-
consistent and complete theories T; ,k =1, such that
TW=To, Dy=T,NCl(a)fork=1,2

b) <1,D;>e <1,Dp> iff there are terminal theories 7 for
k=12 such that 7,=T7, T)<s7T; Tp<T, and
Dy=T, NA(a)for k=12, QED.

Le 12: 1 there are a b-pseudo-model
W.,r.,~) for a , and a w =<i,D> in W such that
a € D then a is b-satisfiable.



Proof: The model %/ =S ,u ,1,p). that satisfles

o, is defined the following way:

1) & is a subset of Nx® defined by:
<0.D>€8 il <0, D>W
fori>0, <i , D>eSiff <1,D>€W

2) u =w

3) I(<i.D>)=fp |p €D}

4) Choose some number a: §<a<1. We distinguish here
between the states of first coordinate 0 and the
other ones, For states whose first coordinate is
zero, we give a positive probability to a move from
<0,0> to <0,D'> iff <0,D>~r <0,D'>. We give a
positive probability to a move from <0,0> to <1,D0 >
iff <0,D>~7 <1,D0'>. All other transitions from
<0,D> have probability zero. We give equal proba-
bilities to all moves of positive probability. For
states whose first coordinate is positive, we allow to
increase or decrease by one the first coordinate. If
the first coordinate is 1, we give a positive probabil-
ity to transitions from <1.0> to <0,0 > iff
<1,D> ~r <0,D'> and to transitions from <1,D>
to <R,D > iff there is a w €Y/ in the pseudo-model,
such that w has first coordinate 1, <1,D0>~w and
wr<1.0> Ifi>1, we give a positive probability to
a transition from <i.D> to <j,D'> iff (either j =i~1
or §=i+1) and there is a w €W in the pseudo-
model, such that w has first coordinate 1,
<1, D>~w and wr<l,D'> Moreover, at each
state s of positive flrst coordinate we give a com-
bined weight of a ( a>i) to those moves that

increase the first coordinate.

Let o be a sequence and let oy = <k; , D;>. Let m be
a natural number. We deflne o to be m-standard iff
there exists a j , such that k;>0, for i=j, such that for
any i, isj+m—1 we have D; R D;4+; and such that for any
i,1=]+m we have 0 ~7 04,

A sequence is said to be m-ultimately standard if it
has a tail that is m-standard.

We see, using condition 5 of definition 11, that the
set of m-standard sequences beginning at a state s has
positive weight and that the set of ultimately m -standard
sequences beginning at a state s has weight 1.
Equivalent ( £ ) sequences are defined as in the case of
TCg. Generic sequences are defined as in the case of TCf.
Clearly the weight of generic sequences is 1,

Our basic result concerning ¥ is the following.

Lemma 13: Let b € Cl (a ), o a generic (b )-standard
sequence” of states ( of ¥ ) and T and T any two
equivalent (£) sequences of states, then
a) b U =true <> b €D, where,ag = <k D>

b) b|{,=b|{/'.

Proof: The proof is very similar to the proof of
lemma 10, and therefore we shall only highlight the
changes to be made.

b =ﬁc

a) Suppose Oe €Dy, Since o is 0-standard, we have V
t€N,Llc€l;. Our goal is to wuse the induction
hypothesis on c. We notice that Vi €N, o' is generic. Let
i be given. In general ¢' is not Q(c)-standard. Let
m =(c). Since o is m-standard, there is an index j
such that k; >0, for {>4, such that for any ¢, I<j +m —1 we
have D, RD,; and such that for any I, {2j+m we have
o, ~7 0;41. Now we have to distinguish between two cases
following whether i<j or not. If i<j, ¢* is clearly Q(c)-
standard and we may use the induction hypothesis part

a) to conclude: ¢ !; = true,
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On the other hand, suppose i>=j. By condition 8 of
definition 11 we may ind w, €W, forn =14, ' i+m-1,
(let wy, = <2y, ,F3>) such that

8) 2n =kq.m =1, itm—1

b) w; ~0

C) FaEDy,m =141, i+m—1

d) FnRFn{-l,n =1‘:, e ,i‘l‘m"l-

By condition 3 of definition 11, Oe € F;. Let the
sequence T be deflned by: T =¢**™ , and
Tn = €Zien . Fi4n>, 1 =0, -+ ,m—-1, By construction o*
and T are equivalent and therefore by the induction
hypothesis b) ¢ |7 = cI{, But T is a generic m-
stapdard sequence and by the mduct.iobh othesis a)
c Ii; = true <> c €F;. We conclude thatlle |y, = true.

Oe # Dy Following the line of reasoning used in lemma
7 one may see that 3i €N such that ¢ £ J; . Now, as just
above, we must distinguish two cases. If the first coordi-
nate of o is 0, o' must be m-standard and one may use
the induction hypothesis part a). If the first coordinate
of o is positive, the prootf is more delicate. In this case
D, is terﬁmﬂ and does not contain ¢, therefore it does
contain L1-Lle (this last formula ibinlj!‘(a). We may
then show that for all indexes j=i, LI-Lle € D, since o*
contains only transitions of "type” nd ~r, Therefore
there is an F € 3 that contains -Llc and appears an
infinite number of times in ¢ (as a second component).
Since ¢ is generic, we conclude, by condition 6 of
definition 11 that there is a G € 9 that does not contain
¢ and that appears an infinite number of times in o (as a
second component). Since o is generie, G must appear
in o an infinite number of times followed by at least Q(c)
r-transitions. Let § be such a point in o, with j=i. At j,
we may apply the induction hypothesis part a) and see

that ¢ | = false. We conclude that (e |; = false.
b = Ve The first half proceeds as in lemma 10.

Suppose now that -VceD; We must find a set @ of

sequences that begin at oy and do not satisfy c, such

that @ has a positive measure. Remember that

gg = <ko,Do>. By condition 7 of definition 11 there is an
= <0, F> such that ¢ #F and og~t. By condition 9 of

definition 11 we may find s;,f; for i=0, ', m (where

m=0Q(c) ) such that

a)og=sgand t =tq

b) s E'tg

C) 5y ~T 8¢y

Let @ be the set of all sequences T such that: 7 = &, for
i=0, ', m and T is generic and O-standard. By con-
struction the set @ has a positive measure. It is left to
us to show that no sequence of @ satisfies ¢, Let T be a
sequence of the set @. Deflne the sequence T' by:

gm+l = gm+l and 7 =¢;, for i=0, - ,m. By construc-
tion TE T _and therefore, by the induction hypothesis
part b) ¢ |,; = ¢ |,,. But the sequence 7' is generic since
it has a geheric le. It is also m-standard since it con-
sists of a prefix of m R-transitions and a O-standard tail,
By .the induction hypothesis part a) we conclude
c| y = Jalse.

The proof of lemma 12 is completed as in the previous
case. Q.E.D.

Theorem 5: Satisfiability in TCb is decidable in

R
NTIME(2®™") for some constant c >0 where n is the size
(#) of the formula .



Proof: The proof is like in the previous case. QE.D.

8. Open problems There is a gap between the deter-
ministic exponential lower bound and the non-
deterministic double- exponential upper bound. It is our
feeling that this gap may be reduced. A natural idea is to
try and obtain a deterministic double-exponential time
decision procedure by an iterative method in the spirit
of [SH], but a too simple-minded effort fails. The idea
seems applicable, though, for a sublanguage containing
only "state formulas”, large enough to include the
language of [HS]. One should also look for methods to
check whether a given formula is satisfled in a given
model (described in some finite way).
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