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Each of the sections below should not take more than 60 seconds
to read and understand (with the possible exception of the proof in
Section 5). Please contact katzmik at macs.deletethis.biu.andthis.ac.il
for clarifications.

1. Isoperimetric inequality

Pu’s inequality can be thought of as an “opposite” isoperimetric
inequality, in the following precise sense.

The classical isoperimetric inequality in the plane is a relation be-
tween two metric invariants: length L of a simple closed curve in the
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plane, and area A of the region bounded by the curve. Namely, every
simple closed curve in the plane satisfies the inequality

A

π
≤

(

L

2π

)2

.

This classical isoperimetric inequality is sharp, insofar as equality is
attained precisely by round circles.

2. Pu’s inequality

In the 1950’s, Charles Loewner’s student P. M. Pu [Pu52] proved the
following theorem. Let RP

2 be the real projective plane endowed with
an arbitrary metric, i.e. an imbedding in some Rn. Then

(2.1)

(

L

π

)2

≤
A

2π
,

where A is its total area and L is the least length of a non-contractible
loop. This isosystolic inequality, or simply systolic inequality for short,
is also sharp, to the extent that equality is attained precisely for a
metric of constant Gaussian curvature, namely antipodal quotient of a
round sphere. In the systolic notation where L is replaced by sysπ1,
Pu’s inequality takes the following form:

(2.2) sysπ
1
(G)2 ≤ π

2
area(G),

for every metric G on RP
2.

For a proof, see [Ka07, Section 6.5].
Pu’s inequality can be generalized as follows.

Theorem 2.1. Every surface (Σ,G) different from S2 satisfies the op-

timal bound (2.2), attained precisely when, on the one hand, the sur-

face Σ is a real projective plane, and on the other, the metric G is of

constant Gaussian curvature.

The extension to surfaces of nonpositive Euler characteristic follows
from Gromov’s inequality (2.3) below (by comparing the numerical
values of the two constants). Namely, every aspherical compact sur-
face (Σ,G) admits a metric ball

B = Bp

(

1

2
sysπ

1
(G)

)

⊂ Σ

of radius 1

2
sysπ

1
(G) which satisfies [Gro83, Corollary 5.2.B]

(2.3) sysπ
1
(G)2 ≤

4

3
area(B).
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3. Loewner’s torus inequality

Historically, the first lower bound for the volume of a Riemannian
manifold in terms of a systole is due to Charles Loewner. In 1949,
Loewner proved the first systolic inequality, in a course on Riemannian
geometry at Syracuse University, cf. [Pu52]. Namely, he showed the
following result.

Theorem 3.1 (C. Loewner). Every Riemannian metric G on the torus T2

satisfies the inequality

(3.1) sysπ1(G)2 ≤ γ2 area(G),

where γ2 = 2√
3

is the Hermite constant. A metric attaining the optimal

bound (3.1) is necessarily flat, and is homothetic to the quotient of C

by the lattice spanned by the cube roots of unity.

For a proof, see [Ka07, Section 6.2].

4. Stable norm and stable systoles

We recall the definition of the stable norm in the real homology of a
polyhedron X with a piecewise Riemannian metric, following [BaK03,
BaK04].

Definition 4.1. The stable norm ‖h‖ of h ∈ Hk(X, R) is the infimum
of the volumes

(4.1) volk(c) = Σi|ri| volk(σi)

over all real Lipschitz cycles c = Σiriσi representing h.

Note that ‖ ‖ is indeed a norm, cf. [Fed74] and [Gro99, 4.C].
We denote by Hk(X, Z)R the image of Hk(X, Z) in Hk(X, R) and

by hR the image of h ∈ Hk(X, Z) in Hk(X, R). Recall that Hk(X, Z)R

is a lattice in Hk(X, R). Obviously

(4.2) ‖hR‖ ≤ volk(h)

for all h ∈ Hk(X, Z), where volk(h) is the infimum of volumes of all
integral k-cycles representing h. Moreover, one has ‖hR‖ = voln(h)
if h ∈ Hn(X, Z). H. Federer [Fed74, 4.10, 5.8, 5.10] (see also [Gro99,
4.18 and 4.35]) investigated the relations between ‖hR‖ and volk(h) and
proved the following.

Proposition 4.2. If h ∈ Hk(X, Z), 1 ≤ k < n, then

(4.3) ‖hR‖ = lim
i→∞

1

i
volk(ih).



4 A SIXTY SECOND INTRODUCTION TO SYSTOLES

Equation (4.3) is the origin of the term stable norm for ‖ ‖. The
stable k-systole of a metric (X,G) is defined by setting

(4.4) stsysk(G) = λ1

(

Hk(X, Z)
R
, ‖ ‖

)

,

where λ1 denotes the first successive minimum of the lattice
(

Hk(X, Z)
R
, ‖ ‖

)

,
i.e. the least norm of a nonzero lattice element.

5. Gromov’s inequality for complex projective space

We now discuss systolic inequalities on projective spaces.

Theorem 5.1 (M. Gromov). Let G be a Riemannian metric on complex

projective space CP
n. Then

stsys2(G)n ≤ n! vol2n(G);

equality holds for the Fubini-Study metric on CP
n.

Proof. Following Gromov’s notation in [Gro99, Theorem 4.36], we let

(5.1) α ∈ H2(CP
n; Z) = Z

be the positive generator in homology, and let

ω ∈ H2(CP
n; Z) = Z

be the dual generator in cohomology. Then the cup power ωn is a
generator of H2n(CP

n; Z) = Z. Let η ∈ ω be a closed differential
2-form. Since wedge product ∧ in Ω∗(X) descends to cup product
in H∗(X), we have

(5.2) 1 =

∫

CP
n

η∧n.

Now let G be a metric on CP
n. Recall that the pointwise comass norm

for a simple k-form coincides with the natural Euclidean norm on k-
forms associated with G. In general, the comass is defined as follows.

Definition 5.2. The comass of an exterior k-form is its maximal value
on a k-tuple of unit vectors.

The comass norm of a differential k-form is, by definition, the supre-
mum of the pointwise comass norms. Then by the Wirtinger inequality
we obtain

(5.3)
1 ≤

∫

CP
n

‖η∧n‖ dvol

≤ n! (‖η‖∞)n vol2n(CP
n,G)
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where ‖ ‖∞ is the comass norm on forms. See [Gro99, Remark 4.37] for
a discussion of the constant in the context of the Wirtinger inequality.
A more detailed discussion appears in [Ka07, Section 13.1].

The infimum of (5.3) over all η ∈ ω gives

(5.4) 1 ≤ n! (‖ω‖∗)n vol2n (CP
n,G) ,

where ‖ ‖∗ is the comass norm in cohomology. Denote by ‖ ‖ the stable
norm in homology. Recall that the normed lattices (H2(M ; Z), ‖ ‖)
and (H2(M ; Z), ‖ ‖∗) are dual to each other [Fed69]. Therefore the
class α of (5.1) satisfies

‖α‖ =
1

‖ω‖∗
,

and hence

(5.5) stsys
2
(G)n = ‖α‖n ≤ n! vol2n(G).

Equality is attained by the two-point homogeneous Fubini-Study met-
ric, since the standard CP

1 ⊂ CP
n is calibrated by the Fubini-Study

Kahler 2-form, which satisfies equality in the Wirtinger inequality at
every point. �

Example 5.3. Every metric G on the complex projective plane satisfies
the optimal inequality

stsys2(CP
2,G)2 ≤ 2 vol4(CP

2,G).

6. Other inequalities due to Gromov

There is a number of inequalities in the systolic literature that could
be described as Gromov’s inequality.

The deepest result in systolic geometry is Gromov’s inequality for the
homotopy 1-systole of essential manifolds. Gromov’s original definition
of an essential manifold M depends on the choice of the coefficient
ring A, taken to be Z if M is orientable, or Z2 otherwise. We then
have a nonzero fundamental homology class [M ] ∈ Hn(M, A).

Definition 6.1. A closed n-dimensional manifold M is called essen-

tial if there exists a map from M to a suitable Eilenberg-MacLane
space K(π, 1) such that the induced homomorphism

h : Hn(M, A) → Hn(K(π, 1), A)

maps the fundamental class [M ] to a nonzero class in the homology
group Hn(K(π, 1), A), i.e. h([M ]) 6= 0.
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A more general definition of an n-essential space X, in the context of
an arbitrary polyhedron X, can be defined in terms of arbitrary local
coefficients.

The following theorem was proved in [Gro83, Section 0] and [Gro83,
Appendix 2, p. 139, item B ′

1
].

Theorem 6.2 (M. Gromov). Every n-essential, compact, n-dimensional

polyhedron X satisfies the inequality

(6.1) sysπ1(X)n ≤ Cn voln(X).

where the constant Cn depends only on n. If X is a manifold, the

constant Cn can be chosen to be on the order of n2n2

.

In other words, the quotient

(6.2)
voln

(sysπ
1
)n

> 0

is bounded away from zero for such polyhedra.
A summary of a proof appears in [Ka07, Section 12.2].
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