88-826 Differential Geometry, moed A Bar Ilan University, Prof. Katz Date: 24 jul '18 Duration of the exam: 3 hours

Each of 5 problems is worth 20 points; bonus problem is 10 points All answers must be justified by providing complete proofs

1. In parts (a)-(c), does there exist a real constant C such that the following relation holds for all infinitesimal ε , and if so which C?

- (a) $\cos(1+\varepsilon) \Box 1 + C\varepsilon^2$;
- (b) $e^{\varepsilon} \sqcap 1 + C\varepsilon;$
- (c) $\ln(1-\varepsilon) \sqcap C\varepsilon$.
- (d) Let *H* be an infinite number. Determine the order of magnitude (seder godel) of the expression $\sqrt{H^2 1} \sqrt{H^2 4}$.

2. Let A be a field and let ${}^{*}\!A = A^{\mathbb{N}}\!/\mathcal{F}$ where \mathcal{F} is a free ultrafilter. Let $A_F \subseteq {}^{*}\!A$ be the subring of finite elements, and let A_I be the subring of infinitesimal elements. Identify the quotient A_F/A_I in each of the following cases:

- (a) $A = \mathbb{Q};$
- (b) $A = \mathbb{R};$
- (c) $A = \mathbb{C}$.

3. The extreme value theorem (EVT) states that if f is a continuous real function on the unit interval [0, 1] then f has a maximum.

- (a) Apply a hyperfinite partition using an infinite integer H to prove the EVT;
- (b) use the EVT to prove Rolle's theorem: a differentiable function on a compact interval with identical values at the endpoints has vanishing derivative at some interior point of the interval;
- (c) use Rolle's theorem to prove the mean value theorem: if f is a differentiable function then $(\forall x \in \mathbb{R})(\forall h \in \mathbb{R})(\exists \vartheta \in \mathbb{R}) [f(x + h) f(x) = h \cdot g(x + \vartheta h)]$ where $0 < \vartheta < 1$ and g(x) = f'(x).

4. Let $\langle A_n \colon n \in \mathbb{N} \rangle$ be a decreasing nested sequence of nonempty sets of real numbers: $A_n \subseteq \mathbb{R}$.

- (a) prove that the sequence $\langle A_n : n \in \mathbb{N} \rangle$ has a common point.
- (b) We will say that a set $S \subseteq \mathbb{R}$ is compact if each countable cover of S by open sets has a finite subcover. Prove that S is compact if and only if every point of *S is nearstandard.

5. Let Φ and G be D^1 prevector fields on \mathbb{R}^n generated respectively by displacements δ_{Φ} and δ_G .

- (a) Prove that $\Phi \circ G$ and $G \circ \Phi$ are equivalent prevector fields.
- (b) Prove that $a \mapsto a + \delta_{\Phi} + \delta_G$ is also a D^1 prevector field.

Bonus question. Let *H* be an infinite hyperreal. Prove that the function $f(x) = \sin(x^2)$ is not microcontinuous at *H*.

GOOD LUCK!

 $\mathbf{2}$