88-826 DIFFERENTIAL GEOMETRY, MOED A, 21 AUG '08

Duration of the exam: $2\frac{1}{2}$ hours.

All answers must be justified by providing complete proofs.

1. Let a, b > 0 and assume a < b. Consider the ellipsoid $\mathcal{E}_{a,a,b} \subset \mathbb{R}^3$ with half-axes a, a, b given by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1.$$

- (a) Prove that $\mathcal{E}_{a,a,b}$ is centrally symmetric.
- (b) Let $\mathcal{P} = \mathcal{E}_{a,a,b}/\pm 1$ be the real projective plane obtained as the antipodal quotient of the ellipsoid defined in part (a). Calculate the systole $sys_1(\mathcal{P})$ of \mathcal{P} .
- (c) Define the notion of the Riemannian diameter of a manifold M.
- (d) Calculate the Riemannian diameter of \mathcal{P} .

2. For each of the following lattices L, find L^* and compute $\lambda_1(L^*)$, after presenting the definition in part (a):

- (a) Define the notion of the dual lattice in Euclidean *n*-space.
- (b) The lattice $L_G \subset \mathbb{C}$ spanned over \mathbb{Z} by the roots of $z^{\overline{4}} = 16$.
- (c) Let a, b, c > 0 such that $a \leq b \leq c$. The lattice $L_{a,b,c} \subset \mathbb{R}^3$ is spanned by ae_1, be_2 , and ce_3 .
- (d) The lattice $L_E \subset \mathbb{C}$ spanned by the roots of $z^6 = 64$.

3. Let M be an closed connected orientable 6-dimensional manifold. Assume that $b_2(M) = 1$.

- (a) Define what it means for a de Rham class $\omega \in H^2_{dR}(M)$ to be an integer class.
- (b) Assume $\omega \in L^2_{dR}(M)$ is an integer de Rham class such that the class $\omega \cup \omega \cup \omega$ is a generator of $L^6_{dR}(M)$. Evaluate the expression $\int_M \omega \cup \omega \cup \omega$.
- (c) Given a metric g on M, define the comass norms $\| \|$ in $\Lambda^2(T_p^*M)$ and $\| \|_{\infty}$ in $\Omega^2 M$.
- (d) Let $\eta \in \omega$ be a representative differential form. Estimate the integral $\int_M \eta \wedge \eta \wedge \eta$ in terms of the comass as well as the total volume $\operatorname{vol}(M)$ of M.
- (e) Find the best upper bound for the ratio $\frac{\text{stsys}_2(g)^3}{\text{vol}(g)}$.

4. Consider the polar coordinates (r, θ) of a point p in the Euclidean plane.

- (a) Find a natural orthonormal basis, in terms of the polar coordinates, for the cotangent plane T_p^* at p when p is not the origin.
- (b) Find a natural orthonormal basis, in terms of the polar coordinates, for the tangent plane T_p when p is not the origin.
- (c) Consider the cotangent line $T_p^*S^1$ at a point p of the circle of radius $r_0 > 0$. Consider the lattice $L_0 \subset T_p^*$ spanned by the 1-form $d\theta$. Calculate $\lambda_1(L_0)$.
- (d) Consider the tangent line T_p at a point p of the circle of radius $r_0 > 0$. Consider the lattice $L_1 \subset T_p$ spanned by $\frac{\partial}{\partial \theta}$. Calculate $\lambda_1(L_1)$.
- (e) Determine whether or not the differential form $d\theta$ on S^1 is a coboundary, i.e. lies in the image of the map $C^{\infty}(S^1) \to \Omega^1(S^1)$ defined by the exterior derivative.
- 5. Let M be a Riemannian manifold.
 - (a) Define the stable norm $\| \|$ in the homology group $H_k(M)$ of M.
 - (b) Prove that if two elements α, β differ by an element of finite order, then their stable norms coincide.
 - (c) Define the invariants $sys\pi_1$ and $stsys_1$.
 - (d) Explain why $sys\pi_1$ and $stsys_1$ coincide in the case of a Riemannian torus $M = \mathbb{T}^2$.

GOOD LUCK!

Department of Mathematics, Bar Ilan University, Ramat Gan 52900 Israel

2