Differential geometry 88-826 homework set 2

Due Date: 19 april ' 23

1. Let A and B be copies of \mathbb{R}^{3}, with coordinates $u=\left(u^{1}, \ldots, u^{2}\right)$ in A and $v=\left(v^{1}, \ldots, v^{2}\right)$ in B, and with transition function $u=\phi(v)=\frac{v}{v \cdot v}$ whenever $v \in \mathbb{R}^{3} \backslash\{0\}$. Prove that the resulting manifold M with coordinate patches A and B is metrizable.
2. Let $M=T^{3}$ be the 3-torus. Prove that the tangent bundle of M is diffeomorphic to the product $T^{3} \times \mathbb{R}^{3}$.
3. Recall that the m-th exterior power $\Lambda^{m}\left(\mathbb{R}^{m}\right)$ of \mathbb{R}^{m} is spanned by the single element $\omega=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m}$. Consider the 2-multivector

$$
\alpha=e_{1} \wedge e_{2}+e_{3} \wedge e_{4}+\cdots+e_{2 n-1} \wedge e_{2 n} \in \bigwedge^{2}\left(\mathbb{R}^{2 n}\right)
$$

Express the product $\alpha \wedge \alpha \wedge \cdots \wedge \alpha$ (n times) explicitly as a multiple of $\omega \in \mathbb{R}^{2 n}$.
4. Let M be a n-dimensional Riemannian manifold. Consider a coordinate chart (A, u) in M. Let f be a smooth function on A and consider the differential 2-form $\eta=f\left(u^{1}, \ldots, u^{n}\right) d u \wedge d v$ in A, where $d u$ and $d v$ are among the coordinate forms $d u^{i}$. Prove that the 4 -form $d d \eta$ identically vanishes.

