February 22, 2011 Differential geometry 88-826 Homework 1

- 1. The area of a region $D \subset \mathbb{R}^2$ in polar coordinates is calculated using the area element $dA = r dr d\theta$. Thus, an integral is of the form $\int_D dA = \iint r dr d\theta$. Find the area of the following regions:
 - (a) $0 \le r \le 3$; $-\pi/2 \le \theta \le \pi/2$;
 - (b) $2 \le r \le 4$; $0 \le \theta \le \pi/4$;
 - (c) $0 < \theta < \pi$; $0 < r < \theta$.
- 2. The volume of an open region $D \subset \mathbb{R}^3$ is calculated with respect to spherical coordinates (r, θ, z) using the volume element $dV = r dr d\theta dz$. Namely, an integral is of the form $\int_D dV = \iiint r dr d\theta dz$.
 - (a) Find the volume of a right circular cone with height h and base a circle of radius b.
 - (b) evaluate the integral $\iiint_E \sqrt{x^2 + y^2} z dV$ where E is the cylinder $x^2 + y^2 \le 1$, $0 \le z \le 2$.
 - (c) Find the volume of the object filling the region above the paraboloid $z = x^2 + y^2$ and below the plane z = 1.
- 3. Spherical coordinates (ρ, θ, ϕ) range between the bounds $0 \le \rho$, $0 \le \theta \le 2\pi$, and $0 \le \phi \le \pi$ (note the different upper bounds for θ and ϕ). The area of a spherical region D is calculated using a volume element of the form $dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$, so that the volume of a region D is $\int_D dV = \iiint_D \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$.
 - (1) Find the volume of the region above the cone $\phi = \beta$ and inside the sphere of radius $\rho = c$.
 - (2) Find the integral $\iiint_E x^2 + y^2 + z^2 dV$, where E is the sphere $x^2 + y^2 + z^2 = b^2$.
 - (3) Find the integral $\iiint \frac{1}{x^2+y^2+z^2} dV$, where E is the region between two spheres: $a \leq \rho \leq b$.
- 4. Let δ^i_j be the Kronecker delta function on \mathbb{R}^n , where $i, j = 1, \ldots, n$, viewed as a linear transformation $\mathbb{R}^n \to \mathbb{R}^n$. Evaluate the expression

$$\delta^{i}_{i}\delta^{j}_{k}\delta^{k}_{i}$$
.