88-826 Differential Geometry, moed B

Bar Ilan University, Prof. Katz

Date: 23 august '23

Each of 4 problems is worth 25 points; the bonus problem is 8 points

All of the answers must be justified by providing complete explanations and proofs

1. Let M be a 12 -dimensional manifold with $b_{2}(M)=1$.
(a) Give a detailed definition of $L_{\mathrm{dR}}^{2}(M)$.
(b) Give a detailed definition of the fundamental cohomology class of M.
(c) Assuming that a cup power of a suitable class $\omega \in L_{\mathrm{dR}}^{2}(M)$ is the fundamental cohomology class of M, find an upper bound for the ratio $\frac{\left(\operatorname{stsys}_{2}(g)\right)^{6}}{\operatorname{vol}(g)}$ valid for all Riemannian metrics g on M, with proof.
2. Let $M=\mathbb{C P}^{n} \times \mathbb{C P}^{2 n}$, where $n \geq 2$. Do all metrics g of volume 1 on M necessarily satisfy $\operatorname{stsys}_{2}(g) \leq C$ for a suitable constant C independent of the metric?
3. Determine which of the following manifolds satisfy a stable systolic inequality for Stsys_{2} with a constant independent of the metric:
(a) $S^{1} \times S^{2} \times S^{1}$;
(b) $S^{1} \times S^{2} \times S^{2}$;
(c) $S^{2} \times S^{2} \times \mathbb{C P}^{2}$.
4. Let $n \geq 2$. Determine which of the following manifolds satisfy a stable systolic inequality for stsys ${ }_{2}$ with a constant independent of the metric:
(1) $S^{2} \times S^{2} \times \mathbb{C P}^{n}$;
(2) $\mathbb{C P}^{2} \times S^{2} \times S^{n}$;
(3) $S^{1} \times \mathbb{C P}^{n} \times S^{1}$.

5 (bonus). Let α be the area form of S^{2}, expressed away from the poles as $\alpha=\sin \phi d \phi \wedge d \theta$. Let β be the area form of $\mathbb{C P}^{1}$, expressed in an affine neighborhood as $\beta(x, y)=\frac{d x \wedge d y}{\left(1+x^{2}+y^{2}\right)^{2}}$. Consider the manifold $X=S^{2} \times \mathbb{C P}^{1}$. Let $r, s \in \mathbb{R}$, and consider the form $\gamma=r \alpha+s \beta$ on X. Determine for which values of r, s the form γ is exact, with proof.

Good Luck!

