88-826 Differential Geometry, moed B
 Bar Ilan University, Prof. Katz
 Date: 7 september '22

Each of 4 problems is worth 25 points; the bonus problem is 8 points
All answers must be justified by providing detailed definitions and complete explanations and proofs

1. Let M be a closed connected n-dimensional manifold.
(a) Consider a metric g on M. Give detailed definitions of the volume of a 2cycle in M and of the stable norm.
(b) Give a detailed definition of the stable 2-systole of g.
(c) Give a detailed formulation of the duality between the stable norm and the comass norm.
2. Consider a closed connected 10 -dimensional Riemannian manifold (M, g). Assume that $b_{2}(M)=1$ and that a class $\omega \in L_{d R}^{2}(M)$ satisfies $\omega^{\cup 5} \neq 0$.
(a) Let $\eta \in \omega$ be a representative differential 2 -form. Find a relation between $\eta_{p}^{\wedge 5}$ and $\|\eta\|_{p}^{5}$.
(b) Find a lower bound for $\left|\int_{M} \eta^{\wedge 5}\right|$ with proof.
(c) Estimate the integral $\int_{M} \eta^{\wedge 5}$ in terms of the comass of η as well as the total volume $\operatorname{vol}(M)$ of M.
(d) Prove an optimal upper bound for the ratio $\operatorname{stsys}_{2}(g)^{5} / \operatorname{vol}(g)$.
3. Let T^{2} be a torus with a Riemannian metric g. Suppose T^{2} contains an annulus $A=\mathbb{R} / \mathbb{Z} \times I$ such that the class of \mathbb{R} / \mathbb{Z} is nontrivial in $H_{1}\left(T^{2} ; \mathbb{Z}\right)$.
(a) Give a detailed definition of the capacity of the annulus A.
(b) Suppose the capacity of the annulus $A \subseteq T^{2}$ is C. Prove an optimal inequality relating $\operatorname{sys}_{1}(g), C$, and area (g).
(c) Use the result of (b) to prove an optimal systolic inequality for the torus.
4. Let $n \geq 1$, and let $M_{n}=\mathbb{C P}^{2} \times S^{n}$. Let g be a metric on M_{n} of total volume 1 . Determine (with proof) for which n is there a uniform upper bound for the stable 2systole of M_{n}, valid for all such metrics g.
5 (bonus). Let α be the area form of S^{2}, expressed away from the poles as $\alpha(\theta, \phi)=$ $\sin \phi d \theta \wedge d \phi$. Let β be the area form of $\mathbb{C P}^{1}$, expressed in an affine neighborhood as $\beta(x, y)=\frac{d x \wedge d y}{\left(1+x^{2}+y^{2}\right)^{2}}$. Consider the manifold $X=S^{2} \times \mathbb{C P}^{1}$. Let $r, s \in \mathbb{R}$, and consider the form $\gamma=r \alpha+s \beta$ on X. Determine (with proof) for which values of r, s the form γ is exact.

Good Luck!

