88-826 Differential Geometry, moed A
 Bar Ilan University, Prof. Katz
 Date: 14 july '22

Each of 4 problems is worth 25 points; the bonus problem is 8 points
All answers must be justified by providing complete explanations and proofs

1. Let M be a closed connected n-dimensional manifold.
(a) Consider a metric g on M. Give detailed definitions of the following three norms: the norm $\left\|\|\right.$ in $\Lambda^{2}\left(T_{p}^{*} M\right)$; the norm $\| \|_{\infty}$ in $\Omega^{2} M$; and the norm \|| ||* in de Rham cohomology.
(b) Give detailed definitions of the stable norm, $\operatorname{stsys}_{2}(g)$, and of the duality between the stable norm and the comass norm.
(c) Give a detailed definition of what it means for a de Rham class $\omega \in H_{d R}^{2}(M)$ to be an integer class, i.e., an element of $L_{d R}^{2}(M)$.
2. Given a closed connected 6 -dimensional Riemannian manifold (M, g), assume that $b_{2}(M)=1$ and that a class $\omega \in H_{d R}^{2}(M)$ satisfies $\omega^{\cup 3} \neq 0$.
(a) Let $\eta \in \omega$ be a representative differential 2-form. Estimate the integral $\int_{M} \eta \wedge \eta \wedge \eta$ in terms of the comass of η as well as the total volume $\operatorname{vol}(M)$ of M.
(b) Use part (a) to provide (with proof) the best upper bound for the ratio $\operatorname{stsys}_{2}(g)^{3} / \operatorname{vol}(g)$.
3. This problem deals with de Rham cohomology.
(a) Compute (with proof) the group $H_{d R}^{1}(\mathbb{R} / \mathbb{Z})$.
(b) Let $L \subseteq \mathbb{C}$ be the Eisenstein integers. Compute (with proof) the group $H_{d R}^{2}(\mathbb{C} / L)$.
(c) Compute (with proof) the group $H_{d R}^{3}\left(\mathbb{C P}^{1}\right)$.
4. Let T^{2} be a torus with a Riemannian metric g, and suppose T^{2} contains an annulu $A=\mathbb{R} / \mathbb{Z} \times I$ such that the class of \mathbb{R} / \mathbb{Z} is nontrivial in $H_{1}\left(T^{2} ; \mathbb{Z}\right)$.
(a) Define the capacity of the annulus A.
(b) Suppose the capacity of the annulus $A \subseteq T^{2}$ is C. Prove an optimal inequality relating $\operatorname{sys}_{1}(g), C$, and area (g).
5. (bonus) Let $M_{n}=S^{2} \times S^{n}, n \geq 1$, and let g be a metric on M_{n} of total volume 1 . Determine (with proof) for which n is there a uniform upper bound (valid for all metrics g of volume 1) for the stable 2-systole of M_{n}.

Good Luck!

