All answers must be fully justified by giving complete proofs. Each problem is worth 22 points.

1. Let $s : \mathbb{N} \to \mathbb{R}^+$ be a sequence such that the extended hypersequence $*s : \mathbb{N} \to *\mathbb{R}^+$ never takes infinitesimal values. Prove that s is bounded away from zero in \mathbb{R} .

2. Suppose that $a_i \geq 0$ for all $i \in \mathbb{N}$. Prove that the series $\sum_{1}^{\infty} a_i$ converges iff $\sum_{1}^{n} a_i$ is finite for *all* infinite *n*, and that this holds iff $\sum_{1}^{n} a_i$ is finite for *some* infinite *n*.

3. Let f be a real function that is defined on some open neighbourhood of $c \in \mathbb{R}$. Show that if f is constant on hal(c), then it is constant on some interval $(c - \varepsilon, c + \varepsilon) \subseteq \mathbb{R}$.

4. Prove that a set $A \subseteq \mathbb{R}$ is open if and only if for every point $x \in A$ one has $hal(x) \subseteq {}^*A$.

5. Show that the overflow principle is equivalent to the following statement: If an internal subset $X \subseteq *\mathbb{N}$ contains arbitrarily small infinite members, then it is unbounded in \mathbb{N} , i.e., contains arbitrarily large finite members.

Good Luck!