All answers must be fully justified by giving complete proofs. Each problem is worth 22 points.

1. Consider the full relational structure $Rel_{\mathcal{R}}$ including all relations over \mathbb{R} with finitely many unknowns. Consider the corresponding relational structure $Rel_{*\mathcal{R}}$ over $*\mathbb{R}$ obtained by "starring" all the relations of $Rel_{\mathcal{R}}$. Prove that the set \mathbb{N} does not belong to $Rel_{*\mathcal{R}}$.

2. Use the hyperreal characterisation of convergence to show that if a sequence converges in \mathbb{R} then it has exactly one cluster point (nekudat hitztabrut).

3. Use the hyperreal characterisation of uniform continuity to show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1).

4. Let f be a real function that is continuous on some interval $A \subseteq \mathbb{R}$. If f(x) is real for all $x \in {}^*A$, show that f is constant on A.

5. Use countable saturation to infer the existence of positive infinite and negative infinite members of $*\mathbb{R}$.

Good Luck!