Due Date: 6 june '22

1. Prove that a set $A \subseteq \mathbb{R}$ is open if and only if for every point $x \in A$ one has $hal(x) \subseteq {}^{*}A$.

2. Show that each S-open set in \mathbb{R} is a union of halos, but a union of halos need not be S-open.

3. Show that overflow is equivalent to the following statement: If an internal subset $X \subseteq *\mathbb{N}$ contains arbitrarily small infinite members, then it is unbounded in \mathbb{N} , i.e., contains arbitrarily large finite members.

4. Use countable saturation to infer the existence of positive infinite and negative infinite members of $*\mathbb{R}$.