
Abstract

An architecture is presented where a collection of distributed
task-achieving modules, or behaviors, cooperatively deter-
mine a mobile robot’s path by expressing their preferences for
each of various possible actions. An arbiter then performs
command fusion and selects that action which best satisfies the
prioritized goals of the system, as expressed by the behaviors
and their associated weights. Examples of implemented sys-
tems are given, and future research directions in command
fusion are discussed.

Introduction

In order to function in unstructured, unknown, or dynamic

environments, a mobile robot must be able to perceive its

surroundings and generate actions that are appropriate for

that environment and for the goals of the robotic system. To

function effectively, an architectural framework for these

sensing and reasoning processes must be imposed to provide

a structure with which the system may be developed, tested,

debugged, and understood. The system must also deal with

uncertainty and incomplete knowledge of its environment

and of the effects of its own actions. Another crucial consid-

eration is the ability to respond to potentially dangerous situ-

ations in real-time while maintaining enough speed to be

useful.

In addition, mobile robots need to combine information

from several different sources. For example, the CMU Nav-

lab vehicles are equipped with sensors such as video cam-

eras, laser range finders, sonars, and inertial navigation

systems, which are variously used by subsystems that follow

roads, track paths, avoid obstacles and rough terrain, seek

goals, and perform teleoperation. Because of the disparate

nature of the raw sensor data and internal representations

used by these subsystems, combining them into one coherent

system which combines all their capabilities has proven to be

very difficult. Many architectures espousing diverse princi-

ples of design methodology have been proposed over the

years, but few have proved capable of integrating sub-

systems that have each been developed independently using

whichever paradigm best achieves the task for which it is

intended.

The earliest work in robot control architectures attempted

to reason by manipulating abstract symbols using only pure

logic (Nilsson, 1984). The limitations of this top-down AI

approach led to a new generation of architectures designed in

a bottom-up fashion to provide greater reactivity to the

robot’s surroundings, but sacrificed generality and the ability

to reason about the system’s own intentions and goals

(Brooks, 1986; Agre & Chapman, 1987; Arkin, 1987).

It has been argued that a hierarchical approach is needed

which allows slower abstract reasoning at the higher levels

and faster numerical computations at the lower levels, thus

allowing varying trade-offs between responsiveness and

optimality as appropriate at each level (Payton, 1986;

Albus, McCain & Lumia, 1987). While such an approach

provides aspects of both deliberative planning and reactive

control, the top-down nature of hierarchical structures

tends to overly restrict the lower levels so that newly

received information cannot be fully taken advantage of

(Payton, Rosenblatt & Keirsey, 1990). In hierarchical

architectures, each layer controls the layer beneath it and

assumes that its commands will be executed as expected.

Since expectations are not always met, there is a need to

monitor the progress of desired actions and to report fail-

ures as they occur (Simmons, Lin & Fedor, 1990). In an

unstructured, unknown, or dynamic environment, this

approach introduces complexities and inefficiencies which

could be avoided if higher level modules participated in

the decision-making process without assuming that their

commands will be strictly followed.

Experience over the years with different architectures

and planning systems for mobile robots has led me to a

distributed approach where an arbiter receives votes for

and against commands from each subsystem and decides

upon the course of action which best satisfies the current

goals and constraints of the system. The architecture is

designed with the underlying belief that centralized arbi-

tration of votes from distributed, independent decision-

making processes provides coherent, rational, goal-

directed behavior while preserving real-time responsive-

ness to its immediate physical environment. Furthermore,

a framework for developing and integrating independent

decision-making modules communicating with such arbi-

ters facilitates their development and leads to evolutionary

creation of robust systems of incrementally greater capa-

bilities.

The Distributed Architecture for Mobile Navigation has

been successfully used to integrate the various subsystems

mentioned above, thus providing systems that perform

road following, cross-country navigation, or teleoperation

while avoiding obstacles and meeting mission objectives.

In addition to its use on the CMU Navlab vehicles, DAMN

has also been used on outdoor test vehicles at Martin

Marietta and on indoor robots and simulated environments

at the Hughes Research Labs..
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The Distributed Architecture

for Mobile Navigation

Deliberative planning and reactive control are equally

important for mobile robot navigation; when used appropri-

ately, each complements the other and compensates for the

other’s deficiencies. Reactive components provide the basic

capabilities which enable the robot to achieve low-level

tasks without injury to itself or its environment, while delib-

erative components provide the ability to achieve higher-

level goals and to avoid mistakes which could lead to ineffi-

ciencies or even mission failure. But rather than imposing an

hierarchical structure to achieve this symbiosis, the Distrib-

uted Architecture for Mobile Navigation (DAMN) takes an

approach where multiple modules concurrently share control

of the robot. In order to achieve this, a common interface is

established so that modules can communicate their inten-

tions without regard for the level of planning involved

(Langer, Rosenblatt & Hebert, 1994).

A scheme is used where each module votes for or against

various alternatives in the command space based on geomet-

ric reasoning; this is at a higher level than direct actuator

control, but lower than symbolic reasoning. This reasoning

at the geometric level creates a bridge between the high-level

goals of an AI planner and the low-level motor skills of a

controller and is crucial to the successful operation of a

robotic system in the real world, and yet it is the least under-

stood.

Figure 1 shows the organization of the DAMN architec-

ture, in which individual behaviors such as road following or

obstacle avoidance send votes to the command arbitration

module; these inputs are combined and the resulting com-

mand is sent to the vehicle controller. Each action-producing

module, or behavior, is responsible for a particular aspect of

vehicle control or for achieving some particular task; it oper-

ates asynchronously and in parallel with other behaviors,

sending its outputs to the arbiter at whatever rate is appropri-

ate for that particular function. Each behavior is assigned a

weight reflecting its relative priority in controlling the vehi-

cle. A mode manager may also be used to vary these weights

during the course of a mission based on knowledge of

which behaviors would be most relevant and reliable in a

given situation.

DAMN is a behavior-based architecture similar in some

regards to reactive systems such as the Subsumption

Architecture (Brooks, 1986). In contrast to more tradi-

tional centralized AI planners that build a centralized

world model and plan an optimal path through it, a behav-

ior-based architecture consists of specialized task-achiev-

ing modules that operate independently and are

responsible for only a very narrow portion of vehicle con-

trol, thus avoiding the need for sensor fusion. A distributed

architecture has several advantages over a centralized one,

including greater reactivity, flexibility, and robustness

(Payton, Rosenblatt & Keirsey, 1990). However, one

important distinction between this system and purely reac-

tive systems is that, while an attempt is made to keep the

perception and planning components of a behavior as sim-

ple as possible without sacrificing dependability, they can

and often do maintain internal representations of the

world. Brooks (1993) has argued that “the world is its own

best model”, but this assumes that the vehicle’s sensors

and the algorithms which process them are essentially free

of harmful noise and that they can not benefit from evi-

dence combination between consecutive scenes. In addi-

tion, disallowing the use of internal representations

requires that all environmental features of immediate

interest be visible to the vehicle sensors at all times. This

adds unnecessary constraints and reduces the flexibility of

the overall vehicle system

The DAMN architecture is designed to provide the basic

capabilities essential to any mobile robot system, or first

level of competence in the parlance of the Subsumption

Architecture. In DAMN, this consists of safety behaviors

which limit turn and speed to avoid vehicle tip-over or

wheel slippage, obstacle avoidance behaviors to prevent

collisions, as well as various auxiliary behaviors (see

DAMN Behaviors section). As new functions are needed,

additional behaviors can be added to the system without

any need for modification to the previously included
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Figure 1: Behaviors sending votes to arbiter



behaviors, thus preserving their established functionality.

Since both deliberative and reflexive modules are needed,

DAMN is designed so that behaviors can issue votes at any

rate; for example, one behavior may operate reflexively at 10

Hz, another may maintain some local information and oper-

ate at 1 Hz, while yet another module may plan optimal

paths in a global map and issue votes at a rate of 0.1 Hz. The

use of distributed shared control allows multiple levels of

planning to be used in decision-making without the need for

an hierarchical structure. However, higher-level reasoning

modules may still exert meta-level control within DAMN by

modifying the voting weights assigned to behaviors and thus

controlling the degree to which each behavior may influence

the system’s decision-making process and thus the robot’s

actions.

DAMN Arbiters

In a distributed architecture, it is necessary to decide which

behaviors should be controlling the vehicle at any given

time. In some architectures, this is achieved by having prior-

ities assigned to each behavior; of all the behaviors issuing

commands, the one with the highest priority is in control and

the rest are ignored (Brooks, 1986; Rosenschein & Kael-

bling, 1986). In order to allow multiple considerations to

affect vehicle actions concurrently, DAMN instead uses a

scheme where each behavior votes for or against each of a

set of possible vehicle actions (Rosenblatt & Payton, 1989).

An arbiter then performs command fusion to select the most

appropriate action. While all votes must pass through the

command arbiter before an action is taken, the function pro-

vided by the arbiter is fairly simple and does not represent

the centralized bottleneck of more traditional systems.

Turn Arbiter

In the case of the turn arbiter, each behavior generates a vote

between -1 and +1 for every possible steering command,

with negative votes being against and positive votes for a

particular command option. The votes generated by each

behavior are only recommendations to the arbiter. The arbi-

ter computes a weighted sum of the votes for each steering

command, with the weights reflecting the relative priorities

of the behaviors. The steering command with the highest

vote is sent to the vehicle controller.

The arbiter collects the new votes from each behavior that

has sent them, and performs a normalized weighted sum to

find the turn command with the maximum vote value. In

order to avoid problems with discretization such as biasing

and “bang-bang” control, the arbiter performs sub-pixel

interpolation. This is done by first convolving the votes with

a Gaussian mask to smooth the values and then selecting the

command option with the highest resulting value. A parabola

is then fit to that value and the ones on either side, and the

peak of the parabola is used as the command to be issued to

the controller. This process is illustrated in Figure 2, where

the votes from two behaviors (a & b) are linearly com-

bined (c), and then smoothed and interpolated to produce

the resulting command (d).

Speed Arbiter

The emphasis in the research thus far has been in com-

mand fusion for the control of vehicle steering; until

recently the commanded speed was decided in a very sim-

plistic fashion based upon the commanded turn radius.

The user-specified maximum vehicle speed was multiplied

by the normalized weighted sum for the chosen turn

radius; the result was the speed command issued.

An entirely separate speed arbiter with its own set of

associated behaviors has now been developed. Thus, the

turn behaviors can vote for turn commands without con-

cern that the absolute magnitude of their votes will affect

vehicle speed. At present each speed behavior votes for

the largest speed possible which meets that behavior’s

constraints, and the arbiter simply chooses the minimum

of those maxima, so that all speed constraints are satisfied.

Coordination of Arbiters

Because the choices of turn and speed commands are not

completely independent and therefore must be coordi-
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c) Weighted Sum, max vote curvature = 0.035

d) Smoothed & Interpolated,

b) Behavior 2, desired curvature = 0.000

0 +0.125-0.125

0 +0.125-0.125

0 +0.125-0.125

0 +0.125-0.125

Figure 2: Command fusion process
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nated, many of the speed behaviors have as one of their

inputs the output of the turn arbiter, so that the choice of an

appropriate speed is influenced by the currently commanded

turn radius. Other speed behaviors instead use the estimated

actual turn radius of the vehicle so that they operate in a

closed-loop fashion, albeit with greater delays. Likewise,

some turn behaviors use the current vehicle speed in decid-

ing upon allowable turn options.

DAMN Behaviors

Within the framework of DAMN, behaviors must be defined

to provide the task-specific knowledge for controlling the

vehicle. Each behavior runs completely independently and

asynchronously, providing votes to the arbiter each at its

own rate and according to its own time constraints. The arbi-

ter periodically sums all the latest votes from each behavior

and issues commands to the vehicle controller.

Safety Behaviors

A basic need for any mobile robot system is the ability to

avoid situations hazardous to itself or to other objects in its

environment. Therefore, an important part of DAMN is its

“first level of competence” (Brooks, 1986), which consists of

behaviors designed to provide vehicle safety. In contrast to

priority-based architectures which only allow one behavior

to be effective at any given moment, the structure of DAMN

and its arbitration scheme allow the function of these safety

behaviors to be preserved as additional levels of competence

are added.

Obstacle Avoidance The most important behavior in the

context of vehicle safety is the Obstacle Avoidance behavior.

In order to decide in which directions the vehicle may safely

travel, this behavior receives a list of current obstacles in

vehicle-centered coordinates and evaluates each of the possi-

ble command options, as illustrated in Figure 3. The source

of these obstacles may be intraversable regions of terrain

determined by range image processing or stereo vision, by

sonar detection of objects above the ground plane, or any

other means of obstacle detection as appropriate to the cur-

rent task and environment (Daily et al, 1986; Langer, Rosen-

blatt & Hebert, 1994).

Figure 3: Arc evaluation in the Obstacle Avoidance behavior
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If a trajectory is completely free of any neighboring

obstacles (such as the Straight Ahead or Hard Right turns

shown in Figure 3), then the obstacle avoidance behavior

votes for travelling along that arc. If an obstacle lies in the

path of a trajectory, the behavior votes against that arc,

with the magnitude of the penalty proportional to the dis-

tance from the obstacle. Thus, the Obstacle Avoidance

behavior votes more strongly against those turns that

would result in an immediate impact (Hard Left in the fig-

ure) and votes less strongly against those turns which

would only result in a collision after travelling several

meters (Soft Right). In order to avoid bringing the vehicle

unnecessarily close to an obstacle, the behavior also votes

against those arcs that result in a near miss (Soft Left),

although the evaluation is not as unfavorable as for those

trajectories leading to a direct collision.

Vehicle Dynamics Another vital aspect of vehicle safety

is insuring that the commanded speed and turn stay within

the dynamic constraints of the vehicle as it travels over

varying terrain conditions. The most important of these

constraints is the one that insures that the vehicle will not

tip over. Given a velocity of magnitude ν, the maximum

positive and negative curvatures κ to avoid tip-over would

be:

where η is the ratio of the distance between the vehicle’s

center of gravity (c.g.) and the wheels to the c.g. height, g

is the acceleration due to gravity, and ρ is the vehicle roll

with respect to the gravity vector, as illustrated in Figure 4.

Likewise, for a given vehicle turn curvature, the maximum

velocity is:

Figure 4: Vehicle dynamics

Similar constraints can be imposed on vehicle turn
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on curvature for slippage is:
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where µ is the dynamic coefficient of friction between the

tire and the terrain, and for speed:

Two behaviors, Limit Turn and Limit Speed send votes to

the arbiter that implement these constraints, voting against

commands that violate them.

Road Following

Once vehicle safety has been assured by the obstacle avoid-

ance and dynamic constraint behaviors, it is desirable to add

additional behaviors that provide the system with the ability

to achieve the tasks for which it is intended., such as road

following; one of the behaviors that have been implemented

within DAMN to provide this function is ALVINN.

The ALVINN road following system is an artificial neural

network that is trained, using backpropagation, to associate

preprocessed low resolution input images with the appropri-

ate output steering commands (Pomerleau, 1992). In the case

of ALVINN, creating a behavior that independently evalu-

ated each arc was relatively straightforward. The units of the

neural network’s output layer each represent an evaluation of

a particular turn command, with the layer trained to produce

Gaussian curves centered about those turns that would fol-

low the road ahead. These units are simply resampled to the

DAMN voting command space, using a Gaussian of the

appropriate width. This process is illustrated in Figure 5.

Figure 5: Resampling of ALVINN output layer

Goal-Directed Behaviors

Another important level of functionality that should be

present in any general purpose robotic system is the ability to

reach certain destinations using whatever global information

is available. While the low-level behaviors operate at a high

rate to ensure safety and to provide functions such as road

following and cross-country navigation, high-level behav-

iors are free to process map-based or symbolic information

at a slower rate, and periodically issue votes to the arbiter

that guide the robot towards the current goal.

Subgoals The Goal Seeking behavior is one way to provide

this capability. This simple behavior directs the vehicle
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DAMN TURN COMMANDS

toward a series of goal points specified in global coordi-

nates either by the user (Langer, Rosenblatt & Hebert,

1994) or by a map-based planner (Keirsey, Payton &

Rosenblatt, 1988). The desired turn radius is transformed

into a series of votes by applying a Gaussian whose peak

is at the desired turn radius and which tapers off as the dif-

ference between this turn radius and a prospective turn

command increases. A goal is considered satisfied once

the vehicle enters a circle centered at the goal location;

then the next goal is pursued. Because of errors in goal

placement and accumulated errors in vehicle positioning, a

goal point may not be reachable. For this reason, an ellipse

is defined with the current goal and the subsequent goal as

foci; if the vehicle enters this ellipse, the current goal is

abandoned and the next one becomes the current goal

instead, thus allowing progress to continue.

Dynamic Programming Some more sophisticated map-

based planning techniques have also been integrated and

used within the DAMN framework. These planners use

dynamic programming techniques based on the A* search

algorithm (Nilsson, 1980) to determine an optimal global

path. However, an important point is that they do not hand

a plan down to a lower level planner for execution, but

rather maintain an internal representation that allows them

to participate directly in the control of the vehicle based on

its current state. A* yields a set of pointers within the map

grid that point toward the goal, as depicted by the small

arrows in Figure 6. During execution, this grid may be

indexed by the current vehicle position to yield a path

towards the goal which is optimal based on the informa-

tion available in the map at that time.

The Internalized Plans (Payton, 1990) approach uses a

detailed map to perform an A* search from the goal(s)

back toward the start point to create a “Gradient Field”

towards the goal. The type and slope of the terrain, among

other factors, is used to estimate the cost of traversal

between grid cells. During run-time, the grid cell contain-

ing the current vehicle location is identified, and the Gra-

dient Field pointers are followed forward to the point G’
in Figure 6; the desired heading to reach the goal is that

from the current location S to G’, and a series of votes

with its peak at that value is sent to the turn arbiter.

Figure 6: Following Gradient Field to determine
intermediate goal heading

The D* planner (Stentz, 1993) also creates a grid with

“backpointers” that represent information on how best to
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reach the goal from any location in the map. The map may

initially contain no information, but is created incrementally

as new information becomes available during the execution

of a mission, and the arc traversal costs and backpointers are

updated to reflect this new knowledge. The resulting global

plan is integrated into DAMN as a behavior by determining,

for each possible turn command, the weight w of reaching

the goal from a point along that arc a fixed distance ahead

(the squares designated collectively as S’ in Figure 7). If

wmax and wmin are the maximum and minimum values of w,

then the vote for each turn command is determined as:

. In the case that a point

S’ is not represented on the grid, or if the goal cannot be

reached from it, then the vote for that arc is set to -1.

Figure 7: Using D* to evaluate distance to goal for each arc

Teleoperation

Teleoperation is another possible mode in which a robotic

system may need to operate. The STRIPE teleoperation sys-

tem (Kay & Thorpe, 1993) provides a graphical user inter-

face allowing a human operator to designate waypoints for

the vehicle by selecting points on a video image and project-

ing them on to the surface on which the vehicle is travelling.

STRIPE then fits a spline to these points and uses pure pur-

suit to track the path. When used in isolation, it simply sends

a steering command to the controller; when used as a DAMN

behavior, it sends a series of votes representing a Gaussian

centered on the desired command. This allows the dynamic

constraints and obstacle avoidance behaviors to be used in

conjunction with STRIPE so that the safety of the vehicle is

still assured.

Auxiliary Behaviors

Various other auxiliary behaviors that do not achieve a par-

ticular task but issue votes for secondary considerations may

also be run. These include the Drive Straight behavior,

which simply favors going in whatever direction the vehicle

is already heading at any given instant, in order to avoid sud-

den and unnecessary turns; and the Maintain Turn behavior,

which votes against turning in directions opposite to the cur-

rently commanded turn, and which helps to avoid unneces-

sary oscillations in steering, the Follow Heading behavior

which tries to keep the vehicle pointed in a constant direc-

tion, as well as various behaviors which allow user input to

affect the choice of vehicle turn and speed commands.
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Combining Behavior Votes

The voting strengths, or weights, of each behavior are

specified by the user, and are then normalized by the arbi-

ter so that their sum equals 1. Because only the relative

values are important, and because the magnitude of each

behavior‘s votes vary according to their importance,

DAMN is fairly insensitive to the values of these weights

and the system performs well without a need to tweak

these parameters. For example, the Obstacle Avoidance

behavior has been run in conjunction with the Seek Goal

behaviors with relative weights of 0.75 and 0.25, respec-

tively, and with weights of 0.9 and 0.1, and in both cases

has successfully reached goals while avoiding obstacles.

The vote weights of each behavior can also be modified by

messages sent to the arbiter from a mode manager module.

It can reconfigure the weights according to whatever top-

down planning considerations it may have, and potentially

could use bottom-up information about the effectiveness

and relevance of a behavior (Payton et al, 1993). Different

modes of operation that exclude some behaviors can be

constructed by setting the weights those behaviors to 0. A

Mode Manager was developed at the Hughes Research

Labs to be used with DAMN for this purpose, and at CMU

Annotated Maps were integrated with DAMN to provide

this capability (Thorpe et al, 1991).

As a simple example to illustrate the manner in which

votes are issued and arbitrated within DAMN, consider the

case in Figure 8 where two behaviors are active, one

responsible for obstacle avoidance and the other for goal

seeking (only five turn options are shown for simplicity).

The magnitude of a vote is indicated by the size of a circle,

with a large unfilled circle representing a vote of +1, a

large striped circle a value of -1, and a small circle a value

near 0. Thus, the goal-seeking behavior is voting most

strongly in favor proceeding straight and less favorably for

a soft left turn, and voting against hard left or any right

turns; the obstacle avoidance behavior is voting against a

hard left or soft right, and allowing the other turns as

acceptable, with soft left being the most favorable.

Figure 8: Command fusion in DAMN

Because avoiding obstacles is more important than taking

the shortest path to the goal, the obstacle avoidance behav-
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