
Integrated Domain-Independent Learning

Gal A. Kaminka

Integrated Learning and Action Selection

Where Does Learning Take Place?

1 W knowledge base, g goal, B behaviors/actions
2

3 while g not satisfied:
4 PERCEIVE() to update W
5 CHOOSE() action b (from B)
6 EXECUTE() action b

Two opportunities for learning
I Step 5: Learn choice, given W , B
I Step 6: Learn effects of action b (in step 4)

I step 4 of time t + 1 shows effects of step 6, time t

Learning CHOICES

1 W knowledge base, g goal, B behaviors/actions
2

3 while g not satisfied:
4 PERCEIVE() to update W
5 CHOOSE() action b (from B)
6 EXECUTE() action b

CHOOSE()
I CHOOSE() can be very complex procedure

I Call planner, use previous cases, ask someone
I Worthwhile to learn the results
I This is sometimes called speed-up learning
I More generally, it learns what action to take given selection

Learning ACTIONS (Action Models)

Effects of EXECUTE at time t PERCEIVE’d at time t + 1 (or later)

1 W knowledge base, g goal, B behaviors/actions
2

3 while g not satisfied:
4 PERCEIVE() to update W
5 CHOOSE() action b (from B)
6 EXECUTE() action b

Action Model (Forward Model)
I Step 6: Execute action b
I Step 4: Find out its effects

I Also find out whether it was as predicted

Integrating Learning with Acting

Deterministic Worlds
I Rote Learning: Cache/memorize (propositional)

I Store decisions reached
I Store effects of action

I Explanation-based learning: Generalize (relational)
I Learn general rule for CHOOSING
I Learn general effects of actions

Non-Deterministic Worlds
I Reinforcement Learning

I Learn what action to choose (roughly: model-free)
I Learn effect of action (roughly: model-based)

Rote Learning

CHOICE learning
I Given W , b =CHOOSE(), remember rule W ⇒ b
I Problem: Effects not always deterministic
I Problem: No generalization of state W

ACTION learning
I Given W , b, new W ′, remember effects(b)=W ′/W

I What beliefs 〈k, v〉 changed (same key, new value)
I Problem: Confused by extemporaneous effects

I Not everything happens because of actions

Rote Learning

CHOICE learning
I Given W , b =CHOOSE(), remember rule W ⇒ b
I Problem: Effects not always deterministic
I Problem: No generalization of state W

ACTION learning
I Given W , b, new W ′, remember effects(b)=W ′/W

I What beliefs 〈k, v〉 changed (same key, new value)
I Problem: Confused by extemporaneous effects

I Not everything happens because of actions

Explanation-Based Learning (Briefly)

Use knowledge of variables used

CHOICE learning
I Given W , b =CHOOSE(), remember rule W ′ ⇒ b

I Where W are beliefs < k, v > used in CHOOSE
I e.g., when CHOOSE uses a planner, focus on conditions tested

by planner
I Requires transparent CHOOSE procedure

I This “shortcuts” the decision the next time it is encountered
I Generalizes, recursively creating rules which short-cut other

rules

ACTION model learning
I Similarly to ROTE learning, and with similar problems

Reinforcement Learning (Bird’s Eye View)

I Assume problem is an MDP (there are more general models)
I Actions lead to resulting states probabilistically

I Classic planning is a special deterministic case
I Goal is encoded in utility/reward

I We can plan using the MDP as domain knowledge
I Through Value Iteration or Policy Iteration

I But: We do not know the MDP parameters
I the action forward model

I The transition probabilities
I The rewards

I Reinforcement Learning comes to address this

Reinforcement Learning (Bird’s Eye View)

I Assume problem is an MDP (there are more general models)
I Actions lead to resulting states probabilistically

I Classic planning is a special deterministic case
I Goal is encoded in utility/reward ⇒ Revisit later

I We can plan using the MDP as domain knowledge
I Through Value Iteration or Policy Iteration

I But: We do not know the MDP parameters
I the action forward model

I The transition probabilities
I The rewards

I Reinforcement Learning comes to address this

Markov Decision Processes (MDPs)

MDP is a tuple 〈S,A,T ,R〉

S finite set of states

A finite set of actions

T stochastic transition function T (s, a, s ′) = Pr(s ′|s, a)

R instant scalar reward for taking transition R(s, a, s ′)

Standard problem:

I Find optimal policy π∗, mapping S → A
I π∗ maximizes expected value (sum of rewards)

Markov Decision Processes (MDPs)

MDP is a tuple 〈S,A,T ,R〉

S finite set of states

A finite set of actions

T stochastic transition function T (s, a, s ′) = Pr(s ′|s, a)

R instant scalar reward for taking transition R(s, a, s ′)

Standard problem:

I Find optimal policy π∗, mapping S → A
I π∗ maximizes expected value (sum of rewards)

Model-Based vs Model-Free

Given MDP with unknown T , R

Two approaches to RL1
I Model-free (also direct): Learn s → a

I Directly, ignoring the MDP
I Know what to do, without the model behind it
I This is akin to learning CHOOSE

I Model-based (also indirect): Learn MDP, use it
I Learn the MDP parameters
I Use MDP planning to generate next action
I This involves both learning CHOOSE, action model

1Survey of Model-Based Reinforcement Learning: Applications on Robotics, Athanasios S. Polydoros and L.
Nalpantidis, in Journal of Intelligent and Robotic Systems, 86(2):153–173, 2017.

Side-note: RL In Human Brains

I Studies show animals/humans have both model-free and
model-based RL mechanisms2

I Not clear when one is used, and when the other
I Looks like it is done parallel

2Reinforcement learning: The Good, The Bad and The Ugly, Peter Dayan and Yael Niv, Current Opinion in
Neurobiology 2008, 18:1–12}

Model-Free approaches

I Q-Learning is the most famous (others exist, e.g., SARSA)
I Incrementally approximates optimal Q∗ value
I This is used to compute the best V ∗ value of policy

I Q-learning is a value-function learner
I Searches through space of Q values

I Can also have policy learners

I Or mixed (Actor-Critic learns both value and policy)

Completely avoids learning the transitions and rewards

Model-Based Reinforcement Learning (MBRL)

I Learn transition probability function T (s, a, snew)

I Learn reward function R(s, a, s ′)

I This corresponds to learning the action model

I But MBRL also use them to predict next best action
I thus also learn CHOOSE

Basic MBRL Approach

3

3Survey of Model-Based Reinforcement Learning: Applications on Robotics,
Athanasios S. Polydoros and L. Nalpantidis, in Journal of Intelligent and Robotic
Systems, 86(2):153–173, 2017.}

General Approach to MBRL

1. Start with empty model (random/guess)
2. Use MDP planning to generate a policy π

I Value or policy iteration
3. Execute policy, noting actual transitions and rewards
4. Update the model
5. Goto step 2

When does it stop?

Several Variants: R-MAX4, PSRL5, . . .

4Ronen I. Brafman and Moshe Tennenholtz, R-MAX—A General Polynomial Time Algorithm for
Near-Optimal Reinforcement Learning, Journal of Machine Learning Research 3:213–231, 2002

5Ian Osband, Benjamin Van Roy, Daniel Russo, (More) Efficient Reinforcement Learning via Posterior
Sampling, Arxiv, 2013}

General Approach to MBRL

1. Start with empty model (random/guess)
2. Use MDP planning to generate a policy π

I Value or policy iteration
3. Execute policy, noting actual transitions and rewards
4. Update the model
5. Goto step 2

When does it stop?

Several Variants: R-MAX4, PSRL5, . . .

4Ronen I. Brafman and Moshe Tennenholtz, R-MAX—A General Polynomial Time Algorithm for
Near-Optimal Reinforcement Learning, Journal of Machine Learning Research 3:213–231, 2002

5Ian Osband, Benjamin Van Roy, Daniel Russo, (More) Efficient Reinforcement Learning via Posterior
Sampling, Arxiv, 2013}

Specific MBRL: R-MAX Algorithm

Key idea: Assume what is unknown is maximally rewarding

R-MAX for MDPs:
1. Initialize optimistic model

I Maximum rewards, all transitions possible
2. Repeat

2.1 Compute an optimal D-step policy for current state
2.2 Execute D steps, or until new transition taken (new state

discovered)
2.3 Observe: Let a be action taken in state si
2.4 Update T (si , a, si+1), R(si , a, si+1)

This has bias towards exploration early, switching to exploitation

R-MAX MDP Initialization

Initial MDP M = 〈S,A,T ,R〉:

I S ← s0, . . . , sn (s0 is special)
I A← a1, . . . , ak
I ∀s, t ∈ S, a ∈ A T (s, a, t)← 1
I ∀s, t ∈ S, a ∈ A R(s, a, t)← Rmax

Assume: Known n, k, Rmax

For each s ∈ S:

I Mark s as unknown
I ∀s, t ∈ S, set count(s, a, t)← 0
I ∀s, t ∈ S, a ∈ A, note that R(s, a, t) was not observed

Updating

For all actions a in the D-step policy:

I Assume a applied in state s ∈ S, and resulted in state t ∈ S
I If a was taken for the first time, record R(s, a, t)
I Update count(s, a, t)
I If the a was taken K1 times in s

I mark s as known
I ∀t ∈ S, update T (s, a, t) according to count(s, a, t)
I K1 ← 1 + max(d(4nDRmax

ε)3e, d−6ln3(δ
6nk2)e)

I ε error bound, δ failure probability

Comparing Model-Based and Model-Free RL

Model-Free
I + Much easier to implement
I + Less assumptions on model underlying the domain
I + O(1) runtime, O(S × A) memory (naive)
I - Large # of interactions, dangerous and slow
I - Strictly reward-dependent

Model-Based
I + Smaller # of interactions, data efficient
I + Fast convergence
I + Can be reward independent
I - High run-time complexity
I - O(S × A× S) memory
I - Highly-dependent on model

Comparing Model-Based and Model-Free RL

Model-Free
I + Much easier to implement
I + Less assumptions on model underlying the domain
I + O(1) runtime, O(S × A) memory (naive)
I - Large # of interactions, dangerous and slow
I - Strictly reward-dependent

Model-Based
I + Smaller # of interactions, data efficient
I + Fast convergence
I + Can be reward independent
I - High run-time complexity
I - O(S × A× S) memory
I - Highly-dependent on model

Main Issues

I Domain-dependent vs domain-independent ⇒ Big Issue
I Exploration vs Exploitation

Reward is domain dependent, task dependent

Domain Independent Rewards

Rewards in MDPs

I Rewards are part of MDPs
I Naively, tied to particular goal state
I But can be learned/used independently from transition

probabilities

Types of Rewards

I Intrinsic or Task-Dependent6
I Originating from external or internal signals7

I e.g., from perception of environment (external)
I e.g., from perception of battery or clock (internal)

6{Sing, S., Barto, A. G., Chentanez, N. {Intrinsically Motivated Reinforcement Learning}, NIPS 2004}
7{Oudeyer, P.-Y., and Kaplan, F. {How can we define intrinsic motivation?}, Proc. Of the 8th Conf. On

Epigenetic Robotics, 2008}

Example of Rewards

I Heuristic distance to goal
I Effectiveness Index (EI), 1-1/EI
I Surprise
I Empowerment
I . . .

Are these intrinsic or task-dependent? Internal or External?

Exploration vs Exploitation ⇒ Big Issue

Examples:
I Epsilon-greedy exploration
I Boltzman exploration
I Win or Lose Fast (WOLF)
I . . .

	Integrated Learning and Action Selection
	Domain Independent Rewards

