Integrated Domain-Independent Learning

Gal A. Kaminka

Integrated Learning and Action Selection

Where Does Learning Take Place?

```
W knowledge base, g goal, B behaviors/actions
while g not satisfied:
    PERCEIVE() to update W
    CHOOSE() action b (from B)
    EXECUTE() action b
    Two opportunities for learning
    Step 5: Learn choice, given W, B
```

- Step 6: Learn effects of action b (in step 4)
 - step 4 of time t + 1 shows effects of step 6, time t

Learning CHOICES

1 W knowledge base, g goal, B behaviors/actions

```
\mathbf{2}
```

- 3 while g not satisfied:
- 4 PERCEIVE() to update W
- 5 CHOOSE() action b (from B)
- 6 EXECUTE() action b

CHOOSE()

- CHOOSE() can be very complex procedure
 - Call planner, use previous cases, ask someone
- Worthwhile to learn the results
- This is sometimes called speed-up learning
- More generally, it learns what action to take given selection

Learning ACTIONS (Action Models)

Effects of EXECUTE at time t PERCEIVE'd at time t + 1 (or later)

- 1 W knowledge base, g goal, B behaviors/actions
- $\mathbf{2}$
- 3 while g not satisfied:
- 4 PERCEIVE() to update W
- 5 CHOOSE() action b (from B)
- 6 EXECUTE() action b

Action Model (Forward Model)

- Step 6: Execute action b
- Step 4: Find out its effects
 - Also find out whether it was as predicted

Integrating Learning with Acting

Deterministic Worlds

- Rote Learning: Cache/memorize (propositional)
 - Store decisions reached
 - Store effects of action
- Explanation-based learning: Generalize (relational)
 - Learn general rule for CHOOSING
 - Learn general effects of actions

Non-Deterministic Worlds

- Reinforcement Learning
 - Learn what action to choose (roughly: model-free)
 - Learn effect of action (roughly: model-based)

Rote Learning

CHOICE learning

- Given W, b = CHOOSE(), remember rule $W \Rightarrow b$
- Problem: Effects not always deterministic
- Problem: No generalization of state W

Rote Learning

CHOICE learning

- Given W, b = CHOOSE(), remember rule $W \Rightarrow b$
- Problem: Effects not always deterministic
- Problem: No generalization of state W

ACTION learning

- Given W, b, new W', remember effects(b) = W'/W
 - What beliefs $\langle k, v \rangle$ changed (same key, new value)
- Problem: Confused by extemporaneous effects
 - Not everything happens because of actions

Explanation-Based Learning (Briefly)

Use knowledge of variables used

CHOICE learning

- Given *W*, *b* =CHOOSE(), remember rule $W' \Rightarrow b$
 - Where W are beliefs $\langle k, v \rangle$ used in CHOOSE
 - e.g., when CHOOSE uses a planner, focus on conditions tested by planner
 - Requires transparent CHOOSE procedure
- This "shortcuts" the decision the next time it is encountered
- Generalizes, recursively creating rules which short-cut other rules

ACTION model learning

Similarly to ROTE learning, and with similar problems

Reinforcement Learning (Bird's Eye View)

Assume problem is an MDP (there are more general models)
 Actions lead to resulting states probabilistically

 Classic planning is a special deterministic case
 Goal is encoded in utility/reward

 We can plan using the MDP as domain knowledge

 Through Value Iteration or Policy Iteration

 But: We do not know the MDP parameters

 the action forward model
 The transition probabilities
 The rewards

Reinforcement Learning comes to address this

Reinforcement Learning (Bird's Eye View)

Assume problem is an MDP (there are more general models)
 Actions lead to resulting states probabilistically

 Classic planning is a special deterministic case
 Goal is encoded in utility/reward ⇒ Revisit later

 We can plan using the MDP as domain knowledge

 Through Value Iteration or Policy Iteration

 But: We do not know the MDP parameters

 the action forward model
 The transition probabilities
 The rewards

Reinforcement Learning comes to address this

Markov Decision Processes (MDPs)

MDP is a tuple $\langle S, A, T, R \rangle$

- S finite set of states
- A finite set of actions
- T stochastic transition function T(s, a, s') = Pr(s'|s, a)
- R instant scalar reward for taking transition R(s, a, s')

Markov Decision Processes (MDPs)

MDP is a tuple $\langle S, A, T, R \rangle$

S finite set of states

A finite set of actions

T stochastic transition function T(s, a, s') = Pr(s'|s, a)

R instant scalar reward for taking transition R(s, a, s')

Standard problem:

- Find optimal policy π^* , mapping $S \to A$
- π^* maximizes expected value (sum of rewards)

Model-Based vs Model-Free

Given MDP with unknown T, R

Two approaches to RL^1

- Model-free (also *direct*): Learn $s \rightarrow a$
 - Directly, ignoring the MDP
 - Know what to do, without the model behind it
 - This is akin to learning CHOOSE
- Model-based (also *indirect*): Learn MDP, use it
 - Learn the MDP parameters
 - Use MDP planning to generate next action
 - This involves both learning CHOOSE, action model

¹Survey of Model-Based Reinforcement Learning: Applications on Robotics, Athanasios S. Polydoros and L. Nalpantidis, in Journal of Intelligent and Robotic Systems, 86(2):153–173, 2017.

Side-note: RL In Human Brains

- Studies show animals/humans have both model-free and model-based RL mechanisms²
- Not clear when one is used, and when the other
 - Looks like it is done parallel

²Reinforcement learning: The Good, The Bad and The Ugly, Peter Dayan and Yael Niv, Current Opinion in Neurobiology 2008, 18:1–12}

Model-Free approaches

Q-Learning is the most famous (others exist, e.g., SARSA)

Incrementally approximates optimal Q* value

- This is used to compute the best V* value of policy
- Q-learning is a value-function learner
 - Searches through space of Q values
- Can also have policy learners
- Or mixed (Actor-Critic learns both value and policy)

Completely avoids learning the transitions and rewards

Model-Based Reinforcement Learning (MBRL)

- Learn transition probability function $T(s, a, s^{new})$
- Learn reward function R(s, a, s')
- This corresponds to learning the action model
- But MBRL also use them to predict next best action
 - thus also learn CHOOSE

Basic MBRL Approach

³Survey of Model-Based Reinforcement Learning: Applications on Robotics, Athanasios S. Polydoros and L. Nalpantidis, in Journal of Intelligent and Robotic Systems, 86(2):153–173, 2017.}

General Approach to MBRL

- 1. Start with empty model (random/guess)
- 2. Use MDP planning to generate a policy π
 - Value or policy iteration
- 3. Execute policy, noting actual transitions and rewards
- 4. Update the model
- 5. Goto step 2

When does it stop?

⁴Ronen I. Brafman and Moshe Tennenholtz, R-MAX—A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning, Journal of Machine Learning Research 3:213–231, 2002

 $^{^{5}}$ Ian Osband, Benjamin Van Roy, Daniel Russo, (More) Efficient Reinforcement Learning via Posterior Sampling, Arxiv, 2013}

General Approach to MBRL

- 1. Start with empty model (random/guess)
- 2. Use MDP planning to generate a policy π
 - Value or policy iteration
- 3. Execute policy, noting actual transitions and rewards
- 4. Update the model
- 5. Goto step 2

When does it stop?

Several Variants: R-MAX⁴, PSRL⁵, ...

⁴Ronen I. Brafman and Moshe Tennenholtz, R-MAX—A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning, Journal of Machine Learning Research 3:213–231, 2002

 $^{^{5}}$ Ian Osband, Benjamin Van Roy, Daniel Russo, (More) Efficient Reinforcement Learning via Posterior Sampling, Arxiv, 2013}

Specific MBRL: R-MAX Algorithm

Key idea: Assume what is unknown is maximally rewarding

R-MAX for MDPs:

- 1. Initialize optimistic model
 - Maximum rewards, all transitions possible
- 2. Repeat
 - 2.1 Compute an optimal D-step policy for current state
 - 2.2 Execute *D* steps, or until new transition taken (new state discovered)
 - 2.3 Observe: Let a be action taken in state s_i
 - 2.4 Update $T(s_i, a, s_{i+1}), R(s_i, a, s_{i+1})$

This has bias towards exploration early, switching to exploitation

R-MAX MDP Initialization

Initial MDP $M = \langle S, A, T, R \rangle$:

S ← s₀,..., s_n (s₀ is special)
 A ← a₁,..., a_k
 ∀s, t ∈ S, a ∈ A T(s, a, t) ← 1
 ∀s, t ∈ S, a ∈ A R(s, a, t) ← R_{max}

Assume: Known n, k, R_{max}

For each $s \in S$:

- Mark s as unknown
- ► $\forall s, t \in S$, set $count(s, a, t) \leftarrow 0$
- ▶ $\forall s, t \in S, a \in A$, note that R(s, a, t) was not observed

Updating

For all actions *a* in the *D*-step policy:

- Assume a applied in state $s \in S$, and resulted in state $t \in S$
- lf a was taken for the first time, record R(s, a, t)
- Update count(s, a, t)
- If the a was taken K₁ times in s
 - mark s as known
 - ▶ $\forall t \in S$, update T(s, a, t) according to count(s, a, t)
 - $K_1 \leftarrow 1 + max(\lceil (\frac{4nDR_{max}}{\epsilon})^3 \rceil, \lceil -6ln^3(\frac{\delta}{6nk^2}) \rceil)$
 - ϵ error bound, δ failure probability

Comparing Model-Based and Model-Free RL

Model-Free

- + Much easier to implement
- + Less assumptions on model underlying the domain
- + O(1) runtime, $O(S \times A)$ memory (naive)
- Large # of interactions, dangerous and slow
- Strictly reward-dependent

Comparing Model-Based and Model-Free RL

Model-Free

- + Much easier to implement
- + Less assumptions on model underlying the domain
- + O(1) runtime, $O(S \times A)$ memory (naive)
- Large # of interactions, dangerous and slow
- Strictly reward-dependent

Model-Based

- + Smaller # of interactions, data efficient
- + Fast convergence
- + Can be reward independent
- High run-time complexity
- - $O(S \times A \times S)$ memory
- Highly-dependent on model

Main Issues

Domain-dependent vs domain-independent ⇒ Big Issue
 Exploration vs Exploitation

Reward is domain dependent, task dependent

Domain Independent Rewards

Rewards in MDPs

- Rewards are part of MDPs
- Naively, tied to particular goal state
- But can be learned/used independently from transition probabilities

Types of Rewards

Intrinsic or Task-Dependent⁶

Originating from external or internal signals⁷

- e.g., from perception of environment (external)
- e.g., from perception of battery or clock (internal)

⁰{Sing, S., Barto, A. G., Chentanez, N. {*Intrinsically Motivated Reinforcement Learning*}, NIPS 2004}

¹ {Oudeyer, P.-Y., and Kaplan, F. {*How can we define intrinsic motivation?*}, *Proc. Of the 8th Conf. On Epigenetic Robotics, 2008*}

Example of Rewards

- Heuristic distance to goal
- ► Effectiveness Index (EI), 1-1/EI
- Surprise
- Empowerment
- ▶ ...

Are these intrinsic or task-dependent? Internal or External?

Exploration vs Exploitation \Rightarrow **Big Issue**

Examples:

- Epsilon-greedy exploration
- Boltzman exploration
- ▶ Win or Lose Fast (WOLF)
- ▶ ...