Integrated Learning

Gal A. Kaminka

May 7, 2018

Do you need learning to be intelligent?

Do you need learning to be intelligent?

► No.

Do you need learning to be intelligent?

- ► No.
- But it helps.

Do you need learning to be intelligent?

- ► No.
- But it helps.

Why?

Why Learning is Important for Intelligence? (I)

Speedup

- Some (sub-) problems repeat
- ► If solved problem before, *not* learning is *not* intelligent
 - Why? (good question, e.g., for test)
- Law of Practice is relevant here

Why Learning is Important for Intelligence? (II)

Control problem (action execution) is tricky

- Effects, preconditions not known, or incorrect
 - ► Effects: Neuroscience Forward Model
- ▶ When have (virtual) body, it "has its own mind" sometimes :-)
- Uncertainty, failures

Why Learning is Important for Intelligence? (III)

Perception is hard

- What to pay attention to
- How to segment environment
- Recognize objects of import
- Recognize other agents (*IFF*)

Why Learning is Important for Intelligence? (IV)

Action selection is challenging

- CHOOSE(): What choices better? when?
- Separate choices in hierarchies:
 - Which decomposition to take (HTN), which child to choose (BIS)
 - Which next action to take (order)
- What part of state is relevant? How much of history?

Where does learning fit in the agent

Whenever there is a potential for knowledge failure

- As followup to CHOOSE()
 - Evaluation happens during execution
 - Can learn effects of CHOOSE()
- In response to TEST failing
 - If no actions selectable: something wrong with preconditions
- In followup to EXECUTE()
 - Effects of actions

Where does learning fit in the agent

Whenever there is a potential for knowledge failure

- As followup to CHOOSE()
 - Evaluation happens during execution
 - Can learn effects of CHOOSE()
- In response to TEST failing
 - If no actions selectable: something wrong with preconditions
- In followup to EXECUTE()
 - Effects of actions

Missing (for me):

- Not clear where perception learning occurs
- Learning by demonstration, learning by instruction?

General issues with integrated learning

- Utility problem: retrieving learned knowledge becomes slower
- Exploration vs Exploitation,
- Domain-model vs model-free

Examples of Learning in Agents

- Learning for action selection
 - Model-free reinforcement learning
 - Chunking, explanation-based learning
- Learning for perception
 - learning sensor models
 - recognize objects, etc. (e.g., using deep learning)
- Learning action models
 - Preconditions, effects (e.g., using regression, deep learning)
- Learning model of domain
 - Model-based reinforcement Learning
 - Grammar induction
 - learning affordances
 - Learning new actions, action sequences

Machine Learning (a sub-field of AI)

Learning in Machines

Figure 1: machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

Most common

Supervised:

- Input: Examples with goal classes/values/structures
- Output: a procedure to predict goal class given new input
- Unsupervised: Examples/data without any labels
 - Output: "interesting" patterns or substructures, anomalies
 - Output: abstractions, reduced dimensions
 - Output: model parameters (e.g., in HMMs)

Others: genetic programming, grammar induction,

Supervised Learning

Learning Algorithm

- Input: Examples of instances, and their labels
- Output: A classifer
 - a procedure for predicting label of new instances
- Distinct: generative or descriptive classifiers

Supervised Learning

Learning Algorithm

- Input: Examples of instances, and their labels
- Output: A classifer
 - a procedure for predicting label of new instances
- Distinct: generative or descriptive classifiers

Example Variants

- Regression (labels: scalar values)
- Classification (labels: two or more categories)
- Structured Prediction (labels: structures)
- Concept learning (single label, positive and negative examples)
 ...

Many of the neural networks/deep learning techniques in this class

Unsupervised Learning

Learning Algorithm

- Input: Examples of data
- Output: Invariants, Regularities, and Anomalies

Unsupervised Learning

Learning Algorithm

- Input: Examples of data
- Output: Invariants, Regularities, and Anomalies

Example Variants

- Clustering, hierarchical clustering (sub-groupings)
- Multivariate anomaly detection
- (Sequential) pattern mining
- Hidden Markov model, Bayes networks learning

▶

Learning in Intelligent Agents

Types of Learning in Nature

Learning by instruction

- Procedures ("do like this")
- Concepts ("This is a dog")
- Learning by analogy ("what do we learn from this story?")
- Learning by demonstration ("watch what I do")
- Mimicry, imitation ("I didn't know you watch what I do")
- Rote learning (e.g., the multiplication table)
- Learning by practicing, rehearsing
 - ("Practice makes perfect!")
- Reinforcement Learning ("Ouch/Yummy!")

Learning in Humans: The Law of Practice

- Practice improves: rapidly at first, then less so
- Response time decreases with number of practice trials
- ▶ Newell and Rosenbloom (1981): Power Law of Practice

$$\textit{Time} = \alpha \textit{N}^{-\beta} + \textit{c}$$

► Heathcote, Brown, Mewhort (2000): Exponential Law

$$Time = \alpha e^{-\beta(N-1)} + c$$

But that's not what is interesting here

The **AMAZING** Law of Practice

Regardless of task

The AMAZING Law of Practice

- Regardless of task
- Regardless of test subject

The AMAZING Law of Practice

- Regardless of task
- Regardless of test subject
- Regardless of intention to learn

It is a side-effect of how our mind is built to learn