
Robot Control: Unified or Hybrid?

Gal A. Kaminka

galk@cs.biu.ac.il

Introduction to Intelligent,
Cognitive, and Knowledge-

Based Systems

3 © Gal Kaminka

This week, on Robots….

 Hybrid control:
 Using both reactive and predictive systems together
 Sometimes referred to as reactive and deliberative systems

 Key points:
 How to use systems in a complementary manner?
 Guidelines for use and design?

 Three-Tier, RCS architectures as case studies

4 © Gal Kaminka

The success of
behavior-based control

 Planning (ala STRIPS) proven insufficient
 Brooks, behavior-based crowd claimed unnecessary

 No (uniform) representation of world
 Fast reaction to sensors

 Indeed, behavior based control successful
 Changed paradigm
 Showed everyone that robots can actually move…

5 © Gal Kaminka

The limits of (simple) behavior-
based control

 Lots of hard work by designer
 Building behaviors is sometimes not easy
 Coordinating behaviors can be difficult
 Fine-tuning can be hell!

 Overly dependent on sensors
 Not that good at managing complexity

 e.g., the need for a temporal-coordinating FSA

Needed: Prediction

6 © Gal Kaminka

 Behavior-based control showed planning insufficient
 But planning (prediction) is still necessary

 Cases where sequence of behaviors is unknown in advance

How do we get the best of reactivity and planning?

7 © Gal Kaminka

The Scientific Ideal: Unified
Representation and Algorithms

One mechanism to rule them all…
• Soar, ACT/R, EPIC, …
• Maes action-selection mechanism
• Online planning(?)

When ideal is too far? Engineer!

8 © Gal Kaminka

Hybrid Control

Have planning and reactive subsystems

Somehow make them control robot together

Planner/
Decision Maker

Behavior-Based/
Reactive Controller

?

9 © Gal Kaminka

Two Case Studies

 Atlantis, a 3-Tier hierarchical architecture
 A planner
 An executive/scheduler/command sequencer
 A set of (reactive) controllers
 Actually one of 2-3 architectures with similar configuration

 RCS (Realtime Control System)
 Hierarchical, many layers (as many as necessary)
 Each layer can have several concurrent controllers
 Controller: Sensor readings, world modeling, action, etc.

10 © Gal Kaminka

Real-time Control System (RCS)

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Sensors and Actuators

11 © Gal Kaminka

Real-time Control System (RCS)

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Sensors and Actuators

Perception
Events

Commands
 & Tasks

Information sharing

12 © Gal Kaminka

Real-time Control System (RCS)

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Control
Node

Sensors and Actuators

Exponential Response Duration

13 © Gal Kaminka

RCS Control Node: Modules

 Standard module components, designer-implemented
 Designer can merge components

SP WM BG

VJ

Value Judgment

Sensor
Processing

World
Modeling

Behavior
Generation

14 © Gal Kaminka

RCS Control Node: Structure

Standardized module interfaces

SP WM BG

VJ Behavior
Eval.

Virtual
Behavior

World State

Expected
Behavior ResultsUpdates

World
Modeling

State Evaluation

Perceived
Events

Commands/
Goals/
Tasks

Perceived
Events

Commands/
Goals/
Tasks

15 © Gal Kaminka

Connecting nodes at same level

 All WM are connected to each other, share information
 In principle, a distributed shared knowledge base

SP WM BG

VJ

To sibling WM modules

16 © Gal Kaminka

RCS operator interface

Operator interface not clearly specified

SP WM BG

VJ Operator
Intervention

17 © Gal Kaminka

RCS Key points
 Framework, not a system

 Implementations exist
 Implementations can deviate in instantiation of modules

 Differentiates levels along exponential time scales
 Response duration

 Coupled sensing and acting at each level
 Similar to subsumption architecture
 But uses explicit world models, internal state, planning

 Strict hierarchy:
 Commands passed down, top node drives execution

19 © Gal Kaminka

ATLANTIS: Structure Overview

 Sequencer drives the control
 Makes queries to deliberator

Deliberator

Sequencer

Controller

Replanning
Requests

New plans

Selected
Behavior

Success/
Failure

20 © Gal Kaminka

ATLANTIS: Structure Overview

 Sequencer drives the control
 Makes queries to deliberator

Deliberator

Sequencer

Controller

Replanning
Requests

New plans

Selected
Behavior

Success/
Failure

21 © Gal Kaminka

ATLANTIS: Structure Overview

 Sequencer drives the controller
 Makes queries to deliberator

Deliberator

Sequencer

Controller

Replanning
Requests

New plans

Selected
Behavior

Success/
Failure

22 © Gal Kaminka

Controller

 Closed-loop controller (uses feedback)
 Fuzzy, PID, predictive

 Must be fast enough (constant time/space)
 Must be able to detect failure

 So sequencer can select another behavior, call replanner

 Avoid internal state (other than for state estimation)

 May have a library of controllers/behaviors
 Focus on one simple behavior at a time

23 © Gal Kaminka

Deliberator
 Operation initiated and terminated by sequencer
 No sensing---all internal state
 Time consuming tasks:

 e.g., Planning routes using maps

 Can have any representation or implementation
 As long as can pass useful information, on request

24 © Gal Kaminka

Sequencer (executive/scheduler)

 Interfaces controller to planner (deliberator)
 Selects which behavior to apply

 Sequences, loops, conditionals, parallel threads

 Drives execution
 Get success/failure status from controller
 Examine state of world
 Queries deliberator for heavy computations

25 © Gal Kaminka

Sequencer maintains internal state
 Key task is to select behaviors
 Makes decisions about selection

 For instance, when several options available

 Maintain queue of behaviors pending execution
 Keeps track of previously selected behaviors
 Keeps track of successes and failures

26 © Gal Kaminka

Key points
 Non uniform representation, methods
 3T is a framework, with very loose guidelines

 e.g., Avoid internal state in controller, use more in deliberator
 e.g., gray area when it comes to differentiating the layers

 Layers are distinguished by processing speed
 Speed: With respect to response timing in the environment

 Layers function in parallel, asynchronously
 Controller must recognize successes and failures
 Planning is necessary, but only to guide execution

 3T not a strict hierarchy—middle layer drives execution

28 © Gal Kaminka

3T and RCS Hybrid Control
 Both differentiate time scales

 3T: response timing, RCS: response duration

 Heterogeneous representations
 3T almost no constraint, RCS structural constraints

 3T not strict hierarchy—middle layer drives execution
 Differ in level of guidance to designer

 3T less structured, less guiding
 RCS-based designs more guided,

 RCS more complex structure
 Designer has to instantiate more modules

