
Command and Behavior Fusion

Gal A. Kaminka

galk@cs.biu.ac.il

Introduction to Intelligent,
Cognitive, and Knowledge-Based

Systems

2 © Gal Kaminka

Previously …

 Behavior Selection/Arbitration
 Activation-based selection

 winner-take-all selection, behavior networks
 argmax selection (priority, utility, success likelihood, …)

 State-based selection
 Markovian: Sequencing through FSA
 World models, preconditions and termination conditions

3 © Gal Kaminka

This week: Behavior Fusion

Behavior Fusion:
Rosenblatt-Payton Command Fusion
Potential Fields
Fuzzy Control Rules
Context-dependent fusion of behaviors

4 © Gal Kaminka

The Problem with Behavior Selection

Example: Brook’s Subsumption Architecture
Multiple layers, divided by competence
All layers get all sensor readings, issue commands
Higher layers override commands by lower layers

 i.e., priority-based selection

What happens when a command is overriden?

5 © Gal Kaminka

Information Loss in Selection

 Layer chooses best command for its competence level
 Implication: No other command is possible

 But layer implicitly knows about satisficing solutions
 Satisficing: Loosely translated as “good enough”

 These get ignored if command is overriden

6 © Gal Kaminka

Why is this a problem
Example:
 Avoid-obstacle wants to keep away from left

 [20,160] heading possible
 Best: +90 degree heading

 Seek-goal wants to keep towards goal ahead
 [-30,30] heading possible
 Best: +0 degree heading

 No way to layer these such that overriding works
 But [20,30] is good for both!

7 © Gal Kaminka

There is a deeper problem

 When a higher-level behavior subsumes another
 It must take the other’s decision-making into account
 A higher behavior may have to contain lower behaviors
 Include within itself their decision-making

 Example: Goal-seek overrides avoid
 Must still avoid while seeking goal
 May need to reason about obstacles while seeking

8 © Gal Kaminka

Rosenblatt-Payton Command Fusion

Two principles:
 Every behavior weights ALL possible commands

 Weights are numbers [-inf,+inf]
 “No information loss”

 Any behavior can access weights of another
 Not just override its output
 “no information hidden”

9 © Gal Kaminka

Weighting outputs

 AVOID does not choose a specific heading
 It provides preferences for all possible headings

AVOIDSensor

-20 degrees

20 degrees

30 degrees

160 degrees

-20

-10

+30

+60

10 © Gal Kaminka

Merging outputs

 Now combine AVOID and SEEK-GOAL by adding

AVOIDSensor

-20 degrees

20 degrees

30 degrees

160 degrees

SEEK

-20

-10

+30

+60

+25

+5

+10

-30

11 © Gal Kaminka

Merging outputs
 Now combine AVOID and SEEK-GOAL by adding
 Then choose top one (e.g., winner-take-all)

AVOIDSensor

-20 degrees, +5

20 degrees, -5

30 degrees, +40

160 degrees, +30

SEEK

-20

-10

+30

+60

+25

+5

+10

-30

12 © Gal Kaminka

Advantages

 Easy to add new behaviors that modify heading
 Their output is also merged

 Considers all possibilities—finds useful compromises
 Negative weights possible, useful

 Can forbid certain commands, in principle

 And….

13 © Gal Kaminka

Advantages

 Easy to add new behaviors that modify heading
 Their output is also merged

 Considers all possibilities—finds useful compromises
 Negative weights possible, useful

 Can forbid certain commands, in principle

 And…. Intermediate Variables

14 © Gal Kaminka

Rosenblatt-Payton 2nd Principle:
No information hidden

 Not only all choices of behavior should be open
 Internal state can also be important for other layers
 In Rosenblatt-Payton, a variable is a vector of weights

 We operate, combine, and reason about weights
 Even as internal state variables

Example:
 Trajectory speed behavior (in article)
 Combines internal “Safe-Path”, “Turn-choices” vars

15 © Gal Kaminka

Example

Sensors → Trajectory Selection

Trajectory Selection →

Safe Turn Choices
(adjacency safety)

16 © Gal Kaminka

Turn Choices →

Chosen Turn

Chosen Turn + Safe Path

→ Speed
(Note use of intermediate

“Safe path”)

17 © Gal Kaminka

?שאלות

18 © Gal Kaminka

Potential Fields

 Independently developed from Payton-Rosenblatt
 Inspired by Physics

 Robot is particle
 Moving through forces of attraction and repulsion

 Basic idea:
 Each behavior is a force: Pushing robot this way or that
 Combination of forces results in selected action by robot

19 © Gal Kaminka

Example: Goal-directed
obstacle-avoidance

 Move towards goal while avoiding obstacles
 We have seen this before:

 In Brooks' subsumption architecture (two layers)
 In Payton-Rosenblatt command fusion

 Two behaviors:
 One pushes robot towards goal
 One pushes robot away from obstacle

20 © Gal Kaminka

SEEK Goal

21 © Gal Kaminka

Avoid Obstacle

22 © Gal Kaminka

In combination....

23 © Gal Kaminka

Run-time
 Robot calculates forces current acting on it
 Combines all forces
 Moves along the resulting vector

24 © Gal Kaminka

But how to calculate these fields?

 Translate a position into a direction and magnitude
 Given X,Y of robot position
 Generate force acting on this position (dx,dy)

 Do this for all forces
 Combine forces:

 Final_dx = sum of all forces dx
 Final_dy = sum of all forces dy

25 © Gal Kaminka

Example: SEEK
Given:
 (Xg, Yg) goal coordinates, (x,y) current position

Calculate:
 Find distance to goal d = sqrt((Xg-x)^2 + (Yg-y)^2)
 Find angle to goal a = tan-1((Yg-y)/(Xg-x))
 Now:

 If d = 0, then dx = dy = 0
 If d < s, then dx = d cos(a), dy = d sin(a)
 If d >= s, then dx = s cos(a), dy = s sin(a)

26 © Gal Kaminka

Other types of potential fields

 Potential fiels useful in more than avoiding obstacles
 Can set in advance many different types
 Combine them dynamically

 Each field is a behavior
 All behaviors always active

27 © Gal Kaminka

Uniform potential field

 dx = constant, dy = 0
 e.g., for follow wall, or return to area

28 © Gal Kaminka

Perpendicular field

 dx = +constant or -constant, depending on reference
 e.g., for avoid fence

29 © Gal Kaminka

?שאלות

30 © Gal Kaminka

Problems with Behavior Fusion

 Local Minimum
 Context

31 © Gal Kaminka

Problem: Stuck!

 Can get stuck in local minimum
 All forces in a certain area push towards a sink
 Once robot stuck, cannot get out
 One solution: Random field

 Distance d and angle a chosen randomly
 Gets robot unstuck, but also unstable

32 © Gal Kaminka

A really difficult problem:

33 © Gal Kaminka

A surprising solution

 Balch and Arkin found a surprisingly simple solution
 Avoid-the-past field
 Repulsion from places already visited
 This is a field that changes dynamically

34 © Gal Kaminka

Problem: Context

Sensors → Trajectory Selection

Trajectory Selection →

Additional Safety
(adjacency safety)

35 © Gal Kaminka

Example
 Two behaviors

 If goal is far, speed should be fast
 if obstacle is close, speed should be stop

 Robot may not slow sufficiently
 Because overall results compromises between stop and fast

 Options:
 Tweak weights… Hack the numbers
 Add distance to goal into obstacle-avoidance rules
 Re-define fast to be slower

36 © Gal Kaminka

Behavior Weighting
 Use decision context to weight the behaviors

 Dynamic weighting: change weights based on context

 Have a meta-behavior with context rules
 IF obstacle-close THEN increase weight of AVOID
 IF not obstacle-close THEN increase weight of SEEK

 Scale/weight based on context rules
 Weights of AVOID, SEEK multiplied by the behavior weight

37 © Gal Kaminka

Merging outputs: Static
 Combine AVOID and SEEK-GOAL by adding
 Then choose top one (e.g., winner-take-all)

AVOIDSensor

-20 degrees, +5

20 degrees, -5

30 degrees, +40

160 degrees, +30

SEEK

-20

-10

+30

+60

+25

+5

+10

-30

38 © Gal Kaminka

When obstacle close
 Combine AVOID and SEEK-GOAL by adding
 Then choose top one (e.g., winner-take-all)

AVOIDSensor

-20 degrees, -27.5

20 degrees, -17.5

30 degrees, +65

160 degrees, +105

SEEK

-20

-10

+30

+60

+25

+5

+10

-30

+2

0.5

39 © Gal Kaminka

When obstacle not close
 Combine AVOID and SEEK-GOAL by adding
 Then choose top one (e.g., winner-take-all)

AVOIDSensor

-20 degrees, +40

20 degrees, +5

30 degrees, +35

160 degrees, -30

SEEK

-20

-10

+30

+60

+25

+5

+10

-30

0.5

+2

40 © Gal Kaminka

Final thoughts…
 Context rules combine activations and fusion

 Activation of behavior by priority
 Behavior has vector output (rather than single value)
 When should we use this?
 What about meta-meta behaviors?

 Compromises are a problem:
 Can cause a selection of non-satisficing solution
 Sometimes must choose!

 Compromises must be on package deals:
 Otherwise, get behavior X on speed, behavior Y on heading!

41 © Gal Kaminka

?שאלות

