
Local Behavior Selection

Gal A. Kaminka



Local Behavior Selection



Local/distributed evaluation

SELECT():

I Each behavior has associated activation function active(b)
I Captures “how much” the behavior should run

I Selection mechanism is very simple: argmaxactive(b)
I Once selected, behavior is executed immediately

TERMINATE() (two options):

I Terminates when loses competition
I active(b) continues to be evaluated

I Terminates when releases control
I active(b) is reset when b is ready to be finished



Types of activation functions

Many different factors possible:

I Usefulness to agent (value, utility)
I Urgency (priority)
I Likelihood of success (success probability)
I Matching current state (applicability)

Can of course combine these (e.g., utility × success probability)



Case Study: ChaMeleons 2001 RoboCup team
I Carnegie Mellon team in RoboCup 2D simulated soccer

competition
I Each team: 11 separate programs (coach agent optional)



The ChaMeleons 2001 HandleBall() Arbitrator

Select behavior b such that:

I priority class is maximal (minimal value), and
I b’s probability of success is over priority class threshold, and
I b’s probability of success is maximal within the priority class



What’s good about Activation-Based selection

I Soft goal or subgoal achievement
I In some cases, easy to give a number
I Decision-mechanism itself is fast and simple
I Activation, even of non-selected behaviors, gives useful

information
I e.g., ranking behaviors for selection
I e.g., upcoming potential behaviors
I See Behavior-Networks in the T.A. class



Problems in Local Evaluation (Activation Functions)

I Thrashing is a common issue
I small changes in activation, near argmax selection thresholds
I especially with high-frequency re-evaluation

I Does not scale well in terms of software engineering:
I No context to managing selection
I No memory, no “special cases”

I Lots of Computation, Memory
I Each behavior needs to do own groundings
I Each behavior needs to do its own evaluation
I Often with high-frequency



Problems in Local Evaluation (Activation Functions)

I Thrashing is a common issue
I small changes in activation, near argmax selection thresholds
I especially with high-frequency re-evaluation

I Does not scale well in terms of software engineering:
I No context to managing selection
I No memory, no “special cases”

I Lots of Computation, Memory
I Each behavior needs to do own groundings
I Each behavior needs to do its own evaluation
I Often with high-frequency



Problems in Local Evaluation (Activation Functions)

I Thrashing is a common issue
I small changes in activation, near argmax selection thresholds
I especially with high-frequency re-evaluation

I Does not scale well in terms of software engineering:
I No context to managing selection
I No memory, no “special cases”

I Lots of Computation, Memory
I Each behavior needs to do own groundings
I Each behavior needs to do its own evaluation
I Often with high-frequency



Looks simple, but really isn’t

I Always looks easy and elegant in design
I In my experience, invariably leads to number hacking

I extending activation range, tweaking
I CPU hungry
I No state, only “selfish” view


	Local Behavior Selection

