
Recipes: Non-Deterministic and Hierarchical
Behavior Selection

Gal A. Kaminka



Non-Deterministic Markovian Behavior Selection



Reminder: Deterministic FSM Selection

1 W knowledge base, g goal, B behavior FSM
2

3 Let b = starting behavior in B // starting state
4 START(b) // start execution of b
5 Let W' be PERCEIVE(W) // W' is updated
6 E = new beliefs in W' // (W'-W)
7 if E matches event on outgoing transition to b':
8 STOP(b) // stop execution of b
9 Let b = b' // update b

10 goto 4
11 goto 5



But: Non-Determinism can be Useful

I Allow partial-order (lazy commitment to order)
I Outgoing transitions marked by complementary events
I More than one can be taken in principle

I Delay grounding
I Example: pass to open player? There can be several.
I i.e., several grounded instantiations with same incoming event



But: Non-Determinism can be Useful

I Allow partial-order (lazy commitment to order)
I Outgoing transitions marked by complementary events
I More than one can be taken in principle

I Delay grounding
I Example: pass to open player? There can be several.
I i.e., several grounded instantiations with same incoming event



In depth: Partially-ordered Markovian Selection

Easier to specify PARTIAL conditions for selection

. . . than FULLY-SPECIFIED conditions

Figure 1: Total Order



In depth: Delayed grounding

The programmer (planner) specifies ungrounded behavior



In depth: Delayed grounding

System grounds behaviors at run-time
Think of templates and instantiations, classes and instances

Must non-deterministically choose between multiple behaviors



Recipes, and BDI Agents

Non-determistic FSMs lead to thinking about recipes:

I instantiated at runtime (ungrounded specification)
I ad-hoc choice procedures (i.e., CHOOSE() procedures)
I complex events testing beliefs, allowing loops



CHOOSE() procedures for execution-time decision making

I Yes, it does look like the familiar agent design again. . .
I But this time, CHOOSE() is between behaviors, not actions

I No action models; don’t know what the effects are
I CHOOSE can be arbitrary, random, or much much smarter

And expanding beyond FSMs (automata theory)
I Context-free, context-sensitive CHOOSE()

I Utilize memory, history
I Hierarchies

I May even change CHOOSE() mechanism depending on context



Hierarchical Recipes



Hierarchies for Modularity and Reuse

I Organize plan as a sequence of hierarchies
I Each hierarchy composed of multiple behaviors

I Behaviors at lower levels can be re-used (multiple parents)
I Formally: a DAG (directed acyclic graph)

I In most models: along hierarchical transitions



Hierarchies for Modularity and Reuse

I Organize plan as a sequence of hierarchies
I Each hierarchy composed of multiple behaviors

I Behaviors at lower levels can be re-used (multiple parents)
I Formally: a DAG (directed acyclic graph)

I In most models: along hierarchical transitions



And/Or vs Or Graphs

I FSMs are or graphs: Take this action, or that action.
I Hierarchies open possibility for and/or graphs

I and node: All children transitions must be taken



Execution Models

Two models of execution:

I Layered: Stack of threads (parallel actions)
I RCS, ATLANTIS, BITE

I Hierarchical: Abstract actions, decomposed
I Complex actions decomposed into more basic actions
I HTN Planners, RAE executor (covered by T.A.)



Layered Execution Algorithm

(distributed in class)


	Non-Deterministic Markovian Behavior Selection
	Hierarchical Recipes

