
Behavior Selection

Gal A. Kaminka



Behavior Selection



Reminder: Behavior Based Control

Two main branches of investigation:

I Behavior Selection (one behavior takes over)
I Key question 1: How to select?
I Key question 2: How to de-select?

I Behavior Fusion (combine multiple behaviors)

Our focus here: Selection



Behavior Selection: One Behavior at a Time
Remember key questions: How to select? How to de-select?

General ARBITRATE(W,B) behavior selection loop:

1 W knowledge base, g goal, B BEHAVIORS(templates)
2

3 C = INSTANTIATE(W,B) // All that can be grounded
4 c = SELECT(W,C)
5 START(c)
6 While not TERMINATE(c): wait
7 STOP(c)

I INSTANTIATE() grounds behavior based on W
I e.g., a single pass-to-player ungrounded behavior
I instatiated for all open players–many grounded behaviors

I START(), STOP(): start execution, stop it
I Think: why not EXECUTE()?

I Focus: SELECT(), TERMINATE()
I Leaving aside INSTANTIATE()



Behavior Selection: One Behavior at a Time
Remember key questions: How to select? How to de-select?

General ARBITRATE(W,B) behavior selection loop:

1 W knowledge base, g goal, B BEHAVIORS(templates)
2

3 C = INSTANTIATE(W,B) // All that can be grounded
4 c = SELECT(W,C)
5 START(c)
6 While not TERMINATE(c): wait
7 STOP(c)

I INSTANTIATE() grounds behavior based on W
I e.g., a single pass-to-player ungrounded behavior
I instatiated for all open players–many grounded behaviors

I START(), STOP(): start execution, stop it
I Think: why not EXECUTE()?

I Focus: SELECT(), TERMINATE()
I Leaving aside INSTANTIATE()



Behavior Selection: One Behavior at a Time
Remember key questions: How to select? How to de-select?

General ARBITRATE(W,B) behavior selection loop:

1 W knowledge base, g goal, B BEHAVIORS(templates)
2

3 C = INSTANTIATE(W,B) // All that can be grounded
4 c = SELECT(W,C)
5 START(c)
6 While not TERMINATE(c): wait
7 STOP(c)

I INSTANTIATE() grounds behavior based on W
I e.g., a single pass-to-player ungrounded behavior
I instatiated for all open players–many grounded behaviors

I START(), STOP(): start execution, stop it
I Think: why not EXECUTE()?

I Focus: SELECT(), TERMINATE()
I Leaving aside INSTANTIATE()



Behavior Selection: One Behavior at a Time
Remember key questions: How to select? How to de-select?

General ARBITRATE(W,B) behavior selection loop:

1 W knowledge base, g goal, B BEHAVIORS(templates)
2

3 C = INSTANTIATE(W,B) // All that can be grounded
4 c = SELECT(W,C)
5 START(c)
6 While not TERMINATE(c): wait
7 STOP(c)

I INSTANTIATE() grounds behavior based on W
I e.g., a single pass-to-player ungrounded behavior
I instatiated for all open players–many grounded behaviors

I START(), STOP(): start execution, stop it
I Think: why not EXECUTE()?

I Focus: SELECT(), TERMINATE()
I Leaving aside INSTANTIATE()



Techniques for SELECT(), TERMINATE()

I Global/centralized evaluation
I Memoryless: decision lists, decision trees
I Markovian: (non-) deterministic finite state machines, Petri-nets
I Memory-based: recipes1 (e.g., in BDI architectures)

I Local/distributed evaluation
I Behaviors compete for control of agent
I Typically: through activation functions

1{The association of recipes with behavior-based control is non-standard. I take full responsibility.}



Centralized/Global Behavior Selection



State-Based Selection

I Behaviors centrally instantiated
I Conflicts handled via decision procedures

I Techniques differ by use of memory/context:
I Memory-less: decision lists, decision trees
I Markovian: (non-) deterministic finite state machines, Petri-nets
I Memory-based: recipes (e.g., in BDI architectures)



Memory-less selection. . .

SELECT():

I Decision Lists
I Sequence of IF-THEN rules: If <condition> THEN <behavior>
I First condition to match selects behavior . . .

I Decision Trees
I Variables are associated with vertices tree branches with values
I (Grounded) behaviors set as leaves in tree
I Variable tests root to leaf, then selects behavior at leaf

TERMINATE() (two alternatives):

I Behaviors self-terminate, OR
I Behaviors replaceable if decision changes



Memory-less selection. . . A BAD IDEA

I Decision lists (Terrible, never use this):
I Ordering of rules is critical
I Very difficult to get right, as system grows in complexity
I Multiple checks of same variables

I Decision Trees (Very bad, use only under protest):
I No dependency on ordering checks
I Internal nodes test one variable at a time, depth may vary
I Can be efficient, where only subset variables checked

I Not always possible
I Size of tree can grow exponentially



Memory-less selection. . . A BAD IDEA

I Decision lists (Terrible, never use this):
I Ordering of rules is critical
I Very difficult to get right, as system grows in complexity
I Multiple checks of same variables

I Decision Trees (Very bad, use only under protest):
I No dependency on ordering checks
I Internal nodes test one variable at a time, depth may vary
I Can be efficient, where only subset variables checked

I Not always possible
I Size of tree can grow exponentially



This is not just for robots!

I Print servers
I GUI client event handlers
I Web-based applications
I Trading agents
I Decision-making support systems



Markovian State-Based Selection

I Key: Add state variable that tracks state of execution
I NOT the same as state of world

I Execution state determines context
I Choice between behaviors depends on state of execution

I In general: discrete event systems can be used as model
I Finite State Machines
I Petri nets
I Markov decision processes

We start with finite state machines



Deterministic finite state machines

I Every behavior represented as a state
I Events cause behaviors to SELECT(), TERMINATE()

I Events computed by perception processes
I Very efficient: focus attention only on needed events



Example: Foraging Robot

Figure 1: Foraging Robot (Simple)



Example: Foraging Robot (better)

Figure 2: Foraging Robot (Complex)



Deterministic FSM Behavior Agent

1 W knowledge base, g goal, B behavior FSM
2

3 Let b = starting behavior in B // starting state
4 START(b) // start execution of b
5 Let W' be PERCEIVE(W) // W' is updated
6 E = new beliefs in W' // (W'-W)
7 if E matches event on outgoing transition to b':
8 STOP(b) // stop execution of b
9 Let b = b' // update b

10 goto 4
11 goto 5

Note this replaces the entire “while goal not achieved” loop
Also, grounded behaviors only. Why?

(Because ungrounded behaviors may have several
instantiations—leading to non-determinism on outgoing transitions)



Deterministic FSM Behavior Agent

1 W knowledge base, g goal, B behavior FSM
2

3 Let b = starting behavior in B // starting state
4 START(b) // start execution of b
5 Let W' be PERCEIVE(W) // W' is updated
6 E = new beliefs in W' // (W'-W)
7 if E matches event on outgoing transition to b':
8 STOP(b) // stop execution of b
9 Let b = b' // update b

10 goto 4
11 goto 5

Note this replaces the entire “while goal not achieved” loop
Also, grounded behaviors only. Why?

(Because ungrounded behaviors may have several
instantiations—leading to non-determinism on outgoing transitions)



Deterministic FSMs Pros and Cons

I Mechanism easy to implement, efficient
I Focused attention on perception

I Only looking for events that match transitions
I Works well in practice for smallish tasks

I Simple robot tasks, servers: a few dozen states

But: Difficult to work with in large tasks (100s states)



Deterministic FSMs Pros and Cons

I Mechanism easy to implement, efficient
I Focused attention on perception

I Only looking for events that match transitions
I Works well in practice for smallish tasks

I Simple robot tasks, servers: a few dozen states

But: Difficult to work with in large tasks (100s states)



Challenges to scalability of Deterministic FSMs

Reality forces non-determinism
I Ungrounded behaviors
I Incomplete event specs (factored, multiple attributes)
I Opportunism, interruption, interleaving

Hinder Modularity
I Changes require global refactoring
I All partial orderings needed


	Behavior Selection
	Centralized/Global Behavior Selection

