
Behavior-Based Arbitration

Gal A. Kaminka

Partial Plans, Recipes, and Policies

The Not-Entirely-Stupid Agent

1 W knowledge base, g goal, B actions
2

3 while g not satisfied:
4 s = PERCEIVE() // new state
5 Let C be the set of APPLICABLE() actions in B
6 If |C|>1 then CHOOSE(g,C,W)
7 else c only action in C
8 EXECUTE() action c
9 REMEMBER!(s, W)

I CHOOSE() is invoked only if there is a choice to be made
I That’s why it needs access to (g , C , W)

I CHOOSE() can call planner, or do random (biased) choice
I The only two options we have seen

Today: look at CHOOSE() alternatives

The Not-Entirely-Stupid Agent

1 W knowledge base, g goal, B actions
2

3 while g not satisfied:
4 s = PERCEIVE() // new state
5 Let C be the set of APPLICABLE() actions in B
6 If |C|>1 then CHOOSE(g,C,W)
7 else c only action in C
8 EXECUTE() action c
9 REMEMBER!(s, W)

I CHOOSE() is invoked only if there is a choice to be made
I That’s why it needs access to (g , C , W)

I CHOOSE() can call planner, or do random (biased) choice
I The only two options we have seen

Today: look at CHOOSE() alternatives

Rewrite to emphasize CHOOSE()

CHOOSE(g,B,W) that uses a planner:
1 If have plan p in W:
2 If next action b in p is APPLICABLE():
3 advance p to next action ("p++")
4 return b
5 else:
6 generate new p (p=PLANNER(g,W)), goto 1
7 else:
8 Let C be the set of APPLICABLE() actions in B
9 If |C|>1 then:

10 generate new p (p=PLANNER(g,W)), goto 1
11 else c only action in C; return c.

Why do we need to CHOOSE()?

I Planner algorithm has perfect intelligence
I Plan is perfect knowledge
I In perfect world: Never CHOOSE()

I Call planner ⇒ have a plan.
I Once have a plan, never choose between actions

BUT. . . .

Imperfect planners for perfect worlds

Assume world is perfect (deterministic, transparent). Still:
I Planner algorithms search a huge space

I Computationally intractable
I Task is made harder because planner has to:

I Decide on order in advance
I Decide on grounding in advance
I Unroll loops

Examples of planner hardships (even in perfect worlds)

I Many orderings:
I e.g., {get pen, get paper, get chair} → sit → write.
I 6 totally ordered plans to consider, only one partial plan

I Many groundings:
I e.g., In soccer, action pass ball → to open player
I Difficult to predict who will be open

I Loops: for (i=0; i<10,000, i++): take step forward
I Much more compact than: step, step, (10,000 steps)

Examples of planner hardships (even in perfect worlds)

I Many orderings:
I e.g., {get pen, get paper, get chair} → sit → write.
I 6 totally ordered plans to consider, only one partial plan

I Many groundings:
I e.g., In soccer, action pass ball → to open player
I Difficult to predict who will be open

I Loops: for (i=0; i<10,000, i++): take step forward
I Much more compact than: step, step, (10,000 steps)

Examples of planner hardships (even in perfect worlds)

I Many orderings:
I e.g., {get pen, get paper, get chair} → sit → write.
I 6 totally ordered plans to consider, only one partial plan

I Many groundings:
I e.g., In soccer, action pass ball → to open player
I Difficult to predict who will be open

I Loops: for (i=0; i<10,000, i++): take step forward
I Much more compact than: step, step, (10,000 steps)

What about imperfect worlds?

I Non-deterministic actions, dynamic world:
I Cannot predict resulting state with certainty
I Need Policy, not Plan
I Decision on ordering should be flexible

I Lack of transparency: cannot know everything
I Some information only revealed while executing
I Some information never revealed
I Actions may be grounded only during execution

⇒ Rethink the concept of A PLAN

What about imperfect worlds?

I Non-deterministic actions, dynamic world:
I Cannot predict resulting state with certainty
I Need Policy, not Plan
I Decision on ordering should be flexible

I Lack of transparency: cannot know everything
I Some information only revealed while executing
I Some information never revealed
I Actions may be grounded only during execution

⇒ Rethink the concept of A PLAN

What’s a Plan?

I Classic Plan: totally-ordered set of grounded actions
I But we can revise this definition:

I Partially-ordered set of actions
I Ungrounded actions (at least partially)
I Allowing loops, branches
I Durative actions, . . .

I Automatic planners for generalized plans:
I There exist planners for partially ordered plans
I Some work on planning with ungrounded actions1, branches2

I Rare work on planning for plans allowing loops
I Let us assume such plans are given (e.g., by human)

1Almost all of it on hierarchical plans, see later in course.
2This is called Contingency Planning.

What’s a Plan?

I Classic Plan: totally-ordered set of grounded actions
I But we can revise this definition:

I Partially-ordered set of actions
I Ungrounded actions (at least partially)
I Allowing loops, branches
I Durative actions, . . .

I Automatic planners for generalized plans:
I There exist planners for partially ordered plans
I Some work on planning with ungrounded actions1, branches2

I Rare work on planning for plans allowing loops
I Let us assume such plans are given (e.g., by human)

1Almost all of it on hierarchical plans, see later in course.
2This is called Contingency Planning.

Plan Representations for Execution

I Late 80s, Early 90s: Move away from planning to execution
I More accurately, away from modeling world, to reacting
I Charge led by Rodney Brooks3, though not alone

I Focus on hand-tailored policies, compact representation
I Allowing for realtime control and decision-making
I In robotics, Behavior-Based Controller
I In AI, recipes

I Motivating Example:
I Easier: while (nail not in): hit nail with hammer
I Harder: model wall, nail, hammer, . . . compute # of hits

3Also, later, co-founder of iRobot, Rethink Robotics.

Plan Representations for Execution

I Late 80s, Early 90s: Move away from planning to execution
I More accurately, away from modeling world, to reacting
I Charge led by Rodney Brooks3, though not alone

I Focus on hand-tailored policies, compact representation
I Allowing for realtime control and decision-making
I In robotics, Behavior-Based Controller
I In AI, recipes

I Motivating Example:
I Easier: while (nail not in): hit nail with hammer
I Harder: model wall, nail, hammer, . . . compute # of hits

3Also, later, co-founder of iRobot, Rethink Robotics.

Behavior Based Control: Basic Concepts

Basic concepts and intuitions

I Behavior: grounded controller
I Tight coupling of perception and action

I Reactive components, little or no prediction
I Local considerations

I Does one thing (achieves one local condition)
I Ignores global considerations, goals

I Agent does not know goal, partially knows world state
I Just reacts by activating behaviors

Behaviors as local control loops

Instead of this:

1 W knowledge base, g goal, B actions
2

3 while g not satisfied:
4 PERCEIVE() // also REMEMBERs old states
5 CHOOSE(g,B,W)
6 EXECUTE() action c

Behaviors as local control loops

We get this:

1 W knowledge base, g goal, B BEHAVIORS
2

3 while g not satisfied:
4 ARBITRATE(W,B)

I Each behavior in B has its own control loop
I ARBITRATE dynamically combines, selects behaviors

I Resulting actions are a composition of behavior
I Behavior Arbitration4: How to combine behaviors?

4Also called Behavior Coordination

Overview of Behavior Based Control

Two main branches of investigation:

I Behavior Selection (one behavior takes over)
I Key question 1: How to select?
I Key question 2: How to de-select?

I Behavior Fusion (combine multiple behaviors)
I Key question 1: How to combine?
I Key question 2: Addressing conflicts and local minima?

Overview of Behavior Based Control

Two main branches of investigation:

I Behavior Selection (one behavior takes over)
I Key question 1: How to select?
I Key question 2: How to de-select?

I Behavior Fusion (combine multiple behaviors)
I Key question 1: How to combine?
I Key question 2: Addressing conflicts and local minima?

	Partial Plans, Recipes, and Policies
	Behavior Based Control: Basic Concepts

