
Planning

Gal A. Kaminka

The Intelligent Random Walker

Reminder: The basic agent algorithm

1 W is knowledge base
2 g is an unsatisfied goal in W
3 B set of actions available
4 P set of percepts available
5

6 while g not satisfied:
7 PERCEIVE() using percepts in P to update W
8 CHOOSE() action b (from B) that advances towards g
9 EXECUTE() action b

I Knowledge base W starts with initial knowledge

The (really stupid) Random Walker

1 W knowledge base, g goal, B actions, P percepts
2

3 while g not satisfied:
4 PERCEIVE() using percepts in P to update W
5 CHOOSE() next action b (from B) RANDOMLY
6 EXECUTE() action b

I Guaranteed to (slowly) reach goal if actions are reversible
I CHOOSE() randomly from all actions

I even those that are impossible

Not very goal-oriented

The (slightly less stupid) Random Walker
1 W knowledge base, g goal, B actions, P percepts
2

3 while g not satisfied:
4 PERCEIVE() using percepts in P to update W
5

6 Let C be the empty set
7 For all actions b in B:
8 if APPLICABLE(b, W) add b to C
9 CHOOSE() next action c from C RANDOMLY

10 EXECUTE() action c

I Guaranteed to reach goal if actions are reversible
I CHOOSE() randomly from possible actions

Requires Action Model knowledge (when applicable)

But, actions may cause unnecessary loops

The (slightly less stupid) Random Walker
1 W knowledge base, g goal, B actions, P percepts
2

3 while g not satisfied:
4 PERCEIVE() using percepts in P to update W
5

6 Let C be the empty set
7 For all actions b in B:
8 if APPLICABLE(b, W) add b to C
9 CHOOSE() next action c from C RANDOMLY

10 EXECUTE() action c

I Guaranteed to reach goal if actions are reversible
I CHOOSE() randomly from possible actions

Requires Action Model knowledge (when applicable)

But, actions may cause unnecessary loops

The (less stupid) Random Walker

1 W knowledge base, g goal, B actions, P percepts
2

3 while g not satisfied:
4 s = PERCEIVE() // new state
5 REMEMBER!(s, W)
6 Let C be the empty set
7 For all actions b in B:
8 if APPLICABLE(b, W) add b to C
9 For all actions c in C:

10 if REMEMBER?(EFFECTS(c), W):
11 remove c from C, add c to C*
12 if C is not empty, CHOOSE() next action c from C
13 else CHOOSE() next action c from C*
14 EXECUTE() action c

The (less stupid) Random Walker

I Action model expanded: (predicting action effects)
I CHOOSE() actions with non-uniform probability
I Return to previous state only if nothing else to do

I “avoid the past” heuristic1
I Remember past states

1{Balch and Arkin, Avoiding the Past: A Simple but Effective Strategy for Reactive Navigation, ICRA 1993.}

Knowledge vs intelligence

I Intelligence and knowledge complement each other
I Allow agent to work correctly at the knowledge level
I Random walker versions:

I No knowledge, reversible actions: goal will be reached
I Faster if knows effects of actions
I Faster if can also remember past states and retrieve

I Episodic memory (what have I seen?)
I REMEMBER? (retrieval) and REMEMBER! (storage)

Episodic Memory

Open questions: REMEMBER!()
I What to remember
I When to remember
I In humans, lots of research on cognitive biases

Open questions: REMEMBER?()
I Associative memory (e.g., spreading activation)

Research areas: Analogy, case-based reasoning

Representing Knowledge for Planning

Knowledge Representation

I Whole area of AI devoted to knowledge representation
I Commonly known as KR
I Own conferences

I KRR, knowledge representation and reasoning
I Lots of thought on how to reason about knowledge

I Look up ontology, description logics, etc.

Simple KR used (here and now)

I Keep track of states: beliefs (previous lecture)
I We saw need to represent action models:

I APPLICABLE?(action)
I EFFECTS(action)

I Domain: states, and actions allowed in them
I Actions: transitions between states
I State: a combination of grounded fluent literals

I factored state representation

Actions

I Take agent from one state to another
I Specified using action models

I How state will change
I Approach by STRIPS planner (1970s) still the basis today
I Action model:

I APPLICABLE (precondition): partial state where action can be
applied

I EFFECTS: changes dictated by transition
I Delete list (fluent literals not in target)
I Add list (fluent literals in target)

STRIPS Actions (formally)

I Action a has three associated fluent (partial) sets
I PREa: preconditions
I DELa: delete effects
I ADDa: add effects

I Given state s, new state ss ← δ(s, a)
I if s ∩ PREa = PREa then δ(s, a) = (s/DELa) ∪ ADDa
I otherwise not defined (action not applicable)

I There are many extensions to this in planning literature2
I Continuous effects, conditional effects, sensing actions
I Action durations, costs, existential qualifiers (∀,∃)

2{Ghallab, Nau, & Traverso. Automated Planning and Acting. Cambridge University Press, 2016.}

http://projects.laas.fr/planning/

STRIPS Actions (formally)

I Action a has three associated fluent (partial) sets
I PREa: preconditions
I DELa: delete effects
I ADDa: add effects

I Given state s, new state ss ← δ(s, a)
I if s ∩ PREa = PREa then δ(s, a) = (s/DELa) ∪ ADDa
I otherwise not defined (action not applicable)

I There are many extensions to this in planning literature2
I Continuous effects, conditional effects, sensing actions
I Action durations, costs, existential qualifiers (∀,∃)

2{Ghallab, Nau, & Traverso. Automated Planning and Acting. Cambridge University Press, 2016.}

http://projects.laas.fr/planning/

PDDL (Planning Domain Description Language)

I Language used in AI as abstraction to describe domains
I PDDL 1.0: Boolean-valued fluents, mostly STRIPS

I In later versions, numeric valued fluents
I Extensions support contingency and probabilistic planning, etc.

I Used extensively by planning community
I Agent perceives “PDDL fluents”
I Used in the exercises in this course

I Several variants used today in AI planning

PDDL Domain Example (from slides by Manuela Veloso)

(define (domain gripper-strips)
(:predicates (room ?r)

(ball ?b)
(gripper ?g)
(at-robby ?r)
(at ?b ?r)
(free ?g)
(carry ?o ?g))

(:action))

Note declaration of predicates (boolean fluents)

PDDL Action Example (from slides by Manuela Veloso)

(:action move
:parameters (?from ?to)
:precondition (and (room ?from)

(room ?to)
(at-robby ?from))

:effect (and (at-robby ?to)
(not (at-robby ?from))))

In depth:

Dana Nau’s presentation about planning language representations

An Agent that can Plan

Random Walking is Hardly Enough

I The “intelligent” random walker is not very intelligent
I Some general capabilities make it better

I Episodic Memory
I Prediction of action effects (action models)

I Ultimately, still needs to choose

The Plan-Dispatch Agent

I Observation: if agent has action models, can consider k steps
ahead

“If I apply b1 I will be in state s1, where I could apply b2 to
reach s2, . . . until I apply bk and reach the goal state g”

I Planning: finding an ordered set of actions to reach a goal
I PLANNER(i , g ,B):

I i : initial state (known in W)
I g : one or more possible goal states (known in W)
I B: set of possible actions
I Returns: p (a plan)

The Plan-Dispatch Agent

I Observation: if agent has action models, can consider k steps
ahead

“If I apply b1 I will be in state s1, where I could apply b2 to
reach s2, . . . until I apply bk and reach the goal state g”

I Planning: finding an ordered set of actions to reach a goal
I PLANNER(i , g ,B):

I i : initial state (known in W)
I g : one or more possible goal states (known in W)
I B: set of possible actions
I Returns: p (a plan)

The Simplest Plan Dispatch Agent

1 W knowledge base, g goal, B actions, P percepts
2

3 s = PERCEIVE() // initial state
4 p = PLANNER(s,g,B) // (b1,b2, ...)
5 while g not satisfied:
6 let b = next action in p
7 EXECUTE() action c
8 s = PERCEIVE() // new state

I Obviously bad: why perceive?
I Ignores changes in environment, action failures
I May not reach goal!

The Simplest Plan Dispatch Agent

1 W knowledge base, g goal, B actions, P percepts
2

3 s = PERCEIVE() // initial state
4 p = PLANNER(s,g,B) // (b1,b2, ...)
5 while g not satisfied:
6 let b = next action in p
7 EXECUTE() action c
8 s = PERCEIVE() // new state

I Obviously bad: why perceive?
I Ignores changes in environment, action failures
I May not reach goal!

A Replanning Plan Dispatch Agent

1 W knowledge base, g goal, B actions, P percepts
2

3 s = PERCEIVE() // new state
4 while g not satisfied:
5 p = PLANNER(s,g,B) // (b1,b2, ...)
6 let b = first action in p
7 EXECUTE() action b
8 s = PERCEIVE() // new state

I Better: Now guaranteed to reach goal
I But always replans, even if not necessary

When to (re)Plan?

I When there is a choice
I When in an unexpected state
I These need to be checked in execution!

Some Basic Terms

I Plan: ordered set of actions
I Sequence: Complete order
I Partial-order: Alternatives, parallelization

I Policy: Plan from every possible initial state
I Also called Universal Plan

I In principle: shortest (optimal) path problem
I Initial state to goal state

I In practice: unsolvable with Dijkstra
I Lots of different approaches and representations
I Heuristic search (A*), plan-space vs state-space, etc.

Entire area in AI: Open and interesting
I ICAPS conference, planning competitions, probabilistic

planning, scheduling, . . .

Planning Approaches

Planning as search

I State-space search
I Plan-space search

Dana Nau’s presentation about plan-space search

	The Intelligent Random Walker
	Representing Knowledge for Planning
	An Agent that can Plan
	Planning Approaches

