Perception

Gal A. Kaminka

Representing Knowledge

Reminder: The basic agent algorithm

```
W is knowledge base
1
2 g is an unsatisfied goal in W
  B set of actions available
3
  P set of percepts available
4
5
  while g not satisfied:
6
     PERCEIVE() using percepts in P to update W
7
     CHOOSE() action b (from B) that advances towards g
8
     EXECUTE() action b
9
```

- Knowledge base W starts with initial knowledge \leftarrow the focus
- PERCEIVE() adds knowledge

Knowledge Representation

- Whole area of AI devoted to knowledge representation
- Commonly known as KR
- Own conferences
 - KRR, knowledge representation and reasoning
- Lots of thought on how to reason about knowledge
 - Look up ontology, description logics, etc.

Simple KR used *here* and *now*

- Keep track of *beliefs*
 - We will discuss procedures later
- Each belief: tuple $\langle k, v \rangle$
 - k is key (can have variable parameters)
 - v is a value

Fluents

- ▶ In many areas of AI, logic is dominant representation approach
- Fluents used as representation (non-procedural knowledge)
- fluent f = v:
 - belief with key f has value v
- This looks suspiciously like predicates... But no.
 - fluents can change values

Fluent name and parameters

- A fluent $f(e_1, ..., e_n)$:
 - ► f is fluent name
 - n is the fluent arity (including 0, f())
 - e_i entities in a known set E_i , or variables
- Ground fluents: no variables, e_i constants

Fluent values

- Fluents can have values from a range V_f
- fluent literal: f(...) = v, where $v \in V_f$
- Value can be simple (true/false, number)
- Value can be complex (data structure)

- ▶ robot_at() = x
- at(r,x) = true

- ▶ robot_at() = x
- at(r,x) = true
- at(r) = x

Using fluents to represent environment states

- Given set of Fluents F
- Environment: collection of states
- State s is set of fluent literals
 - Each assigned a value (i.e., is *literal*)
 - Consistent: no $f = v_1, f = v_2$, s.t. $f \in F, v_1 \neq v_2$
 - Maximal: $\forall f \in F, (f = v) \in s$, i.e., |s| = |F|
- Partial state same def, but not maximal
 - Really, a collection of states that share fluent literals.
- This is a factored state representation
 - State is composed of multiple factors

Perception in the Agent

Reminder: The basic agent algorithm

```
W is knowledge base
1
2 g is an unsatisfied goal in W
  B set of actions available
3
  P set of percepts available
4
5
  while g not satisfied:
6
     PERCEIVE() using percepts in P to update W
7
     CHOOSE() action b (from B) that advances towards g
8
     EXECUTE() action b
9
```

- ► Knowledge base *W*: collection of fluents
- PERCEIVE() adds knowledge

 the focus

Perception

Naive view

- Update the knowledge-base available to the agent
 - ► i.e., Transform environment features to knowledge-base
- Information from sensors overwrites knowledge-base
- Examples:
 - Current range straight ahead
 - Current time
 - Current location
 - Current map
 - Current objects seen

Perception

Naive view

- Update the knowledge-base available to the agent
 - ▶ i.e., Transform environment features to knowledge-base
- Information from sensors overwrites knowledge-base
- Examples:
 - Current range straight ahead
 - Current time
 - Current location
 - Current map
 - Current objects seen

What's so complicated?

Perception computationally complex

- Extracting information from current readings
 - e.g., "Current objects seen" requires computer vision
- May also require multiple readings over time
 - "Current map", "current location" requires SLAM
 - Expensive, and requires memory

Perception conceptually complex: Body

- Requires interpretation (sensors never perfect)
 - At best, have a model of the sensor
- Perception takes time (e.g., for computation)
- Integrating information from multiple sensors
 - Sensor Fusion: whole field!
 - e.g., "obstacle near" if one of many sensors active

Will come back to this later.

Perception conceptually complex: Environment

- *Transparent* environment: everything perceivable.
 - May require attention process
- Translucent environment: Not everything perceivable
 - May require active perception

Will come back to this later.

Impact of embodiment on agent algorithm

Perception conceptually complex: Body

- Requires interpretation (sensors never perfect)
 - At best, have a model of the sensor
- Perception takes time (e.g., for computation)
- Integrating information from multiple sensors
 - Sensor Fusion: whole field!
 - e.g., "obstacle near" if one of many sensors active

Will come back to this later. Now.

Integrating and interpreting information from sensors

- From multiple sensors
- From multiple readings (over time)
- Conceptually PERCEIVE() into (at least) two processes:
 - $K \leftarrow UPDATE(W)$ which generates new beliefs K (set)
 - $W_{new} \leftarrow REVISE(K, W)$ which integrates new beliefs with old
- Separates the act of sensing from the integration over time
- Reasoning using sensor models, etc.: in REVISE()

Synchronous perception (Original)

```
W is knowledge base
1
2 g is an unsatisfied goal in W
  B set of actions available
3
  P set of percepts available
4
5
  while g not satisfied:
6
     PERCEIVE() using percepts in P to update W
7
     CHOOSE() action b (from B) that advances towards g
8
     EXECUTE() action b
9
```

- Single perception step after single action step
- OK if actuation, perception are instantaneous
- What happens when they are not?

Semi-synchronous algorithm

```
W is knowledge base
1
   g is an unsatisfied goal in W
2
   B set of actions available
3
   P set of percepts available
4
5
   while g not satisfied:
6
      CHOOSE() action b (from B) that advances towards g
7
      In parallel:
8
         EXECUTE() action b
9
         PERCEIVE() using percepts in P to update W
10
```

- Perception step in parallel to action step
- Now action, perception can have duration
- Still needs both to finish before can continue

Asynchronous algorithm

```
W is knowledge base
1
  g is an unsatisfied goal in W
2
   B set of actions available
3
   P set of percepts available
4
5
   In parallel:
6
     while g not satisfied:
7
       CHOOSE() action b (from B) that advances towards g
8
       EXECUTE() action b
9
     while (true) PERCEIVE() using percepts in P to update W
10
```

- Perception process in parallel to action selection process
- Completely independent?
- ▶ No, will need write-locks accessing W

Impact of environment on agent algorithm

Perception conceptually complex: Environment

- *Transparent* environment: everything perceivable.
 - May require attention process
- Translucent environment: Not everything perceivable
 - May require active perception

Will come back to this later. Now

Attention, Active Perception

How will these algorithms change to allow:

- attention? (deciding which percepts to update)
- active perception? (choosing actions that will enable perception?)
- Attention takes place at the UPDATE() stage
 - ▶ UPDATE(W) takes knowledge into account. But how?
- Active Perception is even bigger challenge:
 - Take actions to generate new sensing possibilities
 - Takes place in CHOOSE()!

Open areas of research!