
Is Agent Software More Complex than Other Software?
Extended Abstract

Alon Zanbar
The MAVERICK Group
Bar Ilan University
Ramat Gan, Israel

atzanbar@gmail.com

Gal A. Kaminka
The MAVERICK Group
Bar Ilan University
Ramat Gan, Israel
galk@cs.biu.ac.il

ABSTRACT
We empirically investigate agent software repositories using com-
monly used software metrics, which are used in software engineer-
ing literature to quantify meaningful characteristics of software
based on its source code. We contrast the measurements with those
of software in other categories. Analyzing hundreds of software
projects, we find that agent software may be different from other
types of software, in terms of software complexity measures.

KEYWORDS
Agent-Oriented Software Engineering; Software Metrics; AI and
Software Engineering

1 INTRODUCTION
For many years, significant research efforts have been spent on
investigating methodologies, tools, models and technologies for
engineering autonomous agents software. Research into agent ar-
chitectures and their structure, programming languages specialized
for building agents, formal models and their implementation, devel-
opment methodologies, middleware software, have been discussed
in the literature, encompassingmultiple communities of researchers,
with at least partial overlaps in interests and approaches.

The most important underlying assumption of these research
efforts is that such specialization is needed, because autonomous
agent software poses engineering requirements that may not be eas-
ily met by more general (and more familiar) software engineering
and programming paradigms. Specialized tools, models, program-
ming languages, code architectures and abstractions make sense, if
the software engineering problem is specialized.

This paper provides the first empirical evidence for the distinc-
tiveness of autonomous agent software, compared to other software
categories. We utilize basic source code metrics, such as Cyclomatic
Complexity, Cohesion, Coupling, and others. These metrics are com-
monly used by researchers and practitioners to assess code quality,
estimate work effort, and to quantify other meaningful characteris-
tics of software. We use them to understand how agent and robot
software is different from general software.

We quantitatively contrast close to 140 autonomous agent and
robot projects (from RoboCup, The Agent Negotiations Competi-
tions, Chess, and various robotics projects), with close to 400 other

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 2019, Montreal,
Canada
© 2019 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.
https://doi.org/doi

software projects from github, of various types. Each was quantified
using over 250 metrics. We then conducted both manual analysis
and automated machine-learning analysis of the differences be-
tween agent software, robot software, and other software.

We find that agent software is clearly and significantly different
from other types of software of comparable size. This result appears
both when using manual statistical analysis, as well as machine
learning methods. Specifically, autonomous agents software is sig-
nificantly more complex (in the sense of control flow complexity)
than other software categories. We discuss potential implications
of these results.

2 BACKGROUND
There is vast literature reporting on research that directly or in-
directly impacts software engineering and development of au-
tonomous agents: AOSE agent-oriented software engineering is a
thriving area of research, with at least one dedicated annual confer-
ence/workshop and a specialized journal1 [1–5, 7–11, 13–24]. For
the most part, the arguments for the study of AOSE as distinct from
general software engineering are well argued philosophically, and
qualitatively pointing out inherent conceptual differences between
the software engineering of agents, and other software domains.
To the best of our knowledge, no empirical evidence—certainly
not at the scale detailed below—has been offered to support these
important conceptual arguments.

The lack of quantitative investigations of agent and robot soft-
ware engineering is not for lack of quantitative and empirical
methods in software engineering in general. Many investigations—
starting in the early seventies and continuing today—propose quan-
titative metrics of software constructs, and relate the measurements
to software quality, development effort, software type, and other
attributes of interest. Comprehensive reviews of these are presented
in [6, 12] for example.

3 SOFTWARE PROJECT DATA COLLECTION
AND CURATION

We are looking to compare general software categories to software
implementing autonomous agents operating in virtual and physical
environments (i.e., robots). We begin with an overview of the data
collection and curation process, in preparation for the manual and
automated analysis described in the following sections.

We use several sources of software projects, each containing
multiple projects:

1International Journal of Agent-Oriented Software Engineering

https://doi.org/doi


AAMAS’19, May 2019, Montreal, Canada Alon Zanbar and Gal A. Kaminka

RoboCup. RoboCup is the among the largest annual global ro-
botics competition events in the world, and one of the longest
running—taking place since 1997 (1996 pre-competition).

ANAC.. The annual International AutomatedNegotiatingAgents
Competition (ANAC) is used by the automated negotiation research
community to benchmark and evaluate its work and to challenge
itself.

GitHub. GitHub, the largest repository of open source projects in
the world. The categories we select are distinct as much as possible
from AI code and from one another.

From the sources above, we collected software projects that
meet maturity and size criteria, and are easily identified as belong
to specific software categories. Those project where analyzed using
open source static code analysois tools to produce large list of
software metrics. the following list demonstrate some of them :

Summary & code Metrics: Total Lines of Code (total_loc) , Total
Number of Modules (total_modules) , Total Number of Methods
(total_nom) , Afferent Connections per Class (ACC) , Average Cy-
clomatic Complexity per Method (ACCM) , Average Method Lines
of Code (AMLOC) , Average Number of Parameters (ANPM) , Cou-
pling Between Objects (CBO) , Coupling Factor (COF) , Depth of
Inheritance Tree (DIT)

4 MANUAL ANALYSIS
We conducted two separate analysis efforts which had common
general goal. a statistical analysis and machine-learning analysis.
The focus in both is to reveal differences, if they occur, between the
different software categories, as expressed in the measurements of
different metrics.

In the statistical analysis we used a heuristic procedure to as-
sist in finding promising features. The idea is to iterate over the
software domains. For each domain 𝑟 , we separate it out from the
others, and then use a two-tailed t-test to contrast the distribution
of the metric values in the domain and in all others. We use the 𝑝
value generated by the above procedure to form clusters of three
or more software domain that share similar 𝑝 value in the same
metrics. Those groups were used as indicator for possible clusters.
by ordering the increasingly by 𝑝 we could see the four group with
lowest common 𝑝 value are those containing the results of testing
ACCM values of "Agent" types against other software categories.

Visualization of box-plots distributions of specific metrics of each
software domain, revealed some differences between the software
categories. We discovered that the most noticeable results are of
some complexity metrics as ACCM and MLOC. The distribution of
those metrics for "Agent" software shows higher values than in all
other domains.

5 MACHINE LEARNING ANALYSIS
A second approach for our investigation uses machine learning
techniques, to complement the manual analysis. We attempted to
use several different machine learning classifiers to distinguish
agent and non-agent software domains, with the goal of analyzing
successful classification schemes, to reveal the metrics, or metric
combinations, which prove meaningful in the classification

Classification procedure. We choose one vs many classification
strategy, similarly to the manual analysis above. Iterating over
all software classes, we trained a binary classifier to differentiate
between samples of one software domain (for example, Audio) to
all other software classes. This creates an inherent imbalance in
the number of examples presented, which we alleviated by using
random over-sampling of the minority class.

For classification, we used the following classification algorithms:
Support Vector Machines, Logistics Regression, and Gradient-Boosted
Decision Trees. The implementations are open-source. The perfor-
mance of classifiers was carried out using two scoring functions,
familiar to machine learning practitioners: F1 and AUC (area under
the ROC curve).

The results implies that the top performing classifiers (1) are
those that are able to distinguish agent software from other types
of software, and (2) utilize the mean ACCM and AMLOC metrics
in their classification decisions. These results concur with the con-
clusions of the manual analysis described earlier.

Table 1 reflects the performance of each XGBoost classifiers
trained to separate between the different software classes. The
table demonstrate the superior results of separating "Agent" reposi-
tories compared to other software domains. A complementary list
of features that are most significant for the XGBoost model for
classifying "Agent" repositories against other domains is presented
in Table 2:

Agent/General Class (Domain) AUC F1
0 Agent Robocup-2D 0.97 0.85
1 Agent ANAC 0.98 0.67
2 Agent Chess 0.84 0.44
3 Robot Robcup-Other-Leagues 0.89 0.40
4 General Graphics 0.65 0.31
5 General Security 0.76 0.27
6 General Mobile 0.80 0.22
7 General Games 0.49 0.00
8 General Audio 0.56 0.00
9 General Robot-Simulation 0.66 0.00
10 General Education 0.66 0.00
11 General Finance 0.73 0.00
12 General IDE 0.75 0.00
13 Robot Robo-Projects 0.86 0.00

Table 1: Gradient Boosted Decision Trees top scoring soft-
ware classes. Mean ACCM is a recurring important feature.

Class (Domain) Important Features
Robocup-2D [amloc_mean, mmloc_mean, noc_mean, rfc_mean]
ANAC [accm_mean, noa_mean, npa_mean, npm_mean]
Chess [accm_mean, cbo_mean, dit_mean, lcom4_mean]

Table 2: XGBoost important features for classifying Agent
repositories

Acknowledgments. This research was supported in part by ISF
Grant #2306/18. As always, thanks to K. Ushi.



Is Agent Software More Complex than Other Software? AAMAS’19, May 2019, Montreal, Canada

REFERENCES
[1] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, and Alessandro Ricci. 2014.

Unravelling Multi-agent-Oriented Programming. In Agent-Oriented Software
Engineering. Springer, Berlin, Heidelberg, 259–272. https://link.springer.com/
chapter/10.1007/978-3-642-54432-3_13

[2] Mehdi Dastani. 2014. A Survey of Multi-agent Programming Languages and
Frameworks. InAgent-Oriented Software Engineering. Springer, Berlin, Heidelberg,
213–233. https://link.springer.com/chapter/10.1007/978-3-642-54432-3_11

[3] Christian Detweiler, Koen Hindriks, and Catholijn Jonker. 2010. Principles for
Value-Sensitive Agent-Oriented Software Engineering. In Agent-Oriented Soft-
ware Engineering XI (Lecture Notes in Computer Science). Springer, Berlin, Heidel-
berg.

[4] Avshalom Elmalech, David Sarne, and NoaAgmon. 2014. CanAgent Development
Affect Developer’s Strategy?. In Proceedings of the AAAI Conference on Artificial
Intelligence.

[5] Amir Elmishali, Roni Stern, and Meir Kalech. 2016. Data-Augmented Software
Diagnosis. In Innovative Applications of AI (IAAI).

[6] Norman Fenton and James Bieman. 2014-10-01. Software Metrics: A Rigorous and
Practical Approach, Third Edition. CRC Press. Google-Books-ID: lx_OBQAAQBAJ.

[7] Klaus Fischer, Christian Hahn, and Cristian Madrigal Mora. 2007. Agent-oriented
software engineering: a model-driven approach. International Journal of Agent-
Oriented Software Engineering 1, 3/4 (2007), 334. http://www.inderscience.com/
link.php?id=16265

[8] Koen V. Hindriks and Jügen Dix. 2014. GOAL: A Multi-agent Programming Lan-
guage Applied to an Exploration Game. In Agent-Oriented Software Engineering.
Springer, Berlin, Heidelberg, 235–258. https://link.springer.com/chapter/10.1007/
978-3-642-54432-3_12

[9] Marc-Philippe Huget. 2014. Agent Communication. In Agent-Oriented Software
Engineering. Springer, Berlin, Heidelberg, 101–133. https://link.springer.com/
chapter/10.1007/978-3-642-54432-3_6

[10] Nicholas R. Jennings. 2000-03-01. On agent-based software engineering. Artificial
Intelligence 117, 2 (2000-03-01), 277–296. http://www.sciencedirect.com/science/
article/pii/S0004370299001071

[11] Nicholas R. Jennings. 2001. An agent-based approach for building complex
software systems. Commun. ACM 44, 4 (April 2001), 35–41. http://portal.acm.
org/citation.cfm?doid=367211.367250

[12] Capers Jones. 2008. Applied Software Measurement: Global Analysis of Productivity
and Quality (3rd ed.). McGraw-Hill, New York.

[13] Joanna Juziuk, Danny Weyns, and Tom Holvoet. 2014. Design Patterns for
Multi-agent Systems: A Systematic Literature Review. In Agent-Oriented Soft-
ware Engineering. Springer, Berlin, Heidelberg, 79–99. https://link.springer.com/
chapter/10.1007/978-3-642-54432-3_5

[14] Renato Levy and Goutam Satapathy. 2014. Design and Implementation of
Very Large Agent-Based Systems. In Agent-Oriented Software Engineering.
Springer, Berlin, Heidelberg, 289–307. https://link.springer.com/chapter/10.1007/
978-3-642-54432-3_15

[15] Ashok U. Mallya and Munindar P. Singh. 2006. Incorporating Commitment
Protocols into Tropos. In Agent-Oriented Software Engineering VI, Jörg P. Müller
and Franco Zambonelli (Eds.). Vol. 3950. Springer Berlin Heidelberg, Berlin,
Heidelberg, 69–80. http://link.springer.com/10.1007/11752660_6

[16] Jörg P. Müller and Klaus Fischer. 2014. Application Impact of Multi-agent
Systems and Technologies: A Survey. In Agent-Oriented Software Engineering.
Springer, Berlin, Heidelberg, 27–53. https://link.springer.com/chapter/10.1007/
978-3-642-54432-3_3

[17] Lin Padgham, John Thangarajah, and Michael Winikoff. 2014. Prometheus Re-
search Directions. In Agent-Oriented Software Engineering. Springer, Berlin, Hei-
delberg, 155–171. https://link.springer.com/chapter/10.1007/978-3-642-54432-3_
8

[18] Lin Padgham and Michael Winikoff. 2004. Developing Intelligent Agent Systems:
A Practical Guide. John Wiley & Sons, Ltd, Chichester, UK. http://doi.wiley.com/
10.1002/0470861223

[19] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. 2008. An architecture for
exception management in multiagent systems. International Journal of Agent-
Oriented Software Engineering 2, 3 (2008), 267. http://www.inderscience.com/
link.php?id=19420

[20] Yoav Shoham. 1991. Agent-oriented programming. Artificial Intelligence 60 (1991),
51–92.

[21] Arnon Sturm and Onn Shehory. 2014. Agent-Oriented Software Engineer-
ing: Revisiting the State of the Art. In Agent-Oriented Software Engineering.
Springer, Berlin, Heidelberg, 13–26. https://link.springer.com/chapter/10.1007/
978-3-642-54432-3_2

[22] P. R. Telang and M. P. Singh. 2012. Specifying and Verifying Cross-Organizational
Business Models: An Agent-Oriented Approach. IEEE Transactions on Services
Computing 5, 3 (2012), 305–318.

[23] Michael Winikoff. 2009. Future Directions for Agent-Based Software Engineering.
International Journal of Agent-Oriented Software Engineering 3, 4 (May 2009), 402–
410. http://dx.doi.org/10.1504/IJAOSE.2009.025319

[24] Ari Yakir and Gal A. Kaminka. 2007. An Integrated Development Environment
and Architecture for Soar-Based Agents. In Innovative Applications of Artificial
Intelligence (IAAI-07).

https://link.springer.com/chapter/10.1007/978-3-642-54432-3_13
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_13
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_11
http://www.inderscience.com/link.php?id=16265
http://www.inderscience.com/link.php?id=16265
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_12
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_12
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_6
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_6
http://www.sciencedirect.com/science/article/pii/S0004370299001071
http://www.sciencedirect.com/science/article/pii/S0004370299001071
http://portal.acm.org/citation.cfm?doid=367211.367250
http://portal.acm.org/citation.cfm?doid=367211.367250
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_5
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_5
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_15
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_15
http://link.springer.com/10.1007/11752660_6
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_3
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_3
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_8
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_8
http://doi.wiley.com/10.1002/0470861223
http://doi.wiley.com/10.1002/0470861223
http://www.inderscience.com/link.php?id=19420
http://www.inderscience.com/link.php?id=19420
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_2
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_2
http://dx.doi.org/10.1504/IJAOSE.2009.025319

	Abstract
	1 Introduction
	2 Background
	3 Software Project Data Collection and Curation
	4 Manual Analysis
	5 Machine Learning Analysis
	References

