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Abstract

There is growing recognition that many applications of robots will require

a human operator to supervise and control multiple robots that collaborate to

achieve the operator’s goals. However, the bulk of existing work in this area as-

sumes that robots are independent of each other, and thus ignores key challenges

and opportunities in monitoring and operating tightly-coordinating teams. This

thesis takes steps to address these open issues. First, we address the challenge

of effectively monitoring multiple coordinating robots. We introduce a graph-

ical socially-attentivedisplay that explicitly shows the state of coordination in

the team, in terms of the robots’ state with respect to each other. As a result,

the operator can easily detect coordination failures, even before these cause over-

all failure in the task. Second, we show that in resolving contingencies (call-

requests), an opportunity exists for taking advantage of the robots’ teamwork,

to allow the robots to actively assist the operator. We propose a distributed ap-

proach to call-request resolution (including two variations), and an implementa-

tion method for behavior-based robots. This implementation method allows the

operator to quickly switch control between robots, even while they are active. We

evaluate all of these techniques in several multi-robot tasks, in experiments with

up to 25 operators, each controlling multiple robots. The results show significant

quantitative and qualitative improvements in task completion times, number of

coordination failures, and performance consistency across operators.
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Chapter 1

Introduction

There is need for human control of robot teams. While robots can do many mun-

dane or dangerous tasks for us, in many cases we can not leave all decisions to

them, for example for safety reasons, or to make decisions which the robots are

unable to make. While the autonomy of robots increases every day, many fu-

ture applications would still require a human operator to direct multiple robots

that coordinate with each other to achieve the operator’s goals. Examples of such

applications include search and rescue operations [11], multi-rover planetary ex-

ploration, and multi-vehicle operation [5].

Previous approaches to human control of multiple robots treat the operator’s

attention as a centralized resource, which is time-shared between the robots[4, 5,

1, 22]. Robots that require operator’s assistance initiate or are issuedcall-requests,

which are queued for the operator. The operator switches control between robots,

and uses single-robot teleoperation with individual robots to resolve the call re-

quests in some (prioritized) sequence. This method works well in settings where

the task of each robot is independent of its peers, and thus the resolution of call

requests can be done in sequence, independently of other call-requests.

Unfortunately, these centralized methods face difficulties incoordinated tasks—

tasks that require tight, continuous, coordination between the robots, i.e., robot

teams where robots are highly inter-dependent. First, due to the coordinated na-

ture of the task, robots depend on each other’s execution of subtasks; thus a single

point of failure (e.g., a stuck robot) will quickly lead to multiple call requests.
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Second, the coordination state of the robots must be monitored in addition to their

individual state; but inferring the state of coordination from multiple individual

robot reports can be difficult for the operator. Third, when the operator switches

control to a robot, the other robots must wait for the resolution of the call-request,

because their own decision-making depends on the results of the operator’s inter-

vention. As a result, robots wait idly while the call request is resolved.

Thus two key challenges are raised in controlling a robotic team in a coordi-

nated task. The first challenge is to integrate information from multiple robots so

as to allow the operator to monitor their coordination, in addition to their progress

towards the goals (coordination monitoring challenge). The second challenge is

to allow the operator to act on call-requests such that resolution time is minimized

(resolution challenge)

For example, consider the task of controlling three robots moving in formation

(a task requiring tight continuous coordination between robots), by teleoperating

the lead robot, and allowing the others to maintain the coordinated movement au-

tonomously. The monitoring challenge is raised because the operator must mon-

itor the coordinated movement itself—slowing down or speeding up the lead as

necessary—and not just the distance to the destination. To do this, the opera-

tor must integrate incoming information from all robots (e.g., the robot’s camera

view), which can be difficult. The resolution challenge is raised when a robot

is stuck. Since the task requires moving in coordinated movement, the continual

movement of the robot (as well as the coordinated movement they will take) de-

pends on which robot failed, and whether the failure is catastrophic. Thus most

robots will be idle while the the operator attempts to resolve the fault (for in-

stance, by teleoperating one of the functioning robots to provide video imagery of

the stuck robot).

This thesis focuses on these two challenges within the context of tasks re-

quiring tight coordination. To address the monitoring challenge, we develop a

graphicalcoordination monitoring displaythat allows the operator to visualize

the robots’ coordination—their state with respect to each other—and thus visu-

ally identify coordination failures before they become catastrophic. To address

the resolution challenge, we take advantage of the teamwork of the robots, to al-

low the robots to actively assist the operator in resolving a failure. We examine a
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distributedcontrol methodology in which functioning members of the team, rather

than switching to an idle mode of operation, actively seek to assist the operator in

determining the failure.

1.1 Coordination Monitoring

Our hypothesis is that coordinated tasks requires explicit monitoring of the co-

ordination in the team, i.e., monitoring of the team-members’ state with respect

to each other. Such monitoring is calledsocially-attentive monitoringbecause it

focuses on inter-agent relations, rather than their goals [8].

A corollary of our hypothesis is that when an operator controls robots in a

coordinated task, she will need to infer socially-attentive information if it is not

directly available. Unfortunately, existing displays only provide information about

the individual state of each robot. Thus the operator is cognitively burdened with

inferring the socially-attentive information that is required. In the coordinated

movement example, the operator must build a mental picture of the coordination

by relying on individual displays (the robot’s camera view).

To address this challenge, we develop a graphicalsocially-attentive display

that complements existing displays. This display allows the operator to visualize

the robots’ coordination—their state with respect to each other—and thus visually

identify coordination failures before they become catastrophic. Our hypothesis is

that by showing the operator an explicit visualization of the coordination state

of the team, her cognitive load would be reduced, and her performance would

increase.

We empirically evaluated this hypothesis in extensive systematic experiments

with human operators. The experiments included monitoring robots in two ro-

botics team coordinated tasks: Coordinated movement (25 human operators) and

cooperative pushing (19 human operators). We evaluate previous individual dis-

plays with and without the socially-attentive display. Our statistically-significant

results show that the use of the socially-attentive display (i) reduces the number

of failures and task completion time in these tasks; (ii) reduces the number of

failures per second; and (iii) reduces the variance in controlling robots, thus lead-

ing to more consistent performance across operators. These results indicate that
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the socially-attentive display leads to significant qualitative improvements in the

operators interaction with the robots.

1.2 Distributed Scheme

Operating a team of coordinated robots raises the opportunity for a novel call-

request resolution method, in which the responsibility for the resolution of the call

request isdistributed. Rather than having the operator centrally take all actions

to resolve a failure, the otherwise-idle robot teammates can offer assistance, e.g.,

in providing useful information or in carrying out subtasks associated with the

resolution process.

For example, consider the previously described task of controlling robots mov-

ing in formation. Suppose one of the robots gets stuck, and is unable to move. A

call request is issued to the operator, which must identify the failure and attempt to

resolve it in some fashion. Previous approaches would have the operator attempt

to teleoperate the robot in an attempt to dislodge it, while the other robots are idle.

However, the operator could take advantage of the other robots to resolve the

failure. First, the other robots could be used to provide video imagery of the

stuck robot from various angles. Second, the robots may assist the operator to

determine the location of the robots–since they can calculate its expected position

with respect to their own position–based on its position within the coordinated

movement.

Another issue in controlling multiple robots is developing ways of switching

control from one robot to the others. Because the operator switches control be-

tween the robots, she will likely interfere with the previously running behavior on

the robot. A naive approach in switching control between robots is to manually

turn off the behaviors that were previously running autonomously on the robot in

order to take control. We implement this idea by allowing each running behav-

ior to communicate with the operator to change the behavior status from active

to paused. The pause method came from the need of reducing switching time by

automating two steps. First, switch for teleoperated mode. Second, switch tele-

operated to autonomous mode. The first step gives the operator the opportunity

to interfere with the robot’s action while the second step returns the robot to its
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autonomous behavior. Thus the operator can switch control to another robot while

the last controlled robot returns to working autonomously. This method minimizes

the time of switching control and avoids some cascading failures. (a failure that

causes another failure).

In this thesis we examine several variations of a distributed control methodol-

ogy in which functioning members of the team, rather than switching to an idle

mode of operation, actively seek to assist the operator in determining the fail-

ure. We empirically evaluate these variations (and contrast them with previous

approaches) in experiments with 21 human operators. The experiments evaluate

several concrete call-request scenarios, in which a stuck robot must be located by

the operator. The results show that distributed call-request resolution who takes

advantage the quick switching technique leads to shorter failure-recovery times.

In addition we find that when the operator’s use the distributed call-request reso-

lution but switch the control manually, performance is not better a other control

methods, while using the quick switch control with the distributed call-request

resolution the results are significantly better then the others.
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Chapter 2

Related Works

The work we present in this thesis focuses on both a visual monitoring interface

(section 2.1), as well as on a distributed collaborative control paradigm (section

2.2).

2.1 Monitoring

Previous work on visual interfaces for multiple robots attempt to immerse the op-

erator within the environment of the teleoperated robot, while facilitating switch-

ing control between robots. For instance, Adams et al. [1] investigated the use of

a three-dimensional GUI that has selectable operation modes to switch control be-

tween robots, teleoperate a robot, create a navigation plan for the robot, or replay

the last few minutes of the robot’s task execution (for diagnosis of failures). Our

work contrasts sharply with this approach, as we focus on a display that abstracts

away the details of the robots’ local surroundings, focusing instead on displaying

their relative state, not their absolute state with respect to some environment.

Yanko et al. at [23] describes a techniques for making human operators aware

of pertinent information regarding the robot and its environment. They tested this

techniques in a rescue-robot competition. Based on their study, they recommend:

to fuse sensor information to lower the cognitive load on user, provide user inter-

faces that support multiple robots in a single display, minimize the use of multiple

windows and provide more spatial information about the robot in the environ-

11



ment. Our coordination monitoring fills these requirements by giving the operator

the one view of the controlled robot and the relation between all the robots.

Rybski et al. [16] describes an architecture for allowing one operator to control

multiple (miniature) robots. The main idea is to increase robot autonomy and

allow the operator to interrupt the robot behavior with high-level commands. In

addition they supply an interface for the operator. The interface should support

two purposes: mission design, where the operator can build complex behaviors

from existing primitive behaviors, and mission execution, where the operator can

view mission status and teleoperate the robots. Our interface is fundamentally

different from this interface in that we show a state view of all the robots, rather

than only an individual robot’s.

Keskinpala et al. at [9, 10] developed a system for controling in robots from

a PDA (Personal Digital Assistant)—platforms capable of providing small, light

weights mobile interaction devices for robotic systems. The system includes three

screens: vision-only, sensor-only and vision with sensory overlay. Those methods

come from the wish to provide the minimum and necessary data the operator needs

(because of lack space in the PDA’s display). In our work we suffers from a similar

problem of space lack in the monitor. Our work is different in controlling number

of robots and takes advantage of the achievable multiple robots information.

Many research investigations have focused on the area of one operator con-

trolling one robot. Johanson et al. [7] focus on the interface supplying to the

operator. They propose a discrete geodesic dome called a Sensory EgoSphere

(SES). The SES is a "two dimensional data structure centered on the robot’s coor-

dinate frame" who supplies the operator a pointer to an objects on a map and the

robot’s sensor state. Our work focus in controlling on multiple robots while the

display we supply the operator (therelation tool) shows the relation state between

the robots in coordinated task.

Simmons et al. [19] describes a system that integrates autonomous naviga-

tion, task executive, task planning and intuitive graphical user interface to control

multiple heterogeneous robots. The graphical user interface (GUI) is based on

a "playbook" where the operator sends small intuitive and parameterized com-

mands. The "playbook" idea is to rapidly assign tasks to the team of robots with

minimal user interface. In our work we focus a coordinated task in which we takes
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advantage of the relationships between the robots.

2.2 Call-Request and Teleoperation

The bulk of existing work on controlling multiple robots put the operator in a

centralized role in attending to robots, and do not often distinguish between dif-

ferent task types on the basis of the coordination involved. Indeed, many existing

approaches implicitly assume that robots are relatively independent in their execu-

tion of sub-tasks. As a result, a centralized control scheme does not interfere with

task execution. Fields [4] discusses unplanned interactions between a human and

multiple robots in battlefield settings. Robots are mostly autonomous, but may

sendcall requestmessages to the human operator to ask for assistance. These call

requests are queued, and the operator resolves the problems one by one. While

our interest is in coordinated tasks, in which when one robot needs help, all the

other robots cannot proceed.

Fong et al. [5] propose acollaborative controlsystem that allows robots to

initiate and engage in dialogue with the human operators. The robots employ

user-modeling techniques to improve their interaction with the operator. We differ

in how the attention of the operator is divided, when a number of robots needs the

operator. Fong suggest to help the robots one by one while tending to the most

urgent request first. While in our method there is collaboration between multiple

robots and the operator to solve the call-request.

In contrast to the above centralized approaches, we believe that resolving

call-requests is in the interests of all robots currently coordinating with the ro-

bot requiring assistance—and thus they should be actively collaborating with the

operator to resolve the call request. Other work has also examined distributed

paradigms for human/robot interaction. Tews et al. [22] describe a scalable

client/server architecture that allows multiple robots and humans to queue service

requests for one another. Scerri et al. [17] describe an architecture facilitating

teamwork of humans, agents and robots, by providing each member of the team

with a proxy and have the proxies act together as a team. Our work differs from

both of these investigations in that we do not attempt to put humans and robots

on equal ground with respect to control. In our current work, only the human
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can initiate the distribution of a task to resolve a call-request. However, once so

selected, the task is carried out in tandem by all members of the robotic team and

the operator.

Scerri et al. [18] describes a team of agents working with humans. Each

human has an agent that represents him or her. The work deals with the autonomy

of the robots and the conditions for when they should stop being autonomous and

ask the human for help. In [18] there is a problem of coordinating between the

agents when some of them are interacting with the human(s). Our work is different

in that when one robot is in interaction with the human, all other robots are also

engaged in this interaction. So we do not suffer from the coordination problem

between the robots.

Fong et al. [6] describes a collaborative control system that can assist collab-

oration between one human and number of robots. The system gets information

about the type of human (novice,scientist,expert) and sends the data from the ro-

bots appropriately (i.e., if the human is an expert she will get more opportunity

to interact). The paper suggests a QueryManager that manages the situation of

number of independent robots trying to ask questions from the human at the same

time. Our thesis is different in that the decision on questions and information is

made collaboratively, as part of a joint effort. Moreover, the communication be-

tween robots and the operator is moderated in distributed fashion, by the robots

themselves.

Myers et al. [12] discusses an architecture called TIGER that allows a human

to interact with software agents. The agents are totaly autonomous, but above

all the agents they have a coordinator agent that coordinates the agents’ actions

and the human action. The main goal of TIGER is to gather information from all

agents and supply the information that other agents need by relying on this data.

The second goal is to give an answer for unexpected events, by coordinating with

the human. The agent is also responsible for translating operator instruction to the

team. This approach thus assumes that call requests my be resolved autonomously

by the robots, given appropriate high-level commands to the team. In contrast to

this approach, we believe that often, the operator must directly interact with a

failing robot or its teammates to resolve a call request. We thus allow the operator

to directly interact with any single robot, while others assist.
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ACTRESS (Actor-based Robots and Equipment Synthesis System) [3, 20, 24]

is a multi-agent robot architecture which incorporates an interface for monitor-

ing and controlling robots. The operator may issue commands that affect groups

or individual robots, and information is presented to the operator based on both

explicit requests (from the operator to individual robots), as well as by gather-

ing of information exchanged by the robots. This information is processed and

presented—and in this similar to the display we develop in this thesis. However,

ACTRESS does not discuss the visual display of this information, and in that

differs from our work significantly. In addition ACTRESS does not utilize collab-

oration between the operators and robots in resolving call requests. The operator

may issue commands to robots that assist in such resolution, but the robots are

otherwise idle.

Ali [2] compares different classes of human-robot interaction (Direct manual

control, supervisor control, individual and group control) in mobile behavior-

based multi-agent tele-robotic system (MTS), to determine how to best match

tasks to interaction class. The parameters measured are effectiveness (in term of

task completion and speed of completion), safety (both for the robots and their

environment), and ease to use. While we similarly evaluate different interaction

methods, we focus only on the case of one operator and multiple robots. However,

within those, we distinguish several different types. Moreover, we provide new

distributed resolution types.

Nakauchi el al. [13] build a multiagent interface architecture for a teamwork

system of multiple humans and robots. The system provides a protocol for com-

munication between the robots and the humans. The main goal of the architecture

is to allow communication between the robots and humans. Our work is limited

to one operator that controls multiple robots in coordinated tasks and we do not

deal with the communication problem.

Olsen et al. [14] describes a method for measuring the scalability of adding

robots to one operator. They describes this term as the fan-out of the human robot

team. According to this idea, robots that have a minimal need of interaction with

the operator will achieve higher fan-out. They suggest a metric based on this

fan-out reading that measures the various lengths of human-robot interactions.
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Chapter 3

Socially-Attentive Display

The hypothesis underlying our investigation is that coordinated tasks require mon-

itoring of the coordination in the team, i.e., explicit monitoring of the team-

members’ state with respect to each other. Such monitoring is calledsocially-

attentive monitoringbecause it focuses on inter-agent relations, rather than their

goals [8]. For example, in formation maintenance tasks, socially-attentive mon-

itoring may include information about the relative positions of the robots within

the formation (without reference to where the formation is heading).

The key to the monitoring approach we advocate is to provide the opera-

tor with a socially-attentive display that integrates the raw information coming

from each individual robot into a coherent visual display of the social relationship

within the monitoring system. Using this display, the operator can easily identify

coordination faults (if there are any) within the monitored team, with little or no

need for inferring this information from the other displays. This eases the cogni-

tive load on the operator in coordinated tasks. The socially-attentive display must

complement the monitoring display associated with the task.

Towards this end, we developed a display calledthe relation tool. The rela-

tion tool is a graphical display of multiple robot states on a two-dimensional (2D)

plane. Colored dots denote different robots. The positions of the dots denote their

states, and thus the shape they make up—their relative positioning—denotes their

relative states. In principle, a target relative positioning of the dots must be de-

fined for each application, which signifies correct coordination. Every application
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requires its own method of projecting robot state onto a 2D plane, and a target

shape that defines normative coordination. The key is that the operator should be

able to see, at a glance, whether the shape being maintained corresponds to correct

coordinated execution.

The relation tool can be useful in tasks where the coordination between the

robot is not spatial. For instance, given a set of sub-tasks which are to be assigned

uniformly to different robots (e.g., using ALLIANCE [15]), the relation tool could

display use the vertical axis to denote the load on each robot. The operator could

then check whether the robots’ load is balanced simply by noting the different

heights of different dots (signifying different robots). It would also be trivial to

use additional visual signs to show the operator the deviation of the shape from

the ideal, etc.

The relation tool is a simple and effective tool. It has three main advantages.

First, it significantly reduces the amount of inference needed by the operator to

infer the relative state of robots—and thus the state of coordination between them.

Second, it is not limited to reproducing a global view of the robots, but instead its

dimensions can be used to directly provide the operator with information about

what is going wrong (in case of failure), e.g., as in the coordinated movement

case. Third, it can easily complement other types of displays useful for the task,

such as any that show the heading or distance left to the destination.

We investigate the relation tool concretely in two popular coordinated tasks:

Coordinated movement and cooperative pushing. Both of these tasks have been

implemented in our lab using Sony AIBO robots. Each robot has an on-board

video camera and a infra-red distance sensor pointing at the direction of the cam-

era. They transmit their video and sensor readings to the operator’s station for

monitoring (the operator cannot see the AIBOs directly). The operator can inter-

vene at any time in the operation of any of the robots. The software components

utilized and extended the Tekkotsu AIBO control software [21].

3.1 Box-Pushing UsingSocially-Attentive Display

We begin with the cooperative pushing task. In this task, two AIBO robots jointly

push a light-weight bar across the floor. The bar is color-marked, such that each
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(a) Failure in pushing (b) Success in pushing

Figure 3.1: Ground truth in failed and successful cooperative pushing

robot can identify its position with respect to the bar. In this task we allow the

robots only walking ahead without any turns. So, if one robot push the box faster

then the other robot the bar will change its degree with respect to the robots, thing

that indicate a drift. The robot’s head always autonomously track the bar, so it can

knows by it head angle if it behind or forward the other robot. The robots do not

communicate with each other in this task (and all the tasks that will mention in

this thesis).

Figures 3.1, 3.2 and 3.3 show this task from number of different view tools

(global world-view, split camera-view and relation tool). In those figures, sub-

figure (a) shows the pushing task in failure condition, while sub-figure (b) show

this task in success condition. Of course, providing a visualization of the relative

states of robots is trivially done when a global world-view camera exists (Figure

3.1), or perfect global localization data is available. However, this is not often the

case in the real-world applications, especially in outdoors settings.

The state of the art in monitoring multiple robots is a split-camera view (figure

3.2). As we can see in figure 3.2 it difficult to determine where is the failure con-

dition and the success condition between those two sub figures. That split camera

view is problematic in multiple robots coordinated tasks from the coordinated im-

portance better then each robot view. So, the lack of the split camera view is that it

shows each robot from its perspective view. While we fill the need of a centralize

tool that can manage all the necessary data it get from all the robots and present it
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(a) Failure in pushing (b) Success in pushing

Figure 3.2: Split-camera view

(a) Failure in pushing (b) Success in pushing

Figure 3.3: Relation tool view
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to the operator as corresponding to the coordination between the robots.

Our relation tool supplies the above demand by displaying the robots’ relative

position to other team members. Through using this tool, one can easily visualize

the failure and success conditions. For example, figure 3.3 demonstrates the rela-

tion tool graphically shows differences in the box pushing task. The tool shows

the failure condition (sub-figure (a)) where the robots are not walking horizontally

(the left robot is in front of the other robot). While sub-figure (b) within the tool

shows the success condition where the robots walk horizontally.

The coordinate system here (in the relation tool) is represented as follow: the

X axis displays which robot is to the relative right of the other robot. The Y axis

expresses the distance from the pushed box. Using the line connect the two robots

(represented as dots in the relation tool) the operator can easily detected if the

controlled robot is pushing to fast or to slow.

3.2 Coordinated Movement UsingSocially-Attentive

Display

To test our socially attentive display in another domain we choose coordinated

movement task. The objective is to navigate a simple triangular formation (three

robots), through a short obstacle course. A simple algorithm for maintaining the

formation with these robots has the lead (front) robot teleoperated by the operator,

while the two follower robots maintain fixed angles and distances to this robot

using their sensors. The robots do not utilize any communications for maintaining

the coordinated movement. We do not assume that a global (world-view) camera

exists, since in most realistic applications this assumption would not hold.

Figures 3.4 and 3.5 show this task in action. In both figures, sub-figure (a)

shows the actual position of the robots on the ground; (b) shows a screen snapshot

of the relation tool; and (c) shows the split-camera view from each of the indi-

vidual robots. Figure 3.4 shows a failed coordinated movement situation, while

Figure 3.5 shows an example of perfect coordinated movement.

While the split-camera view does indeed provide indication of whether the

coordinated movement is maintained, it relies on inference by the operator to do
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(a) Ground truth

(b) Relation tool view (c) Split-camera view

Figure 3.4: Failing Coordinated Movement
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(a) Ground truth

(b) Relation tool view (c) Split-camera view

Figure 3.5: Successful Coordinated Movement
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so. Moreover, it is difficult to see from the split camera view to what degree the

coordinated movement is maintained, and which robots are lagging behind or to

the side.

In contrast, the relation tool makes it easy, at a glance, to see whether the co-

ordinated movement is maintained. It integrates and processes incoming sensory

information from individual robots, using an averaging window to smooth over

any erroneous jumps in sensor readings. It then translates the smoothed data into

a 2D coordinates. Here, the translation from the relative states to be maintained to

a 2D plane is relatively simple, since the task itself is defined in terms of relative

positions.

We use a polar coordinate system. The X axis denotes the angle to the leader,

while the Y axis denotes the distance to the leader. The position of the leader

is always fixed. We also connected the points (that represent the robots) with

lines so they can create a shape for easy operator recognition (e.g. triangle for

the coordinated movement). Using these coordinates and shape, one can quickly

determine whether the coordinated movement is breaking because a robot is lag-

ging behind (distance too great), or its angle with respect to the leader is too sharp

(e.g., because of a sharp turn).

Indeed, to further assist the operator in localizing coordination problems, the

display uses additional mechanisms to draw the attention of the operator where

its most needed. One such fault-feedback mechanism uses the size of the dots,

representing robot positions, to draw the operator’s attention to failing robots.

We use three sizes: regular, medium, and large. Regular size is used when the

associated robot lies fulfills the constraints of the formation. Medium size is used

when the robot begins to report intermittent failures in following the lead, as these

are indicative of an impending formation failure. The large size is used when the

formation is essentially broken, e.g., when the robot in question completely lost

track of the lead robot(see figure 3.4), and is unable to proceed.

Another fault-feedback mechanism is the dashed line drawn across the bottom

of the display. This line signifies the maximum distance sensed by the robots’

sensors, and thus the position in which they are likely to lose track of the leader.

The operator may use this line to estimate how far it can let the robots stray away

from the leader, while not getting into catastrophic failures.
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Chapter 4

Distributed Call-Request Resolution

As previously discussed, centralized resolution of call requests, by the operator,

may work well when robots’ tasks are independent of each other. However, in

coordinated tasks, many robots may have to stop their task execution until a call

request is resolved, because their own task execution depends on that of the robot

that requires the resolution. In such cases, it is critical to minimize the time it

takes to resolve a call request.

We thus focus on a distributed control approach, whereby the robots who de-

pend on the resolution of the call-request take active steps to resolve it, in collab-

oration with the operator. This approach takes advantage of the robot teamwork,

by turning the resolution of the call-request into a distributed collaborative task

for all involved. Moreover, the active robots (that do not require assistance) are

involved in a coordinated effort with the robot requiring assistance, and thus may

be in a better position to assist it.

We investigate distributed resolution in repairing broken coordinated move-

ments. Coordinated movements are good examples of tasks requiring tight, con-

tinuous coordinations between robots. When a robot fails and is unable to move,

the coordinated movement cannot proceed until the failure is resolved some fash-

ion: Either the robot becomes unstuck, or it is declared dead and the coordinated

movement proceeds without it. A stuck robot often cannot report on why it is

stuck, due to sensory range limitations. For instance, in the AIBO 4-legged ro-

bots, the camera (which is mounted in the head) cannot pan and tilt to cover the
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rear legs. Thus if one of them is caught by something, the robots own sensors

cannot identify it. The robot must then issue a call-request for assistance. The

operator, in turn, must use one of the other robots to locate the stuck robot and

get video imagery of its state. This act of locating the other robot and getting

sufficiently close to it is a key factor in the resolution of the call request in this

case.

To make the investigation concrete, we contrast different resolution schemes.

The firstteleoperatedscheme corresponded to the centralized control used in pre-

vious approaches (e.g., [1], [6]). In this scheme, the operator would switch control

from one active robot to the next, as deemed necessary, and manually teleoperated

the controlled robots (one at a time) until the disabled robot was found. When one

robot was controlled, the others remain idle.

A second scheme previously investigated is the fullyautonmousscheme, that

utilizes the active robots to search for their peer. Here, the robots first head to-

wards the expected position of their stuck peer. This position can be estimated

based on their knowledge of the coordinated movement (organizational knowl-

edge), under the assumption that the robot became stuck in its previous location

within the coordinated movement. If they fail to find it there, they begin a general

search pattern (spiral) that is likely to find the robot, but may take relatively long

time. This scheme corresponds roughly to the method described in [12], where the

robots receive general instructions (here, "search!") by the operator, but are left to

translate and follow these commands autonomously, without direct manipulation.

We compare these previous approaches to two variations of distributed call-

request resolution. In the first (semi-distributed), the robots assist the operator by

autonomously beginning to search for the failing robot as soon as the call request

is received. The operator views a split-screen view of their video imagery, and as

soon as it identifies the stuck robot in one of the displays, can switch control to the

robot associated with the display. Once a robot is taken over by the operator, the

others become idle. The operator may still switch control to these other robots,

but they no longer work in an autonomous fashion.

The fully-distributedscheme mixes teleoperation and autonomous search all

through the call resolution process, until the stuck robot is located. The operator

may teleoperate any robot at any time, and may switch between controlled robots
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as needed. The others coordinate with it (for instance, to cover more ground in

the search). However, even if the operator is not involved (e.g., because she may

be handling other, unrelated, call-requests), the active robot will still seek out the

failing robot. Thus robots are actively searching for their stuck peer in parallel to

the operators. The search ends when either as autonomous robot or a teleoperated

robot are sufficiently near the stuck robot.

The motivation for the distributed schemes is that the robots may be able to

use their knowledge of the robot’s role in the coordinated movement to attempt

to locate it. The robots that maintain the coordinated movement have improved

chances to localize themselves with respect to the coordinated movement, then

an operator which takes control of a robot in the coordinated movement, without

the situational awareness of the robots. On the other hand, the operator has supe-

rior interface and vision, and may be able to locate the stuck robot in the video

imagery, even in cases where the robots would be unable to do it.

The distributed approach requires the operator to be able to switch control

between robots, and for the robots to be active when the switch occurs. Previously,

when the operator wants to switch control from robot A to robot B, she needed to

turn on (manually) robot A’s autonomous behavior (for working simultaneously,

to achieve the common goal). Then she needed to turn off (manually) robot B’s

behavior, and take control of the robot. This part of switching control was always

problematic in time, causing delay and cascading failures. Thus it provides the

motivation for needing to switch quickly.

We propose here a quick method for the operator’s switching control. The

quick switching control technique allows each running behavior (on the robot)

to communicate with the operator to change the behavior status from active to

paused. Each behavior listening to the operator switch control event. The oper-

ator can send two event kinds: pause and activate, that change the current run-

ning behavior to paused status or active status correspondingly. The paused status

stops the behavior from controlling the robot’s actuators, helping the operator to

smoothly teleoperate the robot without the behavior interfering. Note that this part

of stopping the behavior from controlling the robot’s actuators can precisely adjust

to specific sensors/actuators, but we leave this for future work. The active status

returns the paused behavior to its focus and actuator control. Thus the operator
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can switch its control to another robot while the previously controlled robot works

autonomously. This quick-switching technique decreases the delay in switching

control and avoids cascading failures.

Our method of fixing the behavior at paused or active status, and not turning

it off, came from the need of allowing the operator to quickly switch control from

one robot to the others a number of times. The distributed approach take advantage

of the main idea where all the robots working simultaneously. So, if the operator

wants to switch control from robot A to robot B it is important to make robot A

work autonomously, as it is important to allow the operator teleoperate robot B.

Our previously definedquick-pausemethod avoids some cascading failures.

This is critical to the success of the distributed control method. In this method,

an operator may switch to control a previously-autonomous robot because the

operator has observed something of interest within the robot’s field of view. If

the switch is not made quickly, the latency in switching will allow the robot a

few more moments of autonomous activity, which would take it farther from the

feature of interest. In our case, if the robot is surveying the landscape for the stuck

teammate, a few more seconds of switching latency cause it to turn away from the

correct direction, even after it was identified by the operator. The experiments we

conducted show that indeed a slower switching method completely neutralizes the

effects of the distributed control approach.
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Chapter 5

Experiments

In this chapter, in section 5.1 we will evaluate our monitoring tool (relation tool)

in combination with the split camera view, the (relation tool) alone, and with only

the split camera view. In section 5.2 we will evaluate our distributed approach that

incudes the quick switching technique in front of autonomous, teleoperated and

semi-distributed approaches.

5.1 Monitoring Evaluation

In this section we will evaluate the influence of our coordinated team monitoring

tool - relation tool. In subsection 5.1.1 we tested the effective of therelation

tool in the cooperative pushing box domain. We examine here the average angle

deviation of the pushing and time completion task (more details will described

below). In subsection 5.1.2 we tested the effective of therelation toolin a triangle

formation walk (the coordinated movement) of three robots. We examine here

the angle deviation error, time complete task and number of formation breaks.

We find therelation tool in both (box-pushing and the coordinated movement)

significantly decreasing time completion task, angle error deviation (also in the

formation walk - less number of formation break).
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5.1.1 Box-Pushing Evaluation

We here examine the use of the relation tool in the cooperative pushing task. Here,

we contrasted three interfaces: a split-camera view only, a combination split-

camera and relation tool, and the use of the relation-tool alone. Nineteen human

operators were tested on all three interfaces, again scrambling the order of their

introduction to the different interfaces to prevent biasing the results due to human

learning. Their performance was measured as the average absolute angle devia-

tion from the imaginary horizontal line connecting the robots when they maintain

ideal relative velocity. This angle was sampled at 20Hz during task execution.

The results are averaged for all operators.

However, the operator seeks to make the two pushing robots as horizontal as

he could. In another words the operator goal is making the robots pushing at the

same force. One robot is working autonomously, changing its velocity in respect

to the box distance. The second robot is teleopereted. The operator must be

careful not to push too quickly for the other robot, nor to lag behind.

The results of this experiment are shown in Figure 5.1. The figure shows the

average absolute angle error, averaged across all operators. Clearly, both combi-

nations that use the relation tool are significantly superior to the interface relaying

on camera alone. Moreover, the surprising results here is that the relation tool by

itself is sufficient (in fact, even slightly better then its combination with the split

view). This is due to this task being essentially a pure-coordination task: The

operator does not need to worry about where the pushed object is going, as long

as the relative velocity of the robots is maintained at 0 (i.e., their velocities are

equal). Thus even a socially-attentive display by itself is sufficient. On the other

hand, the non-social split-camera view (by itself), is difficult to use for coordi-

nation. A one-tailed t-test (assuming unequal variance) shows that the difference

between using the tool by itself, and using the split camera view alone, is statisti-

cally significant. The probability of the null hypothesis isρ < 0.014 when looking

at the difference in the number of failures.

In addition the standard deviation of the non-social split-camera view was 7.11

while any combination with the socially attentive display decrease unequivocally

the standard deviation ( 0.79 in "only tool" and 0.93 in "split+tool").
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Figure 5.1: Cooperative Pushing: Total failures

We also want to measure the angle error results with respect to task completion

time. The deviation from the ideal course (where the robots always synchronize

pushing the box) is difficult for measuring (due to a physical aspects). Thus we

needed to stop the operator (and time) at an estimated distance equivalent to the

length of the ideal course. Because of the distance estimation our time measure-

ment here is not accurate but it gives us an overall understanding of the operator

control in this domain (a domain where the split camera view is not provide nec-

essary data).

Figure 5.2 shows the results of this experiment as average absolute angle error

versus time to complete a 180cm walk. The Y axis is the average angle error

and the X axis is the time for complete the task. Indeed, the shortest time for

completing the 180cm walk was by the method that does not use our socially-

attentive display (thesplit view). By the Y axis we can see that this method has

the maximum average angle error. The average angle error criteria shows the

reason thesplit viewscheme finish the task as quickly as possible. We believe that

this happens because the operator has no idea what is the parallel state between the

two robots, so she pushes the teleoperated robot as quickly as possible, finishing

the course as quickly as possible (but poorly).
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Figure 5.2: Cooperative Pushing: Failures vs task completion time

5.1.2 Coordinated Movement Evaluation

We evaluate the contribution of the socially-attentive display in the coordinated

movement task. The operator leads the robots in a triangular formation towards a

target destination, while avoiding obstacles. If the operator causes the lead robot

to turn too sharply, or move too quickly, the coordinated movement may break.

We conducted experiments contrasting different combinations (see below) of

the socially-attentive display with individual robot display (i.e., their incoming

video streams). We ran multiple experiments with novice operators on all com-

binations. Operators were given an approximate 25-minute training session in

operating a single and multiple robots, and only began the experiment when they

reported they felt comfortable controlling the robots. Different operators were

used for the different tasks (25 for coordinated movement), but every operator

was tested with all combinations available in the task they operated. To avoid or-

dering effects, the order in which operators were exposed to the different settings

was scrambled. In no setting were the operators able to see the robots directly

while operating them.

We compared three interfaces. The first presented the operator with the split-

view video streams from all robots (e.g., Figure 3.5-c). We named itsplit. The

secondsplit+viewcombined the this split-view with the socially-attentive display

previously described. The final interface consisted of a single camera (the lead

robot’s) and the socially-attentive display. We named itone view. Each of the

interfaces was tried with three different obstacle courses. TheEasycourse (Figure
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5.3) consisted of an open space with no obstacles at all. Themediumcourse

(Figure 5.4) consisted of a single obstacle that had to be by-passed while giving

the follower robots sufficient leeway. Thedifficult course (Figure 5.5) consisted

two obstacles which the operator needs to navigate the robots in a slalom between

the obstacles. For each of these trials, we counted the number of catastrophic

and non-catastrophic coordinated movement failures, time for complete the task.

Non-catastrophic coordinated movement failures were measured as the number of

times a follower robot has temporarily lost track of the lead. Catastrophic failures

were measured by the number of times the robots reported on permanent tracking

failures (not seeing the in front robot ten frames continually), which would then

be fixed manually by the experimenter—not the test-subject operator—by moving

the robot by hand until it regained its tracking.
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Figure 5.3: Easy course

Figures 5.6,5.7,5.8 shows the results of this experiment in terms of the average

number of non-catastrophic failures per operator, versus the average task comple-

tion time. The horizontal axis shows the time (in milliseconds). The range of the

horizontal axis in these figures is fixed at 12 seconds. The vertical axis shows

the average number of non-catastrophic failures that took place during each of the

trials (25 operators).

The results show that in all course difficulty settings—easy, medium and difficult—

the use of a socially-attentive display is preferable to using only individual dis-

plays. This lends support to the hypothesis that socially-attentive display can
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Figure 5.4: Medium course

significantly improve monitoring of robots in coordinated tasks.

In particular, both course completion time and the number of failures during

execution were generally significantly reduced using the socially-attentive display.

In the easy and medium-difficulty courses, the best monitoring approach was sin-

gle camera and the socially-attentive display. However, in the difficult course the

best monitoring approach used both the split-view and the socially attentive dis-

play, in spite of the additional information displayed to the operators. We believe

that this is due to the operator using the split-camera view to look at obstacles

that are being bypassed. Such obstacles were not much of a problem in the other,

easier, courses. We leave further investigation of this to future work.

Thus in both monitoring tasks, the use of socially-attentive interface (using

the relation tool) proved superior to an approach that did not use this tool. These

results are statistically significant in all cases (except, time completion task at

difficult course). For instance, in the easy course, a one-tailed t-test (assuming

unequal variances—see below) shows a significant difference between the use of

the single camera view with the relation tool, and the use of the split camera

view, both in the number of failures (the probability of the null hypothesis being
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Figure 5.5: difficult course

p < 0.011), and in the time (p < 0.015). Similarly, in the medium course, there are

significant differences between these two methods, both in the number of failures

(p < 0.04) and in task completion time (p < 0.02). In the difficult course we

compare between thetool+split (the winner method of this course) andsplit. We

find tool+split is different in the number of failures (p < 0.014) while it not

significant different in time to complete task (p = 0.48).

However, a question may be raised as to whether the display qualitatively

changes the way the operator interacts with the team. For instance, the experi-

ment results above could also be indicative of the team going slower or faster, but

maintaining the same number of failures per second—thus indicating that the drop

in failures is due to the team moving faster, not to the display.

Figure 5.9 shows the average number of failures per second, in the differ-

ent courses. Clearly, the easy course is indeed easier than the medium-difficulty
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Figure 5.6: Coordinated Movement: Non catastrophic failures versus time inEasy
path
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Figure 5.9: Coordinated Movement: Non-Catastrophic failures per millisecond

course, which is easier than the difficult course. What we see in the results is

that the use of the socially-attentive display does not only lead to a significant

reduction in the time and total number of failures (as evident from the previous

figures), but also reduces thefailure rate. This signifies that the display leads to a

qualitative in the way the operator control the robots.

Additional evidence for this qualitative improvement in the operator control of

the robots is found when we examine the standard deviation values for the number

of failures and task completion time. Table 5.1 displays the standard deviation

values of the number of failures, for the different courses. Table 5.2 displays the

standard deviation values of the task completion time, for the different courses.
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Course Split View Split View and Single View and

Relation Tool Relation Tool

(tool+split) (one view)

Easy 319.45 32.65 6.59
Medium 141.85 51.30 50.56
Difficult 144.97 66.93 138.65

Table 5.1: A comparison of standard deviation in number of non-catastrophic
failures.

As can be seen, the standard deviation values for the socially-attentive display

are generally much smaller than for the split camera display(except the one view

in the difficult course). This indicates more consistent values, i.e., less variance

between operators in terms of ability to control the robots. In the difficult path, the

single camera view with the relation tool has a large standard deviation (though

smaller than the one for the split camera view by itself in the number of failures),

but the relation tool with the split camera view again has significantly smaller

standard deviation.

As we can see here, the standard deviation in thetool+split is almost the same

in medium and difficult courses in both, standard deviation in non-catastrophic

failure and time compilation task (tables 5.1 and 5.2). While the standard devia-

tion in one viewis changed (increasing) between the medium and difficult courses.

Those results convinced us that thetool +split is the better scheme in the difficult

course. This scheme beats the others in time compilation task, in (minimum) fail-

ure number and at standard deviation at the difficult course. However the results

at the difficult course were not as we expected. We expected that theone viewwill

be the best method in all the courses (in particular at thedifficult course because

of operator’s increased load). However those results proved that any combination

with the relation tool leads to big advantage then any without using the relation

tool. We can also say that theone viewmethod is the best at the simple and

medium courses, and thetool+split is the best at the difficult course. We also

learned that at thedifficult course the relation tool does not provide enough in-

formation, and the help of the split camera is essentially for better task execution

(e.g. gives different angle’s view of the real world).
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Course Split View Split View and Single View and

Relation Tool Relation Tool

(tool+split) (one view)

Easy 25.53 12.01 9.17
Medium 22.37 14.68 10.68
Difficult 15.88 13.58 19.22

Table 5.2: A comparison of standard deviation in task completion time [sec].
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Figure 5.10: Coordinated Movement: Catastrophic failures versus time inEasy
path

Figures 5.10,5.11,5.12 shows the results of this experiment in terms of the

average number of catastrophic failures per operator, versus the average task com-

pletion time. This results are virtually identical to the results of the non-catastrophic

failures.

Figures 5.16, 5.17, 5.18 show the results of this experiment in terms of the

average angle deviation per operator, versus the average distance deviation. The

average angle and distance deviation, is from each robot at the ideal place it should

be in the coordinated movement (for a perfect triangle). The horizontal axis shows

the average distance deviation (in centimeters). The range of the horizontal axis in

these figures is fixed at 10 centimeters. The vertical axis shows the average angle

deviation (in degree) during each of the trials (25 operators).

The results show that in all course difficulty settings—easy, medium and difficult—

that any combination with our socially-attentive display is preferable then the split

38



0

0.5

1

1.5

2

2.5

38000 43000 48000 53000

Time[msec]

N
o

. b
ig

 lo
ss

es

one view
tool&split
split

Figure 5.11: Coordinated Movement: Catastrophic failures versus time inmedium
path
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Figure 5.12: Coordinated Movement: Catastrophic failures versus time indifficult
path
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camera view alone. This lends support to the hypothesis that socially-attentive

display can significantly improve monitoring of robots in coordinated tasks.

From the results (in Figures 5.16, 5.17, 5.18) we cannot sharply determine

what (tool+split or one view) control method is preferable. In the easy course the

one viewhas less distance deviation and more angle deviation than thetool+split

approach. In the medium course theone viewhas better results than thetool+split

in both angle and distance deviation. In the difficult course thetool+split has bet-

ter results than theone viewin both angle and distance deviation. Whentool+split

get better results than theone view, it was slightly better. While when theone view

gets better results (then thetool+split) it was significantly better.

Those results are statistically significantly different in most courses. For in-

stance, in the easy course, a one-tailed t-test (assuming unequal variances—see

below) shows a difference between the use of the single camera view with the

relation tool, and the use of the split camera view, both in the angle deviation

(p < 0.068), and in distance deviation (p < 0.0005). In the medium course the

results are significantly different only in angle deviation (p < 0.016), while in dis-

tance deviationp < 0.131. In the difficult course we show a significant difference

between thetool+split (the best method at this course) and thesplit (the worst

method at this course)–p < 0.026 in the distance deviation andp < 0.042 in the

angle deviation.

We again find evidence for a qualitative improvement in the operator control

of the robots is found when we examine the standard deviation values for the angle

deviation and distance deviation. Tables 5.3 and 5.4 displays the standard devi-

ation values of the angle deviation and distance deviation (correspondingly), for

the different courses. As can be seen, the standard deviation values for any com-

bination with the socially-attentive display are generally (except the split+view in

the medium course at distance deviation) much smaller than for the split camera

display.

Tables 5.3 and 5.4 show that in the medium course the standard deviation of

one viewscheme is smaller thentool+split, for both angle and distance deviation.

In the difficult course the standard deviation oftool+split scheme is smaller then

one viewfor both. In the easy course the smallest standard deviation changes

between those two tables (in theone viewandtool+split schemes).
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Course Split View Split View and Single View and

Relation Tool Relation Tool

(tool+split) (one view)

Easy 2.49 1.44 1.61
Medium 3.43 3.39 1.69
Difficult 2.40 1.44 2.35

Table 5.3: A comparison of standard deviation in angle deviation [degree].

Course Split View Split View and Single View and

Relation Tool Relation Tool

(tool+split) (one view)

Easy 11.22 5.75 5.10
Medium 6.71 7.98 3.57
Difficult 8.20 5.63 7.15

Table 5.4: A comparison of standard deviation in distance deviation [cm].

In general, we see that the standard deviation results are consistent with our

earlier conclusion. We see that theone viewachieved the lowest standard deviation

in the easy and medium courses, while thetool+split achieved the best result in

the difficult course. One exception is found within table 5.3 wheretool+split

achieved better results than onlyone view.

Figures 5.13, 5.14 and 5.15 show another look on the results, angle deviation

error (Y axis) versus time (in milliseconds) to complete the task. The results

here are in agreement with the results show in 5.6, 5.7 and 5.8 and support our

hypothesis.

We also examine the different interfaces (split, tool+split, one view) along a

obstacle hit test. This test examines the number of instances where a robots hits

an obstacle along the different courses (easy, medium, hard). Our goal here is to

find the interface that behave well (minimum obstacle hitting) with respect to the

other interfaces. We examine it on 7 different operators.

Figure 5.19 shows us the result of the touch box test. We show here that in

all courses, theone viewinterface gets the best results. Figure 5.19 also shows

that in themediumcourse thetool+split interface is worse than thesplit interface.
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Figure 5.13: Coordinated Movement: Angle deviation per time insimplepath
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Figure 5.14: Coordinated Movement: Angle deviation per time inmediumpath
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Figure 5.15: Coordinated Movement: Angle deviation per time indifficult path
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Figure 5.16: Coordinated Movement: Angle deviation per distance deviation in
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Figure 5.17: Coordinated Movement: Angle deviation per distance deviation in
mediumpath
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Figure 5.18: Coordinated Movement: Angle deviation per distance deviation in
difficult path

The (tool+split) interface includes all the interfaces together (relation tool and the

split camera view). The operator for thismediumcourse does not need all of the

tools together. In addition she can’t concentrate all the tools together (information

overload) things that cause an obstacle touch.

5.1.3 Summary

Thus in both monitoring tasks—pushing and coordinated movement—a combina-

tion of socially-attentive interface (using the relation tool) proved superior to an

approach that did not use this tool. We also found that the relation tool helps even

in coordinated tasks where the split camera is effective (e.g the coordinated move-

ment scenario). The experiments have shown that the use of the relation tool leads

to qualitative change in the failure rate of the operators, and to an improvement in

the consistency of task completion time across operators.

5.2 Evaluation of Call-Request Resolution

In this section we will evaluate the effectiveness of thedistributedapproach in lo-

cating a stuck robot. In subsection 5.2.1 we compare between the distributed, tele-

operated and autonomous approaches in term of time for locating stuck robot. We

also tested a combination of the distributed approach and teleoperated approach
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Figure 5.19: Coordinated Movement: Number of obstacle touch along the differ-
ent courses

calledsemi-distributed. In subsection 5.2.2 we evaluate the quick switching con-

trol technique. We compare our distributed approach, that allows the operator to

quickly switch control, to a distributed approach that did not allow the operator

to quickly switch control (calledswitchDistributed). We find that the distributed

quick-switching method significantly decreases the time for locating the stuck ro-

bot.

5.2.1 Evaluation of Distributed Call-Request Resolution

We now turn to empirically evaluate these call-request resolution schemes. We use

all schemes in failure scenarios in the context of a triangular coordinated move-

ment of three robots. In each of the failure cases, we disable one of the robots to

simulate a catastrophic failure, not letting it move or communicate. In accordance

with previous approaches, a call-request is then issued to determine the where-

abouts of the failing robot.

We set up three robot failure scenarios. In all scenarios, the right follower

robot was disabled, and color marked to allow its detection by the other robots

(calledactive robots) and the operator. A potential advantage of the distributed

and autonomous schemes is that they can utilize the robots’ own knowledge of

the coordination to locate the stuck robot. In particular, because the robots have

moved in coordinated movement prior to the call-request, they may have an easier
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Figure 5.20: The predictable place where the stuck robot should be (Easy)
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Figure 5.21: The semi-predictable place from the location the stuck robot should
be (Medium)

time guessing their peer’s location then the operator (who needs to orient herself

in space via the teleoperated camera).

To evaluate the importance of the robot’s coordination knowledge, we experi-

mented with three locations for the disabled robot: TheEasy(Figure 5.20) setup

placed the disabled robot at approximately where it would be had it just stopped

in its tracks prior to the team getting notification of the call request, i.e., a bit

farther behind its location within the coordinated movement. TheMediumsetup

(Figure 5.21) placed the robot behind the left follower robot. TheHard setup

(Figure 5.22) placed the robot to the left of the left follower robot, and behind it,

i.e., completely out of place compared to the coordinated movement. Thus the

locations progress from a location easily predictable by the robots, to a location

unpredictable to them.

We tested 21 human operators with each of the three failure scenarios, using all

the resolution schemes previously describes. The ordering of the scenarios was
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Figure 5.22: unpredictable location of the stuck robot (Hard)

randomized between operators to prevent biasing the results. We distinguished

two phases: The first phase of the resolution involved recognition of the disabled

failure from any distance. The second phase involved its localization by another

robot reaching to it. Each scenario began with the simulated disabling of the robot

(and issuing of the call request), and ended with its localization by at least one

robot—teleoperated or autonomous.

For each of failure scenarios and for each method, we measure the time that it

would get the operator to recognize the disabled robot in any one of the cameras

(the operator uses the split-view interface in this task), i.e., the duration of the first

phase. We then measure the time that it takes for an active robot—autonomous or

teleoperated—to reach the disabled robot, i.e., the duration of the second phase.

Since the motivation behind the distributed control scheme is to reduce the time

spent awaiting resolution, we prefer shorter durations.

A potential advantage of the distributed scheme is that it utilizes knowledge

that the robots may have in locating the disabled robot. In particular, because the

robots have moved in coordinated movement prior to the call-request, they may

have an easier time guessing their peer’s location than the operator (who needs to

orient herself in space via the teleoperated camera).

We begin by examining the bottom line–the total time it takes to identify the

location of the disabled robot. Figure 5.23 shows the average total duration for the

21 operators. The vertical axis measures the time in seconds, while the horizontal

axis shows the three experiment setups. In each, six bars are shown corresponding

to the different resolution schemes (left-to-right: Autonomous, semi-distributed,
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Figure 5.23: Total Time to Resolution

distributed and teleoperated).

The results shows that alleasy, mediumandhard locations, the distributed

approach is preferable to the both centralized teleoperation approaches. Full dis-

tributed search does better then the semi-distributed approach in all locations, and

better or the same than the autonomous approach. Overall, the distributed collab-

oration between the operator and active robots in the distributed approach proves

to be a powerful technique for significantly reducing the time to complete the task

of locating the disabled robot.

The results have been tested using a one-tailed t-test assuming unequal vari-

ances (see tables 5.6, 5.7 and 5.8). In the easy setup, the distributed scheme is not

statistically significantly different then the autonomous scheme, and only mod-

erately different (ρ < 0.12) then the semi-distributed and teleoperated schemes.

However, as we move to the medium and hard setups, the situation changes. The

total time for the distributed scheme is significantly lower then the total time for

the autonomous scheme in the letter setups (ρ < 0.00004 andρ < 0.1 × 10−11,

resp.). The distributed scheme does better then the teleoperated scheme in the

hard setup (ρ < 0.02), and is moderately significantly better in the medium setup

(ρ < 0.13).

An examination of the standard deviation in these examples reveals additional

lessons. Table 5.5 shows the standard deviation for the different approaches, in the

three experiment setups. Each row corresponds to a different method, and each

column to different setup. We can see that in the easy setup, the autonomous,
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Easy Medium hard

Autonomous 11.21 36.64 23.82
Semi-distributed 11.3 5.07 7.78

Distributed 11.28 5.16 7.89
Teleoperated 7.68 5.96 15.87

Table 5.5: Standard deviation of call-resolution times.

semi-distributed, and distributed schemes all have essentially the same standard

deviation, indicating similar performance. However, the standard deviation for

the autonomous scheme in the medium setup is much higher than for the other

approaches. In the hard setup, both the autonomous and teleoperated approaches

suffer from greater standard deviation in performance than the two distributed

schemes. This shows an additional benefit of the distributed methods: A more

consistent performance (across different operators) in the distributed and semi-

distributed.

The figure also contains other lessons. First, the ability of the robots to use

organizational knowledge of the coordinated movement can be useful in reducing

the resolution time, and thus in assisting the operator. When the stuck robot was

located approximately where it was predicted to be in terms of its position in the

coordinated movements, the robots were able to quickly locate it, in fact outper-

forming the operator in terms of total time (see more below). However, the dis-

tributed scheme was superior even in these cases, because even where the robots

were not as successful, the operator (working in collaboration with the robots) was

able to compensate. This is particularly evident as the difficulty of the difference

setups increased, and the location of the stuck robot became unpredictable to the

robots.

To better understand these results, we should consider separately the results for

the first phase of the search (where an identification of the stuck robot remotely

was possible), from the second phase, in which an active robot was to approach

the stuck robot to localize it. Figure 5.24 shows the results of the different control

schemes for the first phase, averaged across operators. The figure measures the

average time (in seconds) it took the operator to recognize the disabled robot from

afar, in the split-view camera display. In the autonomous approach, the operator
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Figure 5.24: Phase 1First recognition

did not intervene in the operation of the robots, only indicated that the stuck robot

was recognized. In the teleoperated scheme, the operator manually turned a robot

around until a heading to the remote was recognized.

Clearly, all approaches in which robots attempt to orient themselves towards

the predicted location of the disabled are superior to a teleoperated (centralized)

approach. Note that in all approaches, the operator recognizes the robot from afar,

and as we will see below, may end up searching for it in wrong location. This

significantly shorter initial recognition is a beneficial side-effect of the distrib-

uted approaches. However, the initial benefits of the robots to orient themselves

towards the stuck robot is lost in more difficult settings.

Figure 5.24 also shows the usefulness of human operators: Human ability to

recognize the robot from afar is virtually identical in all three difficulty settings.

Thus humans bring to bear consistent, robust (thought slow), capabilities. These

can be useful in real applications, where the stuck robot may be partially hidden

behind obstacles or otherwise not visible at all to the robot.

An examination of the second phase of the search (once an approximate head-

ing towards the stuck robot is determined) is also telling with respect to this issue.

Figure 5.25 shows the results for this phase, where the task is to arrive within the

proximity of the disabled robot. Despite its poor performance in phase 1, the tele-

operated approach does quite well in phase 2. This is easily explained—here the

disabled robot is already recognized, and the teleoperated approach simply allows

the operator to drive the teleoperated robot as quickly as possible, outrunning

50



0

20

40

60

80

100

120

easy meduim hard

T
im

e[
se

c]Autonomous
semi
Distributed
Tele

Figure 5.25: Phase 2From initial to localization of stuck robot.

Phase 1 Phase 2 Total recognition

Autonomous 0.1 0.38 0.419
Teleoperated 0.0002 0.45 0.11

Semi-distributed 0.5 0.11 0.11

Table 5.6: Likelihood of null hypothesis, t-test of call-resolution times between
distributedapproach ineasystuck location.

automatic approaches that move in constant (and typically conservative) speed.

Thus again, the operator brings to bear capabilities that cannot be duplicated by

the robots.

However, the best performances was by the distributed approach, because it

essentially turns this phase into a race between a teleoperated robot and an au-

tonomous robot, as to who gets to the disabled robot first. In the first phase the

results of theAutonomouswere better than theTeleoperated. In the second phase

vise versa. TheDistributedandsemi-distributedschemes enjoys the advantage

of the autonomous scheme in the first phase and the benefit of the teleoperated

scheme in the second scheme.

Tables 5.6, 5.7 and 5.8 shows the one-tailed t-test (assuming unequal vari-

ances) between ourdistributedcontrol approach to the other mentioned control

approaches in phase 1, phase 2 and global recognition. Tables 5.6, 5.7 and 5.8

compare the above in easy, medium and hard stuck robot location correspond-

ingly.
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Phase 1 Phase 2 Total recognition

Autonomous 0.266 0.00003 0.00003
Teleoperated 0.0001 0.34 0.12

Semi-distributed 0.49 0.11 0.102

Table 5.7: Likelihood of null hypothesis, t-test of call-resolution times between
distributedapproach inmediumstuck location.

Phase 1 Phase 2 Total recognition

Autonomous 0.014 6.8E-15 5.4E-15
Teleoperated 0.025 0.035 0.019

Semi-distributed 0.297 0.481 0.453

Table 5.8: Likelihood of null hypothesis, t-test of call-resolution times between
distributedapproach inhard stuck location.

In the all (medium, mediumandhard) locations there is a significant change

between thedistributed to the teleoperatedapproaches in the first phase while

there is no significant difference at the second phase. In themediumandhard lo-

cations there is a significant change between thedistributedand theautonomous

approaches in the second phase while there is no significant difference within the

first phase. The reason for this is that in the first phase, our distributed approach

adopts the autonomous approach. This leads it to behave like the autonomous at

the first phase (where the autonomous approach is the quickest in this phase). In

the second phase our distributed approach adopts the teleoperated approach, lead-

ing it to behave like the teleoperated at the second phase (where the autonomous

approach is the quickest in this phase).

The above explanation raises questions about the significance of theautonomous

results in the second phase at the easy location (see table 5.6). We expected it to

be significant (and notρ < 0.38). We believe it happened because the stuck ro-

bot location here iseasyand the operator quickly made this task, so it difficult to

distinguish between those two phases here.

Despite the fact that thesemi-distributedscheme takes advantage of theAu-

tonomousandTeleoperatedschemes (the autonomous in the first phase and the

teleoperated in the second phase) its performance was equal to the teleoperated
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scheme at the easy and medium setups. That is the cause of losing the advantage

of teamwork in the second phase (here, the only active robot is the controlled ro-

bot). While in thedistributedscheme there is always teamwork (in the first and

second phases), an additional advantage that leads it to the best performance.

Indeed, contrasting the results of theAutonomousandDistributedapproaches

is telling. As we move from the easy location to medium to hard, the gap between

the methods shrinks and begins to favor theDistributedapproach. This happens

as a result of the inability of theAutonomousapproach, to locate the stuck robot

in unpredictable places. The collaboration between the human operator and team

is superior to either, alone.

5.2.2 Evaluation of Control Switching

We now turn to empirically evaluate thequick switchcontrol compared to the

previous method. Without this approach, the operator would need to manually

perform several preparatory actions (like, manually turning off a behavior) in or-

der to teleoperate a robot.

To test the effects of the control-switch methods, we added two control schemes:

switchSemi-distributedandswitchDistributed. This two control schemes are sim-

ilar to thesemi-distributedanddistributedcontrol schemes correspondingly ex-

cept the transfer from the part of identifies the stuck robot in one of the displays to

teleoperate one robot. If the operator in theswitchSemi-distributedandswitchDis-

tributed approaches want to teleoperate a robot she needs to turn off it search

behavior manually. While in thesemi-distributedanddistributedapproaches its

automatically happens and the search behavior is paused. Thesemi-distributed

anddistributedis use our quick-pause technique and theswitchSemi-distributed

andswitchDistributeduse the old manually technique.

We tested 21 human operators with each of the three failure scenarios (as

described in the previous section), and compare there results with 9 operators

in the manually switching technique. The results is shown in figure 5.26 (left-

to-right: switchSemi-distributed, switch-distributed, semi-distributed and distrib-

uted) shows the total time to complete the action (First and second phase). We

compare each method to its corresponding method (i.e.SwitchSemiwith semi-
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Figure 5.26: Switching methods comparison oftotal time to resolution

distributed, SwitchDistributedwith Distributed). TheSwitchSemiandSwitchDis-

tributedare the manually switching methods.

We can clearly see that the manual switching method is the worst method. We

can also observe that thesemi-distributedresults were better than any result of

the manual switching method in the medium and hard courses. This supports our

hypothesis that the control switching is faster than the distributed approach.

A closer look at the results shows that in the first phase all methods performed

comparably well as can be seen from figure 5.27. This is because they all are

based on the same method (operator recognize the stuck robot at the display of

the autonomous robots). The differences become apparent in the second phase

(Figure 5.28). The problem arises during the control switching from the first to the

second phase. The switching here includes two main steps. First, the time it takes

to switch from autonomous behavior to teleoperated control must be considered.

A secondary issue arises due to this time loss. As the robots act autonomously

until the operator assumes control, robots can often take a number of steps after

their initial recognition. This results in the robots moving away from the location

of their first recognition. We refer to this cascading failure as asecondary failure.

Table 5.9 shows the difference and ratio between thedistributedandSwitchDis-

tributed methods at easy, medium and hard courses. The results of this table at-

tempt to isolate the delay due to the switching control between thedistributed

andSwitchDistributedmethods. As we previously mentioned the quick switching

technique saves not only the switching time, but also the time resulting from the
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Figure 5.28: Switching methods comparison of phase 2From initial to localiza-
tion of stuck robot.
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Easy Medium hard

difference 3.905 2.84 9.015
ratio 1.21 1.15 1.39

Table 5.9: Difference and ratio betweendistributedandSwitchDistributedmeth-
ods

secondary failures.

We hypothesized that these secondary failures exist, and constitute a non-fixed

time. In order to support this claim, we studied the ratio between thedistributed

andSwitchDistributedtechniques. As Table 5.9 demonstrates, the difference and

ratio between these methods varied. Under this assumption that normal switching

behaviors require a fixed amount of time this result implies that another factor

exists that accounts for this variable length. We concluded that these secondary

failures exist, and were not only caused by the time the operator to switch the

robot’s behavior. We believe these secondary failures resulted from the robot’s

movement after the time it first recognized the stuck robot which caused the oper-

ator to reorient the robot. This is responsible for the variable length of lost time.

As a result, we proceeded to determine if the switching technique can minimize

the length of these failures.

The results have been tested using a one-tailed t-test assuming unequal vari-

ances. The Switch-Distributed scheme was not statistically significantly different

for all courses (easy:ρ < 0.2, medium: ρ < 0.3, hard: ρ < 0.12) in respect

to the distributed. The switchSemi-distributed scheme is statistically significantly

than the distributed in all courses (easy:ρ < 0.012, medium:ρ < 0.006, hard:

ρ < 0.05).

An examination of the standard deviation in these examples reveals additional

lessons. Table 5.10 shows the standard deviation for the different quick and man-

ually, distributed and semi-distributed approaches, in the three experiment setups.

We can see that in the easy setup, there was a small advantage for the manually

semi-distributed (switchSemi-distributed) approach. However, the standard devi-

ation of the quick switching approaches (distributedandsemi-distributed) in the

medium and hard setups is much smaller than for the manually switch approaches.
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Easy Medium hard

switchSemi-distributed 10.02 9.27 17.76
Switch-Distributed 11.43 14.87 20.04
Semi-distributed 11.3 5.07 7.78

Distributed 11.28 5.16 7.89

Table 5.10: Standard deviation of call-resolution times.
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Figure 5.29: Switching methods total time comparison with autonomous

Combining these results and with the previous section’s standard deviation results

(see table 5.5) reveals an additional conclusion – the control approach needs to be

distributed and the switching from autonomous behavior to teleoperated should

be fast. That will lead to consistent performance (across different operators) in

the distributed and semi-distributed methods.

The results in Figures 5.29 and 5.30 clarify the advantage of the quick switch-

ing control. Here, we compare the manually switch methods with theautonomous

andteleoperatedmethods. We can see that theSwitchDistributedmethod does not

give a substantial advantage over the autonomous approach and not any advantage

over theteleopratedapproach. While in previous (Figure 5.23) we compare the

distributedandsemi-distributedwith the autonomousand teleoperatedmethods

and find the results significantly in favor of the (quick)distributedapproach. The

conclusion is therefore that a distributed approach must include a quick switching

control technique.
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Chapter 6

Conclusions and Future Work

This thesis takes steps towards techniques that allow a single human operator to

control a team of robots that are tightly coordinated. In particular we point at

two challenges that are unique to controlling tightly-coordinating teams: Explicit

monitoring of the coordination, and resolving calls for operator attention. Exist-

ing techniques do not adequately address these challenges. Specifically, in such

settings, their centralization of the operator as the only entity capable of resolv-

ing calls for attention is inappropriate, because it does not take advantage of the

teamwork of the robots, and their implicit or explicit organizational knowledge.

We demonstrate three techniques. First, we show that socially-attentive dis-

plays can significantly improve the number of failures, task completion time and

failure rate in two tasks requiring maintenance of team coordination by the op-

erator. Second, we show that a distributed control scheme, allowing teamwork

between the operator and all robots, reduces the time of resolving failures (com-

pared to the centralized and autonomous approaches), in many instances. Third,

we allow the operator to switch quickly control between the robots, to prevent

from cascading failures.

For the first technique we find the relation tool is a simple an effective tool

addressing this challenge. It has three main advantages. First, it significantly

reduces the amount of inference needed by the operator to infer the relative state

of robots—and thus the state of coordination between them. Second, it is not

limited to reproducing a global view of the robots, but instead its dimensions can
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be used to directly provide the operator with information about what is going

wrong (in case of failure), e.g., as in the coordinated movement case. Third, it

can easily complement other types of displays useful for the task, such as any that

show the heading or distance left to the destination.

We find the distributed approach that combines the second and third tech-

niques significantly better then the other control approaches. Those, working as

a team and quick control switch, the operator can take advantage all its resources

(i.e. the robots) as smoothly as possible to solve problem.

We conducted extensive experiments with up to 25 human operators to em-

pirically evaluate the relation tool and up to 21 human operators for evaluating

the different control schemes. We have shown that socially-attentive displays sig-

nificantly improves the total number of failures, and task completion time in two

tasks requiring maintenance of team coordination. Furthermore, we have shown

that the use of the relation tool leads to qualitative change in the capabilities of

the operator. Not only do failures and completion time decrease, but the failure

rate (failures per second) improves significantly as well. In addition, methods uti-

lizing the relation tool show less variance in terms of operator performance. The

results of the control schemes shows that the distributed control scheme allows

teamwork between the operator and all robots, reduces the time of resolving fail-

ures (compared to the centralized and autonomous approaches), and was superior

in all cases. We also found that theSwitchDistributedmethod give not enough

advantage then the autonomous approach and not any advantage then theteleo-

pratedapproach. So the quick switch control is essentially for controlling multiple

robots.

The results presented in the thesis also raise questions for future work. For

example, the results for the relation tool in the difficult course indicate that while

a socially-attentive display can be a significant advantage, it must complement

regular displays. A key question is how to best integrate these displays. In addition

it need further investigation of the phenomena that thesplit+tool has less non-

catastrophic failure then thesplit viewat themediumcourse, while it has more

catastrophic failure in the same course.

For the control scheme, we are particularly interested in integrating the new

techniques with complete human-robot interaction systems, in order to evaluate its
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effectiveness not only within call-request resolution, but in more general settings

of operating the robots even in non-failure cases.
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