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Abstract

There is growing recognition that many applications
of robots will require a human operator to direct multi-
ple robots that collaborate to achieve the operator’s goals.
However, the bulk of existing work in this area assumes that
robots are independent of each other, and thus ignores key
challenges and opportunities in monitoring and operating
tightly-coordinating teams. This paper takes steps to ad-
dress these open issues. First, we introduce a graphical dis-
play that explicitly shows the coordination in the team, in
terms of the robots’ state with respect to each other. As a re-
sult, the operator can easily detect coordination failures,
even before these cause overall failure in the task. We also
take advantage of the robots’ teamwork, to allow the robots
to actively assist the operator in maintaining her control
of the team. We evaluate these techniques in several multi-
robot tasks, and show that they lead to significant improve-
ments in task completion time, and number of coordination
failures during execution.

1. Introduction
There is need for human control of robot teams. While

robots can do many mundane or dangerous tasks for us, in
many cases we can not leave all decisions to them, for ex-
ample for safety reasons, or to make decisions which the
robots are unable to make. While the autonomous capabil-
ities of robots increase in quality every day, many future
applications would still require a human operator to direct
multiple robots that coordinate with each other to achieve
the operator’s goals. Examples of such applications include
search and rescue operations [5], multi-rover planetary ex-
ploration, and multi-vehicle operation [3].

Previous approaches to human control of multiple
robots treat the operator’s attention as a centralized re-
source, which is time-shared between the robots[2, 3, 1, 9].
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Robots that require operator’s assistance initiate or are is-
sued call-requests, which are queued for the opera-
tor. The operator switches control between robots, and
uses single-robot teleoperation with individual robots to re-
solve the call requests in some (prioritized) sequence. This
method works well in settings where the task of each robot
is independent of its peers, and thus the resolution of call re-
quests can be done in sequence, independently of other
call-requests.

Unfortunately, these centralized methods face difficulties
in coordinated tasks—tasks that require tight, continuous,
coordination between the robots, i.e., robot teams where
robots are highly inter-dependent. First, due to the coordi-
nated nature of the task, robots depend on each other’s ex-
ecution of subtasks; thus a single point of failure (e.g., a
stuck robot) will quickly lead to multiple call requests. Sec-
ond, the coordination state of the robots must be monitored
in addition to their individual state; but inferring the state of
coordination from multiple individual robot reports can be
difficult for the operator. Third, when the operator switches
control to a robot, the other robots must wait for the resolu-
tion of the call-request, because their own decision-making
depends on the results of the operator’s intervention. As a
result, robots wait idly while the call request is resolved.

Thus two key challenges are raised in controlling a
robotic team in a coordinated task. The first challenge is
to integrate information from multiple robots so as to al-
low the operator to monitor their coordination, in addition
to their progress towards the goals (coordination monitor-
ing challenge). The second challenge is to allow the opera-
tor to act on call-requests such that resolution time is mini-
mized (resolution challenge)

For example, consider the task of controlling three robots
moving in formation (a task requiring tight continuous
coordination between robots), by teleoperating the lead
robot, and allowing the others to maintain the formation
autonomously. The monitoring challenge is raised because
the operator must monitor the formation itself—slowing
down or speeding up the lead as necessary—and not just



the distance to the destination. To do this, the operator must
integrate incoming information from each robot (e.g., the
robot’s camera view), which can be difficult. The resolu-
tion challenge is raised when a robot gets stuck. Since the
task requires moving in formation, the continual movement
of the robot (as well as the formation they will take) de-
pends on which robot failed, and whether the failure is
catastrophic. Thus most robots will be idle while the the op-
erator attempts to resolve the fault (for instance, by teleop-
erating one of the functioning robots to provide video im-
agery of the stuck robot).

This paper focuses on these two challenges within the
context of tasks requiring tight coordination. To address
the monitoring challenge, we develop a graphicalcoordina-
tion displaythat allows the operator to visualize the robots’
coordination—their state with respect to each other—and
thus visually identify coordination failures before they be-
come catastrophic. To address the resolution challenge, we
take advantage of the teamwork of the robots, to allow the
robots to actively assist the operator in resolving a failure.
We examine adistributed control methodology in which
functioning members of the team, rather than switching to
an idle mode of operation, actively seek to assist the opera-
tor in determining the failure.

We empirically evaluate these approaches in experiments
with human operators. The experiments included monitor-
ing and controlling robots in two robotics team tasks requir-
ing tight coordination: Movement in formation (and attend-
ing to broken formations) and cooperative box-pushing. Our
first set of results show that the use of the coordination dis-
play tool can lead to significant improvement in the num-
ber of failures in these tasks. We also evaluate the use of
distributed robot-operator teamwork in resolving failures.
Under failure conditions, if one robot is stuck, the others
actively seek the stuck robot, in order to assist the oper-
ator to resolve the failure. A second set of results shows
that such teamwork leads to shorter failure recovery times,
when compared to both fully-teleoperated and a totally-
autonomous approach.

2. Background and Motivation
The work we present in this paper focuses on both a vi-

sual monitoring interface, as well as on a distributed collab-
orative control paradigm. Previous work on visual interfaces
for multiple robots attempt to immerse the operator within
the environment of the teleoperated robot, while facilitat-
ing switching control between robots. For instance, Adams
et al. [1] investigated the use of a three-dimensional GUI
that has selectable operation modes to switch control be-
tween robots, teleoperate a robot, create a navigation plan
for the robot, or replay the last few minutes of the robot’s
task execution (for diagnosis of failures). Our work con-
trasts sharply with this approach, as we focus on a display
that abstracts away the details of the robots’ local surround-

ings, focusing instead on displaying their relative state, not
their absolute state with respect to some environment.

The bulk of existing work on controlling multiple robots
put the operator in a centralized role in attending to robots,
and do not often distinguish between different task types on
the basis of the coordination involved. Indeed, many exist-
ing approaches implicitly assume that robots are relatively
independent in their execution of sub-tasks. As a result, a
centralized control scheme does not interfere with task exe-
cution. Fields [2] discusses unplanned interactions between
a human and multiple robots in battlefield settings. Robots
are mostly autonomous, but may sendcall requestmessages
to the human operator to ask for assistance. These call re-
quests are queued, and the operator resolves the problems
one by one. Fong et al. [3] propose acollaborative con-
trol system that allows robots to initiate and engage in di-
alogue with the human operators. The robots employ user-
modeling techniques to improve their interaction with the
operator.

In contrast to the above centralized approaches, we be-
lieve that resolving call-requests is in the interests of
all robots currently coordinating with the robot requir-
ing assistance—and thus they should be actively collabo-
rating with the operator to resolve the call request. Other
work has also examined distributed paradigms for hu-
man/robot interaction. Tews et al. [9] describe a scal-
able client/server architecture that allows multiple robots
and humans to queue service requests for one another.
Scerri et al. [7] describe an architecture facilitating team-
work of humans, agents and robots, by providing each
member of the team with a proxy and have the prox-
ies act together in the team. Our work differs from both of
these investigations in that we do not attempt to put hu-
mans and robots on equal ground with respect to control.
In our current work, only the human can initiate the dis-
tribution of a task to resolve a call-request. However, once
so selected, the task is carried out in tandem by all mem-
bers of the robotic team and the operator.

3. Socially-Attentive Display
We focus on coordinated tasks—robotic team tasks that

require tight coordination between the robots. The hypoth-
esis underlying our investigation is that such tasks require
monitoring of the coordination in the team, i.e., explicit
monitoring of the team-members’ state with respect to each
other. Such monitoring is calledsocially-attentive moni-
toring because it focuses on inter-agent relations, rather
than their goals [4]. For example, in formation maintenance
tasks, socially-attentive monitoring may include informa-
tion about the relative positions of the robots within the for-
mation (without reference to where the formation is head-
ing).

A corollary of our hypothesis is that when an opera-
tor controls robots in a coordinated task, she will need



to infer socially-attentive information if it is not directly
available. Unfortunately, existing displays are not necessar-
ily well suited to display socially-attentive information. In-
stead, they provide information about the current state of
each robot, individually. Thus the operator is burdened with
inferring the socially-attentive information that is required.

The key to the monitoring approach we advocate is to
provide the operator with a socially-attentive display that
integrates the raw information coming from each individual
robot into a coherent visual display of the social relation-
ship within the monitoring system. Using this display, the
operator can easily identify coordination faults (if there are
any) within the monitored team, with little or no need for in-
ferring this information from the other displays. This eases
the cognitive load on the operator in coordinated tasks. The
socially-attentive display must complement the monitoring
display associated with the task.

Towards this end, we developed a display calledthe re-
lation tool. The relation tool is a graphical display of mul-
tiple robot states on a two-dimensional (2D) plane. Colored
dots denote different robots. The positions of the dots de-
note their states, and thus the shape they make up—their
relative positioning—denotes their relative states. In prin-
ciple, a target relative positioning of the dots must be de-
fined for each application, which signifies correct coordi-
nation. Every application requires its own method of pro-
jecting robot state onto a 2D plane, and a target shape that
defines normative coordination. The key is that the opera-
tor should be able to see, at a glance, whether the shape be-
ing maintained corresponds to correct coordinated execu-
tion.

We investigate the relation tool concretely in two popu-
lar coordinated tasks: Formation maintenance and cooper-
ative pushing. Both of these tasks have been implemented
in our lab using Sony AIBO robots. Each robot has an on-
board video camera and a infra-red distance sensor point-
ing at the direction of the camera. They transmit their video
and sensor readings to the operator’s station for monitor-
ing (the operator cannot see the AIBOs directly). The oper-
ator can intervene at any time in the operation of any of the
robots. The software components utilized and extended the
Tekkotsu AIBO control software [8].

We begin with the formation task. The objective
is to navigate a simple triangular formation (three
robots), through a short obstacle course. A simple algo-
rithm for maintaining the formation with these robots has
the lead (front) robot teleoperated by the operator, while
the two follower robots maintain fixed angles and dis-
tances to this robot using their sensors. The robots do not
utilize any communications for maintaining the forma-
tion. We do not assume that a global (world-view) camera
exists, since in most realistic applications this assump-
tion would not hold.

Figures 1 and 2 show this task in action. In both figures,
sub-figure (a) shows the actual position of the robots on the
ground; (b) shows a screen snapshot of the relation tool;
and (c) shows the split-camera view from each of the indi-
vidual robots. Figure 1 shows a failed formation situation,
while Figure 2 shows an example of perfect formation.

While the split-camera view does indeed provide indica-
tion of whether the formation is maintained, it relies on in-
ference by the operator to do so. Moreover, it is difficult to
see from the split camera view to what degree the forma-
tion is maintained, and which robots are lagging behind or
to the side.

In contrast, the relation tool makes it easy, at a glance,
to see whether the formation is maintained. It integrates
and processes incoming sensory information from individ-
ual robots, using an averaging window to smooth over any
erroneous jumps in sensor readings. It then translates the
smoothed data into a 2D coordinates. Here, the translation
from the relative states to be maintained to a 2D plane is rel-
atively simple, since the task itself is defined in terms of rel-
ative positions.

Initially, we set the coordinate system to the standard X,
Y coordinate system. However, based on experiments with
several operators, we have found that polar coordinates—
angle and distance—improve the results. The X axis de-
notes the angle to the leader, while the Y axis denotes the
distance to the leader. The position of the leader is always
fixed. Using these coordinates, one can quickly determine
whether the formation is breaking because a robot is lag-
ging behind (distance too great), or its angle with respect to
the leader is too sharp (e.g., because of a sharp turn).

We now turn to the cooperative pushing task. In this task,
two AIBO robots jointly push a light-weight bar across the
floor. The bar is color-marked, such that each robot can
identify its position with respect to the bar. If the mark
moves too much to the side, this would indicate a drift, i.e.,
the robot is either lagging behind or is pushing too quickly
ahead. Again, the robots do not communicate with each
other in this task.

Socially-attentive monitoring in the case of pushing in-
volves only one dimension—the robots are to maintain
equal speeds. We thus fixed the horizontal axis position of
the two robots, and used the Y axis to denote relative veloc-
ity, based on the angle to the color mark.

The relation tool can be useful in tasks where the coordi-
nation between the robot is not spatial. For instance, given
a set of sub-tasks which are to be assigned uniformly to dif-
ferent robots (e.g., using ALLIANCE [6]), the relation tool
could display use the vertical axis to denote the load on each
robot. The operator could then check whether the robots’
load is balanced simply by noting the different heights of
different dots (signifying different robots). It would also be
trivial to use additional visual signs to show the operator the



(a) Ground truth

(b) Relation tool view (c) Split-camera view

Figure 1: Failing Formation

deviation of the shape from the ideal, etc.
The relation tool is a simple an effective tool. It has three

main advantages. First, it significantly reduces the amount
of inference needed by the operator to infer the relative state
of robots—and thus the state of coordination between them.
Second, it is not limited to reproducing a global view of the
robots, but instead its dimensions can be used to directly
provide the operator with information about what is going
wrong (in case of failure), e.g., as in the formation case.
Third, it can easily complement other types of displays use-
ful for the task, such as any that show the heading or dis-
tance left to the destination.

4. Distributed Call-Request Resolution
As previously discussed, centralized resolution of call re-

quests, by the operator, may work well when robots’ tasks
are independent of each other. However, in coordinated
tasks, many robots may have to stop their task execution
until a call request is resolved, because their own task exe-
cution depends on that of the robot that requires the resolu-
tion. In such cases, it is critical to minimize the time it takes
to resolve a call request.

We propose a distributed control approach, whereby the
robots who depend on the resolution of the call-request
take active steps to resolve it, in collaboration with the op-
erator. This approach takes advantage of the robot team-

(a) Ground truth

(b) Relation tool view (c) Split-camera view

Figure 2: Successful Formation

work, by turning the resolution of the call-request into a
distributed collaborative task for all involved. Moreover, the
active robots (that do not require assistance) are involved in
a coordinated effort with the robot requiring assistance, and
thus may be in a better position to assist it.

We investigate distributed resolution in repairing bro-
ken formations. As described in the previous section, three
robots were to be led in a triangular formation. However,
we disabled one of the robots (to simulate a catastrophic
failure), not letting it move or communicate. In accordance
with previous approaches, a call-request was issued to de-
termine the whereabouts of the failing robot. The prototyp-
ical method to resolve such a situation, based on previous
approaches, would be for the operator to halt the operation
of all remaining robots in the formation, and then teleop-
erate the other robots until the position of the failing robot
was determined.

Instead, in distributed resolution, all affected robots ac-
tively seek the failing robot. If an operator switches con-
trol to one of these active robots, the others coordinate with
it (for instance, to cover more ground in the search). How-
ever, even if the operator is not involved (e.g., because she
may be handling other, unrelated, call-requests), the active
robots will still seek out the failing robot. When the opera-
tor is ready, they would have hopefully found it.



The robots use their knowledge of the robot’s role in the
formation to attempt to locate it. They first head out directly
towards where the robot would have been if it simply lagged
too far behind in the formation. If they fail to find it there,
they begin a general search pattern (spiral) that is guaran-
teed to find the robot, but may take relatively long time.

The key objective in this techniques is too speed up call-
request resolution by distributing it, and by using organiza-
tional knowledge in the team. Although we tested this tech-
nique with triangular formation, the same principle (search
at the position where robot should have been, before falling
back to a general–but slow–search) can easily transfer to
other formations and other spatial tasks.

5. Experimental Evaluation
To evaluate the techniques we presented, we tested their

performance with novice human operators, and contrasted
them with other approaches. We report on experiments with
the socially-attentive display (Section 5.1) and with dis-
tributed call-request resolution (Section 5.2).

5.1. Evaluation of Socially-Attentive Display
We begin by evaluating the contribution of the socially-

attentive display in the formation maintenance and coop-
erative pushing tasks. In the formation maintenance task,
the operator leads the robots in a triangular formation to-
wards a target destination, while avoiding obstacles. If the
operator causes the lead robot to turn too sharply, or move
too quickly, the formation may break. However, the oper-
ator seeks to minimize the time it takes to reach the des-
tination. In the pushing task, the operator controls the ve-
locity of one of the robots, while the other is pushing au-
tonomously. The operator must be careful not to push too
quickly for the other robot, nor to lag behind.

We conducted experiments contrasting different combi-
nations (see below) of the socially-attentive display with in-
dividual robot display (i.e., their incoming video streams).
We ran multiple experiments with novice operators on all
combinations. Operators were given an approximate 25-
minute training session in operating a single and multiple
robot (including the formation and pushing), and only be-
gan the experiment when they reported they felt comfort-
able controlling the robots. Different operators were used
for the different tasks (7 for pushing; 9 for formation), but
every operator was tested with all combinations available
in the task they operated. To avoid ordering effects, the or-
der in which operators were exposed to the different set-
tings was scrambled. In no setting were the operators able
to see the robots while operating them.

In the formation maintenance task, we compared
three interfaces. The first presented the operator with
the split-view video streams from all robots (e.g., Fig-
ure 2-c). The second combined the this split-view with
the socially-attentive display previously described. The fi-
nal interface consisted of a single camera (the lead robot’s)

and the socially-attentive display. Each of the interfaces
was tried with two different obstacle courses. Thesim-
ple course consisted of an open space with no obstacles
at all. Thehard course consisted of a single obstacle that
had to be by-passed while giving the follower robots suf-
ficient leeway. For each of these trials, we counted the
number of catastrophic and non-catastrophic formation fail-
ures. Non-catastrophic formation failures were measured
as the number of times a follower robot has temporar-
ily lost track of the lead. Catastrophic failures were mea-
sured by the number of times the robots reported on per-
manent tracking failures, which would then be fixed manu-
ally by the experimenter—not the test-subject operator—by
moving the robot by hand until it regained its track-
ing.

Figure 3 shows the results of this experiment in terms of
the average number of non-catastrophic failures per opera-
tor. The results reflect only 8 of the 9 subjects—one sub-
ject’s results were excluded from all experiments since his
failure rate was an order of magnitude greater than the oth-
ers in controlling the robots, in all interfaces. Figure 4 mea-
sures the average number of catastrophic failures for the
same experiments.

The results show that in both simple and hard settings,
a combination involving a socially-attentive display outper-
forms monitoring using only individual displays, thus lend-
ing support to the hypothesis that socially-attentive display
can significantly improve monitoring of robots in coordi-
nated tasks.

However, surprisingly, different combinations vary sig-
nificantly in performance, depending on the difficulty of the
obstacle course. The split-view combination works best in
the simple course, while the one-view combination works
best in the hard course. We believe that the reason for this
difference may be associated with the amount of informa-
tion that the operator cognitively integrates when operat-
ing the robots. In the hard course, the operators had had
to maintain very careful control over the formation, since
bypassing the obstacle took some mental visualization of
where the robots where with respect to the formation. The
split-view display might have been distracting in such set-
tings. On the other hand, in the simple course, the operators
may have essentially ignored the relation tool, because they
felt confident that the formation would not be broken due
to any turns. Indeed, one of the operators that had several
catastrophic failures in the simple course reported to us that
he had not even looked at the relation tool in the one-view
trial. Here, a split-view display might have helped by forc-
ing the operators to look more closely at the formation (be-
cause there were more incoming streams of data than in the
one-view combination). Further investigations of these phe-
nomena are needed.

The second experiment examined the use of the rela-
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tion tool in the cooperative pushing task, as previously de-
scribed. Here, we contrasted three interfaces: a split-camera
view only, a combination split-camera and relation tool, and
the use of the relation-tool alone. Seven human operators
(different than in the formation experiment) were tested on
all three interfaces, again scrambling the order of their in-
troduction to the different interfaces to prevent biasing the
results due to human learning. Their performance was mea-
sured as the average absolute angle deviation from the imag-
inary horizontal line connecting the robots when they main-
tain ideal relative velocity. This angle was sampled at 20Hz
during task execution. The results are averaged for all oper-
ators.

The results of this experiment are shown in Figure 5. The
figure shows that both interfaces using the relation tool were
clearly superior to the interface relying on camera alone.
This is due to this task being essentially a pure-coordination
task: The operator does not need to worry about where the
pushed object is going, as long as the relative velocity of
the robots is maintained at 0 (i.e., their velocities are equal).
Thus even a socially-attentive display by itself is sufficient.
On the other hand, the non-social split-camera view (by it-
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self), is difficult to use for coordination. However, the re-
sults still show slight advantage to maintaining the split
view in addition to the tool.

Thus in both monitoring tasks, a combination of socially-
attentive interface (using the relation tool) with individ-
ual robot information proved significantly superior to an
approach that did not use this tool. Based on the experi-
ments with formation monitoring, it would seem, though,
that the choice of how to combine socially-attentive moni-
toring with individual information is tricky. Different com-
binations vary significantly in their monitoring results. We
leave exploration of this issue to future work.

5.2. Distributed Call-Request Resolution
We now turn to evaluating the distributed control tech-

nique. We set up three robot failure scenarios, and for each
compare several control paradigms, with eight human op-
erators. Again, the ordering of the scenarios was random-
ized between operators to prevent biasing the results. In all
scenarios, the right follower robot was disabled, and color
marked to allow its detection by the other robots (calledac-
tive robots) and the operator. We distinguished two phases:
The first phase of the resolution involved recognition of
the disabled failure from any distance. The second phase
involved its localization by another robot reaching within
35 centimeters of it. Each scenario began with the simu-
lated disabling of the robot (and issuing of the call request),
and ended with its localization by at least one robot—
teleoperated or autonomous.

We compared several control schemes: The fullytele-
operatedscheme corresponded to the centralized control
used in previous approaches. In this scheme, the operator
would switch control from one active robot to the next,
as deemed necessary, and manually teleoperated the con-
trolled robot until the disabled robot was found. In theau-
tonomousscheme, the active robots searched for their peer
autonomously, using the searching behaviors described in
Section 4. The teleoperated and autonomous approaches



were compared todistributed and semi-distributedcon-
trol approaches. In thedistributedapproach, the operator
teleoperated one active robot, while the other active robot
searched for the disabled robot autonomously. The operator
was able to switch to controlling the other robot as needed.
In the semi-distributedscheme, the active robots began to
search by themselves, but once the operator recognized the
disabled robot in the camera view of one of the robots (i.e.,
once the first phase of the search was over), she took over
and the teleoperated the active robot until it localized the
disabled robot.

A potential advantage of the distributed scheme is that
it utilizes knowledge that the robots may have in locating
the disabled robot. In particular, because the robots have
moved in formation prior to the call-request, they may have
an easier time guessing their peer’s location than the oper-
ator (who needs to orient herself in space via the teleoper-
ated camera).

To evaluate the importance of this advantage, we exper-
imented with three locations for the disabled robot:Easy
placed the disabled robot at approximately where it would
be had it just stopped in its tracks prior to the team getting
notification of its “disappearance”, i.e., a bit farther behind
its location within the formation;Mediumplaced the robot
behind the left follower robot; andHard placed the robot to
the left of the left follower robot, and behind it (i.e., com-
pletely out of place compared to the formation). Thus the
locations progress from a location easily predictable by the
robots, to a location unpredictable to them.

For each of these locations and for each method, we mea-
sure the time that it would get the operator to recognize the
disabled robot in any one of the cameras (the operator uses
the split-view interface in this task), i.e., the duration of the
first phase. We then measure the time that it takes for an ac-
tive robot—autonomous or teleoperated—to reach the dis-
abled robot, i.e., the duration of the second phase. Since the
motivation behind the distributed control scheme is to re-
duce the time spent awaiting resolution, we prefer shorter
durations.

Figure 6 shows the results of the different con-
trol schemes for the first phase, averaged across op-
erators. The figure measures the average time (in sec-
onds) it took the operator to recognize the disabled robot
from afar, in the split-view camera display. Clearly, all ap-
proaches in which robots attempt to orient themselves to-
wards the predicted location of the disabled are superior to
a teleoperated (centralized) approach. Note that in all ap-
proaches, the operator recognizes the robot from afar. The
active robots do not necessarily recognize the other robot
from afar, and as we will see below, may end up search-
ing for it in the wrong location. This significantly shorter
initial recognition is a beneficial side-effect of the dis-
tributed approaches.

0

2

4

6

8

10

12

14

16

18

easy medium hard

S
ec

Autonomous
Semi
Distributed
Tele

Figure 6: Phase 1 Duration

Figure 7 shows the results for the second phase, where
the task is to arrive within the proximity of the disabled
robot. Despite its poor performance in phase 1, the teleop-
erated approach does quite well in phase 2. This is easily
explained—here the disabled robot is already recognized,
and the teleoperated approach simply allows the operator to
now drive the teleoperated robot as quickly as possible. The
distributed approach performs well, because it essentially
turns this phase into a race between a teleoperated robot
and an autonomous robot, as to who gets to the disabled
robot first. Moreover, unlike the semi-distributed approach,
where there’s an overhead of a few seconds while the oper-
ator takes over control (see the results for the medium lo-
cation), here the transition from phase 1 to phase 2 is fairly
smooth, because one active robot continues to search even
while the operator is taking over control of the other. Thus
the results are close to the teleoperated approach, and are
better than the autonomous approach in the easy and hard
locations.

Indeed, contrasting the results of the autonomous and
distributed approaches is telling. As we move from the easy
location to medium to hard, our expectations were that the
autonomous and distributed approaches would work in a
trade-off:Autonomouswould be quicker thandistributedin
the easy location (since its search predictions are suppos-
edly correct in this location), while in the medium and hard
locations,distributedwould be better, because despite the
autonomous search predictions failing in these locations,
the operator indistributedwould make up for any lacking
of the automated search. However, in the easy location,dis-
tributed did better thanautonomous, while in medium,au-
tonomousdid better thandistributed.

A closer look at the durations of the autonomous ap-
proach at both locations reveals that in the easy location, au-
tonomous took 32.2 seconds, while in the medium location
it only took 22.66 seconds. In a sense, our own expectations
(which were not based on pilot experiments) were wrong.
What we had believed to be an easy location for the auto-
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mated search was in fact of medium-level difficulty, while
our medium location was in practice a good match for the
predictions of the autonomous search.

Ultimately, the performance of the distributed approach
vs. the teleoperated (centralized) approach is measured in
the total time it takes to identify the location of the disabled
robot—the total time for resolution—combining phases 1
and 2. Figure 8 shows the average total duration for the eight
operators. The results show that in botheasyandmedium
locations, the distributed approach is preferable to the cen-
tralized teleoperation approach. In thehard location, dis-
tributed trails teleoperation by a slight margin. Distributed
does better than the semi-distributed approach in all loca-
tions, and better than the autonomous approach in theeasy
and hard locations. Overall, the distributed collaboration
between the operator and active robots in the distributed ap-
proach proves to be a powerful technique for significantly
reducing the time to complete the task of locating the dis-
abled robot.
6. Summary and Future Work

This paper takes steps towards techniques that allow a
single human operator to control a team of robots that are
tightly coordinated. In particular we point at two challenges

that are unique to controlling tightly-coordinating teams:
Explicit monitoring of the coordination, and resolving calls
for operator attention as quickly as possible. Existing tech-
niques do not adequately address this challenge. In partic-
ular, in such settings, their centralization of the operator as
the only entity capable of resolving calls for attention is in-
appropriate, because it does not take advantage of the team-
work of the robots, and their implicit or explicit organiza-
tional knowledge.

We demonstrate two techniques. First, we show that
socially-attentive displays can significantly improve the
failure rate in two tasks requiring maintenance of team co-
ordination by the operator. Second, we show that a dis-
tributed control scheme, allowing teamwork between the
operator and all robots, reduces the time of resolving fail-
ures (compared to the centralized and autonomous ap-
proaches), in many instances.

The results presented in the paper also raise questions
for future work. For example, the results for the monitor-
ing tool indicate that while a socially-attentive display can
be a significant advantage, it is only so in particular combi-
nations with regular displays—and these improved combi-
nations change from task to task.
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