
Stable Humanoid Whole Body

Motion Generation

Sharon Yalov-Handzel

Department of Computer Science

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University

Ramat-Gan, Israel September 2015

This work was carried out under the

supervision of Prof. Gal Kaminka

The Department of Computer Science, Bar-Ilan University

Acknowledgments

It would not have been possible to write this doctoral thesis without the help and

support of the kind people around me, to only some of whom it is possible to give

particular mention here.

Above all, I would like to thank my supervisor Prof. Gal Kaminka. This thesis

would not have been possible without his help, support and patience, not to mention

his advice and unsurpassed knowledge. I could not have asked for better role mentor,

inspirational, teaching me how to think on academic problems, always knows to ask

leading questions and creates fertile atmosphere.

Then, I would like to express my deep gratitudes to the adults of my family and

especially my parents, Arye and Havazelet for their unequivocal support and great

patience at all times, for which my mere expression of thanks likewise does not su�ce.

I would like to express my heartfelt gratitude to the lab team: Gabriella, Mor,

Matan, Noa and her group for their good advices, support and friendship. It has been

invaluable on both an academic and a personal level.

I would like to acknowledge the �nancial, academic and technical support of the

Bar-Ilan University and its sta�, particularly in the award of a Postgraduate Research

Studentship that provided the necessary �nancial support for this research.

This thesis was co-funded by several resources. I would like to thank especially

Mr. Sami Segol for his generous stipend.

I also thank the Department of Computer Science for their support and assistance

since the start of my studying in 2010, especially the head of department, Prof. Doron

Peled and Prof. Sarit Kraus.

I am most grateful to the Israeli group that participated in Darpa Grand Chan-

llenge for providing me with ideas and directions. Special thanks to Prof. Hugo

Guterman from BGU, Prof. Miriam Zacksenhouse from the Technion, Dr. Amir

Shapiro from BGU and Eliya Shaviv from the IAI. All of them had provided a rich

and fertile environment to explore new ideas. My other a�liation in the BIU group:

Dudi Mass, Shimshon Winograd, Gal Lavi and Ella Sharkansky, thank you

Last, but by no means least, I thank my beloved kids Eran and Noga for being

there.

For any errors or inadequacies that may remain in this work, of course, the re-

sponsibility is entirely my own.

Abstract

The stability of humanoids is fragile and depends on the robot dynamics which are

di�cult to plan in advanced. Keeping humanoids stable along their non-repetitive

motion sequences is a great challenge in robotics, and it is usually resolved by using

feedback control to consider the dynamic impacts. O�-line planning of whole body

stable motion cannot be resolved by motion generators based on feedback control.

We propose an algorithm to plan stable whole body postures, based on the IKP

(Inverse Kinematics Problem) solver. The IKP is extended to solve the kinematic

equations under any condition that can be represented in a geometrical form. Such

a condition is the robot stability. This numerical iterative algorithm can be applied

to any robot structure. In addition, the algorithm can �nd a kinematic solution that

obey a certain optimization criteria. But is not complete. In order to cope with

the algorithm's incompleteness, we propose some improvements that increase the

convergence probability of the solution. The algorithm was analyzed and simulated

and the core contribution of this work is that it gives a general method for o�-line

planning of complex postures applied to high DOF (degree of freedom) robots that

should obey some condition. Moreover, the improvements demonstrate that there is

a tradeo� between the completeness and the generality of the solver.

I

Contents

Abstract I

List of Figures

List of Tables

1 Introduction 1

1.1 Brief Overview of Robot Motion . 2

1.2 Humanoids . 4

1.3 The contributions of the research . 5

2 Related Work 7

2.1 Robot Motion Planning . 7

2.2 Constraints in Motion Planning . 9

2.2.1 Stability . 10

2.2.2 Continuity . 12

2.2.3 Minimal Uncertainty . 12

2.3 Motion Interpolation . 13

3 Inverse Kinematics for Motion Planning 17

4 Multiple IKP: A Novel General Solver 27

4.1 The Problem . 28

4.1.1 The standard IKP de�nition 28

4.1.2 Formulation of Multiple IKP 29

4.2 Characteristics of the problem . 34

4.3 The Solution to the Multiple IKP . 43

4.3.1 Soundness . 47

4.3.2 Completeness . 48

5 Addressing the Incompleteness of MIKP 53

5.1 First Improvement . 53

5.2 Second Improvement . 53

5.3 Third Improvement . 56

5.4 Fourth Improvement . 57

5.5 Tying it all together: MIKP* . 60

5.6 Analysis . 65

6 Stability and Other Constraints 73

6.1 Formulation of Constrained Multiple IKP 73

6.2 Constrained Multiple IKP Algorithm 76

6.3 Analysis . 77

6.4 Whole Body Stability Constraints . 79

6.4.1 Extended Stability Criteria: Notation 80

6.4.2 The Problem . 80

6.4.3 Stability Criteria Points . 82

6.4.4 The Convex Hull of the Supported Polygon 87

6.4.5 The Stability Constraint . 90

6.5 Other Constraints . 91

7 Motion During Interpolation 97

7.1 Properties of an Interpolated Path 99

7.2 The Interpolation Method . 104

7.3 The E�ect of the Via-Points Density 106

7.4 An algorithm to �nd the next via-point 110

7.4.1 Soundness . 114

7.4.2 Completeness . 116

7.4.3 Complexity . 116

8 Results 117

8.1 Raising hand . 117

8.2 Stand to Sit . 122

8.3 Summary . 127

9 Conclusions and Future Work 129

9.1 Conclusions . 129

9.1.1 The constrained IKP solver 130

9.1.2 Interpolation during Motion 132

9.2 Future Work . 133

A The D-H of the Nao robot 135

B An example kinematic constraint 139

C The Interpolated Path Measurement Applied to the Nao Robot 147

D Bibliography 149

Hebrew Abstract ℵ

List of Figures

2-1 Zero Moment Point([13]). Dynamic walking is achieved by ensuring that

the robot is always rotating around a point in the support region 10

2-2 FRI point ([85]). The further away the FRI point from the support polygon

boundary, larger the unbalanced moment and greater is the instability . . 11

2-3 Flowchart of keeping stability during transition 12

3-1 Con�guration space of 2 links robot . 22

4-1 The Denavit-Hartenberg convention 31

4-2 Kinematic equations of lar . 35

4-3 Kinematic equations of rar . 36

4-4 Kinematic equations of lap . 37

4-5 The palm as a function of rap . 37

4-6 X, Y, Z kinematic function as a function of left knee pitch 38

4-7 X, Y, Z kinematic function as a function of left hip pitch 38

4-8 X, Y, Z kinematic function as a function of left hip roll 39

4-9 X, Y, Z kinematic function as a function of left hip yaw 39

4-10 The right palm function (lsp) . 40

4-11 The right palm function (rsp) . 40

4-12 The right palm function (rsr) . 41

4-13 The right palm function (rer) . 41

4-14 The right palm function (rey) . 42

4-15 The right palm function (rwy) . 42

4-16 Two Oscillating functions (1) . 49

4-17 Two Oscillating functions (2) . 50

4-18 Two Oscillating functions (3) . 50

4-19 Two Oscillating functions (4) . 51

5-1 Knee-to-Chin press posture [1] . 60

6-1 The stability constraint as a function of lar, lap and lkp 91

6-2 The stability constraint as a function of rar, rap and rkp 92

6-3 The stability constraint as a function of lhp, lhr and lhy 92

6-4 The stability constraint as a function of rhp, rhr and rhy 93

6-5 The stability constraint as a function of lsp, lsr and ler 93

6-6 The stability constraint as a function of rsp, rsr and rer 94

6-7 The stability constraint as a function of ley and lwy 94

6-8 The stability constraint as a function of rey and rwy 95

7-1 Path deviation during motion . 103

7-2 The total path length of the end e�ector 107

7-3 The total path length of the end e�ector (Spline Interpolation) 108

7-4 The total path length of the end e�ector (Bezier Interpolation) 108

7-5 The summation of the joints total distance (linear joints Interpolation) 109

7-6 The summation of the joints total distance (Spline Interpolation) . . 109

7-7 The summation of the joints total distance (Bezier Interpolation) . . 110

7-8 The accuracy of the path (linear joints Interpolation) 110

7-9 The accuracy of the path (Spline Interpolation) 111

7-10 The accuracy of the path (Bezier Interpolation) 111

8-1 The robot initial posture . 117

8-2 The IKP result for the raised arm posture 118

8-3 The ICKP result for the raised arm posture 118

8-4 Result of Algorithm 2 . 119

8-5 Result of Algorithm 3 . 119

8-6 Result of Algorithm 5 . 120

8-7 Result of Algorithm 7 . 120

8-8 IKP (1) Convergence . 120

8-9 ICKP (2) Convergence . 121

8-10 Improved ICKP (3) Convergence . 121

8-11 Improved ICKP (5) Convergence . 121

8-12 Improved ICKP (7) Convergence . 122

8-13 Improved ICKP (9) Convergence . 122

8-14 Joints Correction . 123

8-15 The robot initial posture . 123

8-16 IKP without constraints . 124

8-17 The aggregated error of each iteration, stand-to-sit. 124

8-18 Joints value modi�cation in each iteration, stand-to-sit. 124

8-19 Sitting posture . 125

8-20 The aggregated error . 126

8-21 The joints changes in each iteration. 126

8-22 The GCoM location along the process 127

A-1 The kinematics structure of the Nao robot [Aldebaran Ltd.] 135

A-2 Sketch of the Nao's joints [Aldebaran Ltd.] 136

List of Tables

7.1 The abbreviations of the links lengths 100

A.1 D-H of the Head chain . 136

A.2 D-H of the left leg chain . 137

A.3 D-H of the right leg chain . 137

A.4 D-H of the left arm chain . 137

A.5 D-H of the right arm chain . 138

B.1 Joints name abbreviation . 140

List of Algorithms

1 Basic Constrained IKP algorithm . 46

2 Finding the initial value of Θ . 54

3 Multi Stage Constrained IKP algorithm 55

4 Another version of the Multi Stage Constrained IKP algorithm. In

each iteration only one kinematic equation is solved 56

5 Improved Multiple IKP algorithm (3) - I/O 58

6 Improved Multiple IKP algorithm (3) - sequential solution of the kine-

matic equations. At each iteration the variable to be solved is the one

that generates the maximal deviation 59

7 Improved Multiple IKP algorithm . 61

8 Finding a linear environment for the existence of a Constrained IKP

solution . 64

9 Improved Constrained IKP solver . 65

10 Improvement in �nding the initial values of θ′is 66

11 Algorithm to construct the supported polygon 88

12 Convex Hull Computation . 89

13 Calculation the most far via-point along the path that guarantees keep-

ing stability during interpolation . 115

Chapter 1

Introduction

This dissertation describes research on robot motion planning under constraints. In

particular, the research is focused on complex robot structures such as humanoids,

that requires coping with crucial challenges in robot motion planning, such as keeping

stability, following a path accurately, coordinating limbs and more.

Robot motion planning is a wide term relating di�erent aspects. It ranges from

environment considerations such as obstacle avoidance to robot controller consider-

ations such as minimizing the frequency of sending motion commands. It includes

optimal path planning as well as obeying kinematics constraints and limitations. The

term robot motion planning covers the topics of translating high level tasks into

low level motion, the optimality of the motion, keeping stability, reuse of repetitive

motions, saving energy, reduction in joint engines power consumption, coping with

dynamic environment, path predictability, the impact of the sensing limitations and

more.

This research is focused on the problem of planning robot postures that reach

given target poses, without losing stability during the transition from the posture.

We propose and investigate a family of algorithms that plan motions by solving

inverse-kinematics problem under constraints.

The proposed approach is relevant to any robot. However, we will focus on hu-

manoids, that embody the most general requirements coping with complex kinematic

structure with many degrees of freedom, kinematic chains in both serial and parallel

relations, fragile stability and singular points.

Motion planning for non-humanoid robots require coping with sub-sets of these

challenges. For example, planning the motion of an industrial manipulator does not

typically require coping with stability, since the robot is mounted to the ground or a

wall. Also, an industrial manipulator has one sequential kinematic chain which eases

1

the computation. Another example is most wheeled robots, that also do not require

accounting for their stability. Considering multi-legged robots (e.g. insect-like), their

kinematic chains are always parallel and do not change their characteristics. So,

biped robots are a general structure that embody all sub-problems in robot motion

planning.

1.1 Brief Overview of Robot Motion

The history of robot motion is a background for understanding current robotics re-

search. The evolution to walking robots deals with complex motion control, structural

design and walking patterns. An advantage of walking robots in relative to manip-

ulators or even wheeled robots is in their versatility which enables wide range of

locomotion capabilities which means supporting variety of tasks. The disadvantage

of the walking robots is their fragile stability.

Motion planning is a term used for the process of breaking down a desired high

level task into discrete low level motions that satisfy movement constraints and pos-

sibly optimize some aspect of the movement.

This process is composed of the following sub-processes:

1. Transform a task into atomic substasks

2. Sense, measure and calibrate a model of the environment

3. Construct a view of the world and the robot locomotion within this environment

4. Translate each atom subtask into a sequence of paths for the motion of the

robot end-e�ector.

5. Ensure continuity of the transition between paths.

6. Plan a trajectory for the robot end e�ector that ensures obstacle avoidance and

feasibility

7. Translate each trajectory into a sequence of via points in terms of the robot

end-e�ector in relative to the world coordinate system.

8. Convert the via points into machine robot postures.

9. Make sure that these points are valid in terms of reachability, stability, feasibility

and singular points avoidance.

2

10. Translate these postures into machine commands

11. Optionally change the interpolated path generated by the controller in each

piecewise transition.

This research is focused on sub-problems 8�11, while dealing with biped robots.

In its framework we relate any whole body motion under the stability constraint.

Each of the above sub processes embodies a wide research domain. Some major

research problems in motion planning are outlined below:

• motion planning of biped robots in human environment and working in coop-

eration with humans

• the motion mechanism of human and animals as the basis for understanding

how robot motion should be implemented.

• What is the most appropriate stability criteria for maintaining stability during

the walking motion which takes into account whole body biped dynamics.

As described in [53], there are two major approaches in robot motion planning:

the classical and the heuristic. Both approaches relate stages 4-6 in the above list of

sub processes. Other stages are less investigated by computer science scientists.

While sub processes 1-5 are covered by the domain of robot motion planning, it

is common to consider sub processes 6-11 as being handed by the controller.

Dealing with biped robot, the most common task is walking to a target. This can

be divided into clear two phases: planning the ground projected walking path, and

walking along this path. There is a clear separation between the planning and the

controlling phases. Our research is not limited to walking, but to any whole body

motion tasks. In this case the separation is not important.

There are three major approaches in planning and controlling in general motion

tasks:

• Sensor-based (e.g. Feedback Control)

• Human physiology-based (e.g. CPG - Central Pattern Generator)

• Geometry-based (e.g.IKP - Inverse Kinematics Problem)

While the two later approaches can belong to both motion planning stage or to

the Control stage, the �rst belongs only to the control phase.

In this research we are using geometric approach, and focusing on the IKP method,

which enables both o�-line planning and real-time control.

3

1.2 Humanoids

Humanoids, sometimes refereed to as biped robots, have structure resembling the

human body. There are many types of biped robots that all have in common the

following characteristics:

• They have two legs and two hands

• They have at least four kinematic chains

• The number of DoF ranges often in 18�32, and could be larger

• Their controllers support a stability mechanism

Currently they are mainly used for research, but the vision is that they will replace

humans in dangerous, repetitive and tiring tasks, such as rescue forces in radioactive

environments, unskilled assistants in elderly care, etc. They have wide range of

motions that enable variety of tasks and their con�guration space is unlimited.

These structures are challenging, and there are many open problems yet to be

solved, such as: What is the best stabilizing mechanism, How to fuse the information

from di�erent sensors, What is the optimal motion planning, and more.

Although biped robots are a speci�c type of robots, the challenges they raise are

general. We choose to focus our research on this robot type since they are most

challenging in the computational kinematics aspect and each solution that is relevant

to them will hold for any other type of robots.

Uncertainty is a crucial issue in robotics since there is no robotic system with cer-

tainty, from one hand, while on the other hand, the uncertainty has to be considered

in any motion planning.

The uncertainty exists due to several reasons: the environment is dynamic, the

calibration of the robot in relative to the world is not accurate, the precision of the

robot motion is bounded. Moreover, there are some systematic deviations of any

dynamic system, such as the gap between the theoretical and physical robot initial

pose. Finally, there is always "white noise" in measuring, especially in systems that

their perception is based on information fusion from di�erent resources.

An inherent property of the uncertainty is that it is unknown. But estimation of its

maximal boundaries can be determined. This estimation is important for predicting

maximal deviations from the "known" scenario, in order to prevent failures such as

losing stability, falling, damaging, etc.

4

1.3 The contributions of the research

This research extends the classical kinematics solution and adjusts it to complex robot

structures such as humanoids.

• First, it modi�es a traditional IKP method to meet the characteristics of multi-

chains robots.

• Then, it extends the IKP to be solved under constraints. As an example, the

stability constraint is described. This enables solving the IKP, which is a geo-

metrical problem under di�erent physical constraints in general and particularly

those stemming from dynamics. This is an advantage, since it enables working

with complex devices such as biped robot on diverse whole body motions, not

limited to walking only. The algorithm is o�ine and using the CoM criterion

implies quasi-static movement.

• Another topic that is covered by this research is the analysis of the impact of

the interpolation done by the robot controller in the joints' con�guration space.

In this context di�erent interpolations are compared.

• As a consequence of this analysis, an algorithm that determines the density

of the via points between two consequent postures is proposed, analyzed and

simulated.

• The problem of motion planning for stability which can be determined o�-

line without reliance on real-time sensory inputs is tackled. The key idea in

our approach is to translate stability and dynamics constraints into geometric

constraints and then utilize a novel, general IKP solver to plan provably stable

trajectories.

The result is a toolbox for o�-line planning of complex motions of complicated

robot structures in dynamic and uncertain environments. It is based, in part, on

twenty years of experience in the kinematics of industrial robot, and some insights

for the "Grand Challenge" 2013 competition initiated by DARPA.

This dissertation compounds of 9 chapters, where Chapter 3 extends the general

IKP de�nition to solve multiple targets and multiple supports. Thereafter, in Chapter

4, a novel algorithm to solve the IKP under conditions (ICKP) is proposed. In Chap-

ter 5 we propose some improvements to the ICKP to treats its weaknesses. Then,

some constraints are given as example, while focusing on the stability constraints

5

(Chapter 6). In Chapter 7 the noncontinuous property of motion planning is dis-

cussed. Chapter 8 demonstrates some results of the ICKP algorithm while applying

stability constraints. Finally, Chapter 9 concludes this dissertation.

6

Chapter 2

Related Work

The spectrum of literature on robot motion planning varies from high level tasks to

low level planning and execution. The lowest level tasks are the commands to robot

controller and the highest tasks are those that should be translated into a complicated

set of lower level commands (e.g. "pick an object", which includes walking, reaching,

recognizing an object and grasping it). A common denominator of all motion planning

methods is their goal to allow the robot to determine its motion autonomously. As

robots become more complex in their structure and more versatile in their mobility,

this challenge becomes more crucial and more di�cult. A comprehensive survey of

motion planning methodologies for robot manipulators appears in Sciavicco et al. [67].

In the 80's and part of the 90's robot motion planning was focused on �nding

collision-free path in the joints space. Today, there are many other constraints

that need to be taken into account. Among them are: equilibrium, optimality

across multiple criteria, kinodynamic (i.e. simultaneous kinematic and dynamics

constraints), uncertainty in actuation, maximal coverage of reaching zones, visibility

and more [11,30,47].

Our focus is on planning stable motion in general and speci�cally for humanoid

robots. We survey related work below.

2.1 Robot Motion Planning

The term "robot motion planning" covers two distinct research domains: (i) path

planning and (ii) joint con�guration planning. In this research we concentrate on the

later domain. i.e. given the target point after a pace, what is the most appropriate

robot posture that reaches the target under stability constraint at the end point and

during the transition.

7

The majority of works in the domain of algorithmic robot motion planning are

focused on four aspects: (i) manipulators motion planning, (ii) walking of humanoids,

(iii) humanoid grasping and (iv) whole body OMPL (Optimal Motion Planning).

The concrete requirements of the motion planning, determines which solution

is relevant. Some aspects that have to be considered before selecting the planning

solution are:

• On-line or o�-line planning

• The robot is inherently stable (e.g. manipulator, wheeled robot) or not (e.g.

humanoid)

• The planning is in the Cartesian space (e.g. accurate path tracking) or in the

joints space (e.g. only reachability is important)

• Motion is repetitive (e.g. walking) or not (e.g. standing after falling)

There are three families of algorithms for robot motion: physical-based (e.g. feed-

back control), physiological-based (e.g. Central Pattern Generator or Incremental

sampling-based motion planning algorithms) and geometrical-based (e.g. Inverse

Kinematics Problem). The former one is used for real-time motion rather than plan-

ning a motion. The last one is useful in manipulator motion planning [30] while the

other approaches are common in biped locomotion.

There are two types of robot motion controllers: open loop and closed loop. In

the open-loop approach the next movement is based only on the robot current state.

In closed loop controllers the sensory inputs a�ect the next step, as well. This means

that motion planning for robots with open-loop controllers can be fully predetermined,

while for closed-loop controllers a pre-planning can be done partially only (i.e. roughly

in the Cartesian level rather than in the joint space).

The most common planners belong to the Feedback control family of algorithms

which is an on-line response of the robot controller to the current robot state as

achieved from sensory-based information fused with the controller parameters. The

planning is in the path level and the joint actuation is mainly performed as a feedback

response. In most feedback methods the controllers are designed at the torque input

level and the actuator part is neglected. The generated motion is as to obey the

robot goal, and the feedback model as was de�ned. There are di�erent feedback

models in di�erent levels, such as: angular momentum, pendulum, torque, stability

and more [33,34,40,43,72,93]. Feedback control methods are also relevant in motion

8

generation of these robots, but the feedback is on reachability parameters rather than

on stability.

The most popular planner of the physiological-based approach is the CPG (Cen-

tral Pattern Generator) family of algorithms. The term CPG was originally related

to neural networks that exist in the spinal cord of animals and is used as muscles acti-

vation signals. These networks produce rhythmic patterned outputs without sensory

feedback [52]. This idea was adopted in many robot motion planners and controllers

and became popular mainly in generating repetitive motions in complex robots that

do not rely on any input sensory information [28]. Our motion planner either does

not rely on sensory inputs. While CPG planner can generate motions that are already

de�ned, our planner can generate new motions in the same quality as those it already

planned.

The most signi�cant planners of the geometrical approach are those solving the

IKP (Inverse Kinematics Problem). This family of algorithms is useful in manipu-

lators motion planning since they are stable and have low degree of freedom. These

characteristics match the common assumptions of traditional IKP solvers. The tradi-

tional IKP is not e�cient in humanoid motion planning due to two major problems:

(i) stability is not addressed and (ii) the complexity of solving the IKP of high order

kinematic equations. Therefore, dealing with humanoid, IKP is used in two cases,

where only partial motion planning is required. One case is to determine grasping

positions, that are similar to manipulators. i.e., the joints state of the hand relative to

a stable body [7]. Usually, it does not a�ect the stability much. The other case is to

determine the internal joint values within a given kinematic chain, where the position

of the chain's origin is well de�ned. In this dissertation we do not limit ourselves to

these two cases.

2.2 Constraints in Motion Planning

There are many robot types that di�er in their number of joints, number of kinematic

chains, type of kinematic chains, size, degree of freedom, whether they are mounting

or not, and more. The constraints that should be satis�ed along the robot movement

are partially derived from its characteristics.

9

Figure 2-1: Zero Moment Point([13]). Dynamic walking is achieved by ensuring that the
robot is always rotating around a point in the support region

2.2.1 Stability

There are three common criteria for stability: CoM (Center of Mass), ZMP (Zero

moment Point) and FRI (Foot Rotation Indicator). Both the CoM and the ZMP

criteria state that as soon as the Center of Mass or the Zero Moment Point is contained

within the interior of the support polygon, the robot is stable. The FRI is the point

on the ground where the net ground reaction force would have to act to keep the

robot stationary. Thus, this point is within the convex hull of the stance foot.

Stability became a crucial issue in robotics with the rising of humanoid motion

control. Until this period, when most of the robots were manipulators, their stabil-

ity was not a crucial issue since they were mounted. Comparing biped and wheeled

robots, while the former have better mobility, they tend to tip over easily [50]. A

pioneer of researching biped robot stability was Kobratovi¢ who introduced in 1969,

together with Juri¢i¢, the ZMP (Zero Moment Point) concept and its dynamic equi-

librium, based on the problem of humanoid gait modeling [89]. Thirty �ve years

later, in 2004, Vukobratovi¢ and Borovac had published a review of ZMP [87]. A

signi�cant progress was made in the analysis of the dynamic balance loss. In this

case an advanced stability model of the FZMP [88] was adopted. In 1999 Goswami

had formalized the FRI (Foot Rotation Indicator) stability criteria [22], which is use-

ful in generating biped robot stable running or other biped moments that have no

static stability. Two other stability criteria are keeping the CoM (Center of Mass) or

the CoP (Center of pressure) within the convex hull of the robot supported polygon.

These two criteria are described in [24,34,65].

The use of CoM, ZMP and FRI stability criteria might varied from planning to

controlling stable postures. Our research is focused on o�-line planning of stable

10

Figure 2-2: FRI point ([85]). The further away the FRI point from the support polygon
boundary, larger the unbalanced moment and greater is the instability

postures. The more frequent use of these criteria is in feedback control. Usually it is

implemented as a part of the controller which should react in real-time. This type of

implementation requires: (i) the performance of the stability criteria will be fast [13]

(ii) there should be an indication regarding the stability resistance. i.e. it is not

enough to know the binary value whether a posture is stable or not, one should know

the amount of "fragility" of the stability. The only criteria that hints about it is the

FRI. There are some works that attempt to predict situations that the robot loss its

stability and prevent them [96].

Stability mechanism is usually embedded in the controller, as a feedback control

on the robot move as for example can be seen in [54]. The advantage of it is that the

stability is resistant also to external forces. The disadvantage of this implementation

is that it is impossible to preprocess stable motions.

There are many papers about robot stability that describe principles of designing

stable robots in the context of its mechanism (e.g. [31]). The reviewed stability models

will hold for any robot mechanism.

Although there is a wide research on robot stability conditions, there are very

few works on the stability measurement criteria, especially for the case of dynamic

balance. The paper of Clark and Cutkosky [12], describes three di�erent measures

of stability that can be applied to a runner robot. In this research we solve the

IKP subject to stability constraint, which is actually the CoM criteria translated

11

Figure 2-3: Flowchart of keeping stability during transition

into geometrical equation. The two other stability criteria can be applied to the

constrained IKP as well.

2.2.2 Continuity

It is well known how to keep stability discretely, i.e. at a �xed posture. There is

no complete solution for keeping the stability during transition between two stable

postures. This problem is described in [95] which summarized it into the �ow chart

2-3.

2.2.3 Minimal Uncertainty

Uncertainty is an inherent challenge of robotics and it stems from four di�erent

sources:

• uncertainty of the robot structure (systematic deviations)

12

• uncertainty of the robot motion (random deviations)

• the dynamics of the environment

• Deviations in the calibration process between the robot and its environment.

The robot stability might be a�ected by these uncertainties. In the last two

decades, the importance of this issue had intensi�ed and many research works had

been issued. There are several strategies to e�ciently plan motion with imperfect

state information. A common direction is by modeling the uncertainty by using

stochastic analysis or Markov chains [44]. Another direction is to estimate the motion

range and then apply "worst case analysis" [76]. An additional approach is dividing

a complex task into primitives that are more tolerated to deviations [82]. Notice that

uncertainty exists not only in the planning stage, but also in the execution stage.

Uncertainty reduction can be performed by a calibration process of the kinematics

and the environment and the referencing of the robot in relative to the environment.

In order to achieve an appropriate correction for the kinematic errors, a huge number

of measurements with low- numerical correlations have to be performed. However,

uncertainty will always exist. It can be reduced but not canceled. So a proper

methodology to cope with is required.

The results of the uncertainty computational models traditionally found in the

lower levels in robot systems but may have applications in the upper planning levels

as well [83]. Considering the uncertainty is done in the control level. Improved

uncertainty models that allow estimation of the deviation range and its implication

on the overall performance, enable o� line motion planning that will require minimal

on-line changes. In this research we use the methods for uncertainty estimation to

determine the number of via points that are required during motion interpolation to

generate a stable motion in high probability.

2.3 Motion Interpolation

In robots, interpolation is used to reach the destination point. Smooth interpolation

in Euclidean spaces has many applications in robot motion planning. Due to the

complexity of interpolation implementation in the Euclidean space, the motion is

interpolated in the joints space.

In robotics the interpolation is performed by the controller and it is a built-in

module that in some controller enables choosing between several types of interpola-

13

tions, and in others it is a prede�ned module. There are several interpolation methods

such as joint interpolation, linear interpolation or circle interpolation.

The background for interpolation design and analysis is related to screw theory

and Lie algebra. Selig [68] shows how to represent the kinematics of a robot by

using Lie Algebra. This enables di�erent manipulations and such as motion planning

and analysis in general and motion interpolation in particular. It uses the fact that

the exponential maps eso(3) → SO(3) and ese(3) → SE(3) are surjective. So, some

matrices associated with the joints can be written as exponentials of the form eθs,

where θ is the joint value and s is the joint screw, whose determination details are

described in [68]. The advantage of using this representation is described in [18],

which in brief states that the surjective property of the map implies that there is

another multivariate map: log : SO(3) → so(3) that can be used to perform motion

interpolation.

Dealing with motion planning, the interpolation phase is more interruptible in

robot simulators and animation than in real-time controllers. There are few interpo-

lation methods that are more common in this context:

• linear joints interpolation

• B-Spline

• Be¹ier

They are di�ered in the resultant path, in its smoothness and in the size of the

interpolated segment. The last parameter a�ects the complexity of the computation

which is critical in some real-time applications, as described in [10].

Though robot motion is continuous, motion planning is often a discrete task.

Some via points are determined and the motion between them is performed by an

interpolation, executed by the robot controller [71, 73, 79]. Indeed, there are many

methods for robot motion generation [47]. Some of them are based on mapping a 3D

trajectory into the robot joints space [46]. Other methods follow a given pattern [6]

or imitate human motion [19, 61, 63, 99]. The last approach is a feedback control

which generates the motion dynamically [5,80,93]. The common characteristics of all

generators is that they are discrete.

Whether in Cartesian or Joint space, the motion is planned piecewise, as a transi-

tion from one point to another. These points are called "via points" or "intermediate

knots" or "control points". Keeping the robot stability in the via points can be de-

termined in advanced as will be described in chapter 4. But preserving the stability

14

during the interpolation phase is not easily guaranteed. Therefore, the via points

are usually close, so that there is a good chance that the CoM will not exceed the

supported polygon between two stable postures. The hidden assumption motion gen-

erated in a piecewise fashion is that the via points are close to each other, so the

robot can stably reach the next via point from its current position, i.e., that such a

trajectory is feasible and the robot will stay stable. There are two problems with this

assumption: (i) it does not always hold (ii) even if it holds it is not necessary optimal.

A comprehensive description of interpolation in the joint space is found in [77].

This path planning is mainly used for obstacle avoidance. It uses as much via-points

as needed to avoid obstacles. Beside the joints values, also some dynamics values (i.e.

velocity and acceleration) are interpolated. This holds for optimal robot dynamics

under obstacles constraints. It does not account for the stability and not for the

accuracy of following a given Cartesian path.

In the evolution from CNC machines to manipulator robots and then to humanoid

robots, the interest in interpolation methods has declined. Joint interpolations had

been investigated in the 80's when CNC machines became very popular. Usually,

those machines have 3 perpendicular translational joint axes [57]. In these machines

there is an option to choose between linear to circular interpolation in the Euclidean

space. Dealing with manipulators that usually have rotational joints only, using

any interpolation in the Cartesian space requires high density via-points and their

corresponding inverse kinematics calculation. So, interpolation in the Euclidean space

became less relevant. Therefore, robots are left with the only interpolation method

that is valid, which is linear interpolation in the joints' con�guration space.

Interpolation of the SO(3) group is commonly done by using Bézier curves [101].

Those curves are very useful for obstacle avoidance in dynamic environment, since

they are parameterized curves and can be easily controlled by changing accelerations

[48]. Both approaches relate the location of the robot and the smoothness of the

motion in terms of PVA (Position, Velocity, Acceleration) continuity. But, do not

account for other constraints, such as stability. We demonstrate the impact of di�erent

interpolation methods on the deviation of the robot positions from the planned path.

This measurement is essential while dealing with o�-line motion planning, as no robot

motion is accurate, and one should estimate in advance the volume of the gap between

the planned and the actual paths.

15

16

Chapter 3

Inverse Kinematics for Motion

Planning

Robot Kinematics is the geometrical representation of the position along the motion.

This area evolved as a combination of mathematics and mechanics, since the 1960s.

The area emphasizes the geometry of the robot links as a rigid body.

Robot kinematics covers the relationship between the robot structure, i.e. number

of links, type of joints, and links length, and its position, velocity and acceleration.

This enables computing the actuator forces and torques. It does not cover some robot

dynamics parameters such as inertia.

The position of a robot can be represented as a set of kinematic equations. This

representation is termed as the "Forward Kinematics". These equations are used

the length of the links as constants and the joints values as variables. The forward

kinematics equations enable the translation between the joints' con�guration space

into the Cartesian space. The opposite translation from the World coordinate system

into the robot con�guration space is called Inverse Kinematics. Once the target

position of the end e�ector is given, the problem is to �nd a set of joints values that

solve the kinematic equations for the given position. The inverse kinematics problem

is cast into a system of nonlinear equations or an optimization problem.

This problem is complex due to its properties:

• Highly nonlinear

• Coupled

• There are multiple solutions

As the robot structure becomes more complex, the IKP is much more di�cult to

17

be solved [17]. IKP solves only the geometric problem of a robot postures and it does

not deal with any dynamics or stability considerations. This limits its use to mounted

devices, wheeled robots or animation that does not account for physical constraints.

There are two major approaches for solving the IKP: Analytic and Numeric. An-

alytical methods are generally more e�cient and reliable than their numerical coun-

terparts, but require speci�c kinematic structure. Analytic IKP is hardly used in

humanoids because of the complexity of solving non linear equations of high order

with many coupled variables. Traditionally, IKP which had 5-7 DoF (degrees of

freedom) was solved analytically or numerically. This under constrained equations'

system is reduced by implying some optimization constraints [21] or some dummy

conditions.

The analytic solutions are usually used when the number of joints is relatively

small. These are closed form solutions. In some works, by parameterizing some

joints as a function of other joints, reduce the DoF and the problem becomes to be

analytically solvable [75]. Other works make restrictive assumptions to enable the

analytical solution [18].

Numerical methods are usually general and not speci�c to closed-form robot struc-

ture. They are dealing with humanoids, this especially relevant to [36]. A signi�cant

advantage of numerical algorithms is that they can be generalized to accommodate

additional constraints and objective functions or optimization criteria, whereas the

analytic approaches are restricted to 5-7 DoF systems. The disadvantages of numer-

ical methods are that they are slower and they might not �nd all the solutions [74].

Most numerical methods are using linearization algorithms. Therefore, the IKP

solution becomes to be an iterative process [20]. The disadvantage of it is that

the complexity might be of high order. The advantage is that it enables implying

more constraints rather than using the kinematic equation solely. Some algorithms

manipulate the kinematics equations before the numerical solution [2].

The most common numerical algorithms based on lineariztion are using Newton

Raphson or the Jacobian matrix. Some remarkable works using Newton Raphson

method were presented by Khalil and Pieper in [37, 58]. Among the algorithms that

linearize the kinematics equations by using the Jacobian is [8]. The drawback of them

is that in some con�gurations, the alternative Jacobian can lead to "jerky" behavior.

This is particularly true for rotational joints when the multibody's links are folded

back on each other trying to reach a close target position.

Sometimes, this domain is termed "di�erential kinematics" and in its general form

f(θ) is de�ned to be the set of kinematic equations which is a function of the joints

18

values θ.

De�ne,

x = f(θ) and ẋ = J × θ̇

The Jacobian is de�ned to be J ≡ ∂f

∂θ
The Jacobian matrix of the forward kinematics equations linearly relates end-

e�ector change to joint angles change. In order to solve the inverse kinematics J

should be inverted. Since it is not always invertible, we use the pseudo-inverse of this

matrix.

J+ = JT (JJT)−1

The minimal norm solution is θ̇ = J+ẋ and the general solution is

θ̇ = J+ẋ+ (I − J+J)φ̇

Where

φ̇, the null space of J is de�ned to be the set of vectors which have no in�uence

on the constraints.

There are some iterative numerical algorithms that rather than using this lin-

earization, utilize more e�cient functions, like [91] that is based on a combination of

two nonlinear programming techniques and the forward recursion formulas, with the

joint limitations of the robot being handled implicitly as simple boundary constraints.

A basic assumption that is relevant to most of the numerical algorithms is the

although positioning a character with rotational degrees of freedom is non-linear, for

small changes of an articulated �gure's DoFs, it is su�ciently smooth to allow use of

an iterative linear IK solver [10].

Beside the analytical and the numerical approaches, there are some algorithms

that use neural network or genetic concepts to solve the IKP [14]. It demonstrates how

to reduce the complexity by using neural network solution for the IKP. An example

of a IKP solution uses a genetic algorithm can be found in [56]. The objective of this

optimization is to simultaneously minimize the end-e�ector's positional error and the

robot's joint displacements.

There are other works that demonstrate how to solve the IKP of varying robot

structures by using learning algorithms or genetic algorithms [9, 26]. Some research

demonstrates analytic solution of complex robot structures, but these solutions hold

for a speci�c robot rather than being general solvers [45]. There are some general

IKP solvers that divides the humanoid structure into segments (correlated to the

kinematic chains), and each segment has a representative joint that is solved by the

solver [94].

Some solutions are coping with the nonlinearity of the problem by utilizing an

19

apriori knowledge on the equations properties [100]

Some IKP solutions parameterized part of the joints in order to reduce the DoF. In

most conventional robots, the joints are independent and the joint limits are simple

linear inequality constraints. In a human skeleton many of the joints are coupled

because they may easily form closed loops or because they move simultaneously when

a single muscle contracts. Thus, in complex joint systems, the number of degrees of

freedom can be less than the number of joint variables. In these cases, it is useful to

�nd ways of parameterizing the kinematics other than with joint variables.

A common approach to solve the IKP in humanoids, is to subdivide the robot

joints structure into kinematic units for which analytical solutions can be derived

and partition an inverse kinematics problem into subproblems for each of these units.

The complexity of such methods is high and does not enable real-time solutions.

There are some works that optimize the method to reduce the complexity like [55],

that by using well de�ned character hierarchies reduces the complexity of each itera-

tion. Using methods like neural networks or genetic algorithms is that their averaged

performance is reasonable [39].

As soon as an IKP algorithm or a set of algorithms ensures convergence into a

solution for any robot structure, and it can be packaged as a "black box" that its

inputs are the robot structure, the robot zero-point and a target point, the package

outputs at least one IKP solution if there exists one. Most robot simulators have such

a mechanism. Such solvers are common as part of the SDK of speci�c robots like the

Aldebran Ltd. package [62], and the ROS package [60].

There are two common techniques that are used by these solvers. The �rst, par-

tition the robot to sub-units and solves the IKP for each unit separately. The second

requires intervention of the user that decides which joints will be changed (since it is

a redundant problem that might have few solutions). Also, there are some academic

works on these solvers, like [64], that proposes a combination of two algorithms. The

�rst introduces the concept of splitting the kinematic chain in order to satisfy bound-

ary constraints and the second method directly calculates the con�guration space

approximation in the preprocessing phase.

As mentioned before, originally, the IKP was de�ned to solve the geometric equa-

tions describing the robot kinematics. However, sometimes, additional constraint

should be applied to the solution. The basic IKP constrains the position and orienta-

tion of a terminal segment or the end e�ector. But, actually more constraints should

be considered, such as constraining certain points on nonterminal segments (e.g. some

supports), aiming the end e�ector, keeping balancing, and collisions avoidance. It is

20

not always easy to incorporate these constraints into a conventional inverse kinemat-

ics formulation. To make matters worse, multiple and possibly con�icting constraints

can be simultaneously active, and the system is usually underdetermined or might be

overdetermined.

The IKP approach is useful in manipulators motion planning since they are stable

and have low degree of freedom. These characteristics match the common assump-

tions of traditional IKP solvers. Traditional IKP is not e�cient in humanoid motion

planning due to two major problems: (i) It does not address the stability and (ii) the

high complexity of solving the IKP of high order kinematic equations.

The reason is that the forward kinematic equations have the following properties:

• The number of variables is relatively large (identical to the number of joints)

• The variables are coupled

• The equations are high degree polynomials of transcendental functions, which

means that they are highly nonlinear.

• The kinematic equations set is redundant

• Although the kinematic equations are continuous, there exists singular points,

that the solution should avoid them.

As the number of joints increases, the equations are more complex, since the

variables are coupled, and the dependency of some joints in the other variables has

more complicated connection.

The number of chains a�ects the complexity of the IKP in their structure. A

kinematic chain might be serial or parallel to another chain. Di�erent kinematic

constraints arise in these cases. Dealing with biped robots, its kinematic chains dual

purpose, there might behave as a serial chain (e.g. the left hand and the right leg in

the case of standing on the leg and reaching an item with the hand), or in a parallel

relation (e.g. the left hand and the right leg in 4- supports "dog posture").

Therefore, dealing with humanoid, IKP is used in 2 cases, where only partial

motion planning is required. One case is to determine grasping positions, that are

similar to manipulators. i.e., the joints state of the hand relative to a stable body [7].

Usually, it is not a�ected the stability much. In the second case a pseudo inverse

kinematics is used, i.e. is of using IKP approach in humanoids is where small number

of joints are allowed to change their values and those joints are de�ned in advanced

[81]. While dealing with a whole body motion where the stability has to be kept,

21

Figure 3-1: Con�guration space of 2 links robot

this motion planning will be supported with a feedback control mechanism to correct

stability exceptions [78].

The IKP solver we introduce is general and in each iteration corrects each joint

that brings the output of the iteration closer to the desired solution. The solver uses

linearization by the Jacobian matrix, but it includes some constraints that increase

the convergence rate. This is an iterative process that is repeated until the solution

convergences up to a certain ε, or until there is an indication that it cannot be

converged. Also, the IKP geometric equations are solved under constraints modeling

dynamics considerations.

While robot motion planning in the con�guration space is continuous, planning

in the Cartesian space should be discrete. Therefore, a central challenge in robot

motion planning is to transform the problem of planning the motion of a dynamic

object into the problem of planning the motion of a point or a set of points.

We use the following terminology in de�ning the motion planning problem:

• The con�guration q of a certain point on robot A is speci�cation of the position

T and the orientation Θ of the relevant frame of A with respect to the work-

frame.

• the con�guration space of A is the space C of all the con�gurations of A.

• Path of A from the con�guration qinit to the con�guration qgoal is the continuous

mapping function τ : [0, 1] with τ(0) = qinit and τ(1) = qgoal.

The con�guration space of all robot con�gurations in terms of world coordinate

system is described in Figure 3-1. The end-e�ector frame of A as a function of the

con�guration q is commonly represented by the Denavit-Hartenberg matrices.

22

In 1955 Denavit and Hartenberg introduced a representation of coordinate frames

for spatial linkages sometimes called D-H. It is most useful for describing kinematics

chains, since it reduces the number of parameters in any case that two links are

perpendicular to each other, and it simpli�es the con�guration space representation.

Any robot structure can be represented by this form, even if there are few kinematics

chain in parallel or serial order. This representation is not limited to a certain robot

structure or bounded by the number of joints.

In order to demonstrate the D-H convention, we will use a manipulator which is

the simplest robot structure as described in Figure 4-1. It is important to mention

that this representation is �exible and can be applied to any robot structure. A robot

manipulator is composed of a set of links connected together by various joints. The

joints can either be very simple, such as a revolute or prismatic joint or even more

complex. Under the assumption that each joint has a single degree-of-freedom, the

action of each joint can be described by a single real number: the angle of rotation in

the case of a revolute joint or the displacement in the case of a prismatic joint. The

objective of forward kinematic analysis is to determine the cumulative e�ect of the

entire set of joint variables.

A robot manipulator with n joints has n + 1 links, since each joint connects two

links. The joints are numbered from 1 to n, and the links indices are ranged from 0

to n. The location of joint i is �xed with respect to i − 1th link. The joint variable

qi is associated with the ith joint if it is revolute, otherwise will be denoted as di. Ai
is the homogeneous transformation matrix expressing the position and orientation of

the ith link with respect to link i − 1. This matrix is a variable of the con�guration

variable qi. Denote the homogeneous transformation matrix representing the position

and orientation of link j with respect to link i as Tji, then

Tji = Ai+1Ai+2 · · ·Aj−1Aj if i < j

Denote the position and orientation of the end-e�ector with respect to the base

frame by a three-vector On and the 3X3 rotation matrix Rn . De�ne the homogeneous

transformation matrix of the end e�ector

H =

(
R0
n O0

n

0 1

)
Or,

H = T 0
n = A1(q1) · · ·An(qn)

Each matrix Ai is associated with four parameters:

• ai - link length

• di - link o�set (in relative to the previous link)

23

• αi - link twist (in relative to the previous link)

• θi - the joint angle. (Similar to qi but not necessary identical. There might be

a di�erence in their o�set or direction)

Then Ai in its general form looks like:

Ai = Rz,�iTransz,diTransx,aiRx,αi

Where,

Rz,�i =


cos(θi) − sin(θi) 0 0

sin(θi) cos(θi) 0 0

0 0 1 0

0 0 0 1



Transz,di =


1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1



Transx,ai =


1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1



Rx,αi
=


1 0 0 0

0 cos(αi) − sin(αi) 0

0 sin(αi) cos(αi) 0

0 0 0 1


Calculating the forward kinematics is done straight forward by substituting the

relevant parameters in each matrix Ai, and multiply consequently those matrices. The

inverse kinematics is much more complex, since there might be few valid solutions,

and their calculation is not trivial. Moreover, the inverse kinematics is solved by

applying two types of constraints:

• holonomic constraints - 6 DoF equations as a function of the time t. These

constraints reduce the dimension of the con�guration space.

• non-holonomic constraints. These are more di�cult constraints to cope with

since they do not reduce the dimension of the con�guration space. These are

equations on the con�guration space itself or its derivatives.

The IKP (Inverse Kinematics Problem) can be de�ned as how to translate the

Cartesian coordinate of the end e�ector (or target location) into the robot joints

24

con�guration space. This is a redundant problem, that might have several valid

solutions. So, actually, it covers the sub problem of selecting the best solution among

all the feasible solutions.

Motion planning is common in the context of manipulators that do not have to

account for stability, since they are mounted to the ground or wall. Indeed, any plan-

ning method that is based on the robot's geometry without considering the dynamics

of the robot is not satis�ed in humanoid robots [23]. Also, stability is less crucial in

other devices that are inherently more stable, such as wheeled or quadruped robots.

Their motion can be planned e�ciently by using IKP solvers. The advantage of using

the IKP is that it is planning a wide range of motions, even those outside the scope

of a given CPG. It also enables whole body movement. An IKP solver determines the

joints values prior to motion generation [57]. Dealing with manipulators, this method

is e�cient due to the sequential structure of the robots, the relative low number of

joints and the anchoring point of the robot which stabilizes the manipulator [92].

In humanoids, this method is no longer e�ective since their structure is quite

complex (mix of serial and parallel joints), large number of joints and the stability is

not guaranteed. So, IKP is rarely used in humanoids, and whenever it is used it is

just for partial body motions that do not a�ect its stability much, such as grasping

tasks.

In this dissertation we propose an algorithm for o�-line quasi static motion plan-

ning without relying on real-time sensory inputs. The approach we take is to extend

existing stability criteria (for biped standing, walking and running), to whole body

stability. We show in Chapter 4 how to turn these into equations that are in the gen-

eral form of the IKP. Unfortunately, existing IKP solvers are unable to successfully

solve it.

In Chapter 5, we present a novel IKP solver that can solve the kinematic equations

under given constraints (e.g. stability constraints, optimization functions, etc.). This

solver is not restricted to a certain robot structure or a family of robots; it can solve

any given IKP with as many joints and multiple kinematic chains, both serial and

parallel. This allows solving the IKP for many robot posture which do not necessarily

supported by foot. Such postures can be sitting, laying, etc.

The downside of this solver is that while it is sound it is incomplete. Therefore,

in Chapter 5 we empirically demonstrate that the solver is able to handle many

common humanoid motions. In Chapter 6 we demonstrate how the solver accounts

for constraints and especially for stability constraints.

25

26

Chapter 4

Multiple IKP: A Novel General

Solver

The Inverse Kinematics Problem (IKP) is a central problem in robotics. IKP solutions

map target positions from the Cartesian space to the robot joints space. There exist

e�cient algorithms that work well for robot manipulators that are mounted and have

relatively small number of joints. However, Humanoids often have more than 22 joints

divided into several kinematic chains that can be both parallel or serial. Existing IKP

algorithms do not work well, or at all, in such settings.

There are three di�erent situations that might occur with the IKP. It might be

that there are either no solution at all, �nitely-many solutions, or an in�nite number of

solutions. In general, this depends on the relation between the number of constraints

and the number of variables. If the number of constraints equals the number of

variables, then there will be numerous solutions. If the number of variables is larger

than the number of constraints, there might be in�nite number of solutions and if it

is smaller than the number of constraints, there is no solution at all. But, there might

be exceptions, in case that there are constraints that are not relevant (outside the

feasible range), or there might be constraints that are depended on other constraints.

Usually, the IKP in humanoids is under-constrained, and has many degrees of

freedom which results in�nite number of solutions. There are just few solutions that

are reasonable, those solutions have to perform smooth and stable motions and to

consume not too much energy.

Any solution method for solving IKP on humanoid robots has to cope with the

following problems:

• Finding at least one solution within the set of valid solutions, or choosing an

27

optimal solution within all valid solutions

• Solving a set of non-linear equations that are polynomials of transcendental

functions.

• Converge into a solution within a relatively short time (depends on application).

• Obey di�erent kinds of constraints, such as some optimization functions, bound-

ary constraints, di�erential constraints, etc.

In this chapter, I present a general inverse kinematic solver. First, I formulate

the humanoid IKP (Section 4.1), and discuss its characteristics (Section 4.2). Then,

I present an algorithm for solving this problem (Section 4.3). Some improvements of

the algorithm, its complexity, soundness and completeness analysis, as well as some

results are presented in Chapter 5.

4.1 The Problem

The standard de�nition of IKP is presented in this section. Then, we explain the

limitations of this de�nition while dealing with humanoids or other complex robots.

Finally, a new general formulation of the IKP that is applicable for motions that

involve several varied "mounting" points with few targets in each query.

4.1.1 The standard IKP de�nition

The IKP refers to mapping the task space to the joints space. The forward kinematics

of a robot is the resultant 4 × 4 matrix achieved by multiplying the chain of D-H

matrices of the robot. The target of the end-e�ector is given in the world coordinate

system. Then, the IKP is de�ned as �nding a set of robot joints values, Θ̄, that

solves the forward kinematics equations. i.e., substituting Θ̄ in the forward kinematic

equations of a given robot, will result the 4× 4 target frame Ft. Assume that R0, is

the 4× 4 reference frame of the robot in relative to the world is given.

A formal de�nition of the IKP is described in [84]. Let f : Θ ∈ <n → SE(3)

represent the forward kinematics map of a kinematic chain. SE(3) represents the

Euclidean group for translation of a rigid body. In other words, given the values of n

joints variables f returns the position and orientation of the end e�ector. The inverse

kinematics problem can be stated as follows: given G ∈ SE(3) �nd Θ ∈ <n such

that f(Θ) = G or determine that no solution is possible. The problem is rewritten

by using homogeneous matrices.

28

Find Θ such that

Πn
i=1Ai(θi) = G

Where,

Ai(θi), G ∈ SE(3)

Ai(θi) =

[
R(θi) p

0 1

]
Since G de�nes six constraints, the problem is well posed only if the number of

independent joint variables is equal to 6.

Six di�erent assumptions are embedded in this de�nition. None of them is valid

while dealing with humanoid.

1. The robot has only one anchor point

2. The anchor point is constant

3. There is just one target point

4. The target point refers the end-e�ector

5. The robot is constructed of a unique serial kinematic chain

6. The number of variables (joints) equal to the number of constraints.

The support surfaces of the robot are analogous to the anchoring point of a robot

manipulator. But humanoids might have several support surfaces in each posture and

they vary between postures. The number of joints is usually much larger than the

number of constraints. A typical posture has several supports and might have few

targets relating di�erent parts of the robot body, not necessarily the end-e�ectors.

Due to all these limitations, the traditional de�nition of the IKP is not relevant in

the case of humanoids. Therefore, an extended de�nition is required.

4.1.2 Formulation of Multiple IKP

To be applicable to humanoids, the original IKP is modi�ed. We extend this de�nition

to have several target points, each represented by a frame F̄t. Each target point is

de�ned by a 2-tuple of entities. The �rst is the reaching point on the robot (relative

29

to the reference point of the robot), and the second is the target position (in the

world coordinate system).

Similar to the traditional IKP, the output of the problem is the joints values Θ̄ that

satis�es the kinematic constraints. But unlike the original problem, there might be

several supports and few targets in the extended problem. Each pair of support and

target generates an additional kinematic constraint. In contradiction to the original

problem that the support (mounting point) is constant, in the extended problem it is

varied. Therefore, we will distinguish between two phases of the problem. The �rst

is the setup phase, that occurs once in a session, and the second, is a frequent query

that is performed for each new posture. So, we will separate the inputs according the

partition of the problem: (i) con�guration parameters and (ii) IKP queries.

The con�guration parameters are set once for a given robot in the stage of the

IKP solver setup. The second type of inputs are frequently sent to the solver for each

new movement segment.

There are two con�guration inputs:

1. A reference frame of the robot's reference point relative to the world coordinate

system. Usually, it is the frame represented the pelvis locomotion. This is a

4×4 matrix, representing 6 independent parameters of position and orientation,

Tr.

2. The set of the D-H (Denavit-Hartenberg) matrices representing the robot kine-

matic structure. Each D-H matrix Ac,j represents the location of link j in chain

c in the kinematic structure. The number of D-H matrices equals the number

of joints.

Each D-H matrix has the following form:

Ac,j =


cos θc,j − sin θc,j cosαc,j sin θc,j sinαc,j ac,j cos θc,j

sin θc,j cos θc,j cosαc,j − cos θc,j sinαc,j ac,j sin θc,j

0 sinαc,j cosαc,j dc,j

0 0 0 1


Where αc,j, ac,j and dc,j are constants of a robot and θc, j is a variable, which is

the required solution of the IKP.

Figure 4-1 describes a partial serial manipulator with 2 links. Therefore, each

parameter has just one index, represents its order within the kinematic chain. Since

this robot has a unique kinematic chain, the index of the chain c is ignorable. As can

be seen in Figure 4-1, the parameter a is the length of the common normal (in the

case of a revolute joint, this is the radius about the previous z-axis). α is the angle

30

Figure 4-1: The Denavit-Hartenberg convention. Construction of the link frame ([90]).
The parameters representing the relations between 2 consequential joints and links.

about common normal, from old z-axis to new z-axis. The parameter d is the o�set

along previous z-axis to the common normal.

Finally, the variable θ is the angle about the previous link z-axis, from old x-axis

to new x-axis.

A typical humanoid robot consists of �ve kinematic chains: neck, left and right

arm, left and right legs. Each of these consists of multiple joints. An example

description of a humanoid robot, the Nao robot by Aldebaran, is detailed in appendix

A. The kinematics is based on the structure of the Nao robot, but with general links

size.

After the robot con�guration parameters are set, the second stage can be made.

This is a query for an IKP solution for given target. The inputs for these queries

should be:

• The current joints values, Θ̄0, an n length vector

• The set of supported points S̄p

• The set of target points T̄p

Each supported point and target point is actually a pair of elements (a 2 tuple):

• The point on the robot that has to reach the target. The point is de�ned by

the link index and the o�set from its zero point (4× 4 matrix)

• 4× 4 target frame (in world coordinate system)

31

Although both the supports (S̄p) and the targets (T̄p) are usually surfaces, they

will be represented by a point, for the sake of simplicity.

The output, as was mentioned above is a set of joints value Θ that satis�es the

kinematic equations at the target points.

Notice that each pair of support point and a target implies a kinematic constraint,

which is represented by an equation. If two supports are on the same chain, then the

kinematic constraint corresponds the two supports will replace one of the constraints

represent the relation between a support and a target.

A support point is a point that supports the robot. The robot is in static equilib-

rium when the sum of all forces around all the support points equals zero. Support

points have two important properties, the �rst is geometric and the second concerns

the robot dynamics.

• The position of the support point does not change along the motion

• The in�nitesimal sum of the di�erent forces in these points is zero.

The position of each support point can be determined by substituting the initial

joint values, Θ̄0 in the relevant kinematic chain, c. The point might be in any place

along the chain, not necessary at the end e�ector. Also, the point is not necessary at

the reference point of the link. Its relative place is de�ned by the transformation and

translation 4 × 4 matrix Tc,j. Notice that this support point position is determined

in the robot coordinate system and has to be transformed into the world coordinate

system.

Sp(is) is the ith supported point within S̄p, the vector of all supporting points.

Assume there are Nsp supporting points, then the positions of a supporting point is
located on the jth link within the chain c can be presented as:

Sp(is) = TrAc,1(Θ̄) · · ·Ac,j(Θ̄)Tc,j (4.1)

A condition on the target point Tp(iT) demands that a point on the ithT link in

chain cT will reach this point. Notice that the point is not necessary located at the

origin of the link. It might be transformed by Tc,iT in relative to the link origin.

TrAcT ,1(Θ̄) · · ·AcT ,iT (Θ̄)Tc,iT = Tp(iT) (4.2)

Recall that manipulators have anchoring point, which is usually used as the refer-

ence point of the robot. Therefore, the robot reference is given and there is no need

to determine it. In humanoids, the supports are analogous to this anchoring point.

32

Since they are changing along the motion, this reference has to be repeatedly deter-

mined. Its calculation is performed by combining equations 4.1 (a speci�c supported

point) and 4.2 (a speci�c target point) into whole kinematic chain, as described by

4.3.

(TrAc,1(Θ̄) · · ·Ac,j(Θ̄)Tc,jTp(iT))−1TrAcT ,1(Θ̄) · · ·AcT ,iT (Θ̄)Tc,iT = (Sp(is))
−1Tp(iT)

(4.3)

The left hand side of the equations above is a function of the variables Θ̄ and the

right hand side is a given parameter.

The number of such kinematic equations is multiplication of the number of sup-

ports, Nsp, and the number of target points, Nt. There are cases that the support

and the target are in di�erent chains, and in the same kinematic chain. Equation 4.3

holds in both cases. Three constraints are derived from each such kinematic equation,

for the x, y and z coordinates.

The basic inverse kinematics problem is to �nd a set Θ̄ that satis�es this set of

equations. Notice that the problem in its general form is under-constrained, which

means that there are in�nite number of solutions. Also, in its raw form, there is no

de�nition of some additional geometric constraints such as self collisions and physical

constraints such as keeping the robot stable.

Here is a summary of the formal input and output speci�cation. The inputs are:

• C - number of kinematic chains

• Nc - number of joints in each chain

• Set of the robot D-H matrices Ac,j

• R0 - the reference frame of the robot in relative to the world

• S̄p - the set of support points

• T̄p - the set of target points

• Θ̄0 - the current joint values

• ∆Θ̄ - the amount of change in the joint values in the current iteration

The output is Θ̄, the values of the joints angles in the target position (T̄p).

33

4.2 Characteristics of the problem

In order to better understand the nature of such equations, let us examine some

example cases. A sample equation for x coordinate where the initial pose of the robot

is in its zero position, its support is the left foot and the target is a given position of

the right palm. The parameters of the links' length were selected to be identical to

those of the NAO Robot [62]. The equation is presented in appendix B.

Although this example of x as a function of the joints variables Θ̄ is a speci�c

case of robot structure in a certain posture, the characteristic of the function is

representative of most of the kinematic functions of humanoids. Moreover, the posture

was selected to demonstrate the problematical issues of humanoids at their extent,

i.e. the longest kinematic combined chain involves coarse and �ne motions links.

Therefore, the analysis of the kinematic function is demonstrated on this speci�c

function, but it represents the kinematic properties in general.

Actually, each kinematic constraint is a function representing a coordinate, either

x, y or z, as a function of Θ̄, the joints values. This is an n�dimensional function.

Later on, we propose an algorithm that solves the IKP, which is a set of equations

(constraints) of n variables. The algorithm is based on a linearization method. First,

we have to investigate the characteristic of this family of constraints, in order to be

convinced that linearization is an appropriated approach in this case.

A constraint is the equation representing the forward kinematics of a certain chain

that starts in a support point and ends in a target point. We examined many con-

straints in di�erent postures in all the three coordinates (each of them generates one

constraint), and we concluded that they are polynomials of the chain's length order.

These are polynomials of transcendental functions (i.e. the sin and cos functions). In

order to illustrate the behavior of such functions and to justify the use of lineariza-

tion, we pick one such function which represents the whole family. We demonstrate

the properties of this n�variables functions relatively to each variable separately. The

function that was selected represents a constraint of the x coordinate. The y coordi-

nate constraints are similar while the constraints relating z, are usually much simpler.

The kinematic chain that was selected in this example is the longest possible in hu-

manoid. In this chain, the support is in the left foot and the target is in the right

palm, so the total number of joints is 12.

Linearization methods are applicable to functions that have no critical points or

only a few of them within an interval. The following study demonstrates that although

a kinematic constraint might have several critical points, it is piecewise linear between

34

Figure 4-2: X, Y, Z Kinematic equations as a function of the left ankle roll (lar) angle.
Each function has up to 2 extremum points within the joint's interval. The maximal impact
is on Z and it is bounded by 0.30 cm. It is the same order of impact on X. The e�ect of
lar on Y is negligent.

two consequent such points. Therefore, by using linearization it should �nd a solution

if such exist within a local proximity.

We developed the kinematic constraints by substituting the values of the zero

position, each time for all variables except one. Figures 4-2�4-15 represent a kinematic

equation of a standing posture as a function of each variable θc,i (i.e. all joints except

the variable are zero).

Figure 4-2 demonstrates the behavior of the kinematic function of end e�ector

coordinates, i.e. the right palm, as a function of the left ankle roll (lar) angle, while

all other joints are constant in their zero-value. The lar joint is varied within the

interval [−3π, 3π] (the horizontal axis). The vertical axis represents the transition of

the end-e�ector.

The function of the X coordinate behaves like a parabola within this interval, and

its peak is at the value of lar = 0.5 radians. The function has just one extremal

point within the feasible interval, which is its peak value. If the major axis of the

foot is parallel to the X-coordinate, then the Y-coordinate is not a�ected by changing

the lar joint. The di�erence between the minimum and maximum values the can be

generated by this joint in coordinate X is 0.30 cm. The Kinematic equation of the

Z-coordinate as a function of the lar joint, as demonstrated in the right �gure has

two extremal points (minimum and maximum) within the interval. These points are

symmetric to the zero value. The maximal impact of changing this joint on Z is 0.30

35

Figure 4-3: X, Y, Z Kinematic equations as a function of the right ankle roll angle, which
has no impact on the target

cm, which is the same as the order on X. This means that within a �nite number of

steps the coordinate function will converge into a solution if one exists.

Since the right leg does not a�ect the position of the right palm in a case that the

support is the left leg and there are no other constraints, the graphs of the right leg

joints (rkp, rhp, rhr and rhy) look like Figures 4-3 and 4-5, as horizontal line.

It should be emphasized that the resolution of the vertical axis changes from graph

to graph. The impact of the hip yaw angle (Figure 4-9) is very signi�cant in relative

to the other joints.

It is obvious that the joints that are not located along the kinematic chain repre-

sented by a given constraint have no in�uence on the target position. In our example,

the kinematic chain starts at the left foot and ends at the right palm. This means

that all the joints belong to the right leg and the left hand have no in�uence on the

target position. It is clearly seen in Figure 4-10, for example, which represents how

change of the left shoulder pitch a�ects the position of the right palm. The horizontal

line in all three coordinates shows that there is no e�ect at all. The right hand's

joints a�ect the position of the end-e�ector of the right palm, as can be concluded

from Figures 4-11 through 4-15.

The solution of this set of equations is equivalent to �nding the zero of the overall

functions. The functions behave as typical transcendental functions; this means that

any iterative method that is based on linearization might converge into a solution.

Such methods are Newton-Raphson or using the Jacobian matrix.

Di�erent problems might arise with these methods: First, the convergence and

36

Figure 4-4: X, Y, Z Kinematic equations as a function of the left ankle pitch

Figure 4-5: The X, Y, Z of the right palm as a kinematic function of the right ankle pitch

37

Figure 4-6: X, Y, Z kinematic function as a function of left knee pitch

Figure 4-7: X, Y, Z kinematic function as a function of left hip pitch

38

Figure 4-8: X, Y, Z kinematic function as a function of left hip roll

Figure 4-9: X, Y, Z kinematic function as a function of left hip yaw

39

Figure 4-10: The kinematic function of the right palm as a function of the left shoulder
pitch.

Figure 4-11: The kinematic function of the right palm as a function of the right shoulder
pitch.

40

Figure 4-12: The X, Y, Z equations of the right palm as a function of the shoulder roll

Figure 4-13: The kinematic function of the right palm as a function of the right elbow roll
angle

41

Figure 4-14: X, Y and Z functions of the right palm as a function of the right elbow yaw

Figure 4-15: X, Y and Z functions of the right palm as a function of the right wrist yaw

42

its rate are dependent on the initial state of the joints. It might be that in a certain

case the process will not converge into a solution, or will converge too slowly. Also,

implying an external constraint equation on the kinematic set of equations, might

convoluted. Convoluted functions cannot be solved simultaneously, especially not by

linearization. In the next section, a general IKP algorithm is proposed which we will

show can be extended to tackle each of the above problems.

4.3 The Solution to the Multiple IKP

The Multiple Inverse Kinematics Problem is usually an under-constrained problem,

with in�nite number of solutions. There are just few that are valid among these

solutions. The transition between the current posture and the target posture should

be smooth and reasonable in terms of the energy, or more intuitively, the magnitude

of joints change. For example, consider a case of an extended arm that is in a distance

of 1mm from an item that has to be reached by a humanoid. The optimal motion is to

change a bit the shoulder pitch joint. But there are in�nite number possible motions

by changing all the joints of the hand so that one joint compensates on the motion of

the others. Moreover, most solutions do not preserve stability; this will be discussed

in detail in Chapter 6.

The proposed algorithm �nds one solution within those possible. This solution is

often the closest to the current posture, but this cannot be guaranteed.

The proposed method is based on the Jacobian matrix of the partial derivatives

of the kinematics equations. First, we will de�ne the set of equations. Assume, there

are Nsp support points and Nt target points. Then, there are Nsp × Nt kinematic

constraints. Each kinematic constraint is composed of three equations for X, Y

and Z coordinate. The total number of kinematic equations are 3Nsp Nt. Each

equation is a polynomial of transcendental function. In its general form this is an

under-constrained problem that has in�nite number of solutions. In order to limit

the number of solutions, some constraints might be implied on the kinematic set of

equations. This is discussed in Chapter 6

The Jacobian J , the partial derivative matrix of all equations in relative to each

variable, has 3Nsp × Nt rows and its number of columns is N , which is the number

of joints. The kinematic constraints (Eq. 4.3) will be partially derived in order to

construct J .

43

Ē = T̄supportT
−1
k−linkiA

−1
ki . . . A

−1
k0Ajo . . . AjiTlinki − T̄target (4.4)

J(Θ̄) =
∂ ¯E(Θ̄)

∂Θ̄
(4.5)

The solution presented here is based on a numerical approach that linearizes the

set of equations and �nds the solution that has minimal deviation from the target.

Assume the current value of the joints angles is Θ0. De�ne the vector of the residuals,

i.e, the di�erence between the actual values of the equations and the desired value to

be:

L̄ = ¯E(Θ0)− J(Θ̄0)∆Θ̄ (4.6)

The method is based on calculation of the corrections vector of each joint (V̄).

Notice that since J is not necessarily a square matrix, the pseudo inverse is calculated

rather than using its inverse:

V̄ = (JTJ)−1JT L̄ (4.7)

If the kinematic Equations Ē were linear, then the solution of the kinematic

equations would be:

Θ̄ = Θ̄0 + V̄ (4.8)

But the linearization is rough in the case of these transcendental kinematic func-

tions. Due to this limitation, the process of correcting Θ should be repeated iterative.

In its general fashion, Equation 4.8 should be rewritten as:

Θ̄i+1 = Θ̄i + V̄i (4.9)

The iterative process repeats solving Equations (4.7) and (4.9) until a certain

threshold of convergence is achieved.

Figures 4-4 through 4-15 demonstrate that the equations of the coordinates have

at least one solution within the range of the relevant joints. The magnitude of change

is varied between the di�erent joints, so there are joints that impact the position

much more than others. Therefore, there is a good chance that the set of kinematic

equations will converge into a solution by using linearization, after few iterations.

44

The basic algorithm is an iterative solution of the linearized set of equations, i.e.

iterating through Eq. (4.9). The improvements aim to increase the rate of convergence

and cope with ill-conditioned situations of divergence. In a case of convergence, the

algorithm always converges to a valid solution (See Proof in 5.6). The improved

algorithms vary in their complexity and in the success rate in di�erent domains.

The strategy is to execute the basic algorithm with some additional calculations

that indicate whether to proceed with one of the improved algorithm and if so, with

which of them. If none of the improved algorithms converges, then, there is a high

probability that no solution exists. Such a case might be when some constraints are

dependent on each other, or that the target position is not reachable.

The Multiple IKP Algorithm

Algorithm 1 applies the minimum least square approach to the set of kinematic equa-

tions. This algorithm is based on minimization of the forward kinematic deviation

under linearization of both the forward kinematic equations and the constraints.

Recall that J̄ is the Jacobian matrix of the left hand side of Equation 4.4. Let θ̄0

be the joints values at the current (initial) position, and L will be the vector of the

residuals as de�ned in Equation (4.6).

The input of the algorithm is its structure, its joints' state in its origin posture, its

targets and the support points that actually generate the stability constraints. There

are optional other constraints. In lines 1 − 3 the setup con�guration is determined.

Lines 4 − 6 are the commands for the iterative loop initialization. The core of the

initialization is performed iterative in lines 8− 13, which locally solve the kinematic

equations and constraints by using linearization.

The output of this procedure is Θ, the joint values that reach the targets. The

main iterative loop might terminate due to two reason, either the iterative process

converged and the norm of the residuals is below a certain threshold, or the number

of iterations is too high. In the later case, it might be that there is no solution at all,

or at least the procedure cannot converge into a solution. In the case of the former,

the process terminates successfully and the required IKP solution is achieved. Notice

that in this case a solution is found but it is not necessarily unique.

The convergence indication is determined in line 12 of algorithm 1. This is a norm

of the joints' correction V̄ . The norm, ∆ =
√

V TV
N

is the root of the averaged square.

This criterion is in the joints' con�guration space. There could be another norm,

such as the averaged absolute value of the corrections,
∑
|vi|
N

. Also, the norm can be

applied to a di�erent criterion such as the deviation of the target in terms of world

45

Algorithm 1 Basic Constrained IKP algorithm
Require:

C - number of kinematic chains

Nc - number of joints in each joint

Set of the robot D-H matrices Ac,j
R0 - the reference frame of the robot in relative to the world

S̄p - the set of support points
T̄p - the set of target points
C` - the set of additional constraints
Θ0 - the current joint values

MaxIterations - maximum number of iterations

1: Calculate the 3× |S̄p| × |T̄p| kinematic constraints
2: Calculate Ē (Section 4.3)
3: Calculate the Jacobian J (Eq. 4.5)
4: Θ← Θ0

5: ∆←∞
6: i← 0
7: repeat

8: Js ← J(Θ)
9: L← RHS(Ē)− J(Θ̄0) (Eq. 4.6)

10: Calculate V (Eq. 4.7)

11: ∆←
√

V TV
N

12: Θ̄← Θ̄ + V
13: i← i+ 1
14: until ∆ < ε or i > MaxIterations
15: if i > MaxIterations then print "No Solution"
16: else return (Θ)

46

coordinates. The advantage of this criterion is that it is in Cartesian coordinates,

which makes it more intuitive.

This algorithm su�ers from the following drawbacks:

• It does not necessarily converge into a proper solution

• The convergence process might be slow

• The solution is an arbitrary one among the existing solutions.

• In any case that it does not converge into a solution it is not clear whether no

solution exists or it could not �nd the solution

• There is no prioritization of the constraints, which means that all constraints

have the same weight. Sometimes there are more crucial constraints that the

solution must obey them more accurately than others.

In order to address the above disadvantages we will propose in the next chapter

some improvements to the basic multiple IKP algorithm. The �rst improvement

proposes a method to choose the initial joint values prior to begin the convergence

process. The second, third and fourth improvements are two methods to divide the

convergence process into two sub-processes in order to accelerate the convergence rate

and to �nd solutions in case they exist and the basic algorithm does not �nd them.

The �fth algorithm proposes a preprocessing stage to get some indications about the

nature of the problem and as a consequence choose the relevant improvement within

the above ones.

4.3.1 Soundness

Whenever the algorithm converges, it converges into a valid solution. This is proved

by contradiction.

Theorem 1. Algorithm 1 is sound. If a solution is found then it is valid.

Proof. Assume that the algorithm stopped after iitr iterations and the set of joints

values achieved at the end of the process is Θi. The loop might stop due to 2 di�erent

reasons:

• The number of iterations is beyond the allowed maximal number.

• The norm is smaller than ε.

47

The �rst case, means that the algorithm did not converge into a solution.

We will prove that in the second case, the process always converge into a valid

solution.

Assume for contradiction that Θi is not a valid solution to the set of equations E

(4.4). Then, it should be that also the norm is smaller than a given ε, at least one of

the joint value is not a valid one. This means that the following equation should be

satis�ed:

∑
j

|RHS(Ej,i(θi))− LHS(Ej,i(θi))| < ε (4.10)

Let's examine the value of ε, while determining a norm. The norm is an aggregated

value of the absolute deviations of each equation ej within E. In one extent, it might

be that there is one equation that deviates from ε and all the rest do not deviate at

all. On the other extent there might be that if there are |E| equations, each of them

deviates in ε
|E| . Assume that ε was chosen to satisfy the �rst case which is stricter.

Then, there should be at least one equation within E, that is not satis�ed, i.e.:

RHS(ej(Θi))− ε > LHS(ej(Θi))

Or,

RHS(ej(Θi)) + ε < LHS(ej(Θi))

(4.11)

But this contradicts the existence of equation 4.10. Therefore, Θi should satisfy

the set of equation E.

Notice that this proof is valid if the aggregated norm equals the maximal allowed

deviation of each equation. This is quite strict assumption, that can be modi�ed by

adjusting the norm of the aggregated error. The norm should be determined by the

error propagation analysis which is discussed in Chapter 8.

Alternatively, one can use a combination of norms to ensure the validity of the

solution under less strict norms.

4.3.2 Completeness

Algorithm 1 is not complete, i.e. there might be existing solution that is not discovered

by the algorithm. In this section, we discuss some strategies to increase the probability

of �nding the solution, if such exists.

48

The proposed constrained IKP algorithm is based on linearization of the set of

kinematic conditions and constraints, E. This set is non-linear. Dealing with the

kinematic constraints, they behave as oscillating functions with a certain number of

peaks and a bounded magnitude (Figures 4-2� 4-15). The impact of strati�cation all

relevant variables (i.e. multi variable condition) should be carefully investigated. Let

us examine the mutually impact of two variables. It can be either of the following:

1. They are of the same order of magnitude and wave and oscillation length (like

waves, but not necessarily all oscillations are of the same size). Their peaks are

similar.

2. They are of the same order of magnitude and wave and oscillation length. Their

initial value is approximately the same. Their peaks are opposite

3. They are of the same order of magnitude and wave and oscillation length. Their

initial value is approximately the same. Their peaks are shifted at about half

of the oscillation width.

4. They are of di�erent order of magnitude.

Relating the �rst case (see Figure 4-16), the resultant function is an oscillating

function with the same amplitude with a bigger magnitude (the sum of the two

magnitudes). In that case, searching for a solution is equivalent to searching in one

variable function, which is piecewise linear, and the number of "pieces" is bounded

by the reasonable low integer (e.g. 8) in the case of humanoids. (In other robots it is

even a smaller number).

Figure 4-16: Two Oscillating functions with the same order of magnitude and ampli-
tude

The second case, as is demonstrated in Figure 4-17, is problematic, since the two

functions are convoluted. In that case, there might be that there is no solution.

49

Figure 4-17: Two Oscillating functions with the same order of magnitude and opposite
amplitude

The resultant function of the third case (Figure 4-18) is an oscillating function

with more oscillations (higher frequency). Again, this function is close to be linear

piecewisely, but the size of these "pieces" is smaller than in the original functions. So

again, the linearization method should work in high probability.

Figure 4-18: Two Oscillating functions with the same order of magnitude and shifted
amplitudes

The last case, where the magnitudes of the functions is of di�erent order (Fig.

4-19) is also piecewise linear. The composition of such two functions might cause any

linearization method to alternate between converge-divergence trends.

Notice that this rough explanation refers to the composition of two functions

only. In the case of a kinematic structure we deal with much more functions (e.g.

in the case of humanoid - there are 26 functions). We can repeat this analysis for

any number of functions. Moreover, in typical humanoids, there are no more than 3

coupled variables. The improved algorithms in Chapter 5 increase the probability of

convergence.

50

Figure 4-19: Two Oscillating functions with the same order of magnitude and shifted
amplitudes

Basically, linearization methods can be applied to piecewise linear functions. But,

not all the solutions will be discovered. Therefore, in order to �nd more solutions,

or to avoid cases that the process alternates between convergence and divergence in

a certain proximity, there can be implemented a sequential search algorithm to �nd

high probability solvable "zones" on the solution envelope. This, of course, can be

implemented only in o�-line planning tasks.

51

52

Chapter 5

Addressing the Incompleteness of

MIKP

This chapter addresses the weaknesses in the basis algorithm (Alg. 1) proposed in the previous chapter. The following improvements

will be applied to the basis algorithm:

• The initial joint values should be selected carefully in order to make sure the process is converged and moreover, converge into

the desired solution

• A multi staged process will enable relating di�erent levels of constraints

• A multi staged process enables accelerating the convergence

• A multi level process enables convergence skipping convolutions that are caused by coupling and convoluted constraints.

• An indication whether a solution exists and if so, what is its proximity.

5.1 First Improvement
This algorithm is embedded in a function that is executed before line 4 in Algorithm 1. The algorithm calculates the set of initial

values of the joints, Θ. In the basic algorithm, the initial values relate the initial posture of the current robot value. Since the

kinematic constraints are polynomials of the transcendental functions sin and cos, they are twisted, which means that the function has

few extermum points for each variable. Since the basic algorithm is based on linearization of these functions, there will be obtained

one solution at the most. It is not necessarily the best solution and it might not be achieved at all. Choosing an initial values of the

variables that are in the proximity of the solution might increase the probability of achieving a solution, ensuring that the achieved

solution is an appropriate one and even accelerating the convergence rate.

The approach is similar to the CPG family of algorithms. We will de�ne a library of common postures and their corresponding

joints values. For example, standing with straight legs and hands down is de�ned as the "zero postures" where all joints are zero.

Other common postures are sitting, whole body leaning down, fetus posture, etc. As a preprocessing stage, before the iterative loop of

the basic algorithm, the value of Θ0 will be determined so as the values of the posture that is reaching the target most closely. The

disadvantage of the algorithm is that it aims to predict proximity in the Cartesian space by changing the proximity in the joint space

without de�ning the precise relation between the spaces.

Algorithm 2 in additional to the input of the basic algorithm is the library of CPG postures. The output is Θ0, the initial values

of the joints. Notice that the constant of maximal iterations number is not required.

5.2 Second Improvement

There are some cases whose part of the constraints are more crucial than others.

The solution is numerical and it is valid up to a certain precision. It might be

53

Algorithm 2 Finding the initial value of Θ
Require:

1: Ē - the set of kinematic constraints that are determined in the basic algorithm

2: Θ0 - the current joint values

3: CPGlib - the prede�ned library of common postures and their corresponding joints

values (lookup table)

4: function FindΘ0(E,Θ0, CPGlib)
5: λ←∞
6: for all Θi ∈ CPGlib do
7: Vt ← RHS(E)− LHS(E(Θi))

8: λt ←
√

V T
t Vt
|Vt|

9: if λt < λ then

10: λ← λt
11: iΘ ← i

12: Vt ← RHS(E)− LHS(E(Θ0))

13: λt ←
√

V T
t Vt
|Vt|

14: if λt < λ then return Θ0

15: else return ΘiΘ

that the precision of satisfying the constraints is not identical in all equations. For

example, some targets have to be reached precisely while others might be reached

roughly. Another example is that a certain target should be reached precisely in one

coordinate (e.g. Z), while it is enough to reach the proximity of the target in the

other coordinates (X and Y).

The basic algorithm grants equal weight to all equations in E. The following

algorithm divides the set of equations E, which includes the kinematic constraints

into M subgroups, E1, · · ·Em, ordered by their signi�cance from the highest to the

lowest. It is obvious that M ≤ |E|. Now, the basic algorithm becomes multistage, as

described in 3. Notice that the input and output are identical to those of the basic

algorithm and improvement 1 can be applied in the same manner.

Line 13 in the algorithm requires explanation. The priority of each equation in

E, is an integer number ranged [1..M]. There are di�erent way to predetermined

this value. It might be an input of the user. It might be determined by the type of

constraint that was also prede�ned by the user. Since there are few ways to determine

it, but all of them are based on some user input, we will not get into these details in

the framework of the algorithm description.

This algorithm belongs to a family that in opposite to the basic algorithm, that

solves all the equations simultaneously. The equations are partitioned into sub groups

54

Algorithm 3 Multi Stage Constrained IKP algorithm
Require:

1: C - number of kinematic chains

2: Nc - number of joints in each joint

3: Set of the robot D-H matrices Ac,j
4: R0 - the reference frame of the robot in relative to the world

5: S̄p - the set of support points
6: T̄p - the set of target points
7: C` - the set of additional constraints
8: Θ0 - the current joint values

9: MaxIterations - maximum number of iterations

10: Calculate the 3× |S̄p| × |T̄p| kinematic constraints

11: Calculate Ē (equation 4.4)

12: M ← 0
13: for all ei ∈ Ē do

14: determine pi . Determine the priority of each equation in E
15: if pi > M then M ← pi

16: for 1 ≤ j ≤M do

17: EG ← {ei| ∀i, pi ≤ j}
18: Calculate the Jacobian J of the set EG(Eq. 4.5)
19: Θ← Θ0

20: ∆←∞
21: i← 0
22: repeat

23: Js ← J(Θ)
24: L (Eq. 4.6)

25: Calculate V (Eq. 4.7)

26: the new joint values Θ (Eq. 4.9)

27: ∆←
√

V TV
N

28: Θ← Θ + V
29: i← i+ 1
30: until ∆ < ε or i > MaxIterations
31: if i > MaxIterations then
32: terminate with no solution

33: else Θ0 ← Θ
return (Θ)

55

according to a certain criterion. In its extent, this algorithm solves each equation at

a time (schematic description in 4). J̄ and L̄ are de�ned as in Eq. 4.5 and 4.6.

Algorithm 4 Another version of the Multi Stage Constrained IKP algorithm. In
each iteration only one kinematic equation is solved
Require:

1: C - number of kinematic chains

2: Nc - number of joints in each joint

3: Set of the robot D-H matrices Ac,j
4: R0 - the reference frame of the robot in relative to the world

5: S̄p - the set of support points
6: T̄p - the set of target points
7: C` - the set of additional constraints
8: Θ0 - the current joint values

9: MaxIterations - maximum number of iterations

10: Calculate the 3× |S̄p| × |T̄p| kinematic constraints

11: Calculate Ē (equation 4.4)

12: M ← 0
13: Θ← Θ0

14: repeat

15: M̄ ← J̄T J̄
16: k ← j |maxj(Mj,j)

17: θj ← θj + (J̄j
T

(θ̄)J̄(θ̄))−1J̄j
T

(θ̄)L̄
18: until |L̄| < ε or i > MaxIterations

Algorithm 4 is based on minimization of the forward kinematic deviation and the

constraints under linearization of both types of equations. This algorithm weights θ′is

di�erently than the �rst algorithm. This might �nd the solution of the whole system

in a di�erent localization than the �rst algorithm does.

5.3 Third Improvement

This improvement chooses the most e�ective joints in every iteration, and the set of

equations is solved just for them. Every iteration the process of choosing the joints

is repeated.

In contrast to the second improvement, that every iteration selects a set of rows in

the Jacobian, the current improvement selects a set of columns within the Jacobian

and solves them. In other words, the second improvement solves all the variables for

part of the equations in each iteration while the current algorithm solves part of the

variables for all the equations.

56

The advantage of this approach is that it avoids the coupling di�culties as well

as problematic constraints that convoluted with other equations. Its disadvantage is

that it might be slower due to more iterations and a complex preprocessing procedure.

It is based on the basic algorithm with an extension procedure that selects the

three variables that advancing the robot the most towards reaching the targets.

Thereafter, the Jacobian is updated to include only the three corresponding columns.

From here on, the iteration proceeds the same as in the basic Algorithm 1. This

approach might be very useful for some postures while for the others it might be

ine�cient. In general, the robot structure contains some links for coarse motions

(e.g. thigh, arm, etc.) and some links, or even more precisely, some joints that tend

to perform the �ne motions (e.g. foot, wrist, etc.). In motions such as reaching an

object that is located in front of the robot in the height of it upper body, the pro-

posed algorithm will be most e�cient. But if for example, the initial pose is some

scrolled posture and the target position extremely downward or upward. The details

are described in Algorithm 5.

Notice that the �rst improvement of choosing an appropriate initial solution will

hold here in the same way as in the basic algorithm. The inputs and output are the

same as in the basic Algorithm 1.

The third improvement is actually selects those variables that contribute the most

to the convergence of the next iteration, according to a given norm (line 11).

There might be di�erent versions of selecting the group of joints to be solved in

a certain iteration. All these versions belong to the same family of solvers. Below is

another example of an algorithm of this family.

Algorithm 6 is another variation of the previous algorithm. It also solves the

variables sequentially. The only di�erence is in the criteria to choose the variable

that is solved in each iteration. Here, the criteria is to take the variable that its

variance covariance is maximal. i.e. the one that a�ects the other variables, the

most. The complexity, soundness and completeness analysis are the same as in the

second algorithm.

5.4 Fourth Improvement

This improvement, like the previous two improvements, solves partial problem at

each iteration. But, in contrast to these that select the most signi�cant parts of the

problem, in the following algorithm the partial set variables (joints) to be solved is

prede�ned.

57

Algorithm 5 Improved Multiple IKP algorithm (3) - I/O
Require:

C - number of kinematic chains
Nc - number of joints in each joint
Set of the robot D-H matrices Ac,j
R0 - the reference frame of the robot in relative to the world
S̄p - the set of support points
T̄p - the set of target points
Θ0 - the current joint values
MaxIterations - maximum number of iterations

Ensure:

Θ - the joint values at the target

1: Calculate the 3× |S̄p| × |T̄p| kinematic constraints

2: Calculate Ē (equation 4.4)

3: Calculate the Jacobian J (Eq. 4.5)

4: Θ← Θ0

5: ∆←∞
6: i← 0
7: i1 ← i2 ← i3 ← 0
8: norm1 ← norm2 ← norm3 ←∞
9: repeat

10: for 1 ≤ i ≤ N do

11: norm←
∑

j |RHS(Ej,i)− LHS(Ej,i(θi))|
12: if norm < norm1 then

13: norm3 ← norm2; norm2 ← norm1; norm1 ← norm
14: i3 ← i2; i2 ← i1; i1 ← i
15: else if norm < norm2 then

16: norm3 ← norm2

17: norm2 ← norm
18: i3 ← i2
19: i2 ← i
20: else

21: if norm < norm3 then

22: norm3 ← norm
23: i3 ← i

24: for 1 ≤ k ≤ N do

25: Js ← {J∗,k| ∀k, k = {i1|i2|i3}
26: Calculate L (Eq. 4.6)

27: Calculate V (Eq. 4.7)

28: Calculate the new joint values Θ (Eq. 4.9)

29: ∆←
√

V TV
N

30: Θ̄← Θ̄ + V
31: i← i+ 1
32: until ∆ < ε or i > MaxIterations
33: if i > MaxIterations then print "No Solution"

34: else return (Θ)

58

Algorithm 6 Improved Multiple IKP algorithm (3) - sequential solution of the kine-
matic equations. At each iteration the variable to be solved is the one that generates
the maximal deviation
Require:

1: C - number of kinematic chains
2: Nc - number of joints in each joint
3: Set of the robot D-H matrices Ac,j
4: R0 - the reference frame of the robot in relative to the world
5: S̄p - the set of support points
6: T̄p - the set of target points
7: Θ0 - the current joint values
8: MaxIterations - maximum number of iterations

9: Calculate the 3× |S̄p| × |T̄p| kinematic constraints

10: Calculate Ē (equation 4.4)

11: Calculate the Jacobian J (Eq. 4.5)

12: Θ← Θ0

13: Calculate the 3× |S̄p| × |T̄p| kinematic constraints

14: Calculate Ē (equation 4.4)

15: M ← 0
16: Θ← Θ0

17: repeat

18: M̄ ← J̄T J̄
19: for all j ∈ |V | do
20: vj ←

∑
i |Ji,j |

21: k ← j |maxj(vj)

22: θj ← θj + (J̄j
T

(θ̄)J̄(θ̄))−1J̄j
T

(θ̄)L̄
23: until |L̄| < ε or i > MaxIterations

59

A robot has a certain number of chains, and each of them impacts signi�cantly on

di�erent parts of the "reaching envelope". The key in this fourth improvement is that

at each iteration the problem will be solved just for one chain, i.e, only the relevant

columns of the Jacobian J will be selected, standing for the partial derivatives of the

relevant joints.

The input and output are the same as those of the basic multiple IKP algorithm

(Algorithm 1). In the proposed algorithm the inputs C, Nc and Ac,j are used not

only to construct the kinematic equations, but also to select the relevant chain in

each iteration.

Lines 1-3 are initialization of the variables that describe the robot's initial kine-

matic state. In lines 4-8 some variables of the iterative process are initialized. Lines

10-27 are the core of the iterative loop. Notice the sign on in line 12 that stands for

algebraic join of two vectors (i.e. their union).

The advantage of this algorithm is its fast convergence (proof in Section 5.6), and

reduction in the impact of the convolution. The disadvantage of this method is that

there are some constraints that will hardly be satis�ed (e.g. whole body stability)

and in some "ill-conditioned" postures it will not converge into a solution (e.g. Knee-

to-Chin press posture, as described in Figure 5-1).

Figure 5-1: Knee-to-Chin press posture [1]

5.5 Tying it all together: MIKP*

Last improvement of the basic constrained IKP algorithm, takes an algorithm selec-

tion approach, that tries to analyze the IKP problem before choosing the best method

for the current speci�c problem [41,42].

It checks which of the improvements (Algorithms 2-7) is most e�cient in the

current phase. This improvement should be applied in a case that the basic algorithm

with its previous improvement does not converge into a solution. The complexity of

60

Algorithm 7 Improved Multiple IKP algorithm
Require:

C - number of kinematic chains

Nc - number of joints in each joint

Set of the robot D-H matrices Ac,j
R0 - the reference frame of the robot in relative to the world

S̄p - the set of support points
T̄p - the set of target points
Θ0 - the current joint values

MaxIterations - maximum number of iterations

1: Calculate the 3× |S̄p| × |T̄p| kinematic constraints
2: Calculate Ē (equation 4.4)
3: Calculate the Jacobian J (Eq. 4.5)
4: Θ← Θ0

5: ∆←∞
6: i← 0
7: normt ←∞
8: Jst ← ∅
9: repeat

10: Js ← J(Θ)
11: for all 1 ≤ j ≤ C do

12: Jst ← Jst on {Js(∗, j)|∀j ∈ kinj} . Jst contains only the columns of the
joints in the relevant kinematic chain

13: L← Ē − Jst(Θ0)
14: V ← (JTstJst)

−1JTstL
15: Θt ← Θ + V
16: L← Ē − Jst(Θt)
17: norm←

√
LTL

18: if norm < normt then

19: normt ← norm
20: ikin ← j

21: Js ← {Js(∗, j)|∀j ∈ kinikin}
22: L← Ē − Js(Θ)
23: V ← (JTs Js)

−1JTs L
24: Θ← Θ + V

25: ∆←
√

V TV
N

26: Θ̄← Θ̄ + V
27: i← i+ 1
28: until ∆ < ε or i > MaxIterations
29: if i > MaxIterations then return with "No Solution"
30: else return (Θ)

61

this algorithm is high, but it selects reliably the set of equations to be solved by the

IKP.

This improvement composes two independent functions, each of them checks an-

other property of the equations set to be solved, and according to its �ndings, a

solving strategy is determined.

The �rst function searches for a reasonable initial value for Θ, so that the con-

strained IKP algorithm 1 will converge into a solution in high probability. As could be

seen in Figures 4-2 through 4-15, each function does not have more than 8 extremum

points. The composition of N such functions might lead to 8N extreme points. But

actually, since the extremes of the di�erent functions is of varied values, the general

analysis can ignore those with smaller impact. Notice, that in some border cases,

this assumption will fail. However, if we partition the range of the solutions into

Iint number of intervals, and testing the proximity of each interval to �nd if there

exists a solution, there is a high probability that a solution will be found. Notice

that usually, there might be more than one solution. In most cases there will be 2-8

di�erent solutions. This search algorithm will hopefully �nd some of them.

The input is similar to the input of the basic Algorithm 1, except the maximum

number of iterations and Θ0 that are not required. The output is an initial value

Θi. In its linear proximity, there is a solution to the constrained IKP (Algorithm 8).

Below is the proof of this crucial claim.

Theorem 1. If there exists a solution to the IKP within a linear proximity of Θ0,

and Θ0 is used as an initial value of the joints vector, then Algorithm1 will converge

to this solution.

Proof. Assume that there is a solution within a given interval. Let's reduce the

problem to two variables only, (v1, v2). Later we will expand the problem again.

Assume that the number of solutions within the physical range of each of these

variables is m1 and m2, correspondingly. Then, there might be three di�erent cases:

• There is no overlapping between the solution ranges of the variables.

• There is partial overlapping between the solution ranges of the two variables.

• All the solutions of one variable resides within the solution range of the other

variable.

In the �rst case, there is no solution and therefore the algorithm will not �nd one.

In the third case, there are few solutions of one joint within a linear proximity of

62

the other variable. So, actually, there is one solution that resides within the same

sub-range. In the second case, there might be that the current linear proximity of

one variable is di�erent from the other. But, since there exists at least one common

linear proximity for both variables, within a �nite number of trials, it will be found.

Now, let's expand the problem to n variables. Two functions of two di�erent

variables are convoluted into another function, that might have more twisting points

within the valid range. So, the n di�erent functions are actually one convoluted func-

tion. Since all kinematic functions and constraints of all variables are transcendental

trigonometric, their convolution can be predicted.

For the other case, where there is no solution within the given interval, it is

straightforward that either of the two occurs: (i) the function never achieve the zero

value or (ii) the zero's of the di�erent variables, are in disjoint intervals. In both cases

the algorithm will not converge into a solution because none valid solution exists.

The second function checks which of the improvements (Alg. 3�7) will be most

e�ective in the next iteration. Actually, each of these four algorithms (and their sub

versions) selects a sub-problem to be solved in the next iteration. Recall that Alg. 3

selects part of the equations (rows), Alg. 5 selects part of the variables (columns) and

Alg. 7 selects one chain within the robot, which is actually also selection of part of

the columns. In order to maximize the e�ective of the convergence, if the solver will

choose the improvement that a�ects the next iteration the most, the overall process

will be improved. This can be done by calling the four improvements and comparing

their results. Then, executing the one that achieved the best result, as the next

iteration.

It is obvious that the performance of such a comparison is slow. Therefore, instead

of running the algorithms themselves, there is an option to run some indicators of

the behavior of the Jacobian matrix (J), but the reliability of this approach is lower

than running the improved algorithms.

The complete multiple IKP solver (Alg. 9) calls two improvement indications

proposed above and calls the relevant improved Algorithm 2- 5.

The performance of each iteration of the improved multiple IKP solver is much

slower than of the other algorithms, but the number of iterations is decreased. The

advantage of this algorithm is most cases that the other algorithms diverge due to

variables coupling or convoluted equation are resolved.

The last improvement (Alg. 10) is an algorithm that rather than solving the

Multiple IKP, �nds the zones on the solution envelope that are suspected as containing

63

Algorithm 8 Finding a linear environment for the existence of a Constrained IKP
solution
Require:

C - number of kinematic chains

Nc - number of joints in each joint

Ac,j - Set of the robot D-H matrices

R0 - the reference frame of the robot in relative to the world

S̄p - the set of support points
T̄p - the set of target points

1: Calculate the 3× |S̄p| × |T̄p| kinematic constraints
2: Calculate Ē (equation 4.4)
3: Calculate the Jacobian J (Eq. 4.5)
4: for 1 < i < N do

5: θia ← θimin

6: θib ← θimax

7: Jcol ← J∗,i
8: iitr ← 0
9: repeat

10: val1 ← (JT (θia)J(θia))−1JT (θia)L
11: val2 ← (JT (θib)J(θib))

−1JT (θib)L
12: iitr ← iitr + 1
13: if (val1 × val2 ≥ 0) then

14: θia ← θia +
θimax−θimin

128

15: θib ← θib −
θimax−θimin

128

16: until (val1 × val2 < 0) or (iitr > 64)>

17: if iitr > 64 then
18: print("No Interval")
19: else

20: Θ̄← {θi} return (Θ)

64

Algorithm 9 Improved Constrained IKP solver
Require:

C - number of kinematic chains

Nc - number of joints in each joint

Set of the robot D-H matrices Ac,j
R0 - the reference frame of the robot in relative to the world

S̄p - the set of support points
T̄p - the set of target points
Θ0 - the current joint values

1: repeat

2: Θ̄1 ← Call algorithm1
3: Θ̄2 ← Call algorithm2
4: Θ̄3 ← Call algorithm3
5: Θ̄3 ← Call algorithm4
6: i← Θ̄imin . the index of the joint values set that achieves the minimal
normi of the accumulated deviation from the targets

7: Execute algorithmi

8: until normi < treshold

a valid solution.

In each iteration it maps the con�guration space into the Cartesian space to �nd

the zone of the con�guration space that has high probability to contain a solution.

This algorithm has the highest rate of success among all algorithms, but its complexity

is high, although it is polynomial (5.6).

Algorithm 10 can be used in combination with the others as an initial stage to �nd

the initial values of θ′is, before starting the iterative process of �nding the solution.

If Algorithm 10 was terminated then another set of initial values are set to θ̄0

and the algorithm can be repeated. How to choose another set is described in the

framework of the simulations and examples.

If the algorithm reached its end then the initial values of θ̄0 for one of the pre-

vious algorithms will be set from the valid ranges that were found by executing this

algorithm.

5.6 Analysis

The IKP algorithm and its improvements are iterative. The complexity of each it-

eration is polynomial. In the following sub-sections we will analyze the number of

iterations as well as proving that the process will converge into a feasible solution.

65

Algorithm 10 Improvement in �nding the initial values of θ′is
Require:

C - number of kinematic chains

Nc - number of joints in each joint

Set of the robot D-H matrices Ac,j
R0 - the reference frame of the robot in relative to the world

S̄p - the set of support points
T̄p - the set of target points
Θ0 - the current joint values

1: for each column j in matrix Ē do

2: Initialize the ranges of the maximal of this variable.

3: for each row i in matrix Ē do

4: Substitute the current values of θk for all k 6= j
5: Calculate the maximal points of the function and re�ne the ranges of this variable.

6: if the ranges of θj are 	 then then terminate

Complexity Analysis

In this section we �rst analyze the complexity of one iteration of the basic multiple

IKP solver (Algorithm 1). Then, the number of iterations is estimated. Finally, the

e�ect of each improvement (Algorithms 2-10) on the overall complexity is analyzed.

Before presenting the analysis some de�nitions are required:

• Number of variables (joints) is N

• Number of support points is Sp

• Number of target points is Tp

• The total number of kinematic constraints is 3× Sp × Tp

An iteration Complexity Each iteration performs commands 7-15 in the algo-

rithm 1. These commands are actually construction of matrices and some manipula-

tions on those matrices.

The size of the Jacobian matrix, J , is Nr · N , where Nr is the total number of

rows. The number of columns is identical to the number of variables which is N .

The number of rows equals to the total number of equations, which is the sum of the

kinematic equations and the other constraints:

Nr = 3 Sp Tp + C (5.1)

66

Denote Nr ·N as Nj, is the number of entries in J .

Each cell in J is a polynomial of transcendental functions of the joints angles along

the kinematic chain. The maximum degree of the polynomial equals the length of

the kinematic chain. The maximum length of kinematic chain in the humanoid (from

a toe to the palm), is 13, in the robot we use as model. Let denote the maximum

kinematic chain length as `c. The general polynomial structure takes the following

form:

f `1(θ1, · · · θ`) + · · ·+ f 1
` (θ1, · · · θ`) + C (5.2)

Where each f `i (θ1, · · · θ`) is of the following form:

C1 · sinj1(θi1) cosj2(θi1) · sinj3(θi2) cosj4(θi2) · sinj5(θi3) cosj6(θi6) + C2 (5.3)

Where, C1 and C2 are constants. i1, i2 and i3 are integers in the range [1..N] and,

j1, j2, j3, j4, j5 and j6 are the power of the polynomial, i.e. they are integers in the

range [0..6].

Therefore, given symbolic matrix J , the complexity of substituting the joints

values Θ̄, (line 8 in algorithm 1) becomes:

O
(
(3 · Sp · Tp) ·N4)

)
(5.4)

In line 9, L is calculated. This is a N t
rh length vector. The number of calculations

of an item is actually the number of calculations in J(Θ0). As mentioned above, this

matrix has Nr · N entries. The maximal number of operations of calculating each

entity is N2. So, the complexity of line 9 becomes:

O
(
N2
r ·N3

)
(5.5)

The analysis of line 10 complexity compounds of counting the number of opera-

tions in matrix inversion and matrix multiplications. As mentioned above, there are

Nr · N entities in matrix J . So, the multiplication JTJ requires N2Nr operations.

Inverting this multiplication is performed by N3 steps. The multiplication of JTL

requires NrN operations. Last multiplication of (JTJ)−1 by JTL is preformed by N2

operations. The overall complexity of calculation eq. 4.7 is:

O
(
N2Nr +N3 +NrN +N2

)
= O

(
(1 +N)(NrN +N2)

)
(5.6)

67

The complexity of each line 11 and 12 is O
(
N
)
, and of lines 13 and 14 is O

(
1
)

(each). So, the overall complexity of one iteration is:

O
(
(3·Sp ·Tp)·N4)+N2

r ·N3+(1+N)(NrN+N2)+2N
)

= O
(
N2(NrN

2+N+1)
)
(5.7)

Number of Iterations. This part of the complexity analysis is di�cult to deter-

mined since it is varied between di�erent rates of convergence. However, we will

distinguish between 3 di�erent cases: (i) fast convergence (ii) slow convergence and

(iii) divergence.

The �rst case is relevant if the initial values of Θ are in the linear proxy of all

the equations. In this case the solution of each iteration is approaching towards the

�nal solution (up to the prede�ned precision). This rate is bounded by the maximum

value of:

f(θ)

f ′(θ)
(5.8)

Practically, since there are Nr functions (fi(θj)) and each of them has N partial

derivatives (∂fi
∂θj

), we choose the strictest rate within the Nr ×N di�erent values.

The second case of slow convergence is relevant in the case that some variables θi
are in their linear proximity while some are not, or they have di�erent convergence

directions. In this case there might be some phases of divergence before the �nal

convergence into a valid solution. In order to analyze the complexity, the maximal

number of such oscillations should be bounded. As can be seen in Figures 4-2 through

4-15, each joint might oscillate maximum 8 times in the interval of [−∞,+∞]. (No-

tice, that most joints are ranging in smaller intervals). In a case of two coupled joints

of the same volume, the number of oscillation might reach 82. Since, in the kinematic

equations there are no more than 3 coupled variables of the same volume, we can

roughly estimate the maximal oscillations as 83. But there can be situations where a

variable is alternating between two intervals, back and forth. In that case improve-

ment 1 2 or 4 or any other improvement of that family will throw the joints value to

another interval. In the case of an equation set that is not convoluted, this process

will �nally converge into a valid solution. De�ne K1 as a constant, then the estimated

number of iterations in the slow convergence case can be bound by 83K1. Notice that

practically the number of iterations is bounded for a reasonable threshold, so that

the process will always stop.

In the third case, where some equations are convoluted, there might be that a

68

solution cannot be found, and the number of iterations is bounded by a predetermined

threshold. In a case that the number of iterations is reached that threshold without

�nding a solution, it can be assumed that no solution exists or another solving process

can be executed to try bypassing the problem:

• Start the process with a new random initial joints values

• Perform a comprehensive analysis of the set of equations before choosing the

proximity of the solution

• Reduce some equations within the set E

• Replace the problem with another one (di�erent targets that are via points

between the current location and the desired ones)

We leave investigation of these options to future work.

Total Complexity. The complexity of lines 1-6 and 15-16 in the basic constrained

IKP algorithm is detailed below.

The complexity of calculating a kinematic constraint is analog to multiplying the

D-H matrices. Each constraint compounds of up to 13 multiplications of 4×4 matrices

which its number of operations is ≤ 13 × 43. Each entity in the D-H matrices is of

O
(
1
)
. So, the total complexity of lines 1 and 2 is:

O
(
Sp × Tp × 13× 43

)
= O

(
Sp × Tp

)
(5.9)

Notice that the 3 equations for coordinate X, Y and Z are achieved altogether.

Considering line 3, the complexity of determining J , was analyzed before: O
(
(3 ×

Sp × Tp)×N4)
)
. The complexity of lines 4, 5, 15 and 16 is O

(
1
)
.

Then, the overall complexity of the algorithm in the case of fast convergence is:

O
(
max(

f(θ)

f ′(θ)
)×N2(NrN

2 +N + 1) +Nr×N4
)

= O
(
max(

f(θ)

f ′(θ)
)×Nr×N4

)
(5.10)

From the above equation, it is obvious that N , the number of joints, has the most

signi�cant e�ect on the complexity. Another important insight of the total complexity

is that in a linear proximity, where max(f(θ)
f ′(θ)

is a constant, the convergence rate is

mainly a�ected by the number of joints.

If the kinematic constraints are not dependent on a long chains, and if there are

not many coupled variables, then the total complexity will be reduced by factors, and

69

the algorithm will be implementable in near real time (NRT) planning application.

Otherwise, it can be used just for o�-line path planning purposes.

In the case of slow convergence the complexity becomes much higher:

O
(
83K1 ×max(

f(θ)

f ′(θ)
)×Nr ×N4

)
= O

(
K1 ×max(

f(θ)

f ′(θ)
)×Nr ×N4

)
(5.11)

But the ratio f(θ)
f ′(θ)

is over the whole solution envelope, which is di�cult to estimate.

Improvement 1, introduced by algorithm 2 improved the complexity by choosing

the initial joint values that in their proximity the term max(f(θ)
f ′(θ)

) is relatively small.

The e�ect of the second improvement, is that in its extent, each equation is solved

solely, and the complexity of calculating J̄ is |Ē|×|θ̄|2. The complexity of calculating

L̄ is also |Ē| × |θ̄|2.
The complexity of each iteration compounds of calculating the norm and the

correction of θi. The norm calculation is bounded by |Ē| × |θ̄|2. The vectors multi-
plication is bounded by: O(|θ̄|2). So, the total complexity of an iteration bounds by

O(|θ̄|3).

The total number of iterations depends on the convergence rate. However, it

should be bigger than the analog parameter of the �rst algorithm. Therefore, the

total complexity is O(|θ̄|3).

Improvement 3 and 4 as described in 5 and 7, might accelerate the convergence

rate. The analysis of its impact on the complexity requires the use of algebraic

geometry theorems and it is beyond the scope of this dissertation.

Complexity Analysis The complexity of Algorithm 10, which is an add-on to �nd

the initial guess of the solution θ′is is high. The nested loops are preformed |J̄ | times

which is |Ē| × |θ̄|. The complexity of step 4 is |θ̄|2. Step 5 is the tortuous part of the

algorithm. This step itself is an iterative process of �nding the roots of a high order

transcendental function. This can be done by performing piecewise Newton-Raphson

on the domain. There are other methods. However, their complexity depends on the

function behavior (number of roots and their density) on one hand, and on the search

resolution on the other hand. The higher the complexity, the higher the probability

to �nd the solution if one exists. The complexity of step 5 will be denoted as Ψ.

Therefore, the total time complexity of algorithm (10) in a case that it does not

terminate is |Ē| × |θ̄| × (|θ̄|2 + Ψ).

In a case of termination, the algorithm can be repeated with a di�erent set of

70

initial values θ̄0.

Soundness

Whenever Algorithm 1 converges, Algorithms 2 through 10 also converge. Theorem

1 is valid since none of the basic assumptions was changed. Moreover, Algorithms 2

through 10 are improvements of the envelope of the basic iterative loop of Algorithm

1, but they do not change its core.

Completeness

Algorithms 2 through 10 are not complete, similarly to Algorithm 1. The improved

algorithms increase the probability of convergence. The impact of each improved

algorithm on the completeness is summarized below.

1. The �rst improvement of searching for a set of initial joints values increasing

the probability of linear localization of the function. In a linear proximity, the

method always converged into a solution.

2. The second improvement, of solving a sub-group of equations, reduces the prob-

ability of convoluted functions, which is "ill conditioned". So, it also increases

the probability of convergence into a solution.

3. The third improvement, of solving a sub-group of the variables, reduces the

probability of coupled variables, which also might prevent convergence.

4. The fourth improvement, like the third one uses only sub-group of the variables

in each iteration, but this subgroup is prede�ned. Its impact on the complete-

ness is identical to the impact of the third improved algorithm.

Algorithm 3 improves the probability of convergence into a solution in the case

that the kinematic function and constraints are of the same orders of magnitude,

wave, oscillation length, and their initial value is approximately the same, but, their

peaks are opposite. This algorithm solves the problem just for sub-group of variables,

and increases the probability of �nding the solution since it is impossible that both

convoluted variables will be chosen at the same iteration.

The fourth improvement (Algorithm 5) solves the variables in groups so that there

are no two variables in the same group that have such a coupling between themselves

that cause the solver to alternate between converge-divergence trends. So in any

unique iteration it is guaranteed that no alternation will be caused, which means

that the convergence probability will be higher.

71

Summary

We summarize and emphasize the weak spots of the proposed MIKP solver.

No convergence There might be two di�erent reasons for this phenomena:

• There is no solution

• The kinematic equations are coupled. So, in each iteration one variable desta-

bilizes the convergence of another variable.

In the �rst case, there is an inherent di�culty of the problem, while in the other case,

there is a disadvantage of the method. So, in order to distinguish between the two

cases and to solve the last one and stopping the trials of solving the �rst one, we will

limit the number of iterations after few trials of converging in di�erent portions of

the solutions space.

Non-optimal solution There are di�erent cases of convergence into an unfeasible

or non-optimal solution:

• The process converges into an unfeasible solution (in terms of the joints values).

• The process converges into a solution that is �far� from the current posture

The �rst case is resolved by arbitrarily destabilizing the solution by changing the

value of one or more joints and repeat the algorithm. There are other methods that

increase the probability of achieving a stable feasible solution, but they will not be

described in the scope of this paper.

The last case, in which the converged solution is �far� from the current posture,

or not optimal in any other aspect (such as passing via a singular point, etc.), is not

dealt in this research, since in most cases there are few solutions and our aim is to

�nd one discrete solution.

However, despite these limitations, we found that the algorithms work well in

practical (Chapter 8).

72

Chapter 6

Stability and Other Constraints

Practically, in humanoids, solving IKP is not enough. It has to be solved under some

extra constraints, such as stability which is crucial in humanoid motion. In this chap-

ter the multiple IKP algorithm is extended to support some additional constraints,

rather than limit the solution to support only the kinematic constraints. It might

be useful whenever the generated motion should be constrained, like the motion of

biped robot, that its stability is frail. In this chapter we will develop constraints that

can be assimilated in the constrained IKP problem. The focus of this chapter is on

stability constraint.

First, we will extend the problem described in chapter 5 then the solver algorithm

will be adjusted to the constrained IKP. Finally, the impact of these adjustments on

the complexity, soundness and completeness are analyzed.

6.1 Formulation of Constrained Multiple IKP

In the extended problem, the IKP is solved under additional constraints. Dealing

with humanoids, the most typical constraints concern the dynamics of the robot. For

example, if the robot is in static equilibrium, each support point implies a constraint

that the sum of all forces around it equals zero. So actually, two properties are

satis�ed for each support point. The �rst is geometric, and the second concerns the

robot dynamics.

• The position of the support point does not change along the motion

• The in�nitesimal sum of the di�erent forces in these points is zero.

We �rst relate the additional non-kinematic conditions in general and then we

will focus on speci�c constraints. Among these extra constraints might be geometric

73

boundary conditions such as self collisions' avoidance or physical constraint such

as keeping the robot stable, or an optimization constraint such as minimizing the

consumed energy, and others.

The challenge of solving a set of non-linear equations, as was de�ned in the multiple

IKP (Chapter 4) is now more complicated. The set of the equations that have to be

solved simultaneously is larger and there are more conditions that the solution has

to obey them. The nature of the additional conditions is not known apriori as the

kinematic constraints that are polynomials of transcendental functions. But, on the

other hand, as the inverse kinematics problem is under-constrained, sometimes the

additional constraints might limit the range for searching the solution. The major

challenge with these additional constraints is that they may convoluted with the

basic kinematic equations. Such convolution might cause the set of equations to be

unsolvable.

Although the constrained multiple inverse kinematic problem is usually under-

constrained, and has in�nite number of solutions. In the extended problem we change

the de�nition of Ē, the set of equations to be linearized. Recall that the total number

of kinematic equations are 3Nsp × Nt. Adding constraints that are implied on the

kinematic set of equations will limit the number of solutions. e.g. the solutions'

envelope is reduced and this leads to faster convergence.

There are three di�erent types of additional constraints that we handle here:

• Range

• Physical or geometrical constraints

• Optimization

The �rst type actually limits the boundaries of the solution to be within a certain

interval of the joint con�guration space. These constraints always exist, because

each joint has a physical range that is declared by the robot manufacturer. These

constraints have the following form:

θi min ≤ θi

θi max ≥ θi
(6.1)

These constraints will not be assimilated in the Jacobian matrix. Each generated

solution will be validated to check whether it is within the appropriate interval. If

it is not, another solution will be generated. This can be done by either initialize

the process with new values of θ′is or by using Algorithm 10 to �nd another zone

74

on the solutions' envelope. Usually, these constraints reduce the number of possible

solutions, but the problem is yet under constrained.

The second type of constraints should be a function of Θ, the joints values. An

example of such a constraint is the requirement that the posture achieved by the

solution will be stable. This type of constraints might be a geometric or a physical

condition. The later, in its general form, might be a di�erential equation (in case it

deals with the dynamics of the robot). A di�erential of order ` of such a constraint

will be denoted as C` and it will be formed as follows:

C̄`(Θ) = 0 (6.2)

C̄`(Θ) is a set of constraints and the number of such constraints is |C̄`(Θ)|. These
constraints will be assimilated in the Jacobian. The details of the assimilation will

be described later on.

The third type of constraints is on optimization functions. Whenever this type

is used, there is usually only one constraint of this type. This limits the solution

to be unique, or at least unique in a certain proximity of joints values (i.e. local

minima or maxima). If there are more than one optimization function, there might

be contradicting conditions. An example of such function is minimization of the rate

change of joint angles. The raw form of the third type constraints is as follows:

arg min
Θ
F (Θ)

Or,

arg max
Θ

F (Θ)

This problem is solved by �nding the zeros of the �rst derivative, i.e.:

F
′
(Θ) = 0 (6.3)

The additional constraints are all functions of Θ̄, and can be partially derived in

related to each variable θi in the Jacobian. Each additional constraint adds a row in

the Jacobian. So, the Jacobian J , the partial derivative matrix of all equations in

relative to each variable, has 3Nsp ×Nt + |C̄`(Θ)| rows and its number of columns is

N , which is the number of joints. The �rst type of constraints are not assimilated in

the Jacobian since their validation can be easily checked due to their linearity in the

joint space. The third type of constraints will be translated into the form of Eq. 6.2

75

(i.e. �nding the zeros of the derivative of an optimization function).

Consider the kinematic constraints equations 4.3 and the additional constraints

(Eq. 6.2) that will be partially derived in order to construct J .

Ē =

 T̄supportT
−1
k−linkiA

−1
ki . . . A

−1
k0Ajo . . . AjiTlinki = T̄target

C̄(θ̄) = 0
(6.4)

From here on, J is de�ned exactly as it was de�ned in the multiple IKP (Equation

4.5).

J =
∂ ¯E(Θ)

∂Θ̄
(6.5)

If the kinematic equations and the constraints Ē were linear, then the solution of

the kinematic equations under the constraints 6.2, were become to be:

Θ̄ = Θ̄0 + V̄ (6.6)

The equations of the constraints were not characterized, so it is unknown how

close is the linearized function to the value achieved by the function itself. However,

the kinematics equations are non linear so applying any method that is based on

linearization requires iterative process to correct Θ.

In this research we focus on constraints that are linear or polynomial or tran-

scendental functions. These are the most typical constraints and they cover many

common types. In these cases, they are of the same type as the kinematic functions

and will have the same convergence nature, unless it is convoluted with the kinemat-

ics. We cannot treat this case a priori, but as part of the proposed algorithm, this is

checked and treated on-line. (described later).

6.2 Constrained Multiple IKP Algorithm

The algorithms that were proposed in Chapter 6 to solve the multiple IKP do not

require any change in order to solve the constrained problem. The only modi�cation

is that the Jacobian J contains additional rows representing the extra constrains. The

algorithms are based on minimization of the deviation of both the forward kinematic

equations and the constraints under linearization. In order that the basic Algorithm

1 will be applied to the constrained IKP, the input should be as follows:

76

• C - number of kinematic chains

• Nc - number of joints in each joint

• Set of the robot D-H matrices Ac,j

• R0 - the reference frame of the robot relative to the world

• S̄p - the set of support points

• T̄p - the set of target points

• C` - the set of additional constraints

• Θ0 - the current joint values

• MaxIterations - maximum number of iterations

There is no formal change in the algorithm itself, but notice that the calculation

of E (line 2) is now determined by Equation 6.4.

The second improvement is mostly important in the case of the constrained IKP,

since it divides the set of equations E into M subgroups, E1, · · ·Em, ordered by their

signi�cance from the highest to the lowest. This enables granting di�erent signi�cance

to the di�erent constraints. Usually the stability constraint is the most important and

has to be satis�ed accurately, while the kinematics constraints have to be achieved

approximately and any optimization constraint is unnecessarily be achieved.

6.3 Analysis

The analysis of the computational complexity is similar to the analysis of the basis

multiple IKP Algorithm 1. The complexity is a�ected by two parameters. The �rst

is the increased total number of constraints (rows in the Jacobian matrix). The

complexity is derived from the size of the Jacobian that now has a bigger size. The

second impact stems from the order of convergence, which depends on the coupling

of the variables and whether there are convolution constraints. The probability to

encounter these two convergence preventing factors is higher whenever there are more

constraints. But unless we know the exact nature of the additional constraints, the

change in the complexity cannot be accurately determined.

77

An iteration Complexity. The analysis of one iteration complexity described in

Section 5.6, is changed by the number of rows, Nr, which a�ects the size of the

Jacobian (Nr ×N).

Nr is the total number of rows which is the sum of the kinematic equations and

the additional constraints:

Nr = 3× Sp × Tp + C (6.7)

So, the complexity of substituting the joints values Θ̄, (line 8 in algorithm 1)

becomes to be:

O
(
(3× Sp × Tp + C)×N4)

)
(6.8)

In line 9 L is calculated. This is a N t
rh length vector. The number of calculations

of an item is actually the number of calculations in J(Θ0). As mentioned above, this

matrix has Nr × N entries. The maximal number of operations of calculating each

entity is N2. So, the complexity of line 9 becomes to be:

O
(
N2
r ×N3

)
(6.9)

The analysis of line 10 complexity compounds of counting the number of opera-

tions in matrix inversion and matrix multiplications. As mentioned above, there are

Nr × N entities in matrix J . So, the multiplication JTJ requires N2Nr operations.

Inverting this multiplication is performed by N3 steps. The multiplication of JTL

requires NrN operations. The last multiplication of (JTJ)−1 by JTL is preformed by

N2 operations. The overall complexity of one iteration is:

O
(
(3×Sp×Tp+C)×N4)+N2

r×N3+(1+N)(NrN+N2)+2N
)

= O
(
N2(NrN

2+N+1)
)

(6.10)

And the total complexity of the constrained multiple IKP is formally the same as

the complexity of the unconstrained multiple IKP (Equation 5.9). The di�erence is

in the size of Sp which is bigger. Recall that the total complexity of the algorithm is:

O
(
Sp × Tp × 13× 43

)
= O

(
Sp × Tp

)
(6.11)

The bottom line is that the complexity of one iteration of the constrained multiple

IKP algorithm is the product of the number of supporting points and the target points.

78

But, the actual computation is slow since it is multiplied by a very big constant of

order of the �fth power of the number of joints.

Soundness. There is no change in the analysis of the soundness. The additional

constraints that are embedded as extra rows in the Jacobian do not change the char-

acteristic of the algorithm. Whenever the algorithm converges, it converges into a

valid solution. The same proof that was applies to the multiple IKP solver (Theorem

5.6), is still valid here since the properties of the Jacobian were not changed and the

rest of the algorithm is similar to the basic algorithm 1.

Notice that there are two types of equations: the kinematic conditions and the

additional constraints (e.g. keeping stability). The set of constraints, C̄ has two types:

(i) those that have to be satis�ed up to a certain tolerance (usually, those exert from

optimization function) and (ii) those that have to be fully satis�ed (usually, exerted

from a conditional function).

The �rst type, in terms of tolerance, behaves similar to the kinematic equations,

that have to be satis�ed up to a certain threshold that can be calibrated in advanced.

The only thing that might be di�erent is that the constraint is not necessary in the

Euclidean space. In that case, one can estimate the mapping between the con�gura-

tion space to the world coordinate space.

The second type is more di�cult, and has to be treated prior to the performance

of the algorithm, by adjusting the constraint itself. This process will be described in

detail, later on, as various speci�c constraints will be described.

Completeness. As mentioned in Chapter 4, the algorithm is not complete. Im-

plying constraints on the solution does not change this statement. There might be

some cases that the multiple IKP solver does not converge into a solution while the

constrained multiple IKP version converges and vice versa. But it does not turn over

the principal argument of incompleteness.

6.4 Whole Body Stability Constraints

In this section the stability constraint is developed. This constraint will be implied

later on the solution of the IKP. The �rst Section (6.4.1), describes the problem

notation. The second Section (6.4.2), de�nes the problem as existing of a certain point

within the convex hull of the robot supported polygon. In Section 6.4.3 the optional

points and their computation are described, while 6.4.4 presents the algorithm to

79

calculate the convex hull of the supported polygon. Finally, the overall calculation of

the stability constraint is described in 6.4.5.

6.4.1 Extended Stability Criteria: Notation

A general static stability of any physical object demands that either point: Grounded

Center of Mass (GCom), Zero Moment Point (ZMP) or Foot Rotation Indicator (FRI)

will be within the support surface, in a case of one supporting plane [51]. Dealing

with few supports that are on the same plane, these points have to be within the

convex hull (CH) of the planar supported polygon (SP) of these supports [15]. In this

section we will extend the stability condition to the general case that the supports

are in di�erent planes and we will show that the CH of their projected points on the

surface perpendicular to the gravity axes is su�cient.

We use the following notation for the inputs of the problem:

• Let θ̄ be the joints state vector.

• Let Xr be the robot reference position. It is 4 × 4 homogeneous coordinate

matrix. Usually, this input relates to the pelvis, but it might be any other

reference point.

• Let S̄p be a set of 3D support points. Each point Sp is de�ned as a point on

the robot (relative to a reference point of the robot). Each support point has a

contact with the ground or any other stable surface.

Later on in this chapter we will use these inputs to formulate a general stability

constraint. The constraint will be formulated so that the stability holds for any robot

motion and any robot structure. Note, that this is a static stability constraint, that

considers only the gravity and friction forces whose sum should equal zero, (assuming

no sliding forces exist and the ground is stable). Each of the following subsections

formulates the constraint for a di�erent criterion.

6.4.2 The Problem

There are two types of stability: static and dynamic. While dealing with humanoid,

the static stability is useful when the robot is in slow motion. Dynamic stability is

used for fast motions such as walking and running when the robot might falls if its

motion will be interrupted.

80

Static stability is a general term in physics that is used in robotics motion. It is

useful while dealing with stationary devices or slow motion robots who are moving

in a quasi static mode. The criteria for static stability is that the robot grounded

projection of the center of mass (GCoM) lies within the supported polygon of its

supports [35].

Dynamic stability is used in fast motions, where in each in�nitesimal instance of

the motion the robot might be unstable, but overall along the motion it is stable.

There is no general algorithm to solve the problem of dynamic stability for bipedal

robots; often used approaches are based on the zero moment point (ZMP) or the Foot

Rotation Indicator (FRI). The dynamic stability criteria is that either the ZMP or

the FRI point are within the support polygon every instance of time.

Dealing with static stability, only the gravity force is considered. Assuming that

the support is a contact point without any push or pull forces, then no other force

a�ects the stability. Even the friction can be ignored in such contacts. Therefore,

the only impact is of the gravity, which is determined as the ground projection of the

CoM. But since we deal with general motions, where the robot does not necessarily

stand on a planar surface, and its support are not necessarily its feet, then the gravity

will be projected on a plane perpendicular to the gravity axes, and in the height of

the lowest support point.

In dynamic stability, as was de�ned by Vukobratovi¢ et al. ([88]), the ZMP which

is the point where the sum of the moments are zero, should be within the supported

polygon. This general de�nition holds for any motion, as was stated in [87]:

Fp + FA = 0 (6.12)

Where Fp is the force acting on the support's edge and FA is the rotation force

about that edge. The point that satis�es this condition is the ZMP, whatever the

motion is. While dealing with walking, both the support and the rotation point are

lying on the feet, which simpli�es the computation of this point. Later on in this

chapter, the ZMP point and the support will be determined for any motion in the 3D

space. However, the stability problem criteria is still to �nd whether the ZMP lies

within the supported polygon. However, the calculation of the ZMP is much complex

as well as the supported polygon, which no more can be assumed that it is on the

ground plane.

The other dynamic stability criterion is the location of the FRI point, as was

described by Goswami in [23]. Note that this criterion is de�ned just to motions

where the support points are either one or both of the feet. We will extend it to any

81

support of the humanoid. It is assumed that the external forces acting on the robot

are the resultant ground reaction force acting at the CoP (Center of Pressure) and

the gravity. This can be determined by using the following equation:

M +OP ×R +
∑

OGi ×mig =
∑

ḢGi
+
∑

OGi ×miai (6.13)

Where,

• M and R are the torque and force acting at the CoP.

• OP is the vector between the origin and the CoP point (denoted as P).

• OGi - is the vector between the origin and the CoM location.

• mi is the mass

• ḢGi
is the derivative of the angular momentum around the CoM.

• ai is the linear acceleration of the CoM.

From Equation 6.13 the extended FRI point can determined. Then, the stability

criteria is that this point resides within the convex hull of the supported polygon of

the supports.

So actually, all the above three criteria require that a certain point (GCoM, ZMP

or FRI) will be within a supported polygon. This holds for any body motion, even

if the supports are not the legs. There is a di�erence in the way the points and the

supported polygon are calculated. The details of these calculations are described in

the following sections. The FRI criteria, which deals with dynamic stability is beyond

the scope of this research.

6.4.3 Stability Criteria Points

GCoM.

GCoM stands for Ground projection of the Center of Mass. In [88] it is stated that if

the GCoM is within the convex hull of the supported polygon of the robot supports,

then the robot is statically stable. This stability criteria is valid for any posture, even

those whose support is not within the area of the feet.

The CoM is determined by multiplication of the static and the kinematic parame-

ters of the robot, represented by the D-H matrices [30]. The ground projection of the

82

CoM can be computed by changing the Z coordinate to be the height of the ground

relative the robot's origin.

De�ne Aki to be the D-H matrix of ith joint relative the previous joint (i − 1) in

the kth chain. Notice that Aik is a function of θik, the kinematic value of the ith joint

in the kth chain.

Denote by Bik the homogeneous matrix representing the location of the ith link

center of mass relative the ith joint in the kth chain. mik is the mass of the ith link in

the kth chain.

Assume that the robot has K kinematic chains, each of them has nk joints. Then,

the center of mass of each chain relative the robot reference point can be determined

as follows:

CoMk =

nk∑
i=1

A1k · · ·AikBikmik

nk∑
i=1

mik

(6.14)

The CoM of the robot, will be computed as a weighted average of the CoM of all

its kinematic chains:

CoMrobot =

K∑
k=1

nk∑
i=1

A1k · · ·AikBikmik

K∑
k=1

nk∑
i=1

mik

(6.15)

This CoM position is relative to the robot's origin. Xr will be the transformation

matrix of the robot's origin in relative to the world. To transform the robot's CoM also

in relative to the world coordinate system, the following multiplication is performed:

CoMrw = XrCoMrobot (6.16)

The CoM will be projected on the world XY plane, which is de�ned as the plane

perpendicular to the gravity axis. If the robot reference point is relative the world

coordinate system, then the projected Z coordinate will get the Z-value of the ground.

The Zero Moments, Torques and Forces Constraint. The Zero Moment

Point, de�ned by Miomir Vukobratovi¢ in 1968 [87], is a criterion for stability of

a walking biped robot. It speci�es a point in the contact of the foot with the ground

where the sum of the vertical forces (gravity and inertia) is zero.

Here, the de�nition is extended so that the ZMP is a point or a set of points

83

whose moment equals zero, and are located on the support surfaces. Since we limit

our research only to gravity and friction forces (without considering push / pull or

any other forces), then the stability constraint is that the ground projected ZMP

should be within the ground projected supported polygon.

In the extended de�nition, the Zero Moment Point can be on any part of the body,

not necessary on the foot, unless it is on a supporting surface. There might be more

than one such a point.

The original assumptions that the contact area is planar and that the friction is

high so that there are no sliding motions, will be valid in the extended model.

The original de�nition of the ZMP point as is de�ned in [87]:

~OP ×R + ~OG×msg +MA +MZ +
(
~OA× FA

)H
= 0 (6.17)

~OP is the vector from the origin of the coordinate system Oxyz to the support

point. Notice that the link of the robot that is supported is given.

R is the reaction of the support surface on the contact point.
~OG is the vector from the origin of the coordinate system Oxyz mass center of the

body parts that are above the support point, i.e., those parts that their Z coordinate

is higher than the support point.

ms represents the mass of the upper body, i.e. all parts of the body that their Z

value is bigger than the support point's Z coordinate.

MA is the moment of the joint adjacent to the support point. The details of its

computation will be described later.

FA is the force induced in the joint adjacent to the support point.

MZ represents the moment of friction reaction forces that balances the vertical

component of the moment MA and the moment induced by the force FA . The

resultant forces of the inertia and gravity acting on a robot are:

F gi = mg −maG (6.18)

Where m is the mass, g is the gravity acceleration and aG is the linear acceleration

of the Center of Mass.

The moment in any point X is de�ned to be:

M gi
x = ~XG×mg − ~XG×maG − ḢG (6.19)

Where ḢG is the rate of angular momentum of the center of mass.

84

De�ne F c and M c
x to be the resultant of the contact forces and the moment at x,

respectively. Then, each contact point x, satis�es the following conditions:

F c +mg = maG

M c
X + ~XG×mg = ḢG + ~XG×maG

(6.20)

Or, put another way

F c +m(g −maG) = 0

M c
X + (~XG×mg − ḢG − ~XG×maG) = 0

(6.21)

These equations show that the robot is dynamically balanced if the contact and

inertia forces are strictly opposite to the gravity forces.

De�ne an axis ∆gi, where the moment is parallel to the normal vector from the

surface about every point of the axis, then the Zero Moment Point (ZMP) necessarily

belongs to this axis. The ZMP will then be the intersection between the axis ∆gi and

the ground surface such that:

MZMP gi =
−−−−−→
PZMPG×mg −

−−−−−→
PZMPG×maG − ḢG (6.22)

Where MZMP gi is parallel to the normal (n) to the contact surface.

Because of the opposition between the gravity and inertia forces and the contact

forces mentioned before, the Z point (ZMP) can be de�ned by:

−−−−−−−→
PCoMPZMP =

n×M gi
P

F gi · n
(6.23)

where PCoM is a point on the contact plane, e.g. the normal projection of the

center of mass.

While extending it to a whole body motion, the contact point is not necessary in

the foot and the support polygon does not necessary identical to the foot. In general,

the support point (or set of points) is onto a given link which is in contact with a

supporting surface. Assume that the point is supported by a horizontal plane which

is parallel to the ground.

In [70], the dynamic stability model is extended to include kinematics constraints,

as well as the contact forces of the interaction with the environment. The robot is

represented as free �oating articulated system pulled to support surfaces by gravity.

The contacts can be between any part of the robot and a surface with any size or

orientation.

85

The constraints of the contacts are that the velocities and accelerations at these

points are zero. The robot dynamics is a�ected by its geometry, the gravity forces,

the actuating torques and the contact forces. The dynamic constraints are developed

under the premise that the contact bodies lay �at against the support surface.

Let ϑ6|Sp|, ϑ̇6|Sp| be the vectors of the linear and angular velocities of each support

point. Then the following conditions hold:

ϑSp = ˙ϑSp = [0, 0, ..., 0]6|Sp| (6.24)

Consider the following de�nitions:

• Let Fref be the reference frame of the robot in relative to the world.

• Let θ̄ be the vector of the joints pose.

• Let I be the Inertia matrix, which its size is (|θ̄|+ 6)× (|θ̄|+ 6).

• Let ϑ, ϑ̇ be the end e�ector velocity and acceleration respectively.

• Let b and g be the Coriolis and gravity forces respectively. The size of each of

these vectors is (|θ̄|+ 6).

• Let q̇, q̈ be the velocity and acceleration of the joints, respectively

• Let Js be the matrix of the cumulative Jacobian of all supporting bodies in

contact with the ground. Js = Σ
|Sp|
i=1Jsi

• Let Fr be the vector of reaction forces and moments.

• Let Γ be the vector of the actuation torques.

Then, the dynamic of the system including the actuating and contact forces is as

follows:

I

(
ϑ̇

q̈

)
+ b+ g + JTs Fr = Γ (6.25)

As described in [69], we solve Eq. 6.25 under the condition represented in Eq.

6.24, which yields:

Fr = J̄Ts (Γ− (b+ g)) + ΛsJ̇s

(
ϑ

q̇

)
(6.26)

86

Where Λs is the apparent inertia matrix projected in the space de�ned by the sup-

port bodies, Js is the associated Jacobian matrix, and J̄s is its dynamically consistent

generalized inverse [38].

Plugging the above equation into 6.25, a dynamic model with contact constraints

is obtained:

I

(
ϑ̇

q̈

)
+Ns(b+ g) + JTs ΛsJ̇s

(
ϑ

q̇

)
= NT

s Γ (6.27)

Where Ns is the dynamically consistent null space of Js.

The FRI stability criterion has an inherent characteristic that it is a point on the

ground (i.e. XY plane), and it is assumed to re�ect a rotation point on the foot.

While dealing with whole body motions, the rotation point might be on any part of

the body, so will rename it to BRI (Body Rotation Indicator).

The most general model of the moments at the origin are formulated as follows:

M +OPXR +
∑

OGi ×mig =
∑

˙HGi+
∑

OGi ×miai (6.28)

Where mi is the mass, Gi is the CoM location, ai is the CoM linear acceleration

and HGi is the angular momentum of the ith link about the CoM.

In order to expand this formula to any body part, we should solve it for each

support point in 3D without assuming that the right hand side equals zero, which

leads to the following result:

M +OPXR +
∑

OGi ×mig −
∑

τi −
∑

˙HGi+
∑

OGi ×miai = 0 (6.29)

This set of equations is computationally complex, and an iterative numerical

method like Newton-Raphson ([3]), should be applied to solve it.

6.4.4 The Convex Hull of the Supported Polygon

The supported polygon is the polygon generated by linking the projected support

points of the robot. Assume the robot has |S̄p| support points. Each support surface

is represented by a point or a set of points. Algorithm to de�ne these representing

points is beyond the scope of this paper.

The points S̄p are relative to the robot origin represented by transformation ma-

trix Mrobot. In order to project them, each point should be multiplied by M−1
robot.

Afterwards, they will be projected on the base plane, which is the one perpendicular

87

to the gravity axis, in height Z=0.

Denote the set of projected points as S̄proj. In order to construct the supported

polygon, the points should be ordered by their azimuth relative to an arbitrary point.

This order de�nes the polygon. Now, the convex hull of this polygon has to be

constructed. The convex hull of the supported polygon is the circumscribing polygon

of all projected supported points, that has no angle that is more than 180 degrees.

Both the polygon and the convex hull are on the XY plane. Let de�ne the azimuth

between two points is the direction from the �rst point to the second point in the

interval [−π,+π].

The algorithm to construct the polygon is described in Alg. 11.

Algorithm 11 Algorithm to construct the supported polygon
Require:

Set of points S̄p
The robot's origin matrix Mrobot

1: for ∀p ∈ S̄p do determine S̄pnew = ¯Mrobot
−1
P̄

2: Set the Z coordinate to 0
3: Choose an arbitrary point in the set S̄pnew and mark it as P0.
4: Calculate the azimuth of each of the other points relative to P0

5: Reorder S̄pnew in corresponding to their ascending azimuth value.

In line 1 the supported points are transformed from world coordinates to the robot

coordinates. Line 2 is equivalent to projecting the points on the XY plane. In lines

3�5 the supported points are ordered counterclockwise as a preparation process before

constructing the supported polygon.

The output of Algorithm 0 is the set of points construct the supported polygon

in counterclockwise order, where the �rst point was selected arbitrarily. This set of

points is the input of Algorithm 12 which constructs the convex hull of the polygon.

The output of this algorithm is the set of points S̄pnew which is the ordered points

constructing the convex hull.

It should be mentioned, that the ordering of the points clockwise or counterclock-

wise was chosen arbitrary. By setting the points in a clockwise order sgn will be

positive and setting it counterclockwise will cause sgn to be negative. Then, step 1

can be avoided.

Notice that our goal is to express the stability criteria as a constraint equation of

the for C(θ̄) = 0. The CH construction is performed by an algorithmic process and

its output is used as part of the constraint equation.

88

Algorithm 12 Convex Hull Computation
Require: Set of points ¯Spnew

1: Choose an arbitrary point located inside the polygon and check whether it is to
the left or right side of the �rst line in the polygon (+/-). Mark the sign as sgn.

2: repeat

3: for each odd point in the set S̄pnew do
4: de�ne the line between the previous odd point and the current point.
5: if the previous even point has the same sign as sgn then remove this point

from S̄pnew.

6: until no point is removed anymore

Dealing with a walking robot (on a horizontal ground, perpendicular to the gravity

axis), the supported polygon is a bounded area on the XY plane. Usually, it is the

area bounded by the stance feet. This simple case is due to the fact that the stability

is derived from 2 forces: the gravity which works on the XY plane and the ground

reaction. Extending the discussion to any motion, this approach has to be extended

to include other forces such as friction and torques (e.g. pull / push). Therefore,

we should distinguish between stability (static equilibrium) and balance (dynamic

equilibrium).

In this research we will limit ourselves to static equilibrium. Three conditions for

static equilibrium:

∑
Fv = 0 sum of vertical forces∑
Fh = 0 sum of horizontal forces∑
T = 0 sum of torques

(6.30)

Since it is known that all points are on the same plane, then we can use Kirkpatrick-

Seidel algorithm [16]. This algorithm computes the convex hull of n points on O(nh)

time complexity, where h is the number of points de�ne the convex hull.

Suppose, we have to calculate whether a point X resides within the convex hull,

then we have to project this point to the plane, and examine the side of the point in

relative to each edge of the convex hull. If all sides are the same, then the point is

within the convex hull, otherwise - it is out of the border. [4]

The time complexity of testing each point whether it is inside or outside the

convex hull, is O
(
h
)
. This process has to be applied to each of the three planes. If

the point resides within all three convex hulls, then the posture is stable. So, the

total time complexity of determine the convex hull and calculate whether the GCoM

89

point resides within it is O(nh).

Notice that there are some special cases. The convex hull is a good estimation

for the supported polygon, but they are not identical. There might be some rare

situations where the point is within the convex hull it is not in the boundaries of the

supported polygon. There are some speci�c situations where the point resides on the

boundaries of the supported polygon and due to inaccuracies the robot will not be

stable.

De�ne Ai to be the D-H matrix of joint i in relative to the i − 1 joint. Notice

that Ai is a function of θi, the kinematic value of the ith joint. Denote by Bi the

homogeneous matrix of the location of the center of mass of the ith link in relative to

the ith joint. Denote by mi the mass of the ith link.

Assume that the robot has K kinematic chains, each of them has nk joints. Then,

the center of mass of each chain in relative to the reference point of the robot can be

determined as follows:

CoMk =
A1k · · ·AikBikmik

nk
(6.31)

The CoM of the robot, will be computed as a weighted average of the CoM of

the di�erent kinematic chains. The CoM will be projected to the XY plane. But the

supported polygon will be determined according to the scheme described in Section

6.4.3.

6.4.5 The Stability Constraint

A static stability exists whenever the GCoM of an object is within the CH (Convex

Hull) of the SP (Supported Polygon). Given the robot state J̄ , the GCoM can

be determined from Equation 6.15. The CH is determined by using the algorithm

described in the previous section.

Assume the CH points are ordered counterclockwise, then if the GCoM is within

the CH, the equation will have the same sign for every consequent points si ∈ S̄pnew.

(xi+1 − xi) (yCoM − yi)− (yi+1 − yi) (xCoM − xi) (6.32)

Where, xCoM , yCoM are the calculated coordinates of the robot's center of mass,

projected on the ground. Actually, this equation represents two constraints, for xCoM
and yCoM . The zCoM is projected on the ground plane so there is no additional

constraint.

90

If the convex hull is composed of ns = |S̄pnew| points, then this condition can be

formulated into the following equation:

n−

∣∣∣∣∣
n∑
i=1

(xi+1 − xi) (yCoM − yi)− (yi+1 − yi) (xCoM − xi)
|(xi+1 − xi) (yCoM − yi)− (yi+1 − yi) (xCoM − xi)|

∣∣∣∣∣ = 0 (6.33)

Notice, that if the denominator equals zero, then the CoM is on the edge of the

convex hull. Since this is an unstable posture, this condition will be determined prior

to the calculation of Eq. 6.33. Also, the �rst and the last points of the convex hull

are identical.

This constraint can be modi�ed to express a di�erent stability criteria, such as that

the FRI/ZMP points are within the CH. In contradiction to kinematic conditions that

can be satis�ed up to a given accuracy ε, this constraint should be strictly satis�ed.

This constraint is actually a function of Θ. It is interesting to see its nature

before assimilating it in the constrained IKP. Figures 6-1 through 6-8 demonstrate

the stability criterion as a function of each variable θ1 - θ26, correspondingly.

Figure 6-1: The stability constraint as a function of lar, lap and lkp

6.5 Other Constraints

The constrained MIKP can support many types of constraints. Similar to the stability,

there are other constraints that have to be fully satis�ed. On the other hand, there

are optimization constraints that have to be ful�lled as much as possible, like the

fastest solution, which can be translated into the posture that satis�es the kinematic

91

Figure 6-2: The stability constraint as a function of rar, rap and rkp

Figure 6-3: The stability constraint as a function of lhp, lhr and lhy

constraints and changes the joints at least. In this section the minimum jerk constraint

will be brie�y described.

This is a common trajectory generation model in robotics [86]. This model requires

that the third derivative of the position, called jerk, will be minimal. It can constrain

either the Cartesian coordinates or the joint con�guration space. Obviously, each

will result a di�erent solution. In order to demonstrate how such a constraint should

be formulated in order to assimilate it in the IKP solver, the minimum jerk in the

Cartesian coordinate system will be developed.

The jerk of a coordinate x is de�ned to be

...
x (t) =

d3x(t)

dt3
(6.34)

92

Figure 6-4: The stability constraint as a function of rhp, rhr and rhy

Figure 6-5: The stability constraint as a function of lsp, lsr and ler

In our case, x is a function of Θ and usually Θ is a function of t. So, Equation

6.34 becomes

...
x (t) =

d3x(Θ)

dΘ3
(
dΘ

dt
)3 + 3

d2x(Θ)

dΘ2

dΘ

dt

d2Θ

dt2
+
dx(Θ)d3Θ

dΘdt3
(6.35)

The minimization function is along the whole trajectory, so it is de�ned as:

min

∫ t

0

...
x 2(t) (6.36)

As the trajectory is 3 dimensional, the function should minimize the sum of the

squared jerk along its trajectory:

93

Figure 6-6: The stability constraint as a function of rsp, rsr and rer

Figure 6-7: The stability constraint as a function of ley and lwy

min
∫ t

0
(
...
x 2(t) +

...
y 2(t) +

...
z 2(t))dt =

min
∫ t

0
((d

3x(Θ)
dΘ3 (dΘ

dt
)3 + 3d

2x(Θ)
dΘ2

dΘ
dt

d2Θ
dt2

+ dx(Θ)d3Θ
dΘdt3

)2 + (d
3y(Θ)
dΘ3 (dΘ

dt
)3

+3d
2y(Θ)
dΘ2

dΘ
dt

d2Θ
dt2

+ dy(Θ)d3Θ
dΘdt3

)2 + (d
3z(Θ)
dΘ3 (dΘ

dt
)3

+3d
2z(Θ)
dΘ2

dΘ
dt

d2Θ
dt2

+ dz(Θ)d3Θ
dΘdt3

)2)dt

(6.37)

Θ is a multi variable vector, so the derivatives in the above target function are

partial derivatives. In the general case there are additional terms of the partial

derivatives of these variables (e.g. f(∂θi
∂θj

)). But in our case all these terms equal

zero, since none of these variables is a function of another one. 1 So, Equation 6.35

1In humans and some humanoids, this kind of relations between joints exist, but these are beyond

the scope of this research.

94

Figure 6-8: The stability constraint as a function of rey and rwy

becomes

min
∫ t

0
(
∑

i(
∂3x(θi)

∂θ3
i

(dθi
dt

)3 + 3∂
2x(θi)

∂θ2
i

dθi
dt

d2θi
dt2

+ ∂x(Θ)∂3θi
∂θidt3

)2

+
∑

i(
∂3y(Θ)

∂θ3
i

(dθi
dt

)3 + 3∂
2y(Θ)
∂Θ2

dθi
dt

d2θi
dt2

+ ∂y(Θ)∂3θi
dθidt3

)2

+
∑

i(
∂3z(Θ)

∂θ3
i

(dθi
dt

)3 + 3∂
2z(Θ)

∂θ2
i

dθi
dt

d2θi
dt2

+ ∂z(Θ)∂3θi
dθidt3

)2)dt

(6.38)

The minimization is achieved by �nding the zeros of the derivative of the function,

which is

∑
i(
∂3x(θi)

∂θ3
i

(dθi
dt

)3 + 3∂
2x(θi)

∂θ2
i

dθi
dt

d2θi
dt2

+ ∂x(Θ)∂3θi
∂θidt3

)2

+
∑

i(
∂3y(Θ)

∂θ3
i

(dθi
dt

)3 + 3∂
2y(Θ)
∂Θ2

dθi
dt

d2θi
dt2

+ ∂y(Θ)∂3θi
dθidt3

)2

+
∑

i(
∂3z(Θ)

∂θ3
i

(dθi
dt

)3 + 3∂
2z(Θ)

∂θ2
i

dθi
dt

d2θi
dt2

+ ∂z(Θ)∂3θi
dθidt3

)2 = 0

(6.39)

This is the minimum jerk constraint to be assimilated in the IKP solver. It can

be solved numerically by Newton-Raphson, using the Jacobian matrix, similar to the

other constraints (e.g. the kinematics conditions).

95

96

Chapter 7

Motion During Interpolation

Motion can be planned discretely, along a set of via points. The transition between

two via points is performed by the robot controller using an interpolation. The

common approach is to use a combination of interpolation with feedback control [49].

In any case that the interpolation method is known, the full path can be predicted.

However, the robot reaction to the feedback control might change this prediction.

Although there is a demand that robot motion will be as smooth as possible,

motion planning is actually discrete. There are several reasons for the discretization

of low level motion:

• There is a limitation for the planning duration. So actually tasks are planned

piecewise.

• Robot motion planning should account for some dynamics, such as obstacles,

unpredictable forces, uneven or slippery ground, etc.

• The robot might reach unstable postures

• There are some unreachable postures

• Most controllers work in the joints' con�guration space, while most tasks are de-

�ned in the Cartesian space. The translation between the space is not straight-

forward.

In piecewise motion planning the starting point and the end point of the seg-

ment are well de�ned in both the joint con�guration space and the Cartesian space.

The motion in between the segment edges are interpolated. The points de�ning the

segments start and end points are called "knots" or via-points.

97

The quality of piecewise planning is a�ected by the density of the via points. From

one hand, as these points are more dense, the trajectory is more controllable and the

path is more predictable. As a consequence, a high accuracy can be achieved and

there is a higher chance to guarantee stability.

On the other hand, high density of via points requires a lot of computation re-

sources, which leads to a slow performance, useful just for o�-line planning. This is

not very useful for humanoids, as it requires frequent calculations of the IKP which

is a complex problem, especially in humanoids that have few kinematic chains and

compound of 20�30 joints.

In a case where the accuracy of the robot locomotion is required, the path should

be planned in advanced, hence feedback control cannot be used. Therefore, in order

to keep the robot stable, high density of the via-points is required. Determining a

stable robot posture at each such via point is a heavy computationally task.

Often, controllers use linear joints interpolation. The generated path is unpre-

dictable, but if the via points are close enough, then the deviation from the linear

path between the two via points is ignorable, and a good accuracy of following a

certain path can be achieved.

There are few common interpolation methods that are used to keep the smoothness

of the trajectory in the via points and between them. Among those methods are:

• Spline [27,59,97]

• Bezier [32, 48,101]

• Linear interpolation [29]

The methods di�er in the end-e�ector path that is generated.

In this chapter the e�ect of the knots' density and the interpolation method on

the total distance, and the accuracy of the path are analyzed and demonstrated. In

addition, we propose an algorithm to �nd the next via point towards the target point,

that guarantees keeping stability.

Using the algorithm proposed in Chapter 4 allows frequent calculations of the

IKP. In this section we will analyze the e�ect of the via points density on the path

accuracy, the stability sensitivity and the performance. Finally, we will describe a

method to estimate the maximum distance between two via points.

98

7.1 Properties of an Interpolated Path

Di�erent interpolation methods and di�erent via-points density results a di�erent

path. In robotics, the controller, in its low level, works in the joints space, so linear

joint interpolation is usually used. The density of the via points is determined by the

user, who de�ned them prior to the controller execution. This section describes some

measurements to compare between the generated paths.

The characteristics of a spatial trajectory that we would like to know prior to

executing a task are:

• What is the spatial length of the trajectory?

• Does the robot lose its stability along the trajectory?

• Are there any singular points of the robot along the trajectory?

In order to accomplish the analysis of a trajectory, six functions of the resultant

interpolated trajectory are de�ned. The functions are:

• The Cartesian length

• The length of the end e�ector path

• The aggregated length of the joints motion

• The path feasibility

• The robot stability along the path

• The existence of singular points along the path.

The �rst three functions are measuring di�erent distances. The �rst is the spatial

distance between the current end e�ector location and the target location (which is

not a�ected by the interpolation method of the via points density, it is used as a

datum). The second measures the total distance of the end e�ector while moving

along the transition between the two states. In contrast to the �rst two measures

that relate the Cartesian space, the third one is a measure in the joint space. It is

the aggregated distance that each link (relates to its previous joint) is passing along

the overall transition.

Both the current position and the target position can be determined by multipli-

cation of the relevant D-H matrices to achieve the forward kinematics of the robot.

In this chapter we will develop the general formulas of the di�erent distances, and

99

later on they will be solved numerically. In order to give the reader the feeling of how

do they look like, their actual form relating the Nao robot, with the left foot as a

support and the right palm as a target are presented in Appendix C. This kinematic

chain was chosen since it is the longest in typical motions. This analysis ignores the

orientation of the end e�ector, so only three equations will be satis�ed (X, Y and Z).

The equations are useful for any humanoid with 26 DoF. The lengths of the links

is kept as parameter according to table 7.1.

Table 7.1: The abbreviations of the links lengths
lf length of the foot

ls length of the shin

lt length of the thigh

lp length of the pelvis

lsp length of the spinal

lsh length between shoulders

lua length of the upper arm

lla length of the lower arm

lpa length of the palm

Distance. Denote Θ̄0, Θ̄n as the vectors of the joints values in the initial and �nal

poses. The Cartesian distance between the current end e�ector and the target location

is not a�ected by either of the interpolation method and the via points density, and

will be a general measure. D will represent this distance and like a datum, all other

measures will be compared to it.

D =
√(

(X(Θ̄n)−X(Θ̄0))2 + (Y (Θ̄n)− Y (Θ̄0))2 + (Z(Θ̄n)− Z(Θ̄n))2
)

(7.1)

End-e�ector Path Length. This measure sums the total length of the end e�ector

while transiting from posture Θ0 to Θn. It is represented in its discrete fashion as

follows:

L =
∑
θ̄

√((
X(θti+1

)−X(θti))
2 + (Y (θti+1

)− Y (θti))
2 + (Z(θti+1

)− Z(θti))
2
))
(7.2)

100

In linear joint interpolation, each θj changes according to the following function:

θj (t) = ajt+ θj(0) (7.3)

Where aj is the rate of angular change, i.e. the angular velocity which can be

predetermined by the user or the controller. Then, the continuous function of the

path length becomes to be:

L =

t∫ √
(dx2 + dy2 + dz2)dt (7.4)

Where,

dx = d2x
dΘ̄2

(
dΘ
dt

)2
+ dxd2θ̄

dΘdt2

dy = d2y
dΘ̄2

(
dΘ
dt

)2
+ dyd2θ̄

dΘdt2

dz = d2z
dΘ̄2

(
dΘ
dt

)2
+ dzd2θ̄

dΘdt2

(7.5)

Recall that the Θ is a vector of the joints variables, therefore Equation 7.5 becomes,

dx =
∑

i

(
∂2x
∂θ2

i

(
dθi
dt

)2
+ ∂xd2θi

∂θidt2

)
dy =

∑
i

(
∂2y
∂θ2

i

(
dθi
dt

)2
+ ∂y∂2θi

dθidt2

)
dz =

∑
i

(
∂2z
∂θ2

i

(
dθi
dt

)2
+ ∂z∂2θi

dθidt2

) (7.6)

Notice that dθi
st

is the angular velocity which is often constant. The partial deriva-

tives of the coordinates X, Y and Z are determined in advanced symbolically. The

integration of the function is performed numerically, by using Quadrature method.

Applying Eq. 7.6 to the Nao example is described in Appendix C.

Aggregated Joints Movement This criterion is analogous to an energy measure-

ment. It aggregates the movement of each joint multiplied by the length of its next

link.

E =
∑
j

∫
`j+1dθj (7.7)

Where j is the joints' number and `j+1 is the length of the link following the actual

joint. This summation is calculated numerically, as well.

Feasibility While dealing with joints value interpolation, if both values of θ0
j and

θtj are feasible the postures along the transition will be also feasible, unless there are

101

self-collisions or passing through singular points.

To avoid self-collisions, a set of geometric equations has to be determined. This

calculation has high-order polynomial complexity. Moreover, this keeps the motion

planning in the �eld of discrete problems, which the interpolation aims to change to

be piecewise continuous. However, in order to make sure that the transition is feasible

this calculation has to be preformed frequently. On the other hand, these collisions

can be represented as a continuous geometric condition in the solutions' envelope.

The sensitive domains on the envelope will be predicted.

In a case that the solution is closed to the sensitive domain, then high density of

via points is required and it demands heavy calculations. In that case, the motion

planning should be o�-line.

Avoiding singular points is much simpler. It can be solved by changing the motion

direction, but this solution might generate non-optimal transition path that will not

necessary obey the condition of minimal spatial distance.

In general, joint linear interpolation is resistant to unfeasible postures, since the

feasibility of the required poses of each joint can be determined in advanced. If

both initial and target poses are feasible, there should be a set of feasible poses that

is achieved by interpolation of each joint. In any case that an interpolated pose

generates a self-colliding posture, it can be solved by implying delays on some joints

motions. This solution which is o�-line implementable is not straightforward and is

not in the scope of this research.

Notice that in every via point the IKP should be solved. Since there might be

few feasible solutions, we have to choose the one that is most optimal. Optima can

be measured in terms of minimal weighted angular changes as is de�ned in Eq. 7.7.

Selecting the optimal solution among all feasible solutions is beyond the scope of the

IKP solver proposed in Alg. 1. This means that the larger the number of via points

the higher the probability of non-optimal path. But this is just because our algorithm

does not choose the most optimal solution. We leave selection of the optimal solution

to future work.

Stability. The robot might run out of stability during the interpolation between

two stable poses. The sensitivity of the pose along the interpolation to the robot

stability is equivalent to the sensitivity of the GCoM position along the interpolation

in relative to the convex hull of supported polygon of the robot.

De�ne Comij to be the transformation matrix of the center of mass of the jth joint

in the ith kinematic chain of the robot, in relative to its origin. Then, consider the

102

GCoM calculation as a sequence of the D-H matrix multiplication. Then, CoMij, the

transformation matrix represented the location and size of the center of mass of the

rigid body of the ith kinematic chain in relative to the origin of the robot is:

CoMij = A0Ai1 . . . AijComij (7.8)

Then, after projecting the GoM on the support surface, the robot GCoM is:

Xcom =
∑

i

∑
j CoMij [1,4]·mij∑∑

mij

Ycom =
∑

i

∑
j CoMij [2,4]·mij∑∑

mij

(7.9)

Notice that the z value of the projected point equals to the height of the support

surface. The set of points constructing the convex hull of the supported polygon are

determined by the algorithm described in chapter 6.

The condition that the GCoM is within the convex hull was de�ned in Eq. 6.33.

Let us denote this inequality C(θ).

Accuracy. The di�erent interpolations methods and via points density a�ect the

accuracy of the path. This means that the actual path is not precisely followed the

planned path of the end-e�ector (See Figure 7-1). Di�erent interpolation will generate

deviations. It is straightforward that increased density of the via-points increase the

accuracy of the path. In the next section we will analyze the e�ect of the via points

density.

Figure 7-1: Path deviation during motion [98]

103

The deviation of the actual path is considered to be "white noise", i.e. random

deviation from a uniform distribution. Its source is in the deviations of the joints

values. These deviations happen due to calibration errors, �nite precision of measur-

ing the mechanics, and sensors limitations. Each engine is provided with producer

declaration about its maximal allowed error. This error is usually percentage of the

overall motion or an absolute angular value. These errors are aggregated during the

motion. Let's assume that each joint has another angular deviation, that is ±δθi .
According to the error propagation theory, the overall error estimation of each step

in the X, Y and Z coordinates, will be denoted as mx, my and mz, correspondingly

and will be calculated as follows:

mx =

√∑
i

(
∂X(θi)
∂θi

)2

δ2
θi

my =

√∑
i

(
∂Y (θi)
∂θi

)2

δ2
θi

mz =

√∑
i

(
∂Z(θi)
∂θi

)2

δ2
θi

(7.10)

The overall deviation, m is

m =
√
m2
x +m2

y +m2
z (7.11)

The calculation of X, Y and Z and their partial derivatives is done as part of

the symbolic forward kinematic calculation and the Jacobian matrix J , as detailed in

Chapter 4.

Equation 7.11 is a function of δθi , which is the step size of the interpolation. The

next section is a study of the di�erent interpolation methods, which their deviation

is compared in the Section 7.3.

7.2 The Interpolation Method

Interpolation, in general, is used to smooth the motion in terms path position, velocity

and acceleration. Usually it is required to have a linear interpolation, which means

to generate a motion on the linear line between the current position and the target

position. Hence, there is a gap between this requirement, which constraints the

Cartesian space and the actual motion generation which is implemented in the robot

joint con�guration space. In order to perform linear interpolation, there should be

de�ned a mapping between these two spaces.

104

Using the notation of [30], assume that a linear interpolation between the starting

point A and the target point B is required. De�ne the points,

X̄A =



px,A

py,A

pz,A

αA

βA

γA


=

(
P̄A

Φ̄A

)
X̄B =



px,B

py,B

pz,B

αB

βB

γB


=

(
P̄B

Φ̄B

)
(7.12)

In linear interpolation the end e�ector should move along a straight line.

An intermediate position and orientation can be calculated as follows:

p(t) = pA + sp(t)

sf
(pB − pA)

Φ(t) = ΦA + sΦ(t)
sΦf

(ΦB − ΦA)

(7.13)

In each intermediate point, the inverse kinematics should be implemented and in-

between two consequent intermediate points, the actual interpolation implemented

by the low level controller command is a linear joints interpolations.

The cubic spline is an improved interpolation procedure that replaces the straight

line connecting the path points with a third degree polynomial. It a�ects both the

path and its derivatives, i.e. the velocity and acceleration pro�les. The third degree

polynomial is of the form:

x(t) = α3t
3 + α2t

2 + α1t+ α0

y(t) = β3t
3 + β2t

2 + β1t+ β0

z(t) = γ3t
3 + γ2t

2 + γ1t+ γ0

(7.14)

As with linear interpolation a new set of coe�cients must be used for each inter-

val between the available data points. These coe�cients are chosen to give a smooth

transition between consequent points. The smooth behavior is accomplished by com-

puting the polynomial coe�cients for each interval using more than just the adjacent

points.

105

The last interpolation uses Bezier splines, which are useful to design trajectories

with certain roundness properties. Bezier splines are general family of splines of varied

order. Bezier splines of the third order are the cubic splines. In Bezier splines, the

interpolated points are de�ned by a series of control points with associated weighting

factors. Those weighting factors attract the curve towards the control points. Bezier

curves are based on Bernstein polynomials with normalized intervals, which can be

derived from the following formula:

1 = ((1− u) + u)n =
n∑
k=0

(
N

k

)
(1− u)(n− k)uk (7.15)

In this research we focus on Bez'ier splines of the second order. N is the total

number of via points within a planned motion segment.

In the next section some experimental results of how the di�erent interpolation

methods a�ect the same parameters of path length in two spaces and the accuracy

are compared.

7.3 The E�ect of the Via-Points Density

The measurements that were described above will be compared as a function of the via

points density. We will focus on the three distance measurements and the accuracy.

The stability will not be demonstrated since it its dependency on the speci�c posture

is too tight, so there is no logical basis to perform a general analysis. Regarding the

performance, it is increasing linearly as a function of the number of via points. As

was presented in Chapter 4, the complexity of the IKP is polynomial, but relatively

high-order.

In Figure 7-2, the e�ect of increasing n, number of via points on the end-e�ector

total length (Eq. 7.6) is described. It is compared to the Cartesian distance between

the initial and target points. It is clear that the total length is increasing, but its

maximal length is bounded.

The length is calculated by Equation 7.6. This equation calculates the total length

as the root of the quadratic equation of each coordinate (x, y and z). The term of

the deviation of the length of each coordinate is a summation of the deviations stem

from the angular change of each joint. This deviation is de�ned for x, y and z as

above (Eq. 7.6).

Dealing with linear joints interpolation, the second term of each deviation is zero,

i.e.

106

Figure 7-2: The total path length of the end e�ector. The horizontal axis represents
the number of via-points and the vertical axis represents the total path length

∂Xd2θi
∂θidt2

= 0

∂Y d2θi
∂θidt2

= 0

∂Zd2θi
∂θidt2

= 0

(7.16)

Dealing with cubic spline interpolation, this can be rewritten as:

∂Xd2θi
∂θidt2

= ∂X
∂θi

((xi+1+xi+2−xi−1−xi−2

6
t
)
dt
(xi+1−xi−1

2

))
∂Y d2θi
∂θidt2

= ∂Y
∂θi

((yi+1+yi+2−yi−1−yi−2

6

)
dt
(yi+1−yi−1

2

))
∂Zd2θi
∂θidt2

= ∂Z
∂θi

((zi+1+zi+2−zi−1−zi−2

6

)
dt
(zi+1−zi−1

2

))
(7.17)

Dealing with Bezier Interpolation, this term is

∂Xd2θi
∂θidt2

= ∂X
∂θi

(xi+1−xx−1

2

)
∂Y d2θi
∂θidt2

= ∂Y
∂θi

(yi+1−yi−1

2

)
∂Zd2θi
∂θidt2

= ∂Z
∂θi

(zi+1−zx−1

2

)
(7.18)

107

Therefore, the total length as a function of the density of the via points, using

Spline interpolation is described in Figure 7-3. The horizontal-axis represents the

number of via-points and the vertical-axis represents the total path length

Figure 7-3: The total path length of the end e�ector (Spline Interpolation)

And, the total distance that the end e�ector moves using Bezier interpolation is

described in Figure 7-4.

Figure 7-4: The total path length of the end e�ector (Bezier Interpolation). The
horizontal axis represents the number of via-points and the vertical axis represents
the total path length

Now, the criteria of the sum of the total distance of each joint during the move-

ment is compared as a function of the density of the via points. Figures 7-5 - 7-7 are

demonstrating it in relating to linear joint, spline and Bezier interpolations, respec-

tively.

108

Figure 7-5: The summation of the joints total distance (linear joints Interpolation).
The horizontal axis represents the number of via-points and the vertical axis repre-
sents the total length of the joints

Figure 7-6: The summation of the joints total distance (Spline Interpolation). The
vertical axis represents the aggregated path length of the joints

Finally, it is interesting to compare the accuracy derived from each type of inter-

polation, as a function of the via-points density. It is represented in Figures 7-8, 7-9

and 7-10, respectively.

The conclusion is that the both the interpolation function and both the number of

via points a�ect the deviation of the actual path from the planned path. No matter

what is the interpolation method, as much via points as we take the accuracy increases

until a point where it decreases. This means that there is an optimal number of via

points, in terms of accuracy.

109

Figure 7-7: The summation of the joints total distance (Bezier Interpolation). The
horizontal axis represents the number of the interpolated via points.

Figure 7-8: The accuracy of the path (linear joints Interpolation). The horizontal axis
represents the number of the interpolated via points. The vertical axis represents the
aggregated deviation of the actual path from the planned one.

7.4 An algorithm to �nd the next via-point

Assume that the robot structure is known, the inputs for motion planning are similar

to those de�ned for the IKP problem in Chapter 4. Recall, that Θ is the vector of

the current joints state. R0 is the robot reference position. It is a 4× 4 homogeneous

coordinate matrix. Usually, this input relates the pelvis, but it might be any other

reference point.

Sp is the set of 3D support points. Sp is de�ned as points on the robot (in relative

to the zero point). Notice that a support point has a contact with the ground or any

other surface that it can be laid on. A support surface will be presented by a single

110

Figure 7-9: The accuracy of the path (Spline Interpolation)

Figure 7-10: The accuracy of the path (Bezier Interpolation). The horizontal axis
represents the number of the interpolated via points.

point or a set of points. Tp is the set of 3D target points that the robot has to touch

them but not lay on.

The new input is Dmax which is the maximal distance between the linear path

and the actual path, allowed by the accuracy requirement.

The output of the problem is Xv, the Cartesian coordinates of the via points

that lies on the direct line between the current and target position, and located in

the maximal distance from the current position, but still satis�es both the stability

condition and the maximal distance requirement. If Xv equals Tp, then the transition

to the target point is feasible.

Notice that in any case that Xv 6= Tp then there is a feasible transition up to Xv,

but there might be that along the next transition, between Xv to the target point,

111

the robot will lose its stability or will not follow the linear path or will pass through

a singular point.

In each via point the constrained IKP with the stability condition (from Chapter

6) is calculated and Θt is its result. This is the state vector of the joints in the target

or via point position.

As was mentioned above, the transition between Θ0 and Θt is performed by the

controller as linear interpolation of the joints values. This method arises the following

problems:

• Will the robot keep its stability along the transition

• Will the robot follow the linear path (or any other path) in the Cartesian space

• Is the transition feasible, i.e. does the robot pass through singular points

• Is the transition optimal in terms of Cartesian distance and angular distance

The proposed algorithm �nds the point on the linear path between the current

position and the target position that is located in maximal distance from the current

position and is reachable by linear joint interpolation to keep stability and follow the

Cartesian line within the given threshold Dmax. The soundness and completeness of

the algorithm are discussed. Then, the complexity is analyzed.

For simpli�cation of the model analysis, without loss of generality, we assumed

that the robot has one support point and one target point. In the general case, each

couple of these parameters contributes an additional condition to the set of equations.

We developed and analyzed the equations of the transition. Then, we present

an algorithm that determines the density of the via points that guarantees stable

motion. The equations and analysis will utilize the Nao structure (in terms of the

number of joints and the lengths of the links). The algorithm can be applied to any

robot structure with any DoF, and any number of kinematic chains. The kinematic

structure of the Nao robot is described in Appendix A. Here, the implementation of

the algorithm is described, for a speci�c robot con�guration.

Assume, the origin frame is located in the robot's pelvis (0,0,0), the support is

in the left foot and the target has to be reached by the right palm. Then, the right

palm position can be represented as follows:

112

Xrpalm(θ̄) = −0.009 sin(θrsr) + 0.1925 sin(θrey) cos(θrsr) + 0.098

Yrpalm(θ̄) = −0.1925[− sin(θrey) cos(θrsp) sin(θrsr)− cos(θrey) sin(θrsp)]

+0.009 cos(θrsp) cos(θrsr) + 0.09 sin(θrsp)

Zrpalm(θ̄) = −0.1925[cos(θrey) cos(θrsp)− sin(θrey) sin(θrsp) sin(θrsr)]

+0.009 sin(θrsp) cos(θrsr)− 0.09 cos(θrsp) + 0.075

(7.19)

The forward kinematics of the foot in relative to the pelvis is based on a much

complex chain. We use the following variables:

x1 = 0.5[cos(θlhy) + 1]

x2 = 0.5[cos(θlhy)− 1]

x3 =
sin θlhp sin θlhy√

2
− cos θlhp sin θlhrx1 + cos θlhp cos θlhrx2

x4 =
− cos θlhp sin θlhy√

2
− sin θlhp sin θlhrx1 + sin θlhp cos θlhrx2

x5 = − cos θlhp sin θlhr sin θlhy+cos θlhp cos θlhr cos θlhy√
2

− sin θlhp cos θlhy

x6 = − sin θlhp sin θlhy√
2

(sin θlhr + cos θlhr) + cos θlhp cos θlhy

x7 = − sin θlhp sin θlhy√
2

+ cos θlhp cos θlhrx1 − cos θlhp sin θlhrx2

x8 =
cos θlhp sin θlhy√

2
+ sin θlhp cos θlhrx1 − sin θlhp sin θlhrx2

(7.20)

Then the forward kinematics formulas become to be:

Xlfoot(θ̄) = 0.1506 {cos θlap [x3 sin θlkp + x4 cos θlkp] + sin θlap [x3 cos θlkp − x4 sin θlkp]}
−0.1 [x3 cos θlkp − x4 sin θlkp]− 0.12x3 + 0.005x4 − 0.05

Ylfoot(θ̄) = 0.1506 {sin θlap [x5 cos θlkp − x6 sin θlkp] + cos θlap [x5 sin θlkp + x6 cos θlkp]}
−0.1 (x5 cos θlkp − x6 sin θlkp) + 0.005x6 − 0.12x5

Zlfoot(θ̄) = 0.1506 {cos θlap [x7 sin θlkp + x8 cos θlkp] + sin θlap [x7 cos θlkp − x8 sin θlkp]}
−0.1 [x7 cos θlkp − x8 sin θlkp]− 0.12x7 + 0.005x8 − 0.115

(7.21)

In linear joints interpolation the current value of each joint is increased propor-

tionally along the overall motion time, by dividing the di�erence between the target

joint value and the current joint value into in�nitesimal angular portions.

Applying linear joints interpolation between two consequent points might lead to

the following problems:

• Reaching unstable positions

113

• Reaching locations that are highly deviated from the linear Cartesian path

between the two points

• Generating long paths.

The sensitivity of this condition to the changes derived by the linear joints' inter-

polation are actually the sensitivity to changes in Θ̄(t), and it can be determined by

the partial derivative of condition 6.33 to the changes of Θj(t)
′s.

Therefore, if the intersection point of the linear forward and backward motion

is within the convex hull, then the stability will be kept along the interpolation.

Otherwise, the motion should be divided by via points into piecewise interpolated

paths. This will be repeated iterative, according to algorithm 13. The following

de�nitions are required by the algorithm.

C(Θ) is actually 2 equations (for the x and y coordinates). De�ne Λ to be the

partial derivative of C(Θ) in relative to each joint θi, i.e. Λ is a 2Xn matrix.

Λ =
∂C(Θ)

∂θi
(7.22)

Then, the algorithm is described in Alg. 13. In lines 1�14 four di�erent substitu-

tions of joints values in the partial derivative matrix Λ are performed. The substituted

values are of the joints at the initial position, the joints at the �nal position (as calcu-

lated by the MIKP, Alg. 1) and the di�erences between those values from the initial

to the �nal position and vice versa. Lines 17�21 are the major loop that determines

how many via-points are required within the interval in order to guarantee that the

robot will stay stable along the interpolation.

7.4.1 Soundness

In principle, Algorithm 13 does not guarantee soundness. The basics of the algorithm

is applied linearization to the GCoM equations and to substitute the values of θ′is

at the endpoints to test whether the mid-point is also within the convex hull of the

supported polygon.

However, since the GCoM equations are polynomials of transcendental functions,

they are non-linear on one hand, but they are smooth on the other hand. The mid-

point is estimated by 3 di�erent models:

• extrapolation from the start point

• extrapolation from the end point

114

Algorithm 13 Calculation the most far via-point along the path that guarantees
keeping stability during interpolation
Require: Θ0 - the joints values at the current pose.

Require: Θt - the joints values at the target.

Require: CH - the convex hull of the supported polygon

Require: ` - the spatial distance between the current and target positions

1: Λ0 ← Λt < −Λ
2: for j = 1 until j = n do
3: for k = 1 until k = n do
4: if k 6= j then
5: for i = 1 until i = 2 do
6: Calculate Λ0i, j(θ0k)
7: Calculate Λti, j(θtk)

8: else

9: for i = 1 until i = 2 do
10: Calculate Λ0i, j(

θtk−θ0k
2

)

11: Caculate Λti, j(−
θtk−θ0k

2
)

12: i← i+ 1

13: k ← k + 1

14: j ← j + 1

15: i = 1
16: repeat

17: if {Λ0[1, i],Λ0[2, i]} /∈ CH then

18: e1 ← True
19: else

20: e1 ← False

21: if {Λt[1, i],Λt[2, i]} /∈ CH then

22: e2 ← True
23: else

24: e2 ← False

25: D =
√

(Λts[1, 1]− Λ0s[1, 1])2 + (Λts[2, 2]− Λ0s[2, 2])2

26: i← i+ 1
27: until ((i > n) ∨ (e1) ∨ (e2) ∨ (D > `))
28: if (i > n) then
29: return(the target point as the next via point)
30: else

31: θt < − θ0+θt
2

32: goto 1

115

• intersection point of the two derivatives of both end points.

If one of these points is out of the convex hull, then a via point is de�ned. This

is a repetitive process, and at each iteration δθi is smaller, so that the extrapolation

range is closer to the derivation points.

7.4.2 Completeness

The algorithm always returns a via point such that if the path passes through it, there

is a high probability that the path is feasible and the robot will keep its stability. If

such a motion exist while moving directly to the end point, then the returned via

point is identical to the target point.

There might be that although a direct motion is feasible, the algorithm will return

another via point. That means that on one hand, the performance will be worse, but

on the other hand, the accuracy of following the linear path between the two point

will be better. However, if there exists any feasible path between the two points, the

algorithm will return such a path.

7.4.3 Complexity

In each iteration there are O(n3) steps, where n is the number of joints. After each

iteration that computes the partial derivative of the current and target GCoM loca-

tions, there are two calculations whether the estimated via point is within the convex

hull of the supported polygon. This requires O(Sp), which is the number of the points

of the convex hull. Since at each iteration a smaller portion of δθi is taken, then the

number of iterations is log max(δθi). So the overall complexity is bounded by:

O(log max(δθi)n
3Sp) (7.23)

Therefore, applying this algorithm in real time is feasible as soon as the frequent

of calculation is not very high.

116

Chapter 8

Results

The results of embedding the static stability constraint (Eq. 6.4) in the constrained

IKP solver are stable postures. In this section some simulations of the proposed

method are discussed. The Nao robot model is simulated by using Maxima [66].

8.1 Raising hand

In the initial posture of this example the robot stands with both hands along its

body (Fig. 8-1). In the target position the right hand has to be raised upwards. The

transition between postures can be done by moving only one joint (rsp) in one chain

(right arm). This transition does not a�ect the robot stability. Such movements are

required in many grasping tasks.

Figure 8-1: The projection of the robot initial posture on three planes (XY, XZ and
YZ)

117

Giving a target position that the right arm is pointing forward, the resultant

posture of the basic IKP Algorithm (without any constraint) [1] is presented in Figure

8-2

Figure 8-2: The IKP result for the raised arm posture

Applying the ICKP algorithm (2) with the stability condition to the same target

position, the following result is obtained (Fig. 8-3):

Figure 8-3: The ICKP result for the raised arm posture

Applying the improved ICKP Algorithms 2�7 to the same target point of the

raised arm, results the postures presented in Figures 8-4-4-1, correspondingly.

Concluding the results of Section 8.1, one can see that both the constrained and

unconstrained IKP algorithms solve the problem. In this case the target position can

be reached by changing only the arm joints. This means that in this case, the posture

118

Figure 8-4: Result of improved ICKP Algorithm 2 for the raised arm posture

Figure 8-5: Result of improved ICKP Algorithm 3 for the raised arm posture

is not sensitive to losing the stability. The iterative process was terminated in all

algorithms, after 25 iterations or as soon as the process converged.

The di�erence between the algorithms is in their rate of convergence, which is

shown in Figures 8-8 through 8-13.

Figures 8-8 through 8-13 demonstrate that both the IKP and the ICKP with all

its improvements converge to a solution. But they di�er in the rate of convergence

and in the accuracy of the solution.

Figure 8-14 presents the rate of change in the joints values along the iterative

process in both the IKP Algorithm 1 and the ICKP Algorithm 2.

As can be learned from Figure 8-14 both the IKP and the ICKP converge into a

valid solution in the case of raising an arm which involves just one kinematic chain

movement. The rate of convergence is di�erent. While the IKP converge faster, the

119

Figure 8-6: Result of improved ICKP Algorithm 5 for the raised arm posture

Figure 8-7: Result of improved ICKP Algorithm 7 for the raised arm posture

Figure 8-8: Convergence of applying the IKP Algorithm 1 to the raised right arm
posture

120

Figure 8-9: Convergence of applying the ICKP Algorithm 2 to the raised right arm
posture

Figure 8-10: Convergence of applying the improved ICKP Algorithm 3 to the raised
right arm posture

Figure 8-11: Convergence of applying the improved ICKP Algorithm 5 to the raised
right arm posture

121

Figure 8-12: Convergence of applying the improved ICKP Algorithm 7 to the raised
right arm posture

Figure 8-13: Convergence of applying the improved ICKP Algorithm 9 to the raised
right arm posture

joints values oscillate more during the process.

8.2 Stand to Sit

In this transition the supports are the robot's foot. Originally, the robot stands stably.

The constraints at the target position is that there is an additional support on the

buttocks.

The robot initial posture is as de�ned when all joints equal zero and the robot

stands. There are two supports (for the feet) and one target point, without loss of

generality, the left hip.

The result of applying the IKP algorithm without any constraints is shown in

Figure 8-16.

122

Figure 8-14: The joints' correction along the iterative process of the IKP Algorithm
1 (left) and the ICKP Algorithm 2 (right)

Figure 8-15: The robot initial posture (projected in three planes)

The aggregated error of each iteration is calculated as follows:

θj = θj + (J̄j
T

(θ̄)J̄(θ̄))−1J̄j
T

(θ̄)L̄ (8.1)

The process converged after 8 iterations, as showed in Figure 8-17. The changes of

the joints values along the iterations are shown in Figure 8-18. Values are in radians.

The horizontal axis represents the iteration number and the vertical axis represents

the aggregated change of the joints values in radians. (Aggregation of all the values

that were changed, in all kinematic chains)

The changes of the joints values along the iterations are shown in Figure 8-18.

Notice that joints which were not modi�ed, are not presented.

123

Figure 8-16: The result of the IKP without constraints, stand-to-sit.

Figure 8-17: The aggregated error of each iteration, stand-to-sit.

Figure 8-18: Joints value modi�cation in each iteration, stand-to-sit.

124

Figure 8-19: The sitting posture after ICKP calculation with the GCoM constraint

In Figure 8.2, the posture achieved by applying the ICKP (Algorithm 2) to the

same initial posture, support and target conditions is demonstrated. In this case the

IKP is solved under the stability condition.

The process converged within 13 iterations as shown in Figure 8-20. The change

of the joints values after each iteration are shown in Figure 8-21. It is clear that

the solution is converged symmetrically for the left and right sides. Also, It is well

demonstrated that the process is not strictly converged. There are some points of

divergence, but the process corrects itself and converges again. It might be that the

divergence will be repetitive. In that case, the algorithm can be modi�ed, so that if

there are few repetitive divergence steps, the initial values of the process are changed

to a random numbers within a relevant range. This case was not described in the

algorithm.

An interesting aspect of the process is that joints that are in kinematic chains

that are not required for the transition are not changed, although they might a�ect

the CoM calculations. The process might change joints values that are not necessary

for the transition, in a case they are in the same kinematic chain as those joints that

should be changed.

The change in the GCoM location along the convergence process, in relative to

the convex hull is described in Figure 8-22.

125

Figure 8-20: The aggregated error of each iteration of the ICKP for the transition between
stand to sit.

Figure 8-21: The joints changes in each iteration.

126

Figure 8-22: The GCoM location along the process

8.3 Summary

Figures 8-2 through 8-7 demonstrate that while solving the Inverse Kinematic Prob-

lem for postures that require moving only few joints belong to a unique kinematic

chain that does not a�ect much the robot stability (e.g. left arm or right arm in sit-

ting posture), the results of the unconstrained solver, the constrained solver and the

improved constrained solver are quite similar. Their rate of convergence is di�erent

with advantage of the unconstrained solver.

While dealing with postures that require moving joints that a�ect the robot sta-

bility, there is a signi�cant advantage of the constrained IKP solvers in �nding a good

solution. Also, the aggregated error extinguishes faster.

127

128

Chapter 9

Conclusions and Future Work

9.1 Conclusions

Robot motion planning is a complex task which has to be treated with a rich and

modular toolbox that can adjust to each problem the most relevant and e�cient

solver.

The di�erence between o�-line motion planning and real-time motion planning

should be distinguished carefully. Dealing with humanoids, real-time planning is

more common and it mainly uses some feedback control strategies to roughly follow

a planned paths. O�ine planning might be very useful for relatively static environ-

ments, such as production halls, or abandoned sites that were previously mapped, like

those existing in hazardous sites (e.g. the nuclear facilities in Japan after the earth-

quake). In these cases the robot motion should and can be planned precisely by using

motion planning tools that can achieve accurate trajectory. These planners usually

have to account for the positioning uncertainty, and considering it in the planning of

the next step.

This research had supplied a motion planning toolbox that includes:

• IKP e�cient solver for high DoF devices (Chapters 4 and 5)

• The IKP can be solved under external constraints that are not necessarily kine-

matics (Chapter 6)

• The stability constraint which is crucial in biped motion, was formalized to be

assimilated in the Constrained IKP solver (Chapter 7)

• Some interpolation methods were compared in respect to their di�erences in the

total distance and the accuracy

129

• The predicted inaccuracy of a motion was formulated as a function of the current

posture and the target

• Finally, an algorithm to determine the next via point was developed. Using

this algorithm can minimize the number of calculations from one hand, while

keeping the robot stability and the accuracy of the path from the other hand.

9.1.1 The constrained IKP solver

The IKP problem is actually a set of polynomial of transcendental functions that has

to be solved. This is usually an under constrained problem with few solutions. The

order of the polynomial depends on the number of joints in the longest kinematic

chain of the support- target conditions. Each couple of support and a target point

constitutes an additional kinematic constraint. This set of nonlinear equations can

be solved by using linearization methods if the nature of the equations is known in

advanced. Usually, these functions are oscillating several times in the relevant inter-

val. Finding the suspected zones of oscillations is equivalent of �nding the solution

proximity on the solutions' envelope.

We proposed a set of improvements to the basic IKP algorithm, that each of them

increases the probability of �nding the "solution proximity" by a di�erent approach.

The �rst one �nds a set of initial joints values that is in already in the proximity of

a solution, and it can linearly converge into the required solution. The second one,

solves the equations in a multi stage process that each time solves the most signi�cant

equations of that stage. The third improvement reduces the number of variables by

choosing a set of the most dominant ones for the current iteration. This strategy

reduces the DoF of the sub problem to be solved at each phase. Each algorithm

represents a family of solutions. The last algorithm proposes how to combine between

these strategies so as to choose the optimal one for the current iteration of the problem.

The simulations can demonstrate that although the set of equations is quite com-

plex, and non-linear to a high degree, the process converges to a solution within a

reasonable number of iterations.

The convergence of the constrained IKP depends on the type of constraints which

should be characterized before solving the problem. In a case that the additional con-

straints geometric, they might behave similar as the kinematic constraints. Anyhow,

there might be a case where the additional constraints convolute with the kinematic

conditions. In that case the �nding a solution is quite di�cult.

The simulations that were performed hint that the constrained IKP solver con-

130

verged into a solution with / without additional constraints. But, in the case of

additional non kinematic constraints, the convergence process is slower. The reason

might be the rate of convergence of the non kinematic constraints.

Relating especially the stability constraints, their use is crucial to achieve a stable

IKP solution. Stability constraint can be formulated in di�erent ways, especially it

depends whether a static or dynamic stability is required. In o�-line planning there

is no logic to use the dynamic stability constraint, but it is possible. Anyway, the

stability constraints must be represented as a function of the kinematic variables Θ,

which is not necessary the case in some feedback control methodologies.

The constrained IKP solver is general and supports di�erent types of constraints,

among them are some optimization criteria that are common in robotics.

The rate of convergence of the IKP is faster than of the constrained IKP. The

reason is that the IKP solved just kinematic equations, that are all polynomials

bounded by a certain degree and have same type of variables coupling. Adding the

GCoM constraint, which is another type of constraint that actually translates dynamic

consideration into geometric terms, changes the convergence process. Divergence

might occur not necessarily because of strong coupling, but because of di�erent trends

of the solved equations.

Another conclusion is that while the IKP solver never changes the value of joints

in chains that are not directly a�ect the position towards the target, the constrained

IKP cannot assures it.

One can conclude that if the transition between two positions does not require

big change of the GCoM in relative to the convex hull of the supported polygon, then

the IKP is more e�cient. But in any case that the change in the GCoM position is

large or if the GCoM is close to the border of the convex hull, then the constrained

IKP solver with the stability constraint is necessary.

It seems that there is no di�erence in the accuracy of reaching the target position

between the two solvers.

The IKP in humanoid should be solved under the stability constraint. The re-

sults demonstrate that the constrained solution is useful for whole body motions in

humanoids, as well as for partial body transitions. This general method has good

performance and it can be implemented in robot controllers that require real-time

responsive.

131

9.1.2 Interpolation during Motion

The resultant Cartesian path of di�erent types of interpolations di�ers in the accuracy

of following the planned path and in the total length of the end e�ector. As smooth

as the interpolation, as deviates the generated path from the planned one. There is

a strong correlation between the inaccuracy and the total length of the end e�ector.

The transition between two postures is a complementary task for robot motion

planning which is a discrete task, or more precisely, piecewise continuous task. While

feedback control approach keeps stability and generates unconstrained path, interpo-

lating between those points can follow a given path but does not account for stability.

As the gap between two consequent discrete positions increases the runtime per-

formance is improved, but from the other hand, the robot stability and the motion

optimality might be reduced.

Chapter 7 discussed how the gap between two consequent positions can be esti-

mated to reduce the probability of losing stability and to minimize the number of IKP

calculations, i.e. maximize the intervals between the interpolated positions. This is

an o�-line task.

Adopting a suitable interpolation strategy might improve the stability of the robot

from one hand and from the other hand, it might improve the run-time performance.

As soon as the GCoM of both the initial and the target points are located far

from the edges of the convex hull, and the derivatives of the stability constraint in

relative to each joint does not exceed these edges, then any interpolation method is

satis�ed. The di�erence between the interpolations is crucial in the case that at least

one of the positions causes the GCoM to be close to the convex hull borders. Then,

using the spline interpolation is recommended, since it generates fewer deviations in

the GCoM position during transition.

Also, di�erent interpolations generate di�erent trajectories. Using linear joint

interpolation does not guarantee following a certain path, unless the density of the

via points is high.

In a case that the GCoM is near the borders of the convex hull of the supported

polygon, the constrained IKP with the stability constraint should be applied fre-

quently, which means reduction in performance, or alternatively should be planned

in o�-line mode.

This research should be extended to examine more interpolation methods and to

conclude what is the best method for di�erent stability and feasibility conditions.

132

9.2 Future Work

The rate of convergence of the IKP is faster than of the constrained IKP. The reason

is that the IKP solved just kinematic equations, that are all polynomials bounded

by a certain degree and have same type of variables coupling. Adding the GCoM

constraint, which is another type of constraint that actually translates dynamic con-

sideration into geometric terms, changes the convergence process. Divergence might

occur not necessarily because of strong coupling, but because of di�erent trends of

the solved equations.

Another conclusion is that while the IKP solver never changes the value of joints

in chains that are not directly a�ect the position towards the target, the constrained

IKP cannot assures it.

One can conclude that if the transition between two positions does not require

big change of the GCoM in relative to the convex hull of the supported polygon, then

the IKP is more e�cient. But in any case that the change in the GCoM position is

large or if the GCoM is close to the border of the convex hull, then the constrained

IKP solver with the stability constraint is necessary.

It seems that there is no di�erence in the accuracy of reaching the target po-

sition between the two solvers. The IKP in humanoid should be solved under the

stability constraint. The results demonstrate that the constrained solution is useful

for whole body motions in humanoids, as well as for partial body transitions. This

general method has good performance and it can be implemented in robot controllers

that require real-time responsive. The next development of this method is to ana-

lyze its stability sensitivity and improve it, so that the robot will stay stable in the

interpolation between two consequent stable postures.

133

134

Appendix A

The D-H of the Nao robot

We provide a set of kinematic chains and associated D-H matrices that describe the

Aldebaran Nao robot. These were constructed based on Aldebaran information [25]

about the Nao robot with 26 DoF, and 5 kinematic chains. The zero-point of the

robot is its pelvis. The chains are in relative to this zero-point.

Figure A-1: The kinematics structure of the Nao robot [Aldebaran Ltd.]

135

Table A.1: D-H of the Head chain

Joint a α d θ
Base A(0, 0, NeckOffsetZ)
HeadYaw 0 0 0 θ1,1

HeadPitch 0 −π
2

0 θ1,2 − π
2

Rotation Rx(
π
2
)Ry(

π
2
)

Figure A-2: Sketch of the Nao's joints [Aldebaran Ltd.]

136

Table A.2: D-H of the left leg chain

Joint a α d θ
Base A(0, HipOffsetY,−HipOffsetZ)
LHipYawPitch (lhy) 0 −3π

4
0 θ4,1 − π

2

LHipRoll (lhr) 0 −π
2

0 θ4,2 + π
4

LHipPitch (lhp) 0 π
2

0 θ4,3

LKneePitch (lkp) -ThighLength 0 0 θ4,4

LAnklePitch (lap) -TibiaLength 0 0 θ4,5

LAnkleRoll (lar) 0 −π
2

0 θ4,6

Rotation Rz(π)Ry(−π
2
)

End e�ector A(0, 0,−FootHeight)

Table A.3: D-H of the right leg chain

Joint a α d θ
Base A(0,−HipOffsetY,−HipOffsetZ)
RHipYawPitch (rhy) 0 −π

4
0 θ5,1 − π

2

RHipRoll (rhr) 0 −π
2

0 θ5,2 − π
4

RHipPitch (rhp) 0 π
2

0 θ5,3

RKneePitch (rkp) -ThighLength 0 0 θ5,4

RAnklePitch (rap) -TibiaLength 0 0 θ5,5

RAnkleRoll (rar) 0 −π
2

0 θ5,6

Rotation Rz(π)Ry(−π
2
)

End e�ector A(0, 0,−FootHeight)

Table A.4: D-H of the left arm chain

Joint a α d θ
Base A(0, ShoulderOffsetY + ElbowOffsetY, ShoulderOffsetZ)
LShoulderPitch (lsp) 0 −π

2
0 θ2,1

LShoulderRoll (lsr) 0 π
2

0 θ2,2 − π
2

LElbowYaw (ley) 0 −π
2

UpperArmLength −θ2,3

LElbowRoll (ler) 0 π
2

0 θ2,4

Rotation Rz(
π
2
)

End e�ector A(HandOffsetX + LowerArmLength, 0, 0)

137

Table A.5: D-H of the right arm chain

Joint a α d θ
Base A(0,−ShoulderOffsetY − ElbowOffsetY, ShoulderOffsetZ)
RShoulderPitch (rsp) 0 −π

2
0 θ3,1

RShoulderRoll (rsr) 0 π
2

0 θ3,2 + π
2

RElbowYaw (rey) 0 −π
2

-UpperArmLength θ3,3

RElbowRoll (rer) 0 π
2

0 θ3,4

Rotation Rz(
π
2
)

End e�ector A(−HandOffsetX − LowerArmLength, 0, 0)

138

Appendix B

An example kinematic constraint

De�ne the joints names according to the following table (Table B):

139

Joint's Name Joint's Description

lar Left Ankle Roll

rar Right Ankle Roll

lap Left Ankle Pitch

rap Right Ankle Pitch

lkp Left Knee Pitch

rkp Right Knee Pitch

lhy Left Hip Yaw

rhy Right Hip Yaw

lhr Left Hip Roll

rhr Right Hip Roll

lhp Left Hip Pitch

rhp Right Hip Pitch

lsp Left Shoulder Pitch

rsp Right Shoulder Pitch

lsr Left Shoulder Roll

rsr Right Shoulder Roll

ley Left Elbow Yaw

rey Right Elbow Yaw

ler Left Elbow Roll

rer Right Elbow Roll

lwy Left Wrist Yaw

rwy Right Wrist Yaw

hp Head Pitch

hy Head Yaw

Table B.1: Joints name abbreviation

Then, de�ne the following variables:

140

x1 =
sin(lhp) sin(lhy)√

2

x2 = cos(lhp) sin(lhy)√
2

x3 = x1 sin(lhr)

x4 = x2 sin(lhr)

x5 = x1 cos(lhr)

x6 = x2 cos(lhr)

x7 = cos(lhr) sin(lhy)/
√

(2)

x8 = sin(lhr) sin(lhy)/
√

(2)

x9 = cos(lhp) sin(lhr)

x10 = cos(lhp) cos(lhr)

x11 = 0.5 cos(lhy) + 0.5

x12 = 0.5 cos(lhy)− 0.5

x13 = sin(lhp) sin(lhr)

x14 = sin(lhp) cos(lhr)

x15 = cos(lap) cos(lar)

x16 = sin(lhp) cos(lhy)

x17 = cos(lhp) cos(lhy)

141

x18 = sin(lap) cos(lar)

x19 = cos(rey) cos(rsp)

x20 = x1 − x9 x11 + x10 x12

x21 = −x2 − x13 x11 + x14 x12

x22 = −x4 − x6 − x16

x23 = −x3 − x5 + x17

x24 = x20 sin(lkp) + x21 cos(lkp)

x25 = x20 cos(lkp)− x21 sin(lkp)

x26 = x22 cos(lkp)− x23 sin(lkp)

x27 = x22 sin(lkp) + x23 cos(lkp)

x28 = cos(lap) x24 + sin(lap) x25

x29 = −x1 + x10 x11 − x9 x12

x30 = x2 + x14 x11 − x13 x12

x31 = x7 − x8

x32 = x29 sin(lkp) + x30 cos(lkp)

x33 = x29 cos(lkp)− x30 sin(lkp)

x34 = cos(lhr) x11 + sin(lhr) x12

x35 = sin(lap) x26 + cos(lap) x27

142

x36 = sin(lhr) x11 + cos(lhr) x12

x37 = cos(lap) x32 + sin(lap) x33

x38 = cos(lap) x24 + sin(lap) x25

x39 = x15 x26 − x18 x27 − sin(lar) x31

x40 = −x18 x24 + x15 x25 − sin(lar) x34

x41 = −x18 x32 + x15 x33 − sin(lar) x36

x42 = x41 x35 − x37 x39

x43 = −x20 sin(lkp) + x30 cos(lkp)

x44 = −x18 x43 + x15 x43 − sin(lar) x36

x45 = − sin(lap) sin(lar) x43 + cos(lap) sin(lar) x43 + cos(lar) x36

x46 = cos(lap) sin(lar) x26 − sin(lap) sin(lar) x27 + cos(lar) x31

x47 = x45 x39 − x44 x46

x48 = (cos(lap) + sin(lap)) x43

x49 = x20 sin(lkp) + x21 cos(lkp)

x50 = − sin(lap) sin(lar) x49 + cos(lap) sin(lar) x25 + cos(lar) x34

x51 = −x18 x49 + x15 x25 − sin(lar) x34

x52 = − sin(lap) x24 + cos(lap) x25

x53 = sin(lar) x52 + cos(lar) x34

143

x54 = − sin(lap) x32 + cos(lap) x33

x55 = sin(lar) x54 + cos(lar) x36

x56 = x55 x39 − x41 x46

x57 = x37 x46 − x55 x35

x58 = x28 x56 + x40 x57 + x53 x42

x59 = 0.1506 x37 − 0.1 x33 − 0.12 x29 + 0.005 x30

If the target of the x coordinate of the right palm is Xt then the kinematic con-

straint of the x coordinate is:

144

Xt = ((x28x39 − x40x35)(−0.1925(x19 − sin(rey) sin(rsp) sin(rsr)) + 0.009 sin(rsp) cos(rsr)

−0.09 cos(rsp) + 0.075))/(x28((− sin(lap) sin(lar)x32 + cos(lap) sin(lar)x33 + cos(lar)x36)x39

−x41(cos(lap) sin(lar)x26 − sin(lap) sin(lar)x27 + cos(lar)x31)) + x40(x37(cos(lap) sin(lar)x26

− sin(lap) sin(lar)x27 + cos(lar)x31)− (− sin(lap) sin(lar)x32 + cos(lap) sin(lar)x33

+ cos(lar)x36)x35) + (− sin(lap) sin(lar)x24 + cos(lap) sin(lar)x25 + cos(lar)x34)x42)

+((x37x40 − x41x38)(−0.1925(− sin(rey) cos(rsp) sin(rsr)− cos(rey) sin(rsp))

+0.009 cos(rsp) cos(rsr) + 0.09 sin(rsp)))/(x38((− sin(lap) sin(lar)x32 + cos(lap) sin(lar)x33

+ cos(lar)x36)x39 − x41(cos(lap) sin(lar)x26 − sin(lap) sin(lar)x27 + cos(lar)x31))

+x40(1.0x37(cos(lap) sin(lar)x26 − sin(lap) sin(lar)x27 + cos(lar)x31)

−(− sin(lap) sin(lar)x32 + cos(lap) sin(lar)x33 + cos(lar)x36)x35) + (− sin(lap) sin(lar)x24

+ cos(lap) sin(lar)x25 + cos(lar)x34)x42) + (x42(−0.009 sin(rsr) + 0.1925 sin(rey) cos(rsr) + 0.098))

/(x38((− sin(lap) sin(lar)x32 + cos(lap) sin(lar)x33 + cos(lar)x36)(x15((−x4 − x6 − x16)

cos(lkp)− x23 sin(lkp))− x18x27 − sin(lar)x31)− x41(cos(lap) sin(lar)x26

− sin(lap) sin(lar)x27 + cos(lar)x31)) + x40(x37(cos(lap) sin(lar)x26 − sin(lap) sin(lar)x27

+ cos(lar)x31)− (− sin(lap) sin(lar)x32 + cos(lap) sin(lar)x33 + cos(lar)x36)x35)

+(− sin(lap) sin(lar)x24 + cos(lap) sin(lar)x25 + cos(lar)x34)x42)

+((−x38((x15x26 − x18x27 − sin(lar)x31)(0.15063x37 − 0.1((−x1 + x10x1 − x9x12) cos(lkp)

−x30 sin(lkp))− 0.12x29 + 0.005x30− 0.115)− x41(0.15063x35 − 0.1x26 + 0.005x23 − 0.12x22))

+x40(x35(0.15063x37 − 0.1x33 − 0.12x29 + 0.005x30− 0.115)− x37(0.15063x35

−0.1((−x4−−x6− x16) cos(lkp)− x23 sin(lkp)) + 0.005x23 − 0.12x22))

−(0.15063x38 − 0.1x25 − 0.12x20 + 0.005x21 − 0.05)x42))

/(x38((− sin(lap) sin(lar)x32 + cos(lap) sin(lar)x33 + cos(lar)x36)x39

−x41(cos(lap) sin(lar)x26 − sin(lap) sin(lar)x27 + cos(lar)x31))

+x40(x37(cos(lap) sin(lar)x26 − sin(lap) sin(lar)x27 + cos(lar)x31)

−(− sin(lap) sin(lar)x32 + cos(lap) sin(lar)x33 + cos(lar)x36)x35) + (− sin(lap) sin(lar)x24

+ cos(lap) sin(lar)x25 + cos(lar)x34)x42)

The target of y coordinate of the right palm is as follows:

145

Yt = ((x40x46 − (− sin(lap) sin(lar)x24 + cos(lap) sin(lar)x25

+ cos(lar)x34)x39)(−0.192(x19 − sin(rey) sin(rsp) sin(rsr)) + 0.009 sin(rsp) cos(rsr)

−0.09 cos(rsp) + 0.075))/(x28x47 + x40(x48x46 − x45x35)

+x50(x44x35 − x48(x15(x22 − x23 sin(lkp))− x18x27 − sin(lar)x31)))

+((x44x50 − (− sin(lap) sin(lar)x43 + cos(lap) sin(lar)x43

+ cos(lar)x36)x51)(−0.192(− sin(rey) cos(rsp) sin(rsr)− cos(rey) sin(rsp))

+0.009 cos(rsp) cos(rsr) + 0.09 sin(rsp)))

/(x28(x45x39 − x44(cos(lap) sin(lar)(x22 − x23 sin(lkp))

− sin(lap) sin(lar)x27 + cos(lar)x31)) + x51(x48(cos(lap) sin(lar)(x22 cos(lkp)− x23 sin(lkp))

− sin(lap) sin(lar)x27 + cos(lar)x31)− x45x35) + x50(x44x35 − x48x39))

+(x47(−0.009 sin(rsr) + 0.192 sin(rey) cos(rsr) + 0.098))

/((cos(lap)x24 + sin(lap)x25)((− sin(lap) sin(lar)x43 + cos(lap) sin(lar)x43 + cos(lar)x36)x39 − x44x46)

+x51(x48(cos(lap) sin(lar)x26 − sin(lap) sin(lar)x27 + cos(lar)x31)− x45x35) + x50(x44x35 − x48x39))

+((−x51(x46(0.151x48 − 0.1x43 − 0.12− x20 + 0.005x30− 0.115)

−x45(0.151x35 − 0.1x26 + 0.005x23 − 0.12x22)) + x50((x15x26 − x18(x22 sin(lkp)

+(−x3 − x5 + x17) cos(lkp))− sin(lar)x31)(0.151x48 − 0.1x43 − 0.12− x20 + 0.005x30 − 0.115)

−x44(0.151x35 − 0.1x26 + 0.005(−x23)− 0.12x22)) + (0.151(cos(lap)x49 + sin(lap)x25)

−0.1x25 − 0.12x20 + 0.005x21− 0.05)− x47))

/((cos(lap)x24 + sin(lap)x25)(x46x39 − (−x18x43 + x15x43 − sin(lar)x36)

(cos(lap) sin(lar)x26 − sin(lap) sin(lar)(x22 sin(lkp) + x23 cos(lkp)) + cos(lar)x31))

+x51(x48x46 − x45x35) + x50(x44x35 − x48x39))

And �nally, the target of z coordinate of the right palm is as follows:

Zt = ((x53x35 − x28x46)(−0.1925(x19 − sin(rey) sin(rsp) sin(rsr)) + 0.009 sin(rsp) cos(rsr)

−0.09 cos(rsp) + 0.075))/x58

+((x55x28 − x37x53)(−0.1925(− sin(rey) cos(rsp) sin(rsr)− cos(rey) sin(rsp)) + 0.009 cos(rsp)

cos(rsr) + 0.09 sin(rsp)))/x58

+((x37(cos(lap) sin(lar)(x22 cos(lkp)− (− sin(lhp)x8 − sin(lhp)x7 + x17) sin(lkp))

− sin(lap) sin(lar)x27 + cos(lar)x31)− x55x35)

(−0.009 sin(rsr) + 0.1925 sin(rey) cos(rsr) + 0.098))/x58

+((x28(x46x59 − x55(0.1506x35 − 0.1x26 + 0.005x23 − 0.12x22))

−x53(x35x59 − x37(0.1506x35 − 0.1x26 + 0.005x23 − 0.12x22))

−(0.1506x28 − 0.1x25 − 0.12x20 + 0.005x21 − 0.05)x57))/x58

146

Appendix C

The Interpolated Path Measurement

Applied to the Nao Robot

Based on Aldebaran information about the Nao robot with 26 DoF, and 5 kinematic

chains. The zero-point of the robot is its pelvis. The chains are in relative to this

zero-point. Without lose of generality, the analyzed kinematics compounds of two

chains: the right palm and the left foot. The root end-e�ector is in the right palm

and support point is in the left foot.

Apply Equation 7.1 to the right palm of the Nao, as was described in Eq. 7.4, we

get:

Drpalm−lfoot = [0.029 sin (θrey) sin (θrsp) sin (θrsr)− 0.002 sin (θrsr)

+0.001 sin (θrsp) cos (θrsr) + 0.038 sin (θrey) cos (θrsr) + 0.035 cos (θrey)

−0.029 cos (θrey) cos (θrsp)− 0.013 cos (θrsp) + 0.060]0.5
(C.1)

Applying function 7.6 to the kinematic chain beginning at the left foot and ending

at the right palm, we get:

Lpalm =

t∫ √
frpalm−lfoot(θ̄)dt (C.2)

Now, the following variables are de�ned,

x9 = cos (θrey) sin (θrsp) + sin (θrey) cos (θrsp)

x10 = sin (θrey) sin (θrsp) cos (θrsr)

x11 = sin (θrsp) sin (θrsr)− cos (θrsp) cos (θrsr)− sin (θrsp)

x12 = sin (θrey) sin (θrsr) + cos (θrey) cos (θrsr)

(C.3)

147

Then, Then, the continuous function of the path length becomes to be:

L =

t∫ √
(dx2 + dy2 + dz2)dt =

t∫ √
∂X2

∂θ̄

∂θ̄

∂t
+
∂Y 2

∂θ̄

∂θ̄

∂t
+
∂Z2

∂θ̄

∂θ̄

∂t
dt (C.4)

The integration of the function will be applied numerically.

frpalm−lfoot(θ̄) = 0.0289 [x9 (1 + sin (θrsr)) + x10]− 0.0013x11 − 0.0377x12

−0.0018 cos (θrsr)− 0.0346 sin (θrey)
(C.5)

In the case of spatial distance interpolation, the value of θj (t) along the path is

quite complex and can be represented as:

θj (t) = ajt+ θ0

Applying this function to the kinematic chain from the left foot to the right palm,

we get:

Lpalm−lfoot =

t∫ √
fpalm(θ̄)dt (C.6)

Again, this value will be calculated numerically.

148

Appendix D

Bibliography

[1] http://www.easyvigour.net.nz/pilates/hcballbeg.htm.

[2] J. Angeles. On the numerical solution of the inverse kinematic problem. The

International Journal of Robotics Research, 4(2):21�37, 1985.

[3] M. Avriel. Nonlinear Programming: Analysis and Methods. Dover Books on

Computer Science Series. Dover Publications, 2003.

[4] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for

convex hulls. ACM Trans. Math. Softw., 22(4):469�483, dec 1996.

[5] C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for robot motion plan-

ning and control in polygonal environments. IEEE Transactions on Robotics,

21:864�874, 2004.

[6] C. Belta and V. Kumar. Motion generation for formations of robots: A geomet-

ric approach. In IEEE International Conference on Robotics and Automation,

volume 2, pages 1245�1250 vol.2, 2001.

[7] D. Bertram, J. Ku�ner, R. Dillmann, and T. Asfour. An integrated approach

to inverse kinematics and path planning for redundant manipulators. In IEEE

International Conference on Robotics and Automation, pages 1874�1879, May

2006.

[8] S. R. Buss. Introduction to inverse kinematics with jacobian transpose, pseu-

doinverse and damped least squares methods. IEEE Journal of Robotics and

Automation, 2004.

149

[9] F. Chapelle and P. Bidaud. A closed form for inverse kinematics approximation

of general 6r manipulators using genetic programming. In Proceedings 2001

ICRA. IEEE International Conference on Robotics and Automation, volume 4,

pages 3364�3369, 2001.

[10] R. I. Charles F., P.-P. J. Sloan, and M. F. Cohen. Artist-directed inverse-

kinematics using radial basis function interpolation. Computer Graphics Forum,

20(3):239�250, 2001.

[11] H. Choset. Principles of Robot Motion: Theory, Algorithms, and Implementa-

tion. A Bradford book. Prentice Hall, 2005.

[12] J. Clark and M. Cutkosky. Stability measure comparison for the design of a

dynamic running robot. In M. Tokhi, G. Virk, and M. Hossain, editors, Climbing

and Walking Robots, pages 261�268. Springer Berlin Heidelberg, 2006.

[13] E. V. Cuevas, D. Zaldívar, and R. Rojas. Incremental fuzzy control for a biped

robot balance. International Conference on Robotics and Applications, 2005.

[14] B. Daya, S. Khawandi, and M. Akoum. Applying neural network architecture

for inverse kinematics problem in robotics. Journal of Software Engineering

and Applications, 3(3):230�239, 2010.

[15] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Com-

putational Principles of Mobile Robotics. Cambridge University Press, 2010.

[16] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of points

in the plane. IEEE Transactions on Information Theory, 29(4):551�559, 1983.

[17] Z. Fu, W. Yang, and Z. Yang. Solution of inverse kinematics for 6r robot ma-

nipulators with o�set wrist based on geometric algebra. Journal of mechanisms

and robotics, 5(3):310081�310087, August 2013.

[18] J. Q. Gan, E. Oyama, E. M. Rosales, and H. Hu. A complete analytical solution

to the inverse kinematics of the pioneer 2 robotic arm. Robotica, 23(1):123�129,

Jan 2005.

[19] M. J. Gielniak, C. K. Liu, and A. L. Thomaz. Stylized motion generalization

through adaptation of velocity pro�les. In C. A. Avizzano and E. Ru�aldi,

editors, IEEE International Workshop on Robots and Human Interactive Com-

munications, pages 304�309. IEEE, 2010.

150

[20] A. Goldenberg, B. Benhabib, and R. Fenton. A complete generalized solution

to the inverse kinematics of robots. IEEE Journal of Robotics and Automation,

1(1):14�20, Mar 1985.

[21] C. Gosselin and J. Angeles. A global performance index for the kinematic op-

timization of robotic manipulators. Journal of Mechanical Design, 113(3):220�

226, 1991.

[22] A. Goswami. Foot rotation indicator (FRI) point: A new gait planning tool to

evaluate postural stability of biped robots. In IEEE International Conference

on Robotics and Automation, pages 47�52, 1999.

[23] A. Goswami. Biped locomotion: Stability, analysis and control. International

Journal on Smart Sensing and Intelligent Systems, 1(1), March 2008.

[24] A. Goswami and V. Kallem. Rate of change of angular momentum and balance

maintenance of biped robots. In IEEE International Conference on Robotics

and Automation, volume 4, pages 3785�3790, 2004.

[25] D. Gouaillier and P. Blazevic. A mechatronic platform, the aldebaran robotics

humanoid robot. In IEEE Industrial Electronics, IECON 2006-32nd Annual

Conference on, pages 4049�4053. IEEE, 2006.

[26] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovi¢. Style-based inverse

kinematics. In ACM Special Interest Group on Computer Graphics, SIGGRAPH

'04, pages 522�531, NY, USA, 2004.

[27] T. Horsch and B. JÃ1
4
ttler. Cartesian spline interpolation for industrial robots.

Computer-Aided Design, 30(3):217 � 224, 1998. <ce:title>Motion Design and

Kinematics</ce:title>.

[28] A. J. Ijspeert. Central pattern generators for locomotion control in animals and

robots: A review. Neural Networks, 21(4):642 � 653, 2008.

[29] Z. Jin and Q. Ge. Constrained motion interpolation for planar open kinematic

chains. Mechanism and Machine Theory, 45(11):1721 � 1732, 2010.

[30] J.J.Craig. Introduction to Robotics. Pearson Education, 3rd edition, 2005.

[31] H. S. Jo and N. Mir-Nasiri. Stability control of minimalist bipedal robot in single

support phase. International Symposium on Robotics and Intelligent Sensors,

41(0):113 � 119, 2012.

151

[32] K. Jolly, R. S. Kumar, and R. Vijayakumar. A bezier curve based path planning

in a multi-agent robot soccer system without violating the acceleration limits.

Robotics and Autonomous Systems, 57(1):23 � 33, 2009.

[33] J.W.Grizzle, C. Chevallereau, A. Ames, and R. Sinnet. 3D bipedal robotic walk-

ing models, feedback control and open problems. In Symposium on Nonlinear

Control Systems, Sept. 2010.

[34] S. Kajita, T. Yamaura, and A. Kobayashi. Dynamic walking control of a biped

robot along a potential energy conserving orbit. IEEE Transactions on Robotics

and Automation, 8(4):431�438, 1992.

[35] I. Kato. Development of Wabot1. Biomechanism2, pages 173�214, 1973. Tokyo.

[36] K. Kazerounian. On the numerical inverse kinematics of robotic manipulators.

Journal of Mechanical Design, 109, 1987.

[37] W. Khalil and E. Dombre. Modeling, Identi�cation and Control of Robots.

Kogan Page Science paper edition. Elsevier Science, 2004.

[38] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In

IEEE International Conference on Robotics and Automation., volume 2, pages

500�505, Mar 1985.

[39] R. K®ker. A genetic algorithm approach to a neural-network-based inverse kine-

matics solution of robotic manipulators based on error minimization. Journal

of Information Science, 222:528�543, feb 2013.

[40] J.-H. Kim, J.-Y. Kim, and J.-H. Oh. Adjustment of home posture of biped hu-

manoid robot using sensory feedback control. Journal of Intelligent and Robotic

Systems, 51:421�438, April 2008.

[41] K. Kira and L. A. Rendell. The feature selection problem: Traditional methods

and a new algorithm. In Proceedings of the Tenth National Conference on

Arti�cial Intelligence, AAAI'92, pages 129�134. AAAI Press, 1992.

[42] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artif. Intell.,

97(1-2):273�324, dec 1997.

[43] T. Komura, H. Leung, S. Kudoh, and J. Ku�ner. A feedback controller for biped

humanoids that can counteract large perturbations during gait. In Proceedings

152

of the 2005 IEEE International Conference on Robotics and Automation, pages

1989�1995, 2005.

[44] H. Kurniawati, Y. Du, D. Hsu, and W. Lee. Motion Planning under Uncer-

tainty for Robotic Tasks with Long Time Horizons. Springer Tracts in Advanced

Robotics. Springer Berlin Heidelberg, 2011.

[45] P. Last, J. Hesselbach, and N. Plitea. An extended inverse kinematic model of

the hexa-parallel-robot for calibration purposes. In IEEE International Con-

ference on Mechatronics and Automation, volume 3, pages 1294�1299, 2005.

[46] J. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic mo-

tion planning for mobile robots, volume 229 of Lecture Notes in Control and

Information Sciences. Springer Berlin Heidelberg, 1998.

[47] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,

U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[48] J. H. Lee and S. N. Yang. Shape preserving and shape control with interpolating

bézier curves. Journal of Computational and Applied Mathematics, 28(0):269 �

280, 1989.

[49] S. Lindemann, I. Hussein, and S. LaValle. Real time feedback control for non-

holonomic mobile robots with obstacles. In 45th IEEE Conference on Decision

and Control, pages 2406�2411, Dec 2006.

[50] A. Loría, E. Panteley, and H. Nijmeijer. A remark on passivity-based and

discontinuous control of uncertain nonlinear systems. Automatica, 37(9):1481�

1487, 2001.

[51] V. Lugade, V. Lin, and L.-S. Chou. Center of mass and base of support inter-

action during gait. Gait and Posture, 33(3):406�411, 2011.

[52] E. Marder and R. L. Calabrese. Principles of rhythmic motor pattern genera-

tion. Physiological reviews, 76(3):687�717, 1996.

[53] E. Masehian and D. Sedighizadeh. Classic and heuristic approaches in robot

motion planning � a chronological review. In Proc. World Academy of Science,

Engineering and Technology, pages 101�106, 2007.

153

[54] L. Mateos, K. Zhou, and M. Vincze. Towards e�cient pipe maintenance: De-

walop in-pipe robot stability controller. In International Conference on Mecha-

tronics and Automation (ICMA), pages 1�6, Aug 2012.

[55] M. Meredith and S. Maddock. Real-time inverse kinematics: The return of the

jacobian. Department of Computer Science Research Memorandum CS-04-06,

University of She�eld, 2005.

[56] A. C. Nearchou. Solving the inverse kinematics problem of redundant robots op-

erating in complex environments via a modi�ed genetic algorithm. Mechanism

and Machine Theory, 33(3):273 � 292, 1998.

[57] R. Paul. Robot Manipulators: Mathematics, Programming, and Control : the

Computer Control of Robot Manipulators. Arti�cial Intelligence Series. MIT

Press, 1981.

[58] D. L. Pieper. The kinematics of manipulators under computer control. Technical

Report STAN-CS-68-116, Stanford University (Stanford,CA US), 1968.

[59] S. K. T. K. H. A. N. K. e. a. Q. Huang, K. Yokoi. Planning walking patterns

for a biped robot. In IEEE Trans. on Robotics and Automation, pages 280�289,

2001.

[60] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop

on Open Source Software, 2009.

[61] M. Riley and C. G. Atkeson. Methods for motion generation and interaction

with a humanoid robot: Case studies of dancing and catching. In Proceedings

2000 Workshop on Interactive Robotics and Entertainment, Robotics Institute,

Carnegie Mellon University, pages 35�42, 2000.

[62] A. Robotics. Naoware documentation. Technical report, 2009.

[63] M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi. Humanoid robot

motion generation with sequential physical constraints. In Proceedings 2006

IEEE International Conference on Robotics and Automation, pages 2649�2654,

2006.

[64] T. Rudny. Universal inverse kinematics problem solver. In Proceedings of the

16th International Conference on Systems Science. 2007.

154

[65] P. Sardain and G. Bessonnet. Forces acting on a biped robot. center of pressure

zero moment point. IEEE Transactions on Systems, Man, and Cybernetics Part

A, pages 630�637, Sept. 2004.

[66] W. Schelter. Maxima Manual. SourceForge, 2004.

[67] L. Sciavicco, B. Siciliano, and B. Sciavicco. Modelling and Control of Robot

Manipulators. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2nd edition,

2000.

[68] J. Selig. Geometric Fundamentals of Robotics. Monographs in Computer Sci-

ence. Springer London, Limited, 2007.

[69] L. Sentis. Compliant control of whole-body multi-contact behaviors in hu-

manoid robots. In K. Harada, E. Yoshida, and K. Yokoi, editors, Motion Plan-

ning for Humanoid Robots, pages 29�66. Springer London, 2010.

[70] L. Sentis, J. Park, and O. Khatib. Compliant control of multicontact and

center-of-mass behaviors in humanoid robots. IEEE Transactions on Robotics,

26(3):483�501, June 2010.

[71] Y. Shen, K. Huper, and F. Silva Leite. Smooth interpolation of orientation

by rolling and wrapping for robot motion planning. In Proceedings 2006 IEEE

International Conference on Robotics and Automation, pages 113�118, 2006.

[72] B. Sheng, M. Huaqing, and C. Qiang. Review of humanoid robot feedback

control gait planning. Computer Engineering and Applications, 47(7):30, 2011.

[73] K. Shoemake. Animating rotation with quaternion curves. ACM Special In-

terest Group on Graphics and Interactive Techniques (SIGGRAPH) Computer

Graphics, 19(3):245�254, jul 1985.

[74] B. Siciliano and O. Khatib. Handbook of Robotics. Gale virtual reference library.

Springer, 2008.

[75] G. K. Singh and J. Claassens. An analytical solution for the inverse kinematics

of a redundant 7DoF manipulator with link o�sets. In International Conference

on Intelligent Robots and Systems (IROS), pages 2976�2982. IEEE, 2010.

[76] R. Smith, M. Self, and P. Cheeseman. Autonomous Robot Vehicles, chapter Es-

timating Uncertain Spatial Relationships in Robotics, pages 167�193. Springer-

Verlag Inc., NY, USA, 1990.

155

[77] S. Spong M.W., Hutchinson and V. M. Robot Modeling and Control. John

Wiley and Sons, 2006.

[78] B. Stephens and C. Atkeson. Dynamic balance force control for compliant

humanoid robots. In IEEE International Conference on Intelligent Robots and

Systems (IROS), pages 1248�1255, Oct 2010.

[79] S. A. Stuvel. Stride space: Humanoid walking animation interpolation using

3D delaunay databases. Technical report, Utrecht University, 2010.

[80] R. Tedrake. LQR-trees: Feedback motion planning on sparse randomized trees.

In Proceedings of Robotics: Science and Systems, Seattle, USA, June 2009.

[81] G. Tevatia and S. Schaal. Inverse kinematics for humanoid robots. In IEEE

International Conference on Robotics and Automation, volume 1, pages 294�

299, 2000.

[82] U. Thomas, B. Finkemeyer, T. Króger, and F. M. Wahl. Error-tolerant execu-

tion of complex robot tasks based on skill primitives. In International Confer-

ence on Robotics and Automation (ICRA), pages 3069�3075, 2003.

[83] A. Timcenko and P. K. Allen. Modeling dynamic uncertainty in robot motions.

International Conference on Robotics and Automation (ICRA), May 1993.

[84] D. Tolani, A. Goswami, and N. I. Badler. Real-time inverse kinematics tech-

niques for anthropomorphic limbs. Journal of Graphical Models and Image

Processing, 62(5):353�388, sep 2000.

[85] P. Vadakepat and D. Goswami. Biped locomotion: Stability, analysis and con-

trol. In International Conference on Computational Intelligence, Robotics and

Autonomous Systems (CIRAS), Palmerston North, New Zealand, 2007.

[86] P. Viviani and T. Flash. Minimum-jerk, two-thirds power law, and isochrony:

converging approaches to movement planning. Journal of Experimental Psy-

chology: Human Perception and Performance, 21(1):32, 1995.

[87] M. Vukobratovic and B. Borovac. Zero-moment point - thirty �ve years of its

life. International Journal of Humanoid Robotics, 1(1):157�173, 2004.

[88] M. Vukobratovic, B. Borovac, D. Surla, and D. Stokic. Biped locomotion: dy-

namics, stability, control and application. Scienti�c Fundamentals of Robotics.

Springer, 1990.

156

[89] M. Vukobratovic and D. Juricic. Contribution to the synthesis of biped gait.

IEEE Transactions on Biomedical Engineering, BME-16(1):1�6, Jan 1969.

[90] A.-T. Wael A. Micro-robot management. MATLAB - A Fundamental Tool for

Scienti�c Computing and Engineering Applications, 3, 2012.

[91] L. Wang and C. Chen. A combined optimization method for solving the in-

verse kinematics problems of mechanical manipulators. IEEE Transactions on

Robotics and Automation, 7(4):489�499, Aug 1991.

[92] L. Wang and C. Chen. On the numerical kinematic analysis of general par-

allel robotic manipulators. IEEE Transactions on Robotics and Automation,

9(3):272�285, 1993.

[93] L. Weiss, A. Sanderson, and C. P. Neuman. Dynamic sensor-based control

of robots with visual feedback. IEEE Journal of Robotics and Automation,

3(5):404�417, 1987.

[94] X. Wu, L. Ma, Z. Chen, and Y. Gao. A 12-Dof analytic inverse kinematics

solver for human motion control. Journal of Information and Computational

Science, 1:137�141, 2004.

[95] T. L. Xuyang Wang and P. Zhang. Study on state transition method applied

to motion planning for a humanoid robot. International Journal of Advanced

Robotic Systems, 5:145�150, 2008.

[96] S. Yazdekhasti, F. Sheikholeslam, and M. Ghayour. Stability analysis of biped

robot with direct control of zero moment point. In The 2nd International

Conference on Computer and Automation Engineering (ICCAE), volume 2,

pages 528�532, Feb 2010.

[97] H. Yue, W. Chen, W. Chen, and X. Wu. Spline-interpolation based pvt algo-

rithm and application in a bionic cockroach robot. In 11th International Con-

ference on Control Automation Robotics Vision (ICARCV), pages 1742�1747,

Dec 2010.

[98] N. A. J. Z. Y, Abdoon Al-Shibaany. Design and implementation of a real-time

intelligent controller for a di�erential drive mobile robot. International Journal

of Scienti�c & Engineering Research, 4(12):1556, 2013.

157

[99] L. Zhang, S. Bi, and D. Liu. Dynamic leg motion generation of humanoid

robot based on human motion capture. In Intelligent Robotics and Applications,

volume 5314 of Lecture Notes in Computer Science, pages 83�92. Springer Berlin

Heidelberg, 2008.

[100] J. Zhao and N. Badler. Inverse kinematics positioning using nonlinear program-

ming for highly articulated �gures. ACM Transactions on Graphics, 13:313�336,

1994.

[101] F. Zhou, B. Song, and G. Tian. Bézier curve based smooth path planning for

mobile robot. Journal of Information and Computational Science, 8(12):2441�

24450, 2011.

158

Hebrew Abstract

ℵ

