Multilateral Matchmaking and Hybrid
Coverage in Multi Agent Systems
Master Thesis

By: Victor Shafran
Advisers: Prof. Sarit Kraus,
Dr. Gal A. Kaminka

Submitted in partial fulfilment of the requirements for thlasters degree in the
Department of Computer Science Bar-llan University
Ramat Gan, Israel
2008

Abstract

This thesis has two parts. The first part presents a hybridoapp to the cov-
erge problem under dead reckoning errors. Coverage is aicahavbotics task,
where single or multiple robots are given a target work aaed, move about the
area until every point in the area is visited by the robotsrérare many efficient
exact-motion coverage algorithms, that cannot be usedactipe, because they
assume accurate movements by the robot; unfortunatelyraleats have navi-
gational errors—calledlead reckoning errors A standard costly solution is to
utilize a hybrid approach where an exact-motion algoritemsed on a robot that
continuously localizes, so as to make course correctiorespidpose a novel hy-
brid coverage algorithm, calledrRTm SAIL. It takes as input an exact-movement
algorithm, the coverage tool size, and a maximal dead-rengcerror bound. It
optimizes use of the exact-movement algorithm, so as toedts coverage plan
while minimizing movement and localization costRIM SAIL guarantees com-
plete coverage, even under dead-reckoning errors. Wergreseeral variants of
TRIM SAIL and demonstrate their efficacy in systematic experimenis) ukata
collected from real robots. We show that (i) the analytigadictions for execu-
tion costs match the actual performance of the robot; (iiyeisions outperform
the standard hybrid; and (iii) Him SAIL’s performance is robust to errors in cost
estimates.

The second part discuss multilater matchmaking under tiomstcaints. In
open multiagent systems (MAS), agents need mechanismedtelpossible part-
ners for joint activities. Matchmaking is the process ofaducing two or more
agents to one another. Many approaches to matchmaking es¢ralized method,
in which one or a fewmiddle agentsespond to matchmaking requests from all
agents in the system. However, recent technology trendsthmefficacy of cen-
tralized systems. As a result we focus on distributed maadtimg, where each
agent is capable of searching and announcing the actiitii@seeking. Previous
works on distributed matchmaking used techniques that midéractional in na-
ture: One agent searches, while the other passively wdits tmntacted. In con-
trast, we allow for multidirectional searches to take pJanavhich all potential
partners are involved. We present a new distributed tecienihich scales well,
and still maintains a relatively low matchmaking time arttldicommunication
overhead. In addition, our technique introduces very lawage and computa-
tional overhead for the agents. We empirically evaluateptioposed technique
on bilateral matchmaking and show that it outperforms thstiexy techniques.
Then, we further enhance our technique by using partial Imgteries for the

case of multilateral (more than two partners) matchmakimgy @emonstrate its
advantages.

Acknowledgments

This work could not have been conducted and completed wittheuinvaluable
guidance, inspiration, and support of my wonderful ad@s8arit Kraus and Gal
Kaminka. | would like to thank them for the challenging resbatopics, instruc-
tive guidance and the time they spent with me. While workinthwhem | ac-
cumulated invaluable experience on how to tackle reseaxbigms. More then
that, working with Sarit and Gal was a pleasant experient@emly as a research
but also as a human being.

I would like to thank Meir Kalech for his help with the secondrpof this
work.

| would like to mention the great support of everyone at theM@RICK
group. In particular: Natalie Fridman ,Nirom Cohen-Novy&lk, Ari Yakir, Efi
Merdler, Dan Erusalimchik, Vova Sadov ,Yehuda ElmaliaathmTShpigelman. |
enjoyed every visit and every discussion | had with this atmeiopeople in the
group. The warm and friendly environment of this laborat@ya great place
for any researcher. Special thanks goes to Yael Termin #ontbral support she
provided during my first steps in MAVERICK and research.

| gratefully acknowledge Meytal Traub for providing impant data for the
first part of this research and Claudia Goldman-Shenhar wah Yuzin for their
assistance with the second part of this work.

Lastly and most importantly, | am forever indebted to my p#sevladimir
and Rima who has been the generous supporter and source afamgtktfor the
last 28 years. Additional thanks goes to my sisters Poliaah&, Asia and Mira
for always being the source of my happiness.

Last but not least, | thank my spouse Nastia for the all thalsktianal kilo-
meters she walked on my behalf with our dogs Dzhokhar andk&chi

This research was supported in part by a research grant faoms$hg Telecom-
munications Research, Israel (STRI), and by research gr&@&5#Q7 from the
Israel Science Foundation (ISF).

The views and conclusions contained in this document asetbbthe author
and should not be interpreted as representing the officialigs or endorsements,
either expressed or implied, of Bar-llan University.

Contents

Coverage Under Dead Reckoning Errors. A Hybrid Ap-

proach

1

2

10

I ntroduction

Related Work
Dead-Reckoning in Coverage
A Hybrid Coverage Algorithm

Reducing L ocalization Cost

5.1 Choosingi: Worst Case Analysis
5.2 Using a Heuristiee Estimate

Experiments

6.1 ExperimentSettings.
6.2 Calculatingl: The Basic Technique
6.3 Comparing Complete Coverage Algorithms
6.4 Sensitivity to Cost Estimations

Conclusions

Distributed Matchmaking under Time Constraints
Introduction
Motivation and Background

Multidirectional Matchmaking

10.1 Bilateral Matchmaking
10.2 Multilateral g-partner) matchmaking

10

12

14

10.3 Cachesize 50
11 Experiments 52
11.1 ExperimentSetup 53
11.2 Bilateral Matchmaking using a Matching Cache 54
11.3 Unidirectional versus Multidirectional Matchmaking. 58
11.4 Multilateral Matchmaking 63
12 Conclusions 74
13 Appendix A. Heuristic o Experimentsfor Coverage Algorithm 75
13.0.1 Simple Symmetric Heuristic 76
13.0.2 Absolute Value Symmetric Heuristic. 77
13.0.3 Non Symmetric Heuristic. 79
13.0.4 The Comparison of Heuristics 80
14 Appendix B. Network Characteristicsfor Multilaterl Matchmaking 83
14.0.5 The effects of graph connectivity 84
14.0.6 Theeffectsof TTL 85
14.0.7 The effects of teeming probability 86
14.0.8 The effects of the workload. 86

List of Algorithms

a b~ wdNPk

TRIM SAIL (W, d, Dy, AlGorig) - « « « « v v e 18
CALCULATE (d, D, c, Z, Y, ®) + v v v v v v e e e e e e e e 19
CALCULATENS (d, D, c, Z, Y,) v v v v v o v e i i e e e e e e 22
Bilateral Matchmaking Algorithm. 48
Multilateral Matchmaking Algorithm. 50

List of Tables

3.1
6.1

Notations used inthiswork. 15

Coverage by an unmodifielg,,;,. Results averaged over 50 trials. 34

6.2 A Comparison of coverage results by different algorithmdl
algorithms resulted in 100% coverage. Two best costs arelth b
Results averaged over 50trials. 35
6.3 A Comparison of total costs for each algorithms, unddeiht
travel-to-localization cost ratios. Best costs areinbald. 37
13.1 Distribution functions used in the experiment. 78
13.2 Non Symmetric Experiment Settings 9 7

List of Figures

3.1 Example of robot motion which covers all cells, whild sieviating. 16

4.1 Calculate the direction and distance for the robot, baseds
current location. The robot’s center is located at pa@int The
CALCULATE () algorithm sets the robot to move the distance of

onCD.ThenEO =OF =24 20
4.2 Calculate robot moving direction with asymmetric errouids.
o is an error bound to the lefdy, is an error bound to the right. . 22

5.1 Worst case for robot localization. The robot makes Iaatibn
when it deviated — d. In the worst case the robot startsaand
the worst possible error assumed. So the robot passelefore

making the next localization. 24
5.2 Total cost as a function @f Thea(drive cost) is small relative to

b(localizationcost) 25
5.3 Total cost as a function af Thea(drive cost) is large relative to

b(localizationcost), 26
5.4 The value ofl,,;,, as function ofD. ¢ = %’i—jl 27
5.5 The value ot0ostyq(d) as afunctionoD. 28
5.6 The value ofl,,;, as a function ofv. ¢ = % 29
5.7 d,., as a function o% 30
6.1 An RV-400 robot, used in experiments. 2 3

6.2 A histogram of RV-400 heading errors, in radians. Bin tviidt

0.015. A measurement at -0.27 is not shown (but was included i

the calculationsbelow). 32
6.3 Comparison of running Algorithm 1 with real-world data€a

aged over 50 trials), with the predicted cost obtained frajad=

tion 5.2. The algorithm’s cost is a function@f 34
11.1 Success rate as a function of the matching cache size...... . 55
11.2 Time for matchmaking as a function of matching cache.siz. . 56

11.3 Number of messages as a function of the matching caohe si. 57
11.4 Messages sent by Teeming, TTL and Matching Cache tagmiq

to achieve the same successrate. 58
11.5 Teemingvs. TTLvs. MatchCache 59
11.6 Success Rate as a function of provider/consumer ratio 60

11.7 Normalized Success Rate as a function of provider/coestatio 61
11.8 Average waiting time for the agents that did successfatich-

making as a function of provider/consumerratio 62
11.9 Average waiting time for all active agents as a funatiqorovider/consumer
ratio 63

11.10Total number of messages as a function of providesiocoer ratio 64
11.11Number of messages as a function of the matching caxhéos

unilateral and bilateral matchmaking. 56
11.12Success Rate as a function of active/passive agemtrati. . . . 66
11.13Average waiting time for the agents that did succéssaich-

making as a function of active/passive agentratio 67
11.14Average waiting time for all active agents as a fumctid ac-

tive/passive agentratio 67

11.15Total number of messages as a function of activelgaagient ratio 68
11.16Success rate Of active agents for as a function of ingtclache

size. Different lines shows different active/passive agetio. . . 68
11.17Success rate Of passive agents as a function of mgtchaohe

size. Different lines shows different active/passive agetio. . . 69
11.18Success rate as a function of the matching cache srzfferent

numbers of partners. Original Matching-Cache Algorithm. 69

11.19Time for matchmaking as a function of matching cache, or
different numbers of partners. Original Matching-Cacheohitnm. 70
11.20Number of messages as a function of matching cachgfeize
different numbers of partners. Original Matching-Cacheokignm. 70
11.21Success rate as a function of the matching cache b@girgy the
original and extended-query algorithms for groups of size.4. . 71
11.22Time for matchmaking as a function of the matching easihe,
showing the original and extended-query algorithms fougeoof
Sized. . .. 71
11.23Number of messages as a function of the matching caohe s
showing the original and extended-query algorithms fougsoof

Sized. . .. e 72
11.24The difference in performance of Algorithm 5 over Aitjun 4,
under different sizes of activities. 27

11.25Total Message Number as a function of Success rateTior T
Teeming and Partial Matching Cache Techniques for groups of
Sized. . .. e 73

13.1 The cost of the algorithms as a function of angelsed by the
robot’s algorithm 76
13.2 Compare the cost of coverage of the worst casgth the cost of
the algorithm that uses simple symmetric heuristic. 77
13.3 Compare the cost of coverage of worst caséth the cost of the
algorithm that use absolute value symmetric heuristic. . . 78
13.4 Cost of the algorithm that uses different error boundheq)os-
itive and the negative errors. Categories E1-E6 are exgplame

Table 13.2.. 80
13.5 Compare the best costs obtained by different heuristics. . . . 81
13.6 The Arithmetic Average Values computed as suggestetiffey-

ent heuristics foruse asvalue. 82

14.1 Success rate as a function of graph connectivity (asuned by

edge creation probability). 85
14.2 Time for matchmaking as a function of graph connegtigas

measured by edge creation probabiidy 86
14.3 Number of messages as a function of graph connectastynga-

sured by edge creation probabilgy. 87
14.4 Successrate asafunctionof TTL. 88
14.5 Time for matchmaking as a functionof TTL. 8 8
14.6 Number of messages as a functionof TTL.. 9 8
14.7 Success rate as a function of teeming probability. 89
14.8 Time for matchmaking as a function of teeming probghili. . . 90
14.9 Number of messages as a function of teeming probability. . . 90
14.10Success rate as a function of scenariolength. 91
14.11Time for matchmaking as a function of scenario length.. . . . 91
14.12Number of messages as a function of scenario length. 92

Part |

Coverage Under Dead Reckoning
Errors. A Hybrid Approach

Chapter 1

| ntroduction

Coverage is a canonical robotics task, where single or nheltgbots are given
a target work area, and move about the area until every poithiel area is cov-
ered by a coverage tool associated with each robot. Thisidcedsumed to be
the robots’ sensors or specialized actuator. There are aggplications and vari-
ations of coverage. Examples of coverage applicationsidied among others,
harvesting, patrolling [24], de-minin [39] and floor cleagi [16]. See [13] for a
comprehensive survey.

There exist a number of elegant and efficient algorithmsifagle- and multi-
robot coverage, that all assume accurate and exact movehetie robot. Among
these we include essentially all grid-based and cell-deoasition methods, that
divide the target area into smaller cells. [49, 41, 15, 34287. These include the
family of Spanning-Tree coverage/patrolling algorithn23,[28, 30, 31, 29, 2, 24]
[27, 29]; the family of Boustrophedon algorithms [15, 34, ,1AE trapezoidal de-
composition based algorithms [41], and others [32, 49].s€lagorithms output a
coverage plan, which—if followed without movement errongsults in complete
coverage of the work area.

Unfortunately, real robots have navigation or motion es+ecalleddead reck-
oning errors which prohibit the direct use of exact-movement algorghrithe
problem is that the accumulating position errors, due toitlaecuracy of the
robot’s locomotion actuators, cause the robot to drift afvayn its planned tra-
jectory. Dead reckoning errors are a result of physical {raaccal) properties
of the interaction between the robot and the environment [9jey are caused
by finite wheel encoder resolution, misalignment of robetkeels, and wheel
slippage due to slippery floors.

There are several approaches to tackling dead-reckomogeOne approach
attempts to reduce the errors directly, by calibration oclma@ical means [8, 9],
or compensating for errors by using relative locations oltiple robots [42]. An-
other approach uses a hybrid system. The exact-movemanttaig’'s coverage

10

plan is executed by a robot, which continuously calls I@zdion procedures (e.g.,
which use landmarks and/or absolute location devices [@,712, 48]) to correct

the motion errors, such that the exact algorithm’s assumtf error-free motion

is maintained. However, because these methods are tagbeindient, they do

not address challenges raised—and unique opportunifieedi—by focusing on

dead-reckoning in the context of coverage.

Coverage presents a unique challenge and opportunitydetatiad-reckoning.
On one hand, coverage requires more accurate movemenits ottier naviga-
tion tasks, when a robot is ttoversome area betweetand B, each point in its
trajectory is important. If a robot misses a point in thedcépry betweem and
B, the coverage is incomplete, and is considered to be inré&ailtiowever, on
the other hand, if the coverage tool is sufficiently largentsome motion errors
can be ignored, as long as the points on the trajectoriesitiignthe area of the
coverage tool.

In this work we propose a novel hybrid coverage algorithmledaTRim
SaiL. TRIM SAIL takes as input an exact-movement algorithm, the coverage
tool size, and a maximal dead-reckoning error bound. Itnogeés use of the
exact-movement algorithm, so as to execute its coveragewtde minimizing
localization checks and corrections, i.e., minimizing @ment and localization
costs (e.g., in terms of time and battery). Given the erronbio TRIM SAIL guar-
antees complete coverage, even under dead-reckoning.eWerpresent several
variants of TRIM SAIL, including a variant which explicitly assumes the worst-
case dead-reckoning errors, as well as average-casettusuiiich may reduce
costs.

To evaluate RIM SAIL, we experiment using data collected from real robots.
We show that the analytical predictions for execution cassch the actual per-
formance of the robot. We additionally show that all versimi TRIM SAIL
outperform a task-independent hybrid approach, in whicialleations are con-
tinuously performed to correct dead-reckoning errorsalynwe show that Rim
SAIL’s performance is not sensitive to cost estimates—thus gvenses incor-
rect estimates as to the movement and localization costd| &till perform well
in practice.

11

Chapter 2
Related Work

Early investigations of dead reckoning explored mechammethods that reduce
errors, a-priori. These methods include mounting additiolon-load bearing en-
coding wheels [33], using additional encoder trails [25§ agstematic calibra-
tion of the robot [8]. These methods are capable of redugiatgmatic odometry
errors [9], e.g., those stemming from robot sensor misaligmts.

However, dead-reckoning errors cannot be completely pted. There are
non-systematic errors that are caused by environmentakiancties, e.g., wheel
slippage. In order to overcome this type of dead reckoningrer many works
proposed the use of additional sensors, such as accelemsnagtd gyros [5], to
augment the information available to the robot. Borensteial.€[9] provide a
comprehensive survey of these and other methods.

Increasingly, probabilistic methods are used to carry lo@ifprocess of fusing
information from sensors, over time, to reduce the loctibreerrors (which oth-
erwise accumulate with movement). In general, such metremgigre significant
computational and sensorial resources, and may also evelerfering with the
robots operations. For instance, in the RoboCup soccer gai® (eague), the
robots have to decide to physically stop tracking the badl #re opponents, in
order to free the camera to identify landmarks for locaiorat

The examples of probabilistic methods includes the usenadlitaarks and fea-
ture points as presented in the works by Thrun et al. [47]|ded et al. [20],
and Jang et al. [35]. A similar approach is taken by Krulin8][3In his work,
static sensors are located in the environment and the rabinly a Kalman Fil-
ter technique, founds it's position based on the infornmatioeceives from static
sensors. Scan matching[11] is another popular probabitisthnique used for
localization.

These probabilistic techniques successfully reduce ottgneeror by com-
paring the data obtained from the sensors in a differenttdiime, taking into
account the movements of the robot and the noise in the rgadiiney also utilize

12

absolute location information (e.g., from GPS), if avaiéab

Our work focuses on optimizing the use of localization prhoes for cover-
age tasks. In particular, our work attempts to scheduldilataon requests during
coverage tasks, so as to reduce costs. An important meotivetr our work is the
prevalence of exact-motion coverage algorithms that agklyiefficient, yet as-
sume no dead reckoning errors. Choset [13] provides a suifv&ych coverage
algorithms, classified aapproximate cell decompositiadgorithms. Our work
complements these approaches.

The Boustrophedon coverage algorithm is the one example effiarent ex-
act cell-decomposition method, which relies on perfecaliaation [15, 34, 14].
Choset [13] presents a wide range of examples where Bousttopheethod is
used. The method was extended to handle multiple robotsjre[g¢2]. Spanning
Tree Coverage (STC) [27] is another good example of approricet decompo-
sition algorithms. STC-based algorithms divide the worlanga into cells of size
equal to the robot tool, and build a Hamiltonian cycle thaegythrough all cells.
The robot(s) then circumnavigate the cycle. In recent yemtarge number of
algorithms for coverage were developed based on STC cavergese include
algorithms for multi-robot coverage [29], and patrollirg]. While STC-based
algorithms are efficient and easy to implement, they asswredead-reckoning
errors, and do not work well in robots that have restrictquhtdities [18].

Mapping [23] is a related task in which robots are requireangp an un-
known area. This task is similar to coverage problem in aesénat the envi-
ronment should be sensed. However, in contrast to covetlagepbot does not
need to physically visit every point of the environment. Bdurther discussion
of mapping see [48].

13

Chapter 3

Dead-Reckoning in Coverage

Let us define the problem of coverage under dead reckoningsarrore formally.
First, we restrict ourselves to offline coverage, where a ofdpe work aredV,
of sizeM x M, is given. We focus osomplete coveragalgorithms, which seek
to guarantee that a robot visits every point in the workirepd?”. In particular,
we focus on grid tessellation of the work-area, though in@pile the techniques
can be extended to other regular tessellation as well.

The robot’s tool size i9) x D. Thus, when placed at a poiptin the work-
area, the robot covers a square of sizex D, whose center is at. The robot is
assumed to be capable of moving forward and turning in placaternatively, be
omnidirectional. It is given that the robot has a motion ewbich is bounded by
angleq, to the left and to the right relative to the direction of thevement. The
robot has a cost associated with a distance it travels, detgt_ost 4., for each
distance unit. This cost abstracts real-world cost compisnasuch as execution
time, battery usage, etc. Table 3.1 summarizes the notasied in this work.

Now, suppose we have an exact-motion coverage algorithnateeAlg,,;,.
This algorithm take$? and D as an input and comput@scoverage plar-an
ordered sequence of movements and turns, which take the ttmloigh cells,
to completely coveilV/. Denote bydist; the distance the robot travels in order
to perform this task. Then, the total cost of this coverag taould be equal
to Costayg,,,, = Costarive - disty. If D grows, the robot cover more area in
each one of the steps. As a result, the robot needs to traaeltdecover the
environment, under the assumptions that its movementscagate, and thus
require no corrections (which add to the overall cost).

However, dead-reckoning errors interfere in executingciheerage-plan. A
robot blindly following the sequence of moves may not go tigio the intended
cells, because dead-reckoning errors will cause its actuake to deviate.

Thus to execute the coverage plan, the robot must use latializprocedures
to assert its position on the intended trajectory, and toen@krections if nec-

14

Notation Definition

M x M The size of the map
D x D The size of the tool coverage
o The dead reckoning error bound
Algoiy The exact-motion coverage algorithm.
Costgrive The cost of drive
Costipe The cost of one active localization.
Costivtar The total cost of the algorithm

Table 3.1: Notations used in this work.

essary. We will refer to such corrections lasalizationsin this section. We
abstract away from the actual method of localization, antsicter only the cost
of this operation—in terms of time and battery power—whidh be referred as
Cost,.. Also, for now we assumactive localization Active localization means
that localization involves explicit decisions and actionsdbehalf of the robot: Lo-
calization information is not available all the time. In erdo obtain localization
information, the robot needs to stop performingy,,;,, carry out the localization
actions, and only then continue wittig,,;,.

The number of localizations made during coverage is denoyedl. When
the robot deviates, it accumulates the additional tra\athdice. This accumulated
distance (which includes course corrections) is denotedify. Then, the total
cost of the algorithm is given by:

Costiprar = CoStgrive + disty + Costioe - N (3.1

To minimize the cost of coverage using algorithm, the roletetbper must
carefully balance its use of localization. Increasing thenher of localization
checks (V), increases the overall costs. When such localization chackrela-
tively expensive (for instance, in RoboCup AIBO league, whelmts must stop
tracking the ball in order to localize), this significanthcreases the overall costs.
On the other hand, reduciny too much requires larger corrections after each
localization, and thus increasést,, the travel distance including deviations and
their correction. Thus the problem is to minimize the todtqEq. 3.1). We do
this by considering the error bouad and its relation taV.

To simplify the discussion, we address a movement in a $tréiige, and as-
sume for now that turns are error-less and are only resutteeabbot deviation or
robot attempts to fix this deviation. The relaxation of tresamption is straight-
forward. One simple way to address the robot turns thattrésuh usingAlge,i,
is to assume that the robot is required to localize with every. In this case,
when the robot arrives to the cell where a turn is requirediby,.;, it will turn,
and carry out localization to ensure zero errors, and thetirage to perform the
task.

15

Without loss of generality, suppose that the path of thetr@iio the direction
of the x-axis. The ideal robot, without dead reckoning esravill simply move
in a straight line along the x-axis. A realistic robot wilvdrge from the straight
line, with the accumulating dead-reckoning errors acegieg its departure from
the x-axis.

Note, however, that localizations—and subsequent coorest—are noton-
stantlyrequired, i.e., are only required at some key locations pSs@ the size of
each cell in the grid ig < d. Then the straight line thatlg,,;,, generates goes
through a number of x d-sized cells. But because its coverage atea D is
actually greater thad x d, it can in fact allow some deviation from the intended
course.

For instance, supposke= % and the robot is sent to cover cells of size d
along the x-axis. The robot can deviate @yalong the y-axis and still cover the
cells. Figure 3.1 shows an example of such an erroneous\phith still covers
the cells.

ered)

Robot Sensing Area
Step 2 Robot Sensing Area
Robot Sensing Area Step 4
Step 1

\

Robot Sensing Area
Step 3

T —

- @@
Robot moving direction (referred as x-axis)

(Corridor that should be cove

Figure 3.1: Example of robot motion which covers all cellgjle still deviating.

This example exposes an opportunity for grid-based exatism coverage
algorithms (represented by/g.,;,). We can control the value af(the size of the
grid used byAlg,,;,), such that it optimizes the use of localizations to minieniz
cost. Indeed, given such a value &ffwe can create a hybrid algorithm which
would schedule localization actions (and their correct)dor Alg,,;,'s coverage
plan; the plan would be augmented by periodic localizatictoas (and subse-
guent corrections, as necessary), resulting in a compteterage, at a minimal
cost. We describe this hybrid algorithm in Section 4. In ®ech, we show how
to compute an optimal value af

16

Chapter 4

A Hybrid Coverage Algorithm

Assume for now that the value df the grid-cell size parameter, is given. In this
section we present an algorithm that utilize® provide complete coverage under
dead-reckoning, using localizations only when necesszaygdd onl).

The TRIM SaiL ! algorithm (Algorithm 1) takes as input the exact-motion-cov
erage algorithmilg,,,; the grid-size parameter the robot coverage tool size,
the work aredV; and«, the maximal dead-reckoning error bound angle (which
can be readily computed from distance error measuremdtesecutesilg,,;, to
create a coverage plan, and then executes the coveragelulannterleaving lo-
calization and course-corrections actions, as necesBaig/results in movements
as in Figure 3.1.

The algorithm works as follows. It calls oAlg,,;, to receive a coverage-
plan, which assumes no dead-reckoning errors (line 1). Géverage plan is
an ordered sequence of turns and corridor steps, where idarois defined as
forward movement of some length. For each plan stepMTSAIL executes nec-
essary localizations. For turns (lines 3-5), it executesttinn and then calls on
LocALIzE-TURN() for any needed angle corrections. For corridor stepsjéirt
leaves calls to the localization actiooEALIZE() (line 8) with short movements
(line 15), whose angle and distance are computend@ LATE () (line 9), which
we discuss in detail below.RIM SAIL continues this interleaved execution until
the corridor is completely covered.

The robot pose (in the 2D area) is defined by three paramiteyse), which
can be read by callingd@caLizE(). z, y define the robot position, whilé defines
the robot yaw (heading). For now, we assun@eclaLIZE() returns exact answers.

The interleaving condition (line 9) checks whether the tabatill covering
the corridor, or has possibly moved outside of it. The actizd of the robot tool

Trim sail is a method used by a wind-driven ship to move windiyhy navigating left and
right of its intended heading. The resulting trajectoryatecthe trajectory produced by our algo-
rithm.

17

Algorithm 1 TRIM SAIL (W, d, D, «, Algorig)
1: CP « Algoi4(W, d){Exact-motion coverage plan
2: for all Plan stepstp € C'P (in order)do
3. if stpisaturnthen

4 executestp

5: call LoCALIZE-TURN()

6: else{stpis acorrido}

7: while corridor Sq is not coveredlo

8: (x,y,®) < Localize()

9: if [Sq () Sqrobot| = d x d then

10: (r,0) « CALCULATE(d, D, o, , y, @)
11: if y > 0then

12: Turn robot angle clockwise .

13: else

14: Turn robot anglé) counterclockwise.
15: Set robot to travel distance of

16: else

17: Track back until.Sq () Sqrepet| = d x d

areaisD x D. The area that this tool covered in a given point of time isotet
by S¢,0b0t, @and the corridor (of widthil) is denoted bySq. The|Sq| denotes the
size of the area. IfSq() S¢.obot| = d % d then the robot continues to cover the
defined corridor. 11.Sq () Sq¢-o00t| < d x d then the robot deviation is too big and
there is some portion of the corridor the robot missed to colr this case, it
needs to track back to its previous location to re-cover trador.

The CaLcULATE algorithm (Algorithm 2) calculates the maximum distance
r and heading-changethe robot can travel until the next localization is requjred
under the assumption of the maximal error boundWe will show that using
CALCULATE ensures thatSq () S¢ov0t| = d X d is always true i.e. when the
current version of Algorithm 2 is used, the line 17 in Algbrit 1 is never reached.
We will use line 17 in a heuristic versions of Trim Sail algbm, discussed in

Section 5.2.
Theorem 4.0.1. If |Sq () Sqre00t| = d x d holds at the initial position of the robot,

then Algorithm 1 achieves complete coverage of the envigahm

Proof. To aid in explaining the proof, we refer to Figure 4.1. Supptige robot
has just performed a localization, and is located at pOim the figure. Without
loss of generality, we assume that> 0, and moves along the x-axis (then the
check for|.Sq () S¢robet| = d x d becomesy| < D — d). We look to maximize the
distance- that the robot will travel until the next localization, aradetermine an
appropriate heading angle.

18

Algorithm 2 CALCULATE (d, D, a, z, vy, ¢)
1y« |y

2: m « cos2a(y* 4+ 0.5(D —d)) +0.5(D — d) — y
3: n « sin2a(y‘ + 0.5(D — d))

4: 0 — tan~ ()

50— 35 +¢o—0—-a

oy baspei

7: returnr, §

We make the following observations (see Figure 4.1). Thetrabll move
a distance of- on C'D, which bisects/ ABC'. At worst, the robot will deviate
at an angle oty to the left or to the right relative to its moving directiondan
then will accordingly stop at poird or B. ThusC A andC'B are the worst case
robot trajectories. To maximize the distance until the hasdlization, we require
CA=CB. DenoteCA=CB =r.

We need to find- andé to guide the robot for a single moving step, until the
next localization. FronvCEA, we knowr = 220=d Erom /CFB, we

cos
knowr = %2WP=d-y |t thys follows that:
—cos (2-a+6)

y+05-(D—d) 05-(D—d)—y

= 4.1
cosf —cos (2 -a+0) (4.1)
y+0.5- (D —d) 05-(D—d)—vy
— —— (4.2)
cos 6 —(cos 2ar cos 0 + sin 2arsin 6)
Moving terms to the left side, we get:
(y + 0.5(D — d))(cos 2 cos @ — sin 2acsin)
+cosf(0.5(D —d)—y) = 0 (4.3)
cosf(cos2a(y + 0.5(D —d)) +0.5(D — d) — y)
—sinf(sin2a(y +0.5(D —d))) = 0 (4.4)
Let us set:
m = cos2a(y+0.5(D—d))+05(D—d)—vy (4.5)
n = sin2a(y + 0.5(D —d)) (4.6)

And we rewrite Eq. 4.4 asicosf — nsinf = 0. Dividing by cos , we get

tanf = = = ¢ = tan~! o,

19

D-d

»

>
bot moving direction (referred as x-axis)\ A

Py

Figure 4.1: Calculate the direction and distance for the tdimsed on its current
location. The robot’s center is located at paint The CALCULATE () algorithm
sets the robot to move the distance-afn CD. ThenEO = OF = 254,

Given the current robot yaw (heading directian)we need to turn the robot
by angled clockwise, where) = 7 + ¢ — 0 — a. The robot then travels the

distancer = %(j‘d) until the next localization. The possible positions of the
robot after this step are defined by circular &B A centered at’ of radiusr and
angle2«a. The calculations above ensure thgt< 0.5(D — d). In other words,
|Sq () Sqrovet| = d x d always holds.

Now, let see what is the smallest possible distance the todatls along the

x-axis. Denote this distance lay Then

a=rsinf 4.7)
= (y+ 0.5(D — d)) tan 6 (4.8)
— (y+0.5(D —d))% (4.9)
_ —y(1 — cos2a) —i—s(i)féaD — d)(cos2a + 1) (4.10)

If y > 0 thena has a minimal value whep has a maximum value. Hence,
y = 0.5(D —d). This case corresponds to the case whiea F'in the Figure 4.1.
In this case:

(4.11)

D —
a=(D—d)tanf = d
tan 2«

20

From Equation 4.11 it follows that at With any step of algmrilt, the robot ad-
It
covers the area that should be covered sipte 0.5(D — d) holds. Then after
leorridortength]. teps;, the robot completely covered the corridor.

The completeness of the coverage is providedAy,,,, since in each step
robot cover the area required Hyyg,,;,. As a result, the robot performs a complete
coverage and stops. O

We proved the correctness of Algorithm 1. Now, we want totlisi corollary
that would be used in the Section 5. Those corollary will hedgo build the cost
function for Algorithm 1.

Corollary 4.0.2. If Sq() S¢-obot = d x d holds at the initial position of the robot,
thenSq () Sq.obot = d % d during the execution of algorithm. Also, at any point
of time|y| < 0.5(D — d) holds.

Corollary 4.0.3. For any given distance: that robot is required to travel by
Algorig, the robot that is guided by the Algorithm 1 path the distanee

cos 2a

Proof. From Theorem 4.0.1 it follows that the worst possible adeancx-axis
(the direction defined byllg,,;,) is obtained wher’ = F" and the robot follows
theCA = FA line in Figure 4.1. In this cas€ BFA = Z/BCA = 2a. At any
time, the projection of the robot path to x-axis is equal ®distance traveled by
the robot divided by.os 2a.]

Non Symmetric Errors. Up until now, we made the assumption thatvas a
symmetric error bound, i.e., the maximal error bound to #fiednd right was the
same. However, more commonly, the maximal deviations tdeti€a,) and to
the right (), relative to the heading, differ, and as a resdlBC' A = a; + ao
instead of2a (Figure 4.2). To accommodate this asymmetry, a slight chang
CALCULATE (Algorithm 2) is necessary, where the te2mis replaced byy; +as,
and the terny is calculated using onlw, (if ¥ > 0), or oy, otherwise. Also,
Algorithm TRIM SAIL must be changed to accept the two separate bounds.

The revised algorithm @.CULATENS is presented in Algorithm 3. All the
correctness and corollary proofs regardingLCULATE are maintained, with ap-
propriate changes.

21

D-d

v

»

>
bot moving direction (referred as x-axis)\ A

Py

Figure 4.2: Calculate robot moving direction with asymneegériror boundsa; is
an error bound to the lefty, is an error bound to the right.

Algorithm 3 CALCULATENS (d, D, o, z, y, ¢)

1:

[EEN
Q

y =yl
m «— cos (a1 + a2)(y* + 0.5(D — d)) + 0.5(D — d) — v
n « sin (a1 + ao)(y* + 0.5(D — d))
0 — tan™'(2)
if y > 0 then
de—5+¢—0—ay
else
b—5+o—0—m
y+0.5(D—d)

cos 6

returnr, o

T

22

Chapter 5

Reducing L ocalization Cost

The TRIM SAIL algorithm requires some inputs which are typically giveucts
asD), but also algorithmic parameters which we can vary (sudgh@aparameter
d, and the estimated boungd. d is provided as input to the coverage algorithm
Algorig, SO that it determines the grid-size to use. Larger valueswill issue
smaller sequences of moves, and will cover larger chunksadwered space at a
time; moreover, corrections distances would be smallersBcih large values also
mean that there is a need to localize more frequently,N.éncreases and thus the
cost of localization and corrections increases. In cohtemsallerd values allow
for less frequent localizations (small&t) but increase the correction distance.

We first (Section 5.1) find the optimal value for tHeanalytically, based on
a worst-case assumption of the maximal dead-reckoning errdefined earlier.
We then (Section 5.2) discuss heuristics for estimatingvanage-casd, which
would work well in practice.

5.1 Choosing d: Worst Case Analysis

Since the size of the map i x M, the number of cells of sizé x d is];—22 In
order to cover or patrol each cell usiddyg.;,, the robot should travel the distance
of d. Hence, the total distance the robot should travel givercélesize isMTQ.

The total travel cost i§/-Cotare
A robot that usesilg,,;, should travel the distance dffor each cell. Instead,
from Corollary 4.0.3, it follows that in the worst case the gotwill actually pass
the distance Oim The total distance the robot will pass is equacll—ggﬁ
Localization is required each time the robot might be vantuoutside its
coverage plan, i.e., a corridor of width Suppose the corridor is parallel to the
X axis. At maximum, the robot can pass a distancéof d (measured along

the y-axis) before doing localization once again. Usingwloest case scenario

23

defined by Corollary 4.0.3, the localization will happen e:g{;?g% units(meters)

(Figure 5.1). So, the maximum total number of times locailrais required is
M?2.sin 200
d-(D—d)-cos 2a "

20,

D-d

y

Figure 5.1: Worst case for robot localization. The robot eslocalization when
it deviatesD — d. In the worst case the robot startsAaand the worst possible
error assumed. So the robot pasdés before making the next localization.
Now, we can extend the Equation 3.1 and write down the exioressr the
total cost of the robot’s work:
M? M? - sin 20

C toa:C ldrive * 77— c tioc -
OSttotal O5td d-c082a+ ot d- (D —d)-cos2a

(5.1)

Equation 5.1 is a function of and we aim to find/ that keeps the cost at
minimum. We define (related to the drive cost), andrelated to the localization
cost):

M? . Costgrive ; M? . Costy,. - sin 2«

a
cos 2a ' cos 2a

Then: ;
a
t d)=-4+—— 5.2
Cos total() d + d(D — d) ()
Equation 5.2 is a function of only. Now, we can analytically find the local
minimum for Equation 5.2. The minimum in rangieD] will give us the optimal

value ford.

/ —a —b(D—2d)
COSttotal(d) - ﬁ + m
1 b(D — 2d)

2 boap)

24

We then find the derivative roots:

—a(D —d)* —b(D —2d) =0

—a(D?* —2dD + d*) — bD + 2bd = 0
—aD? + (2aD)d — ad® — bD + 2bd = 0
—ad? + (2aD + 2b)d — (aD? +bD) = 0

—(2aD + 2b) £ \/(2aD + 2b)2 — 4aD(aD + b)
—2a
Equation 5.3 provides the value fdrwhile equation 5.2 provides an upper

bound on the cost of the coverage under dead reckoning e¥ik@rsvill compare
this bound to the real costs in the experiments (Section 6).

dip =

(5.3)

a/b=1/100 ——
alb=1/20 -

COSttotal

0.375D 0.625D
d

Figure 5.2: Total cost as a function @f The a(drive cost) is small relative to
b(localization cost)

Figures 5.2 and 5.3 show examples(&fst;.iqi(d). Figures 5.3 presents an
example in which the drive cost is high relatively to the lazation cost. In this
case, the value af is close toD since the robot will prefer to make localization
seldom and preserve the robot from unnecessary drive cagireFs.2 presents
a different scenario, in which localization is expensivenpare to the drive cost.
In this casel is much smaller since the robot will try to minimize the numbé
times it does localization.

25

COSttotal

0.825D D
d

Figure 5.3: Total cost as a function @f The a(drive cost) is large relative to
b(localization cost)

Now we can compute the value @tnalytically for any given domain. Denote
the optimal value off by d,,,;,. While looking at equation 5.1 we can notice that
M has effect orCost,,;, but not on the value of,,;,. This means that we can
find the value ofl,,;, even when the size and shape of the map is not known. In
other words the analysis here is applicable not only to entioverage problem
but also to the offline coverage case, where the map of thecgmaent in not
given in advance.

We now turn to investigate the general behavioCokt,..;(d) function. We
are interested in understanding the relationship amorigrdift parameters and
their influence on the co$tost, . (d) andd,,;,. In order to do this we will show
dmin @S function ofCOStd”ve a andD. Let us rewrite equitation 5.3 in order to

Costioe
make this equation clearer:

—(2aD’ + 2b) £ /(2aD’ + 20)v/2b
dyo = (2aD" + 2b) (2a)\/_ (5.4)
’ —2a
¢ = sin 20400"%2”“. Substitute this to Equation 5.4
—(D'sin 2060882””" +1) £ \/D’ sin QaCCOSth;zP +1
d172 N — 5111 2a005tdrzve (55)
Costioe

Figure 5.4 shows the changedh,;,, value as a result of changesin As
D increases, also the,,;, increases. Thd,,;, is bounded byD, so the larger

26

values of D enablesd,,;, to be larger and, as a result, to keep thest,;,; at
minimum. Figure 5.5 compliments this observation and shbatsasD increases,
the Cost,,: Of the coverage decreases. Tdwalue shows the ratio of drive and
localization cost. If localization cost is cheap relativadtive cost ¢ = 10) then
the value ofd,,;, grows faster since it is cheap to make localizations.

120 \

c=0.1 ——
- c=10 ———
® 100 - 1
[
[}
(73]
g 80 | .
S
S 60} .
()
N
N
T 40 | }
g Y
= B
o
' 20 | .
°
o "/ 1 1 1 1
0 20 40 60 80 100

D - the size of physical sensor

Figure 5.4: The value at,,;, as function ofD. ¢ = %

Figure 5.6 shows how our model finds the balance between dadization
and the drive costs. If locomotion error grows, then our nhedlétry to increase
the size ofd,,;, to make the number of localization smaller as long as theedriv
cost not grows too much. When the error is very high, drive besbmes high
too, and then, the value df,;,, decreases to make more localizations and shorter
drive.

Also, Figure 5.7 shows the balance between the drive andtadization cost.

If localization cost is high, then the model tries to kekp, as high as possible to
compensate the localization by the drive cost.

To summarize, we used a worst case (maximal error boundg antyl find
dnin Value. Because it relies on a worst-case analysis, thisntasfalRIM SAIL
takes no risks in computing when to next localize, and as\dtyésis guaranteed
to never require corrections. Tlg,;, is an optimal value since it minimize the
total cost incurred by the algorithm. At the end, we investiggl how different
settings of the robot and the environment affectdhg,value.

27

COSttotal

10

Figure 5.5: The value af'ost,.(d) as a function oD.

5.2 UsingaHeuristic o Estimate

Observing the dead-reckoning errors of real robots, we fiatimost of the errors
are much smaller than the worst case robot error, i.e., ea@ not distributed
uniformly in the error range bounded by the worst cageee Section 6 for actual
results from robots used in the experiments). Thus, we carsosller values

of the « in the TRIM SaAIL algorithm (and Equations 5.3 and 5.2), to reduce the
number of localizations. However, this risks greater traests, as corrections
might be required: When the actual dead reckoning error gefathen then
value used, the robot will need to turn back to the point wiieeerobot deviation
was less or equal to the one allowed by the curient anda values (Line 17 in
Trim Sail Algorithm). From that point the robot can continihe coverage task.
Thus the selection of a smallervalue must be carefully balanced against the cost
incurred for corrections.

In order to find a heuristic value far we use error data measured on a real
robot. We propose (and empirically compare in Section &edhreuristics, all
based on analysis of the robot errors. Dead-reckoning datarcan be measured
in pre-deployment experiments, or at run-time (e.g., by sugag errors with
every call to the localization procedure). With all of thdssuristics, we stick
with the analysis fo¥l,,;, value, but use the: values estimated by the different
heuristics.

Simple Symmetric Heuristic. Use the mean of the distribution, ignoring the er-

28

c=0.1 ——
P - c=10 v
5|
2 g4t |
[}
»n
T
2 /
s 37 |
s
N
B 20
©
£
a
o 1+
©
o ‘ : : L L I I I

0 10 20 30 40 50 60 70 80 90
alpha (degree)

Figure 5.6: The value aft,,;,, as a function otv. ¢ = %

ror sign (errors left of heading have a positive sign, otmagative). This
mean value is used as

Absolute-Value Symmetric Heuristic. Estimate the mean from all errors, while
ignoring the sign of the error.

Non-Symmetric Heuristic. Collect the errors of each side separately, into two
distributions. Estimate their means separately, and wesa s, andas,
respectively.

29

d - optimal size of 'virtual’ sensor

5.5

2 L L L L
0 20 40 60 80 100

The ration of drive and localization cost

Figure 5.7:d,,:» as a function of-2starive

COSthC

30

Chapter 6

Experiments

In this section we complement the analysis from previousiges with experi-
ments with data from real robots. The experiment settingslascribed in Section
6.1. The first experiment (Section 6.2) compares the dataradat from real robot
with the analytic estimates. Then, we compare the perfocmahthe TRIM SAIL
coverage algorithm—and the different heuristic estimtdea—with a nave hy-
brid, which uses localization continuously (Section 6Rhally, we conduct sen-
sitivity analysis to examine the robustness of the techesda inaccuracies in cost
estimates.

6.1 Experiment Settings

In order to evaluate the techniques described above, wénebtarror data from
a Friendly Robotics RV-400 robot, and used it to simulate d®t's movements
across the hundreds of robot runs used in the experimeraa.b&he robot and
coverage algorithm settings are described below. For theeruset of experi-
ments we assume that robot deviates from it’s original loocaby a straight line
and as a result, the dead reckoning error is defined by thd evigst deviates
from its original heading.

Robot settings. The RV-400 is a commercial vacuum-cleaning robot, which we
fitted with our own control software (Figure 6.1). The RV-4QMs its own cov-
erage software, but this software was disabled in theseriexpets. Instead, we
run our own coverage algorithms.

To generate a data set of dead-reckoning errors, the RVelii was com-
manded to move in a straight line, for a distance of 40cm. Wais repeated 50
times, resulting a data set of 50 measurements. For eachnmeowewe mea-
sured the error in the robot position at the end of the movénsen calculated
the resulting error in heading (angle). This data set folmediasis for the motion

31

201
15}

10}

90.1 -0.05 0 0.05 0.1
Figure 6.2: A histogram of RV-400 heading errors, in radidia width is 0.015.

A measurement at -0.27 is not shown (but was included in tloelledions below).

error models that we use in this section. A histogram of thleeasurements is
presented in Figure 6.2.

Evaluating the techniques presented above requires niegsutarge num-
ber of configurations, multiple times. For instance, to eaté the upper bound
computed in Equations 5.2 and 5.3, we vaiiy the rangg0, D], and repeat each
setting 50 times. We additionally vary the heuristic teciuel used withAlg,,;,.
This would have made for an impractical number of runs withghysical robots.
We therefore chose to conduct controlled experiments bylsiting the move-
ments of the robot, using the motion errors described abdith. each simulated
forward movement (each step) required by the controlliggdhm (TRim SAIL,
Algerig, €tc.), we randomly picked one of the error values and mokieddbot
under the influence of this error. As a result, the simulatdzbt's movements
accurately simulate its movements in our lab.

Using the collected errors, we found that the maximal roleetationa,,, . is
bounded byi5.6°. All experiment results are averages over 50 trials.

32

Coverage algorithm settings. In each one of the experiments robot is set to
cover the area af500 square meters. The real robot sensors rangeas set t&
meters. The different costs vary between experiments,rilasa otherwise noted,
were set with a 1:5 ratio (i.eG'ostg.. = 100 and Cost;,. = 500). We used

a simple corridor map, where no robot turns are requireduideeof a corridor
was motivated by two factors: First, all coverage algorghmehave similarly (if
not identically) in this environment, and thus the resultsuld not depend on
our choice ofAlg,,;,,. Second, as RIM SAIL’s localization in turns is the same
as any other exact-motion algorithm, this environment liggits TRIM SAIL’S
differences with existing work.

6.2 Calculating d: The Basic Technique

We noted that Equations 5.2 and 5.3 provide an upper bourtdd@lgorithm cost
(Costioia). We first evaluate this upper bound with real-world data. dMepare
the cost of using RiM SAIL (Algorithm 1) on real-world data, with the values
obtained from Equation 5.2. We vary the virtual sensor gizdoreover, we will
ensure that the minimum in the Equation 5.3 correspondsatoninimum in the
real runs.

We setdtol, 2, 2.5, 3, 3.16 (tle,;, value), 3.5, 4, and 4.5 meters. For each
one of these 'virtual’ grid sizes, we run a coverage algaritr 50 times using the
error data we obtained from the real robot. Figure 6.3 ptsste data obtained
in these experiments. This figure compares the cost funofidigorithm 1 runin
our simulation testbed with the cost obtained from Equahi@n The cost function
of the real run is bounded above by the function drown fromeign 5.2. The
real cost is indeed bounded by the results from Equationtdy.24% in all the
measured points. The qualitative behavior of both funstisndentical. For both,
d = 3.16 is a the minimum. This is the value computed by Equation 5sgtan
the measured,,,,, maximal error.

6.3 Comparing Complete Coverage Algorithms

To establish a baseline for the experiments, we first4lyp,,,, as is, to measure
its cost and coverage success. The results appear in TdbleT®e columns

measure the coverage percentage, the total simulatedckstiaveled (in steps of
40cm), and the number of localizations (fixed at O, siA¢g,,;,, does not use any
localization). Because there are no localizatio;,,;,, never turns or travels to
correct its location. However, its coverage percentage® (43.25%). In the

different trials,Alg,,;, coverage percentage ran 13.5% to 73% of the area.

33

| Analytiéal Prediction ---o--
Real-world Robot Data ——
450000 | - |

500000

400000

350000

COSttotal

300000

250000

200000

150000 L L L L L L
1 15 2 2.5 3 3.5 4 4.5

d
Figure 6.3: Comparison of running Algorithm 1 with real-wbdata (averaged
over 50 trials), with the predicted cost obtained from Epuab.2. The algo-
rithm’s cost is a function ofl.
Name Percent Area Distance Number of
Covered Localizations
Algorig 43.25% 500 0

Table 6.1: Coverage by an unmodifiddy,,,,. Results averaged over 50 trials.

The results presented in Table 6.1 demonstrate the impagblaiting the
perfect dead-reckoning assumptions of many exact-motiwerage algorithms.
Here, a provably-complete algorithm fails—by a significargrgin—to provide
complete coverage because its motion is erroneous. Maggrlexact-motion
solutions to the coverage problems would suffer from simpla@blems. Direct
comparison of RIM SAIL to Alg,.,, therefore does not make sensgig,,;,
would fail to provide complete coverage, whiclRiM SAIL provides.

TRIM SAIL hybridizes exact-motion coverage algorithms, modifyimgit use
in real-world settings, to maintain their proven propextéefficiency, robustness,
etc. while guaranteeing 100% (complete) coveragowever, a more direct ap-
proach is possible in principle, where an exact-motion@tlgm would simply be
used together with continuous (repeating) localizatia.ifstance, if landmarks
or beacons are always sensed by the robot, then the robotingorrciple at
least—run localization procedures repeatedly, withoutsparesulting in contin-
uous error corrections, and complete coverage.

We therefore turn to empirically evaluat®iM SAIL and its heuristic variants
(Section 5.2), against a naive use of an exact-motion adklgorivith persistent

34

localization. We compare the following techniqueSy;,., which is Alg,,;, used
with persistent localization (to create the best poss#ilg,., we assume perfect
localization); T'S,,.... is the worst-case AIM SAIL using the maximal heading
error bounduw,,,q,; @aNdT'Sg;ppie, T'Sabs, 1T'Sns are TRIM SAIL variants using the
simple-symmetric, absolute-value symmetric, and nonrsgtric heuristics. We
remind the reader that these heuristic variants attempédace the number of
localizations, at the risk of added travel distance forections.

The three heuristic methodSS;;, e, T'Sqs, andT'S,,; all rely on estimat-
ing the distribution(s) underlying the error measuremenis do this, we used
three distribution-fitting tests, namely Chi-square [44hd&rson-Darling [45],
and Kolmogorov-Smirnov [12]. We found that tfié&s,,,, andT'S,, results are
best fitted by Pearson’s Type 5 distributions, also knowReason51]. The
T'Ssimpie result is best fitted with Logistic [36] distribution. For araplete diss-
cussion on heuristic methods and set of experiments withlision-fitting tests
see Appendix 13. The distribution fit was done separatelg&oh heuristic. The
fitted mean (in the case of symmetric heuristics) or means-§yonmetric heuris-
tic) were taken as the value(s) used in the algorithms. For instance, for the sim-
ple symmetric heuristic, the fitted distribution had a meta 9., = 1.4703°.

The results of the comparison appear in Table 6.2. All therdlgns use
the d,.;, = 3.16. Each row corresponds to a single algorithm, and the val-
ues in it are averaged over 50 trials. We use horizontal lioedistinguish the
analytically-motivated algorithmdlg,,. andT'S,,.. from the heuristic-based al-
gorithmsT Simpie, T'Saps, @NdT'S,,,. The columns (left to right) provide the to-
tal distance traveled (in meters), the number of localatctions, and the dis-
tance/localization ratio. The final column indicates th<cost resulting from
using the algorithm in question. Table 6.2 leads to severaticisions, explored
below.

Name Distance Number of Dist-Loc Total Cost

Localizations Ratio
Algioc 790.35 251 3.14 204544.98
TSmax 792.15 231.00 3.43 194715.00
TSsimpre 1418.09 21.04 67.4 152329.00
T Saps 973.28 33.12 29.39 113888.00
TS, 977.25 34.57 28.27 115010.41

Table 6.2: A Comparison of coverage results by different dllgms. All algo-
rithms resulted in 100% coverage. Two best costs are in d&$ults averaged
over 50 trials.

First, we see that under the cost ratio defined (100:500), ¢ve worst-
performing variant of RIM SAIL—T'S,,.... IS better than using the exact-motion

35

algorithm Alg,,;, with continuous localization callsA(g;,.). The distance trav-
eled by Alg,,. is almost the same &88S,,,., with a greater number of localiza-
tions. This is becausél/g,,. makes unnecessary corrections. Because it does not
consider the geometry/size of the coverage tool, it rejpositeven if the area is
already covered. ThusrIM SAIL indeed offers a more effective hybridization of
the original algorithm.

Second, the results reveal a qualitative significant difiee between the ana-
lytical method which seeks to guarantee performance usihgtbe maximal er-
ror bound {'S;...), and the heuristic method® §;.,pic, 1'Saps, aNAdT'S,,;) which
seek to minimize cost by relying on additional knowledgeréhabout the dis-
tribution of heading errors). The heuristic methods sigarikly outperform their
worst-case counterpart, demonstrating their effectileation of the additional
knowledge they have.

Third, the Absolute Symmetrid{S,;s) and Non-Symmetricl(.S,,) algorithms
are significantly better than all others. They are in fact-dmtinguishable as far
as providing the best overall results (two-tailed t-tesults inp = 0.32). In par-
ticular, given that both methods relying on our fitting theoedistribution to the
Pearson5 distribution, we believe that this indicates ithd¢ed this distribution
type is appropriate for modeling dead-reckoning errors.ciieck this, we also
experimented with other distribution types, and showed B&arson5 is indeed
superior. The details of this experiments are avaiable ipefglix 13.

6.4 Senditivity to Cost Estimations

In this section we explore the robustness of the techniquestcuracies in cost
estimates. The ratio between localization and driving e®seflected ind,,,;,
calculation. However, in some cases this cost can changegdilre run of the
algorithm or can be inaccurately estimated. In such dasg will not represent
the optimald value.

The distance-localization ratio of the best algorithm$(&#.2) is lower than
that of 7Sy, though higher than that df'S,,,,. The conclusion is that the
results in Table 6.2 might be dependent on the actual costagsss (travel cost and
localization cost), which are used irRTv SAIL. Here, we explore the sensitivity
of the results to errors in the cost estimates provided taldparithms.

Table 6.3 shows the total costs for the different algorithmisen the travel-to-
localization cost ratio is systematically changed fromahginal settings (marked,
fourth column from left). First, we note that tfeS,,,, which we found earlier to
be the best, remains so under extreme changes to the costTiaé result holds
from a cost ratio of 1:25 until a cost ratio of 1:1. Thus onedosion is that
the top performing heuristic technique is in fact extrenrelyust to cost estimate

36

Ratio— 1:50(0.02) 1:25(0.04) 1:10(0.1) 1:5(0.2) 1:1(1) 5:1(5) 10:1(10) 25:1(25) 50:1(50)
Name| (original)

Algioe 1334035 706535 330035 204535 104135 420275 81543@00975 3976850
TSmae 1234215 656715 310215 194715 1023149175 815250 2003475 3983850
T'Saps 262928 180128 130448 113888 100640 489952 976592 2436512 4869712
TS 270582 184153 132296 115010 101181 492080 980704 24465789643
T'Ssimple 247009 194409 162849 152329 143913 711149 1420194 3547329 7092554

Table 6.3: A Comparison of total costs for each algorithmseunnlifferent travel-
to-localization cost ratios. Best costs are in bold.

errors. We see thatRIM SAIL provides superior performance relativeAdy,og
up until the ratio of the cost changes extrimly to 25:1.

37

Chapter 7

Conclusions

In this paper we presentedRTv SAIL, a hybrid coverage algorithm (and asso-
ciated heuristics, geometric optimizations) for realdd@ettings. RIM SAIL
takes an exact-motion coverage algorithm, which assumeead-reckoning er-
rors, and uses it to guide angled movements that guaranteplet® coverage
of the target work area, while minimizing the use of locdiiza to that strictly
necessary. The key idea behineiM SAIL is to adjust the grid-size used in the
exact-motion coverage algorithm, so that it optimizes tin@iber of expected cor-
rections (in the worst case). We presented an analyticastvaase version of
TRIM SAIL, and three heuristics which further reduce total coveragésc

We have conducted extensive experiments withM SAIL, using data col-
lected from the RV-400 robot. The experiments demonstriiaii1) the analyti-
cal methods accurately predict an upper bound for totab¢casid minimum cost,
given robot error bounds and coverage range; (2) the heunsdthods outper-
form the analytical methods in the cost ratio chosen; (8)MI'SAIL variants are
sensitive to errors in cost estimates only when the cosi etiremely changes.
In the future, we hope to explore new heuristic directionscWitake more risks
in terms of completeness of coverage, but provide reducsis.co

38

Part ||

Distributed Matchmaking under
Time Constraints

39

Chapter 8

| ntroduction

Matchmaking is the process of introducing two or more agentse another. In
the context of multi agent systems (MAS), this process isliis®rder to obtain
service providers, create groups of shared interest, or émalitions. Matchmak-
ing is important in dynamic, open, large multi-agent sysemhere agents can
join and leave the system dynamically. In such systems,tagknnot have full
information about the overall system configuration in adearand thus match-
making mechanisms are needed for online discovery of resswand services.

Many approaches to matchmaking take a centralized approaatich one
or a fewmiddle agentsespond to matchmaking requests from all agents in the
system (see [6, 7, 22] for surveys). A key advantage of thisaaxh is that it is
often fast, and is cheap in terms of the overall number of agss sent (though
of course the middle agents take most of the load).

However, recent technology trends limit the efficacy of calited systems.
First, as the number of agents increases, load balancingni®scan important
issue; it is no longer possible for a few middle agents to supgirect commu-
nications with all other agents. This is exacerbated asyb&es becomes more
dynamic, and thus the frequency of matchmaking requesteases. Second,
the single point of storage (of matchmaking informationprisblematic both for
system reliability, as well as security [6, 7, 26].

Hence in this paper we focus on distributed matchmaking.eHeach agent
is capable of searching and announcing the activities wokihg for. There is
no central point or special kind of agent that assists in figdnatching agents;
instead, agents share information among themselves apdeheh other resolve
their matching requests. Such a distributed solution ig va@bust, and the com-
munication load is balanced by the agents. However, the punflimessages that
are transferred among agents, and the time it takes to finchmgtpartners, can
both increase significantly with a distributed approact6[73, 21].

Previous works on distributed matchmaking [40, 43, 7, 6Husehniques that

40

are unidirectional in nature: One agent searches, whiletther passively waits
to be contacted. This approach is motivated by servicaxmibapplications, in
which it is natural for the passive server agent to be contisly available on-line,
waiting for a client agent to initiate a search. Howeverdinectional searches
involved increased search time, sinve only one of the ageraiches for a match.

In contrast, we are motivated by dynamic peer-to-peer agiptins, in which
agents are on equal footing, and neither can be assumed twégsaavailable;
the initiative for a transaction must come from all agent®ived. Examples of
such applications involve networked pickup chess or npdtity card games using
Personal Digital Assistant (PDA) devices, where a given loemof partners (that
satisfy some constraints) must be found quickly. Here, @taming agents are
active in the search; no agent—acting on behalf of a user-beassumed to be
available for game proposals at all times. Thus the matcimggkocess is not
unidirectional but multi-directional.

This paper presents multi-directional matchmaking atbors that are fast
and scalable, and in particular will minimize the amountraffic generated in the
system. To carry out efficient multi-directional matchrmrakiwe use anatching
cache stored with each participating agent. A matching cachesecture that
enables the agents to collect information about querieparfdrm matching on
behalf of other agents.

We show that multi-directional matchmaking using the matgltache is sig-
nificantly more efficient than unidirectional matchmakinga variety of scenar-
ios. Moreover, in the case of matchmakihg> 2 partners, the matching cache
can contain information about partial matches. We providegto utilize infor-
mation about such partial matches to further reduce matkimgéame.

This paper is organized as follows. The next section mas/éhe research
and discusses related work. Section 3 presents bidirettroatchmaking, and
extends it to multi-directional matchmaking. We then pregperiments demon-
strating the efficacy of the approach, in contrast to prevteahniques, and present
conclusion. In the appendix we discusses additional exygris, which are used
to determine baselines for the experiment setup.

41

Chapter 9

Motivation and Background

This research is motivated by real world applications. Weiaterested in de-
veloping matchmaking facilities for small device netwofksy., networks of Per-
sonal Digital Assistants—PDAS). These facilities shouhdiae their users to
search for partners in real time. For instance, we want usdve able to search
for different kinds of games with a different number of pagants. For example,
if a user wants to play pick-up chess, her agent, on its PDA aefively query
the network for available partners. Another example inetuloking for carpool
partners currently leaving for a similar destination.

A key challenge in this type of application is the highly dyma nature of
the matchmaking requests: Users—and their agents—onlyreempatchmaking
sporadically, and thus distributed techniques that relgrmagent to continuously
respond to matchmaking requests are inherently inefficente at most times,
the responses will be negative. Centralized techniquesaaghge in small-scale
systems, but as argued above, do not scale well when the maidgents grows
significantly. We discuss previous approaches in detadvioekee Ebrahimi et
al. [22] for a survey of matchmaking techniques.

We begin by discussing centralized matchmaking techniqu&sy difference
between the following reviewed investigations and the warthis paper is that
we focus on multi-directional matchmaking, while all therk®mentioned below
utilized only unidirectional matchmaking. For instanceedRer and Sycara [19]
studied different types of middle agents and compared threng@ number of pa-
rameters. Among these methods, they describe centraliaethmaking in which
a matchmaking agent is responsible for introducing two tggnone another.
One of the agents must initiate the transaction by contgdtie matchmaker,
that is responsible for suggesting possible partners. fditiator then picks one of
these partners with wich to transact. In contrast, our worglgasizes multiple ini-
tiators, working in a distributed fashion. However, theragyronous, distributed,
nature of the algorithms we present imply that the initiatdo not receive a list of

42

potential partners at once. Instead, potential partnersnarementally reported
to the initiators, and they need to choose whether to cotftaat, or to wait.

Ben-Ami and Shehory [7, 6] have empirically contrasted @dizied and dis-
tributed unidirectional agent location mechanisms—wliicn the basis for matchmaking—
and conclude that a centralized approach is fast and workgwveenall-scale sys-
tems, where matchmaking requests are relatively rare. Wit fails to satisfy
the needs of large systems, or systems that change quickbyedMer, it intro-
duces a single point of failure to the whole system and mawgifsigntly raise
security and reliability challenges. Ben-Ami and Shehorgatade that in con-
trast, a distributed approach seems more appropriate ige kcale open MAS
with high workloads. Also, the time required for agent logatis longer in a
distributed approach, and a significant communicationteed exists in the dis-
tributed approach.

There have been several investigations on distributedmratking,wich have
attempted to reduce communication overhead and matchm#kie. Shehory
[43], introduced a distributed agent location mechanismhith each agent stores
information about some predefined number of other agentgeinétwork. While
looking for some resource or service, an agent queries theteg knows for the
required resources. The query propagates recursivelyghrthe system, until it
is resolved. Under the assumptions of Shehory’s work, itiees shown that the
agent may know only a small portion of the MAS and still be a@bleesole queries
efficiently in terms of time and communication costs. Howetleese results only
suit MAS that can be modeled as lattice graphs. Also, it isagsl that the MAS
changes adequately slow, to make the information whichns®eer the network
sufficiently reliable. The latter assumption does not holdur environment.

Additional research in matchmaking was performed by OgatahVassiliadis
[40].Their environment included simple agents with linditeesources and they
studied distributed techniques that would be suitable beesconsumer-provider
problems. They proposed to use local search and invedligfagesystem behav-
ior with different numbers of agents and different numbédrgasks. Only local
communications were allowed.

Foner [26] describes Yenta, a distributed referral-basattimaking system
in which agents group themselves into clusters of potem#thmaking partners.
Such clusters provide improved matchmaking performancgogential partners
are logically connected. However, an underlying assumpsdhat the interests
of the potential partners—the basis for the matchmakingraie static or change
very slowly.

Matchmaking is related to works conducted on searchingefswurrces in peer-
to-peer (P2P) networks [37]. For instance, a clusteringetidechnique was in-
troduced by Banaei-Kashani and Shahabi [4], who proposadla-directional
active search process, in which all partners take active searautigns to ac-

43

celerate the search process (at the potential expensereaisiog the number of
messages). This is done through the use of a matching-cacdted at intermedi-
ate nodes, which allow agents to find each other’s “trailgh@mnetwork, and thus
discover matches. This work provides an analytical founddbr using cluster-
ing for distributed resource search. Clustering can prowdefficient solution
for a different types of search queries, but fails to addeesgonments where the
basis for matchmaking changes quickly. Clustering is thumaptementary tech-
nique to the one we are advocating. The technique we preddrésses one-shot
matchmaking, without prior clustering.

Other investigations have explored alternative ways tacsire the topology
of the distributed system to improve search performancstributed Hash Tables
(DHT) [46] impose some structure on the system based on teeydey each
agent provides. As a result, the system must be restrucaaell time an agent
joins or leaves the network, and whenever an agent placesnwves a request
for a partner (which changes query keys). Thus DHT method$¥egroblematic
for our application domains, in which agents continuousive the system, and
query items change rapidly. Thus in our work we focus on atruaired system
approach.

Banaei-Kashani and Shahabi proposed modeling P2P resdigerery us-
ing methods from statistical physics and the percolati@om [3]. Since MAS
or P2P systems can be very complex, these methods are imipfmtanalytical
studies of the matchmaking problem. Using a criticalitgdxh analysis Banaei-
Kashani and Shahabi reduced communication overhead utdeadby the dis-
tributed search query which is sent over the network. Thep@sed a technique
called probabilistic flooding in which a message is sent with some predefined
probability to each one of the sender’s neighbors. The exaloe of the prob-
ability for sending the message is determined analyticallyey then presented
a general framework for complex unidirectional resourcarae analysis (for a
static system) but did not model a specific problem like matgking [3]. In
contrast to this work, we focus on multi-directional searefowever, we do not
provide an analytical model of our algorithm’s performance

Dimakopoulos and Pitoura studied distributed resourcsgiery in [21]. They
presented three basic distributed approaches for resaliscevery: Flooding,
random walk and teeming (probabilistic flooding). Assumangtatic environ-
ment, they found an analytical representation of the perémce of the resource
discovery process, including the success rate, the timeamanunication over-
head. These analytical results were evaluated againstieaipesults. Although
the model presented in [21] is insufficient for highly dynaneinvironments it
presents a platform upon which models for more complicagétthgs can be built.

A final related set of techniques addresses two-sided edorsearch (e.qg.,
[10]). Here, the focus is on the economics of making the garthoice, among

44

all possible partners. However, the underlying matchn@hkigorithms—uwhich
generate the list of potential parthers—are not discusSedsequently the algo-
rithms in this paper can complement such investigations.

45

Chapter 10

Multidirectional M atchmaking

Due to the size of the environment and its high dynamics, rairthe agents
has full knowledge of all other agents in the system. Insteagnts have an
address book of a limited size where they store connectionnration to a small
number of other agents. This situation can be modeled agetéd graph, where
nodes are agents and edges correspond to links stored indnesa book. In
graph-theoretic terms, the grapmist fully-connected; actually, it is fairly sparse
(though connected)[17].

To locate (i.e., to match) an agent that is not in the seekelidsess book, the
seeker can send a query to one or more of its peers (agenssaddtess-book),
and ask them to forward the query to their own peers. The d@stah a query is
proportional to the number of messages the query createe ®match is found,
however, the connection information is obtained, and thet cbcommunication
is constant, since a direct one-to-one connection is eskesol.

We want the agents to query the MAS for available matcheghlewdistributed
nature of the environment makes it difficult to reduce theunegl matchmaking
time together with a reduced number of messages. Previoks\wave proposed
two basic techniques to reduce the number of messages tlireciional search:
The first one is calletkeming[21]. Instead of forwarding a matchmaking query
message to all the agents in the address book, teeming eopmosend messages
to the neighboring agents with some predefined probabi@ixen the random
nature of the address book graph, the proper probabilityevaill ensure delivery
of the message the to a bounded number of peers, and thus sumeé dn the
message number can be guaranteed. The second techniaquierdten network-
ing, limits the number of times each message is sent. Thitaliion is referred to
asTime To Live (TTUB]. Both techniques can keep matchmaking time low. We
assume that our environment supports both techniques ahgrbper values for
both TTL and teeming parameters are given (e.g., based dytiaabhestimation
or empirical testing).

46

The key to our techniques is the use ofmatching cachen intermediate
agents. The matching cache stores incoming queries unatetns found (e.g., a
matching query arrives at the same node), or until the timé-&xpires (in which
case the matchmaking is no longer relevant). If the cachdlig fvill throw out
older queries and will store new ones. Here, we investidgetetfect of the match-
ing cache size, along with other network parameters, on #tetlimg success rate
and the time needed to resolve matches. We will demonstngpéieally that the
matching cache helps to increase the number of successfcihesa We will also
show that it reduces the matching time and the total numberessages sent.

10.1 Bilateral Matchmaking

In bilateral matching, both agents actively query the MASd@ossible match.
These two queries travel through the network, in essenaaiarg a bi-directional
distributed search process. In a simple case, a match iessfody resolved if
one of the queries reaches a second matching agent.

To increase the likelihood (and to reduce the time) of a sssfaématch, we
introduce the matching cache data-structure. Each agamissa FIFO cache of
incoming queries of a predefined size and matches new quyasst this cache.
The cache stores agent connection information, togethbrtiae information nec-
essary for matching (i.e., the activity type sought). Duéhtdistributed nature
of the system, it is possible that information stored in thehe may be outdated.
But if the cache size is chosen properly, and the data flow ts taes portion of
the outdated information will be relatively small.

To limit the number of messages in a network, and to prevemifarte cy-
cling of messages, two common techniques are used in tihatlite. The first is
avisitor’'s cachein every node, so that messages that arrive at a node for she fir
time, are stored in the cache. Then, if the message reachsanhe node again,
itis rejected. This technique requires significant memang may also fail, if the
cycles are very large.

The more common technique in the literature (and indeedhéncommon
Internet protocols), is a network hop counter with each mgsscalled TTL (Time
To Live). The TTL defines the number of hops (edge traversiadd)a message can
travel in a network until it expires. Every node that receigemessage forwards
it only if the TTL is greater than O; when it carries out suchifarding, it reduces
the TTL by one. When a node receives a message with a TTL of Gsaaudis
it. In principle, the TTL and the visitor's cache are equargltechniques, but as
we discuss above, the TTL mechanism is more robust and e=gl@iss memory
of each agent. In the experiments below, we implemented ages: when only
the TTL was used and a combination of both the visitor’s cactteTTL methods

a7

were used.

We assume that there are different kinds of activities inemwironment. For
example in the same MAS there are agents looking for chesg géagers and
agents looking for checkers players. These activities eferned to as having

different activity types. Agents that are willing to paipiate in an activity are
referred to as partners.

The agents pass simple query messages to each other, cahgidke fol-
lowing data items:

e The already known partner (the initiator of the query).
e The partner’s activity deadline.
e Activity type.

e TTL (Time To Live): The amount of time a message is allowedravel
along the MAS.

Each agent in the system performs Algorithm 4, running forever.

Algorithm 4 Bilateral Matchmaking Algorithm.

1. For each incoming query from agetdo:

(a) If agentA is interested in the query (i.e., it is a match), try to cohtac
B to start the activity.

(b) Otherwise, try to match the query to queriesiis cache.

I. If a match is found, inform the matching agents.

ii. Otherwise, store the query in the cache and forward theryqu
using teeming.

2. For each new activity seeking a match fodo:

(a) Create a query.

(b) If ¢ is satisfied by a query fron® on the local matching cache, then
try to contactB to start the activity.

(c) Otherwise, forward the query using teeming.

The cache stores received queries, including their agsocactivity types,
partners sought, partners found, and deadlines. A sepgan@tess is assumed to
maintain the cache, in terms of deadlines: When a messagg njutre cache
reaches its deadline (i.e., the amount of the time the useilliag to wait), the

48

process discards the query. In addition, the process isdargehof throwing out
the oldest queries (even if still valid) when the cache ik ild new queries need
to be stored.

10.2 Multilateral (k-partner) matchmaking

Activities that require more than two partners are quite wam. For example,
agents that want to play a bridge card game are required ébecgeoups of four,
in order to start the game. Thepartner matchmaking problem is to find such
groups of size:. To the best of our knowledgé;partner matchmaking has not
been tackled in the literature, especially not using natkilal active search.

Seemingly,k-partner matchmaking can utilize the techniques proposed f
bilateral matchmaking. Agents that receive queries frontoup— 1 agents will
store them in their matching cache, and oné&taquery arrives, thé agents are
introduced to each other. However, /agcreases, the likelihood of at least one
of the queries being out of date increases, together witheitheced likelihood for
all £ queries to hit a single node. We thus seek techniques thatgaove the
simple matching, irk-partner matchmaking.

We generalize the 2-partner matchmaking algorithm sudhoihery forward-
ing is always based on the number of queries received thusHar instance,
when two queries of three have been received at a ngdé does not forward
the second query to its peers; instead nddeomposes @omplex queryhich
includes information about both matching queries it alyelhds in its matching
cache. Thus, a single message informs others aboutip tgartners that are al-
ready matched. Sending this information makes the MAS mé&dion flow faster
and essentially does not add communication cost since tbermtrof information
that is added to the query is small.

A complex query message thus contains the following infaiona

e The number of partners sougiote that this is new compared to the pre-
vious description

¢ A list of partners already foundNote that this generalizes the earlier de-
scription.

e For each one of the partners found, an activity deadliNete that this
generalizes the earlier description.

e Activity type.

e TTL (Time To Live): This TTL value is the maximum over the TThles
of the single requests that compose this query.

49

The revised algorithm for the-partner matchmaking is run by each agdnt
forever (Algorithm 5). Note that when receiving a complexequ it is decom-
posed into individual simple queries for each partner dlydaund, before being
stored in the cache. Thus the structure of the cache remaatily the same.
This allows the timeout mechanism to work as in the previ@agisn, throwing
out queries when their timeout expires.

Algorithm 5 Multilateral Matchmaking Algorithm.

1. For each incoming queky looking for k& partners do:

(a) If Ais interested in the proposed activity pthen

I. Check matching cache for partners matchjng

ii. If k— 1 partners (including those i) are found, then initiate the
activity. (k — 1 partners, andi, make fork partners).

iii. Otherwise, storey in the matching cache. Also, forward the
guery using teeming, adding ¢ahat A is a partner.
(b) Else, check the matching cache for partners matching

I. If k partners (including those i) are found, then contact one of
the k£ found partners to initiate the activity (We assume that this
agent will contact all other agents to initiate activity).

ii. Otherwise, if atleast one partner is already in the miatglcache,
addq to this partner to create a nevand forward; using teeming.

2. If A wants to initiate a match with — 1 other partners:

(a) Create a matching querywhich includes a single partned) and
check it against the local matching cache

(b) Goto 1.a.ii

The cache stores received queries, including their agsocactivity types,
partners sought, partners found, and deadlines. As inidigod4, a separate
process is assumed to maintain the cache, in terms of deadlimd throwing out
the oldest queries when the cache is full, and the new quehimsld be stored.

10.3 Cachesize

The cache stores only unmatched requests; when a matclgjngstes satisfied
it is removed from the cache. As a result, if an activity regsik participants, at

50

mostk — 1 requests are stored in the cache. Assume that the numbeifest di
ent activities in the system is. This provides us with an upper bound for the
matching cache sizet/ atchingCacheSize = m (k — 1)

The above formula provides only an upper bound. Moreovehaukl be
noted that the cache can also reduce the performance of siensy This can
happen since the cache stores knowledge about the whoesysiccording to
our model, the system is distributed and highly dynamic, asda result the in-
formation stored in the cache can be incorrect. Assume timaé salready invalid
request is stored in the cache. When, a new valid requesgsitiis matched with
an invalid request and is not forwarded.

The negative effect of the cache size is application spetiftepends on net-
work parameters, the number of active peers and on amouadtiatias. Thus, the
proper value for the cache size is chosen empirically andegliby the heuristics
proposed on this section.

51

Chapter 11

Experiments

We conducted a number of experiment sets to evaluate thaitges presented
in this report. We begun with a set that examines the effectlifferent net-
work characteristics (e.g., connectivity, TTL levels,teeg probability) on per-
formance. The reason for conduction these experimentsonestdblish baselines.
As a result we have chooses to summarize these experimehislirand present
the full report in Appendix 14. We discuss the matching caoh®ection 11.2.
Then, in Section 11.3, we compare unidirectional and bitiveal matchmaking.
We conclude with the study of bilateral and multilateralhteicues, and contrast
simple and generalized matchmaking for the multilateraed&ection 11.4).

In our experiments, we examined matchmaking performaraegdbur inde-
pendent measures:

e Matching Success Rate. This measures the percentage of matching at-
tempts ending in a successful match. A higher value indscaigroved
performance.

e Number of messages. This measures the total number of query messages
sent during an experiment. The lower the value the better.

e Matchmaking Time. This measures the time (in units of network hops)
that it takes the agents to establish a successful matchnAba lower the
value the better. Note that this measardy applies to successful matches
and is thus biased toward such successes.

e Average Response Time.This measures the average time matching agents
wait for a match. This measure includes both successful andacessful
matches. The lower the value the better.

52

11.1 Experiment Setup

We examined the effects of different network charactesstn matchmaking per-
formance in order to establish some baselines for the mdferelt parameters
that can potentially affect performance. The full reporttbese experiments is
provided in Appendix 14. Trends that are derived from theseixpents are sum-
marized below.

As stated previously, the network of agents is modeled asextdid graph.
In order to evaluate the algorithms proposed earlier, diffegraphs (correspond-
ing to different networks) were generated using the foltayyrocedure: First, a
complete simple cycle, encompassing &llagents in the network, was created
(essentially anV-size ring topology was established) to ensure that thehgip
connected. Then, we created each possible edge in the graplag edge may
connect any two agents), with a probability jof For the purpose of the experi-
ments in this section, we generated graphs Wite= 1200, and we experimented
with differentp values.

We focused on bi-directional searches for matches of @iffetypes of ac-
tivities (e.g., game types). We tested systems with 120@tagend 10 different
types of activities. We simulated different workloads oa #ystem by creating
2 types of scenarios. In the first one, 120 randomly chosentageere looking
for matches. In the second one, the number of such activasages set to 600.
We randomly generated 9 graphs and 3 scenarios and ran eawriscon each
graph, creating 27 samples for each simulation. In orderakenour simulations
more realistic, we activated the agents searching for alnmate by one during
the first 120 (or 600) time steps.

The next network characteristic we checked was the teemuiggpility [21].
This value defines the probability that a message will be teemgiven neighbor-
ing (linked) node . For example, when the teeming probahiditl, the message
will be sent to all the entries in the agent’s address books Gase is also called
flooding. If the teeming probability is 0, no message is foxkea. In our experi-
ments we varied the teeming parameter from 0.1 to 0.7.

The last network characteristics we examined were the TTd tha visitor
cache. The purpose of both parameters is to limit the me'sddgen the network.
We varied the TTL parameter form 1 to 20 and the visitor cacteefsom O to 10.

As the values of the TTL and the teeming probabilities gréne, averall suc-
cess rate of the system and the total number of messageasnsras well. Later,
we compare the performance obtained with our distributettimaaking tech-
nique based on the matching cache with the search techrhqtiestbased only

We also experimented with graphs of upl@00 agents, but found that as long as the scale-
up factors were maintained, the results were essentialtical. We thus utilize a fixed/ in this
section.

53

on teeming or on the TTL parameter. As we show later, the nragatache tech-
nique is qualitatively and quantitatively distinct fromethse of TTL and increased
teeming probabilities.

In the following experiments, the graph sixewas set to 1200, the TTL value
was setto 5, the visitor’'s cache was set to 0, and the scamasiset to matchmak-
ing 600 agents. The edge probabilityvas 0.005, and the teeming probability
was 0.3. These values were set as default values (unlessitixtated dif-
ferently) after having tested a large range of values anthbasbtained similar
trends.

11.2 Bilateral MatchmakingusingaM atching Cache

The second set of experiments, described in this secti@yaed the effect of
the matching cache size on the performance of our matchma#gorithm. In
these experiments, we set the matching cache size to 0d,80an

We compare our distributed bilateral algorithm to the passnatchmaking
(unilateral search) algorithm in which only one of the agesisending out queries,
and the other is passively awaiting a message to reach it. Midvike to show
that Algorithm 4 with a matching cache set to 0 provides areufound for the
passive (unilateral) search. We assume that both the talg#&gorithm 4) and
unilateral search algorithms use the same network parasn€f@&L, Teeming,
Edge probability, Visitor cache).

Proposition 1. Let T}, M, and S, be the time, number of messages and success
rate of Algorithm 4 that finds a match between any 2 agents asglthmat the size

of the matching cache is zero. LEt, M, and.S, be the time, number of messages
and success rate of two unilateral searches run in paralldirtd the same match
between any 2 agents in the same network.Tign> 7,, M, > 2 - M, and

Su < Sp.

Proof. First, we need to show that given any successfully resolvaitinmg task
with a unilateral search, our algorithm run with a matchiagtee of size zero will
also perform the same task successfully. A match is coreiidaurccessful if and
only if both agents looking for a match have found each other.

Assume first that only pairs of agents look for a match. Thaebmee agent B is
looking for some agent A with certain characteristics (ainailarly A is looking
for B). This match can be resolved successfully with a simplditectional algo-
rithm when the query of agent A reaches agent B or the quergaitB reaches
A. The same result will be obtained when running our bildtalgorithm with a
matching cache set to zero. A successful match can only bedfadnen either
one of the agent’s message reaches the other agent directilytérmediate node

54

can help when the cache is kept of size zero). In such caskil#éiteral algorithm
cannot incur a larger cost in terms of time and number of ngessaAlso, the rate
of the successes is equal in both cases.

We are comparing the performance of the bilateral and @ndatalgorithm
assuming that the same network parameters are set and tleeirsstances of
search occur. Therefore, even when the match is searchadfoup of more than
two partners our claim holds. In such case, a match is fourehwah queries from
n — 1 partners arrive at the'” partner. Since the size of the cache is zero, these
gueries will traverse the same edges when both algorithensiar Therefore, the
performance of our bilateral algorithm can not be worse tharperformance of
the unilateral search. O

Proposition 1 helps us to evaluate performance of bilateetthmaking and
compare it to unilaterl case. In this section we use upper@mdr bounds pro-
vided by this Proposition to show the benefits of the tecnigugosed in this
section. We will make more detailed study on unidirectiomatchmaking in
Section 11.3

0.96

0.94
0.92

0.9
0.88
0.86

Success rate

0.84
0.82

0.8 Bidirectional matchmaking ———
0.78 ‘ Unidirectional upper bound ————

0 2 4 6 8 10
Match cache size

Figure 11.1: Success rate as a function of the matching cizbe

Figures 11.1,11.2 and 11.3 show the matchmaking successhiatmatching
time (for successful matches), and the number of messaggseatively, as a
function of the matching cache size. The figures show thdi@asiatching cache
size increases, the success rate increases, and the nuimbessages and the
time needed to find a match drops. An interesting observaitrat even a small

55

13 : ‘ ‘
Bidirectional matchmaking —<—
125 ¢ Unidirectional lower bound ---------- i

12
115 ¢
11 ¢
10.5 ¢

Time to resolve message

0 2 4 6 8 10
Match cache size

Figure 11.2: Time for matchmaking as a function of matchiaghe size.

matching cache (size 1, in these experiments), is suffit@provide a strong
improvement in the matching time and success rate. Alsoeasing the size of
the matching cache further improves the other measuresatiity. Also note
that the total number of messages that travels through tfriedecreases with
larger caches. This happens because when agents recemeqaery for which
they have a match, the query message is not forwarded. Fofjovur approach,
a match can be resolved by any of the agents in the networkefidre, we also
witness a sharp decrease in successful matching time. 8Sieae interested
in short-life interactions, this result is essential to firgdmatches as quickly as
possible.

Matching Cache versus Teeming and TTL In the previous section we com-
pared Algorithm 4 with unilateral search under the same odtwgettings. As
we recall from Section 11.1 increasing the TTL or the teenpiagameter will in-
crease the success rate. We want to compare the cost (in déthes number of
messages) of a successful matchmaking process over Thntgand Matching
Cache.

When testing the teeming method, we changed the teeming lghtp&rom
0.1to0 0.7 and kept the TTL to a value of 5 and the size of the mragacache was
set to zero. When testing the effects of the TTL at a value, & @leanged from
1 to 10, the teeming probability was set to 0.3, and the magcbache remained
at zero. Finally to test the matching cache technique, tbhecaize was varied

56

400000

Bidirectional m‘atchmakiniq ——
Unidirectional upper bound ---------
350000
@
Qo
€ 300000 |
z
S
© 250000 -
%]
(]
=
< 200000 r
IS]
|_
150000
100000 * . \ !
0 2 4 6 8 10

Match cache size

Figure 11.3: Number of messages as a function of the matdaicige size.

from zero to 10, while the TTL value was set to 5, and the tegmiobability
to 0.3. We present results obtained in systems with a totdl260 agents, of
which 600 were active seekers for matches. Each point inridehg represents
the average over 27 runs (of 9 graphs configurations of edgfesebn the agents
and 3 scenarios of choices of the 600 active agents).

Figure 11.4 shows the number of messages sent as a functibe sticcess
rate. Note that the y-axis is displayed in a logarithmic scalhe graph shows
that while it is possible to achieve a high success rate witleethe TTL or the
teeming techniques alone (without the use of a matchinge)abis will require
that a larger number of messages be sent. Moreover, not atithesmatching
cache technigue increase the success rate but it will atkaeethe total number
of messages sent at the same time.

Figure 11.5 shows the time required to resolve successftdhmg queries.
The figure clearly shows the qualitative difference betwdenperformance of
the algorithm with a matching cache and the TTL/teemingnepkes, which are
more suitable for controlling system traffic.

57

1e+008

T
Match Cache -+»---
Teeming &

1le+007

Message number

1e+006

TTex

100000 L L L L L L L L L
0.78 0.8 0.820.840.860.88 0.9 0.920.940.960.98 1

Success Rate

Figure 11.4: Messages sent by Teeming, TTL and Matching Cacdmaiques to
achieve the same success rate.

11.3 Unidirectional versus Multidirectional M atch-
making

In this section we would like to take a closer look at bidirecal matchmaking.
We will compare directional and bidirectional matchmakingrder to study the
impact of the bidirectionality on matchmaking. The are types of directional
matchmaking we wish to explore. The first one assumes theg tire two types
of agents providers and consumers. While consumers actiealghing for avail-
able providers(using the algorithm described in 10.1)yilers passively wait for
requests. The second type assume that all agents are eduallgrsome fraction
of the agents that are wiling to find a matches actively sesrébr available part-
ners. While the former settings models the well known pravm@sumer game,
the latter settings are applicable when agents are wilbray a game(i.e. chess)
and one of the agents wants to encourage another to play the gy paying a
matchmaking cost.

Environment with providersand consumers

The set of experiments described in this section evalubtesipact of bidirec-
tional search in provider/consumer environment. We com@ascenarios. In the
first scenario, consumers and providers actively search foatch. In the sec-

58

12.5 — -
h TTL ———
Matching - N |
Teeming --=--

12 ¢
115 ¢
11
105 ¢
10
95 r

Time to Resolve Message

9 -
85 Mo IR \\m

8 L L L L L L L L L L
0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.940.96 0.98 1

Success Rate

Figure 11.5: Teeming vs. TTL vs. Match Cache

ond scenario only consumers actively search while prosigessively wait for
consumer requests. In both scenarios we varied the prosmeumer ratio. The
fractions of providers from the total number of active agemere: 1/6, 1/4, 1/2,
3/4, 5/6. Six hundred agents of 1200 were set as active agents

Figures 11.6—-11.9 show the benefits of using bidirectioratimmaking while
Figure 11.10 shows the price that needs to be paid. First,ongared unidi-
rectional and bidirectional search with a cache equal to.z&his was done in
order ro separate the effect of bidirectional search frogretifiect of the matching
cache. This comparison shows that bidirectional searcieaeha better success
rate and waiting time when using a larger amount of messagesder to reduce
the amount of messages used by bidirectional matchmakingee bidirectional
matchmaking with a cache size equal to 5. The Figures 11831show that in-
troducing matching cache not only helps to decrease the euaflmessages but
additionally improves the success rate and waiting time.

Figure 11.6 presents a global view of the system. It showsstlfgasuccess
rate of the whole system is higher when the number of actiogigers is equal
to the number of active consumers. The global success ratesatse when there
is a lack of providers or consumers. Figure 11.7 compliménssview by pre-
senting a normalized success rate. A normalized successiraivs a success rate
normalized according to the number of possible matchesarstenario. For ex-
ample, if a provider/consumer ratio is 1/6, only 2/6 of tetaiber of agents have
a prospect of finding a match. Figure 11.7 suggests that defgiin providers

59

0.8 ‘

s Unidirectional ———
‘Bidirectional, Cache 0 -—---
0.7 t - Bidirectional, Cache 5 = |
() 06 I /’/ \\\ 1
= - . .
14 P .
a9 /// \\\ .
o 057} o N
(&) K - N
o .
>
P 04t 1
03 S
0.2 . ‘

01 02 03 04 05 06 07 08 09
The fraction of providers out of active agents.

Figure 11.6: Success Rate as a function of provider/constatier

(consumers) result in a higher success rate among the latieapeoviders (con-
sumers). Both Figure 11.6 and 11.7 show that bidirection&tinmaaking(with or
without cache) outperforms unidirectional matchmakinglirscenarios.

Figure 11.8 shows that when the number of providers growslirectional
matchmaking needs more time to find a match, while in bidoeed matchmak-
ing the time remains relatively constant in all scenarioste\ that this metric
is biased, due to the fact that different matchmaking temlnes achieve different
success rates. As result we can not conclude from this gregitohe technique
is faster the then the other. Figure 11.9 show a comparistimeomatchmaking
time. This graph indicates that bidirectional matchmaksaster in all system
settings and matching cache in conjunction with bilateratahmaking only im-
proves this.

Figure 11.10 shows that the number of messages in unidiredtsearch is
highly depends on the provider/consumer ratio. Bidire@ionatchmaking with-
out cache sends the same amount of messages all the time, idtilectional
matchmaking with cache decreases the number of messagessy$tem per-
formed most efficiently when the number of providers was etquidne number of
consumers.This graph clearly indicates the cost involvetthé improvement of
the success rate and time.

Proposition 1 helps us to evaluate matching cache perfarenamreferebce
to the success rate and time, however we would also like &stigate matching
cache performance in respect to the number of messagesreHigull shows

60

" Unidirectional —*—
Bidirectional, Cache 0 —-—#--
0.9 | Bidirectional, Cache 5 -~ /=~ |

l¥

Vo S
Vo S
0 8 | SR P |
. v Sy
Vo - ST

\ ,
0.7 | \ , 1
\

0.6

Normalized Success Rate

05 r

0.4 L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The fraction of providers out of active agents.

Figure 11.7: Normalized Success Rate as a function of proeidlesumer ratio

that matching cache successfully reduces the total nuniilbeessages. When the
cache size is equal to 10, which is the maximum cache sizediogao Section
10.3 our algorithms use the same amount of messages asegtimhal match-
making. This means that the cost of improvement in succéssral time can be
paid either by the number of messages number or by agengstoapabilities.

Uniform environment

The experiments described in this section present an emagat in wich all
agents are equal i.e. there is no distinction between peowidnd consumers.
In these environments, only a fraction of the active agerg@bowed to perform
active search while the other active agents silently waitsfcoming matchmak-
ing requests. The silent agents can model non cooperatergathat are wiling
to play but don't want to pay the cost associated with matdtimnga \We would
like to investigate system behavior under these settings.

We varied the ratio of active agents of the total number oh&geThis ratio
was set to 1/6, 1/4, 1/2, 3/4, 5/6, 1 in this experiments. Htie 10f 1 represents
the bidirectional search. The cache, if not explicitly meméd, was set at zero.

Figures 11.12-11.15 show that when the fraction of the a&gents grows,
the success rate and the time of matchmaking improves. Thertomber of
messages grows as long as the number of active agents grows.

Active agents can be seen as cooperative ones, while paggives are un-

61

15.5 —

Unidirectional

157 Bidirectional, Cache 0 #-x-- 1
145 | Bidirectional, Cache 5/~

14+ .
135 | / B

13 | .
125 .

12 t .
115 | .
105F = T

10 L L L L L L
61 02 03 04 05 06 07 08 09

The fraction of providers out of active agents.

Matchmaking Time

Figure 11.8: Average waiting time for the agents that diccessful matchmaking
as a function of provider/consumer ratio

cooperative. Figure 11.12 also indicates that passivetaganse relatively little
damage to active agents. While the success rates for acergsagecrease only
by 10%, passive agents loose in about 70% of the success rate.

The total number of messages (Figure fig:flat-msg)sent isyhem decrease
dramatically when not all the agents are actively searchiings decrease occures
because active agents present a large amount of offers syshem. As a result
messages that are sent by active agents are not requirea/éb long distances
but are found and utilized fast in a relatively close neigihtbhood. Figure 11.13
presents only those agents that successfully found a méltehcan see that the
change in waiting time is relatively small compared to wajttime presented in
Figure 11.14 where the decrease is mostly caused by paggwnesahat had not
found a match at all. In the one hand, the success rate oéagents decreased by
10%, while on the other they benefitted from a faster and aresgarch. Passive
agents benefit from ™free” matchmaking but pay in terms lof time. Passive
agents can announce their willingness to play for a longeogéhan active agents
and thereby find a match at some point of time.

While Figures 11.12-11.15 only show the effect of bidirezéilomatchmak-
ing, the matching cache has an important property in a confexooperative and
non cooperative agents. Figures 11.16 and 11.17 suggéshéhmatching cache
increases success rates in a population of active agentie@anelases the success
rate in a population of passive agents. This property carsbd as incentive for

62

45

Unidirectional ——
Bidirectional, Cache 0 -%--
40 | Bidirectional, Cache 5=
*
q) N /
£ = .
}_ // .
o 35} X
wn .
@)
S - -
@ 30
(04 -
>
c 25
(]
>
<
20 l
15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
The fraction of providers out of active agents.

Figure 11.9: Average waiting time for all active agents asuacfion of
provider/consumer ratio

cooperation among agents in the system.

11.4 Multilateral Matchmaking

Finally, we examined multilaterak{partner) matchmaking. We evaluated match-
making for groups of 3 to 6 partners. We first established #wegnl perfor-
mance trend associated with Algorithm 4. Then, we conduateith depth study
on the performance of the extended algorithm (Algorithm d&) rhatchmaking
groups of 4 partners. We conclude with the general trendscadsed with mul-
tilateral matchmaking and a comparison of the performam@dgorithm 5 with
the Teeming and TTL techniques.

First, we studied the performance of the original matchiaghe algorithm
(Algorithm 4) in the case of multilateral matchmaking. Figsi11.18,11.19 and
11.20 present the matchmaking success rate, the matchmeg(tor successful
matches), and the number of messages sent, as a functioa wiatching cache
size. In these experiments, all parameters were set astiorsé.2. The number
of partners per activity varied from 2to 6. Figure 11.20 edgen important prop-
erty of our technique. It shows that the upper bound on thebaurof messages
does not depend on the number of participants interestée isatme activity. Fig-
ures 11.18, 11.19 and 11.20 illustrate that as the numbexrtigrs increases from
2 to 6, the improvements in all metrics are still significant tend to become less

63

400000

Unidirectional ———
Bidirectional, Cache 0 -—*--
350000 [*----x-Bidirectional Cache 5 =+~

300000
250000

200000

Message number

150000 |

100000

50000

01 02 03 04 05 06 07 08 09
The fraction of providers out of active agents.

Figure 11.10: Total number of messages as a function of geoldonsumer ratio

important when the number of partners per activity increa$e battle this trend,
in Section 10.2 we suggesredthe use of extended queriesr{ilgn 5), which
allow agents to report to each other about groups of partralitching partners.
Note that when activities require 2 partners, both algorgfare equal. Algorithm
4 provides an upper bound on the unilateral case as explairf&@position 1.

We contrasted the performance of Algorithm 5 and Algorithim shatchmak-
ing for groups of sizes 3—6. However, we present the detadedlts only for
groups of size 4. The behavior of the algorithms for groupdifiérent size is
similar. Figures 11.21, 11.22, and 11.23 present a congran$ Algorithm 4
and Algorithm 5 for size 4 groups. Except for the number otmpens, the simu-
lation settings are identical to the settings given in $eclil.2. We can see that
the Algorithm 5 improves the success rate and reduces théewaof messages
sent, compared to the original matchmaking algorithm(Atben 4). When the
matching cache size is 0, the number of messages sent byitAlgds is larger
than the number sent by Algorithm 4. This is due to the fadtwhdn Algorithm
4 an agent receiving a query wich matches its request stovdsereas with Al-
gorithm 5 the agent passes it onward (and adds that it aldewi® participate in
the activity).

When examining the time needed for successful matchmakiagpears that
for larger values of the matching-cache sizes, the origatgdrithm outperforms
the extended algorithm. We note, however, that the origifgdrithm seemingly
outperforms the extended one, only by insignificant amo(approximately 0.2

64

360000 I
Unidirectional -----
340000 F Bidirectional —+—

320000
300000
280000
260000
240000
220000
200000
180000
160000

Message number

Cache Size

Figure 11.11: Number of messages as a function of the madaohe size for
unilateral and bilateral matchmaking.

hops). The reader should also remember that the graphs sleaivrtes only for
successful matches, thus they are biased. In other worlgextended algorithm
finds many more matches, but finds them about 0.2 hops slower.

We now turn to examine the trends as the group size increas@stivo to
six.Figure 11.24 thelifferencein success rates between Algorithm 5 and Algo-
rithm 4. The y-axis presents the difference in the succdss+aincreased values
are better. The x-axis shows the size of activity group. Aamiag cache of size
10 is used. The other simulation settings are identicalécs#ttings presented in
Section 11.2. We can see that as the size of the activity gyoyes, the difference
in the performance between Algorithm 5 and the simpler dlgar increases as
well. In the case of bilateral matchmaking the extended angls algorithms are
equal. Then, in groups of 3 we notice an insignificant dowdgr@®.15%) in the
success rate but after that Algorithm 5 outperfoms Alganithby more than 30%.
Now, we would like to compare our extended matching techamighigorithm 5)
with the performance achieved while varying teeming and patameters. This
comparison is similar to the one made in Section 11.2. Altesyssettings are
equal to those presented in Section 11.2. The only differénche size of the
group in the activity. Once again, we chose a group of sizetheagepresentative
group, and omitted other activity sizes.The results foeothzes of activities are
similar.

Figure 11.25 plots the number of messages vs. success aptefgr the tech-

65

0.8

0.7 |

0.6 1

05 r

04 r

Success Rate

03t

0.2 | Total Success Rate ——— -
Success Rate Of Active Agents -~

01 . . Success Rate Of Passive Agents = -~

01 02 03 04 05 06 07 08 09 1
Active/Pasive Agents Ratio

Figure 11.12: Success Rate as a function of active/passard &a&fio

niques mentioned above. This graph shows that it is cheaahieve the same
success rate with the partial message matching cache cethfathe Teeming
and TTL techniques. Note that the y-axis is given on a loganit scale.

66

15

145 ¢

14 ¢

135 ¢

13 ¢

Matchmaking Time

125 ¢

12 L L L L L L
01 02 03 04 05 06 07 08 09 1

Active/Pasive Agents Ratio

Figure 11.13: Average waiting time for the agents that dictessful matchmak-
ing as a function of active/passive agent ratio

45

40

35

30

Average Response Time

20 | | | | | |
01 02 03 04 05 06 07 08 09 1

Active/Pasive Agents Ratio

Figure 11.14: Average waiting time for all active agents asiraction of ac-
tive/passive agent ratio

67

350000

300000 r]

250000]

200000]

Message number

150000]

100000]

50000

01 02 03 04 05 06 07 08 09 1
Active/Pasive Agents Ratio

Figure 11.15: Total number of messages as a function ofedptagsive agent ratio

0.95
09 f T]
o 08} J _ |
T 7 e R
ad / e e
@ 08/ g 1
Q /i
o A
S i
P o075t]
i 1/2 --on
34 ——
0.7 | 5/6 x|
16 —x
1/4 s
0.65 ‘ ‘ ‘ ‘
0 2 4 6 8 10
Cache Size

Figure 11.16: Success rate Of active agents for as a funcfiomtching cache
size. Different lines shows different active/passive agatio.

68

0.6 |
0.55 . 34
05 b
0.45
0.4
0.35
0.3
0.25

02} e !
015 | =]

01 Ko poreeeiiioy T Moo b oo

Success Rate

Cache Size

Figure 11.17: Success rate Of passive agents as a functioatohing cache size.
Different lines shows different active/passive agenbrati

T T
2 participants —+—

0.9 L 3 participants -
-A-participants ---e--
08 5 participants ~-e--~ |

6 participants &~

0.7

06]

0.5

Success rate

04k o o 7
0.3t G 7

0.1 4— e BT L
0 2 4 6 8 10

Match cache

Figure 11.18: Success rate as a function of the matchingecsizh, for different
numbers of partners. Original Matching-Cache Algorithm.

69

26

2 participaﬁts —
Y . 3 participants -~ .
S .4 participants e
g . e 5 participants -~ -
g 2 L el 6 participants e
o 20F T e
=
g 18} 1
UO') X B R i 4
o 16 r ,
L 14t l
GE) B SonEREEE
= 12 i
10]
8 I I I I
0 2 4 6 8 10

Match cache

Figure 11.19: Time for matchmaking as a function of matcleaghe size, for
different numbers of partners. Original Matching-Cacheoigpm.

400000 | _ |
2 participants —+—
3 participants =
350000 4 participants -—-&--
\‘\ 5 participants e
o ™ 6 participants =
L 300000 F
E .
5 =
o 250000 7
0
0
£ 200000 |
150000
100000 ‘ | | |
° ? 4 6 8 10

Match cache

Figure 11.20: Number of messages as a function of matchiclgecsize, for dif-
ferent numbers of partners. Original Matching-Cache Aldponi

70

0.85 | ‘)
Simple Algorithmm =+
0.8 Partial Match Algorithm - -

0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4

035 L L L L
0 2 4 6 8 10

Match Cache

Success rate

Figure 11.21: Success rate as a function of the matchingecsielb, showing the
original and extended-query algorithms for groups of size 4

21

Simble AIgorithfn —
205 + Partial Match Algorithm —--— |

20
19.5
19
18.5
18

Time to Resolve Message

17.5

17

16.5 1 1 1 1

Match Cache

Figure 11.22: Time for matchmaking as a function of the matgltache size,
showing the original and extended-query algorithms fougsoof size 4.

71

380000 — —
Simple Algorithm ——

360000 |- Partial Match Algorithm -

340000
320000
300000

280000

Message number

260000

240000

220000 ‘ : : :

Match Cache

Figure 11.23: Number of messages as a function of the maiatache size,
showing the original and extended-query algorithms fougeoof size 4.

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Improvement in Success rate

-0.05 : : :
2 3 4 5 6

Number of Agents per Activity

Figure 11.24: The difference in performance of Algorithm&oAlgorithm 4,
under different sizes of activities.

72

1e+008

1e+007

1e+006

Message number

100000 : : :
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Success Rate

Figure 11.25: Total Message Number as a function of Sucesséar TTL, Teem-
ing and Partial Matching Cache Techniques for groups of size 4

73

Chapter 12

Conclusions

In this paper we presented an empirical study on the disgtbmatchmaking
problem. In particular, we used of the multidirectionaluratof the matchmaking
problem by introducing a matching cache which allows agenfied each other’s
“trail” in the network and thus discover matches more effidie

We have studied matchmaking in both bilateral and multiédteettings. We
further improved the multilateral matchmaking resultsityaducing partial match-
ing messages. We evaluated our techniques using a testheld wd developed
and showed that we can solve the matchmaking process fastey our tech-
niques. In addition, our algorithms reduce the total nundfenessages and im-
proves the success rate of the overall system. We also déraienhat achieving
the same success rate using only the teeming or TTL techsglieequire more
time and more messages.

The upper bound on the total number of messages used by bunidae does
not depend on the size of the group interested in the samatactMoreover,
our technique is inexpensive with regard to the agent'sag®and computational
abilities, making this technique applicable in devices IDAsS. Our study is the
first step towards implementing matching framework in hyghynamic networks
comprised of agents looking for short-life interactionstHe future, we aim to ex-
tend our techniques by implementing incentives for codpmraand considering
the topology of the agents’ network and its effects on the abhe matchmaking
process.

74

Chapter 13

Appendix A. Heuristic o
Experimentsfor Coverage
Algorithm

The original algorithm use the angelwhich bounds the robot deviation from
it's original direction and guarantees that the robot dadseed move backward.
In all the experiments in this sectienwas set tal5.6 ° which means that robot
always covers the required area i.e. the Corollary 4.0.2shdldthis section we
will study the scenario in which our algorithm will use snealvalues fora, in
order to reduce the number of times localization is requifdds will (hopefully)
reduce the total cost of the algorithm. On the other hand nwhle> 0.5(D —
d) the robot will be required to go back to facilitate the exaoterage. This
operation will lead to additional drive and localizatiorsto

It should be noticed that in order to computg;,, from Equation 5.2 we still
use the original value of angelwhich is15.6 ° for our current set of experiments.

In order to show the motivation for the heuristicvalue we experimented with
differenta values. Figure 13.1 summarizes the experiments we did Wigrent
values ofa. Using the same settings we used in the worst casgperiment we
changed the value af that was passed to the Trim Sail algorithm. We ©éb
15.6° - the maximum obtained from the real rob®1,.459 ° 5.7296 ° 0.57296 °
0.1323° - the minimum error of real robot. Figure 13.1 shows thathi value of
a is not too small and the robot deviation from the requiredidor is rare the cost
is reduced. Then, when the robot is required to go back tayuéetly the cost
starts to grow and becomes larger than the cost of our ofitgcanique (Trim
Sail algorithm with the worst case). Usinga smaller than the upper bound we
successfully reduced the algorithm cost by 36%. and aclaeinplete coverage
at the same time.

Now when the reason for heuristic is clear we will experimeith heuristics

75

800000

Simulation ——

700000

600000

500000

400000

Algorithm Cost

300000

200000

100000

0 2 4 6 8 10 12 14 16
a inin degrees

Figure 13.1: The cost of the algorithms as a function of angeded by the robot’s
algorithm

explained in Section 5.2 and compare their quality.

13.0.1 Simple Symmetric Heuristic

In this section we will investigate Simple Symmetric HeticisWe took an error
data obtained from the real robot and built a probabilityction that corresponds
to the error data, taking into account the sign of the erras.w& mentioned in
Section 5.2, there are three tests to find the best prohatfiilibr a given data [44,
45, 12]. We executed all three tests and in this case all tiests suggested that

Logistic [36] distribution provides the best fit to the dataogistic distribution

(z—a)
probability function is defined ag(z) = %ﬂ”). The sech is a Hyperbolic

Secant Function [36]. The second best probability fit fuorcsuggested by all the
test is a Normal distribution.

With a distribution function in hand we saf = 0.3398 ° which is the mean
value of the Logistic distribution. In addition we evaludtbe average of the error
values which gives us, = 0.6921 °. According with the heuristics, average takes
into account the sign of the error. The mean value of the Nbdis&ibution is
equal too; S0, corresponds to both, the average of the error values andgba m
value of the Normal distribution.

Figure 13.2 presents the results obtained by usinglues proposed by the
simple symmetric heuristics. It shows that the mean valubeLogistic distri-

76

320000

300000 r 7
280000]
260000]
240000]

220000]

Algorithm Cost

200000]

180000]

160000]

140000
Logistic Average Original a

Figure 13.2: Compare the cost of coverage of the worsteag¢h the cost of the
algorithm that uses simple symmetric heuristic.

bution only increases the cost of the algorithm while therardistribution or
the average error value decrease the cost by 20% comparthg teorst caser
value. From the result above it is impossible to concludeherusefulness of this
heuristics. Also, the intuition for this kind of heuristis problematic: assume
that the robot makes similar error to the left and to the ridtitis will make the
distribution to look like a Normal distribution with meanlua set to zero. The
heuristic achieves the complete coverage of the environmen

13.0.2 Absolute Value Symmetric Heuristic

This section deals with Absolute Value Symmetric HeurisTibis heuristic sug-
gests to take the absolute value of the robot’s errors and aulistribution func-
tion for those values. As in the previous experiment we usddf8rent proba-
bility tests to find the best distribution fit. This time thet® suggested different
distributions functions for the provided data and we detiteevaluate them all.
For eachn value discussed below the corresponding, value was calculated.

Table 13.1 summarizes thevalues used in experiments and the probability
functions that corresponds to them. THgéx) in the Pearson5 distribution is a
['(z) = fooo t*~te~tdt function[1]. Like in the previous heuristic we also evakrht
the average of the error values, i.e the average of the abs@lues of the errors.
This time, the average is equivalent to the mean value of &imgSian.

77

Distribution Name Probability Density Function The meanélue)

Inverse Gaussian[1] f(z; 1, \) = (525)%° exp %‘;‘)2 a; = 1.3181°

LogNormal[l] f(zip,0) = (—L=)exp -2y = 1.6538°
-8

Pearson5[1] flx;a,8) = ﬁrl(a) g az = 1.4703°

Table 13.1: Distribution functions used in the experiment.

200000
190000
180000
170000
160000
150000
140000
130000
120000
110000

Algorithm Cost

Figure 13.3: Compare the cost of coverage of worst casath the cost of the
algorithm that use absolute value symmetric heuristic.

We made 50 runs for each one of thevalues presented in the table. The
results are presented in Figure 13.3. The figure show thdteaffresented proba-
bility distribution models successfully reduce the costhef original (worst case)
« value. The best result is shown by Pearson Type 5 distribditinction which
reduces the cost to 58% out of the cost of the original algoritThe InvGaussian
and LogNormal reduces the cost to 63% and 62% correspondifitie exper-
iment suggests that absolute value symmetric heuristicesstully reduces the
cost of the coverage algorithm, while the difference amaiffgrént distribution
function is less than 4%. The heuristic achieves the compleverage of the
environment.

78

Name aq o The distribution used fo#; The distribution used fodis

El 0.7595° 2.5059° Pearson5 Pearson5

E2 0.6878° 2.5059° Exp. distribution[1] Pearsonb5.

E3 0.7155° 1.7868° Arithmetic Average Arithmetic Average
E4 0.6912° 1.7868° ExtValue dist[1] Inverse Gaussian
E5 2.6025° 15.6165° Maximum Maximum

E6 15.6165° 15.6165° Original « Original o

Table 13.2: Non Symmetric Experiment Settings

13.0.3 Non Symmetric Heuristic.

We want to further reduce the algorithm cost by using Non SgtniciHeuristic.
Since the error introduced by the robot is not symmetric, \@@tvwo split those
errors and build different error models to positive and tiggeerror values. In
this section we use a slightly modified version of the algonit{Algorithm 3) as
introduced in Section 4.

The o, refers to the robot deviation to the left (positive errofpatie to the
robot’s moving direction whilexv, refers to the deviation to the right (negative
error). We learned an error model fas and «, separately and conducted an
extensive set of experiments using this values. Eadclalue was tested for 50
times. We used probability fit test as introduced on Secti@rafd compared the
models we learned to original (worst case) algorithm. We alsluated the use
of separate worst case boundaries (E5 in Table 13.2) fordkitiye and negative
errors. In each one of the experiment we calculateddthge value usinga =
maz (o, a2).

We summarize the settings used in this experiment in Tab2WBile results
are presented in Figure 13.4. The Exponential Distrib(iipased in E2 is de-
fined asf(z;\) = Mexp ** and Extreme Value Distribution[1] used in E4 is
defined asf (z; a, b) = %(expTlexp_z)) wherez = 224,

Figure 13.4 presents that Non Symmetric Heuristic sucadgseduces the
cost of the original coverage algorithm (worst cageThe best performance was
achieved in the E1 case where Pearson Type 5 distributiomiseasto model both
the positive and the negative errors. In this case, hetiastiieves the cost that is
59% out of the cost of original (worst case) algorithm. Ashe previous cases,
the heuristic achieves the complete coverage of the envieoh

The additional question that should be answered here isvdrth to separate
the error bounds to the left and to the right, even withoutesof heuristics? The
answer here is positive, since the E3 bar which use non tiesrislues fora;
anday achieves relatively good results compared to the origimaist caser (E5
bar).

79

200000

190000
180000
170000
160000

150000

Algorithm Cost

140000

130000

120000

110000
E1l E2 E3 E4 ES E6

Figure 13.4: Cost of the algorithm that uses different ermamals to the positive
and the negative errors. Categories E1-EG6 are explainedla 18.2.

13.0.4 The Comparison of Heuristics

Now we want to compare the results obtained from the diffehemristics and
conclude with general remarks on the heuristics we used.

Figure 13.5 presents the best performance achieved by é#oh loeuristics.
It shows that the best performance was achieved by Absolaiige\Symmetric
Heuristic with 58.7% out of original algorithm cost. Nextraes the Non Sym-
metric Heuristic that achieves 59.3% out of the cost of aagalgorithm. The dif-
ference between those two heuristics is statisticallygméicant (p-value is equal
to 0.32), while both heuristics significantly improve thestrelative to worst case
«. We suggest that both are suitable for use in a real timengsttivhile it is
not clear if non symmetric heuristics can lead to a signiticaduce in the cost
compare to absolute value symmetric heuristic. Both hecsistse a Perason5
probability distribution to model the real robot errors. Wnclude that this dis-
tribution model is the best for the environment and the ro®tused.

The best results presented in Figure 13.5 use probabitsiaels and distri-

bution fits to find propery values. There is a computational cost associated with

this. On the other side we notice that the algorithm that usgle arithmetic
average (instead of Pearson5 distribution) performs vesly @ompared to the
original (worst case) algorithm. Figure 13.6 show this. NBymmetric and Ab-
solute Value Symmetric Heuristics shows the best resuit ialshis case. They
achieve 61.5% and 63.3% correspondingly (p-value is equél-t10~?, so the

80

200000
190000
180000
170000
160000
150000
140000
130000
120000
110000 —K .

Algorithm Cost

Figure 13.5: Compare the best costs obtained by differentdties

difference among two heuristics is significant) comparedriginal algorithm.

The differences among the algorithm cost obtained by P&rand arithmetic av-
erage is statistically significant in both cases. This priypie important for the
cases where computing best fit probability and checking is¢ao expensive and
some simple solutions are required. Arithmetic Averagevipies us with such a
solution.

81

200000
190000
180000
170000
160000
150000
140000
130000
120000
110000

Algorithm Cost

7S, " K Oy,
/)7@[L. 47 @
J//b@//. .
c

Figure 13.6: The Arithmetic Average Values computed as ssiggl by different
heuristics for use as value.

82

Chapter 14

Appendix B. Network
Characteristicsfor Multilater|
Matchmaking

In the first set of experiments, we examined the effects déidiht network char-
acteristics on matchmaking performance in order to esfalidaselines for the
many different parameters that can potentially affectqrenince. The network
of agents was modeled as a directed graph where nodes nefgsats and edges
correspond to entries in the agent’s address book, i.dintebetween the agents.
In order to evaluate the algorithms proposed earlier, @iffegraphs, correspond-
ing to different networks, were generated using the foliayyrocedure.

First, a complete simple cycle, encompassingMalhgents in the network,
was created (essentially establishing/érsize ring topology) to make sure that
the graph is connected. Then, with a probabilityppfve created the edges that
may connect any two agents. For the purpose of the expersnirethis section,
we generated graphs wifli = 1200, and experimented with differeptvalues.

We focused on bi-directional searches for matches of @iffetypes of activi-
ties (e.g., game types). We tested systems with 1200 agretssted in ten differ-
ent types of activities. We simulated different workloadglwe system by creating
2 types of scenarios. In the first one, 120 randomly chosentagearched for
matches. In the second one, the number of such active agestsareased to
600. We randomly generated 9 graphs and 3 scenarios andaarseznario on
each graph, creating 27 number of samples for each simoldhamrder to make
our simulation more realistic, we activated the agentscé@ag for a match one
by one during the first 120 (or 600) time steps.

We have also experimented with graphs of ug @600 agents, but found that as long as the
scale-up factors were maintained, the results were eafigridientical. We thus utilize a fixed/
in this section.

83

The next network characteristic is the teeming probabjty]. This value
defines the probability that a message will be sent to a giegghboring (linked)
node . For example, when the teeming probability is 1, thesags is sent to
all the entries in agent’'s address book. This case is al$edcdoding. If the
teeming probability is 0, no message is forwarded. Thisevaas varied and the
results of its variance are presented below. In our experisnge varied the value
of the teeming parameter from 0.1 to 0.7.

To limit the number of messages in a network, and to prevemifarte cy-
cling of messages, two common techniques are used in tmatlite. The first
uses avisitor’'s cachein every node, so that messages that arrive at a node for the
first time, are stored in the cache. Then, if the message egatle same node
again, it is rejected. This technique requires significaatmory, and may also
fail, if the cycles are very large.

The more common technique in the literature (and indeedhencommon
Internet protocols), is to use a network hop counter wittheaessage, called
TTL (Time To Live). The TTL defines the number of hopes (edgedrsals) that
a message can travel in network. Every node that receivessaage forwards
it only if the TTL is greater than 0, and when it carries outlsficrwarding, it
reduces the TTL by one. When a node receives a message with &fTd,Lit
discards it. In principle, the TTL and visitor’'s cache areligglent techniques,
but as we discuss above, the TTL mechanism is more robustemjuires less
memory of each agent. In the experiments below, we utilizg#ti bombinations
of cache and TTL, oronly TTL.

The last network characteristic is TTL. The purpose of trasameter is to
limit message life in the network. We varied this parametemf 1 to 20.

14.0.5 Theeffectsof graph connectivity

We began by exploring the effect of graph connectivity onanataking perfor-
mance. We controled the connectivity by varying the edgatme probabilityp.
p was set to 0.0001, 0.001, 0.005 and 0.01. Higher values enchare strongly-
connected graphs.

Figures 14.1, 14.2, and 14.3 show the matchmaking sucdess$ira matching
time (for successful matches), and the number of messagesfuaction of the
connectivity (as measured by the edge generation probapjli In these experi-
ments, the teeming probability was set to 0.3, the visitoaishe was set to 0, and
the scenario was set to matchmaking 600 agents. The TTL w&s Se

The figures show that as graph connectivity increases, tteesa rate dramat-
ically rises, and the time required to find a match decred$ewever, the number
of messages increases very quickly.

84

09 r
08 r
0.7 r
0.6 r
05 r
04 r
03 r
0.2 r
0.1r

Success rate

0.002 0.004 0.006 0.008 0.01
Edge Probability

Figure 14.1: Success rate as a function of graph conngcfa@# measured by
edge creation probability).

14.0.6 Theeffectsof TTL

We then explored the effect of TTL on matchmaking perforneanthe TTL is
controlled directly, and is assumed to be uniform for all sages. The TTL levels
were setat 1, 2, 3, 5, 7, and 10. Higher values will mean thasages traverse
the graph for longer periods of time, thus increasing thelmemof messages (but
hopefully also the chances of a successful match).

Figures 14.4, 14.5, and 14.6 show the matchmaking succtesshia match-
ing time (for successful matches), and the number of messagea function of
the TTL value. In these experiments, the teeming probghilds set to 0.3, the
visitor’s cache was set to 0, and scenario was set to matahgaR0 agents. The
edge probabilityp was 0.005.

The figures show that as TTL increases, the success ratagaseas does
the number of messages. The time for finding a match appeatsategge non-
monotonically in the graph. However, the careful readingeads that the range
on the y-axis is on the approximately 0.2 hops. That is, uafately the figure
is misleading: The time requred to find a resolution is esslyntonstant, and is
not affected by larger TTL values.

85

Time to Resolve message

0.002 0.004 0.006 0.008 0.01
Edge Probability

Figure 14.2: Time for matchmaking as a function of graph eatimity (as mea-
sured by edge creation probabiljty.

14.0.7 The effects of teeming probability

We subsequently explored the effect of the teeming proipabibn matchmaking
performancet is controlled directly, and is assumed to be uniform for giats.
This parameter was set to values of 0.001, 0.01, 0.1, 0.250@L, and 0.5. Higher
values would mean that on average, more messages wouldvierfied by each
agent, and thus network traffic (number of messages) woaléase. With such
an increase, we expect higher a success rate.

Figures 14.7, 14.8, and 14.9 show the matchmaking sucdesstra matching
time (for successful matches), and the number of messagesfumction of the
teeming value. In these experiments, the TTL value was sBt the visitor’s
cache was set to 0, and the scenario was set to matchmakirag60. The edge
probability p was 0.005.

The figures show that as teeming increases, the successaagases, as does
the number of messages. The time required to find a matchaksge

14.0.8 The effects of the workload.

Lastly we explored the effect of the workload on the perfanoeof our algorithm.
Using size 1200 graphs we set number of active agents to he2000400, 600,
800, 1000 and 1200. The TTL was set to 5, teeming was equal Rmaies
14.10, 14.11, and 14.12 show the matchmaking success mateyatching time

86

1.4e+007

1.2e+007

1e+007

8e+006

6e+006

4e+006 [

Total Message Number

2e+006

0 1
0.002 0.004 0.006 0.008 0.01
Edge Probability

Figure 14.3: Number of messages as a function of graph ctwite¢as mea-
sured by edge creation probabiljty.

(required for successful matches), and the number of mesdag scenarios of
different length. As long as the scenario length increasedtal workload on the
system increase but this does not affect the success rateatiche required for
successfull match resolution.

87

Success rate

Time to resolve message

Figure 14.4: Success rate as a function of TTL.

15

Figure 14.5: Time for matchmaking as a function of TTL.

88

Total Message Number

Success rate

8e+007

7e+007 r

6e+007

5e+007 r

4e+007

3e+007

2e+007

1e+007 |

O) Y

Figure 14.6: Number of messages as a function of TTL.

0.8 | i
0.7 r]
0.6 | i
05 r]
04 r]

0 005 01 015 0.2 025 0.3 035 04 045 05
Teeming

Figure 14.7: Success rate as a function of teeming probabili

89

Time to resolve message

Total Message Number

0 005 01 015 0.2 025 03 035 04 045 05
Teeming

Figure 14.8: Time for matchmaking as a function of teemirappbility.

3.5e+006

3e+006

2.5e+006 r

2e+006

1.5e+006 |

1e+006 r

500000 r

0 L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Teeming

Figure 14.9: Number of messages as a function of teemingapitity.

90

Success rate

Message number

0.95

09 r

0.85

08 r

0.75

0.7

Match cahce of size 0 ———
Match cahce of size 5 ———

X O R

Figure 14.10: Success rate as a function of scenario length.

800000

700000

600000

500000

400000

300000

200000

100000

0

Figure 14.11: Time for matchmaking as a function of scenangth.

200

400 600 800 1000
Number of Active Agents

1200

Match cahce of size 0 ——
Match cahce of size 5 ———

400 600 800 1000
Number of Active Agents

91

1200

Time to Resolve Message

13
12.5
12
11.5
11
10.5
10
9.5

8.5

Figure 14.12: Number of messages as a function of scenaugphe

Mafch cahce‘ of size 0 J—

400 600 800 1000 1200
Number of Active Agents

92

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

M. Abramowitz and I. A. Stegun.Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tabl&over, New York, 1964.

N. Agmon, N. Hazon, and G. A. Kaminka. The giving tree: Cionsting
trees for efficient offline and online multi-robot coveragaAl, 2008.

F. Banaei-Kashani and C. Shahabi. Criticality-based amlgnd design
of unstructured peer-to-peer networks as "complex systemsCCGRID
pages 351-358. IEEE Computer Society, 2003.

F. Banaei-Kashani and C. Shahabi. SWAM: a family of accesthous for
similarity-search in peer-to-peer data networks CIKM '04: Proceedings
of the thirteenth ACM international conference on Inforraatand knowl-
edge managememages 304—-313, New York, NY, USA, 2004. ACM Press.

B. Barshan and H. Durrant-Whyte. An inertial navigationtsys for a mo-
bile robot. INIROS-93 pages 1367-1372, 1993.

D. Ben-Ami and O. Shehory. Evaluation of distributed aedttalized agent
location mechanisms. In M. Klusch, S. Ossowski, and O. Sheleditors,
CIA, volume 2446 ofLecture Notes in Computer Sciengages 264-278.
Springer, 2002.

D. Ben-Ami and O. Shehory. A comparative evaluation ofragecation
mechanisms in large-scale multi-agent systemBraceedings of the Fourth
International Joint Conference on Autonomous Agents andiMgent Sys-
tems (AAMAS-05pages 339-346. ACM, 2005.

[8] J. Borenstein. Internal correction of dead-reckoninger with the smart

encoder trailer. INROS-94 pages 127-134, 1994.

[9] J. Borenstein., H. Everett, and L. Fergavigating Mobile Robots: Sensors

and TechniquesA. K. Peters, Ltd., Wellesley, MA, 1996.

93

[10] K. Burdett and R. Wright. Two-sided search with nontrareiiée utility.
Review of Economic Dynamici(1):220-245, January 1998.

[11] A. Burguera, G. Oliver, and J. Tardos. Robust scan madcluoalization
using ultrasonic range finders. IROS-05 pages 1367-1372, 2005.

[12] Chakravarti, Laha, and RoyHandbook of Methods of Applied Statistics
volume 1. John Wiley and Sons, 1967.

[13] H. Choset. Coverage for robotics - A survey of recent tssuhnnals of
Math and Atrtificial Intelligence31(1-4):113-126, 2001.

[14] H. Choset, E. Acar, A. Rizzi, and J. Luntz. Exact cellulacdmpositions in
terms of critical points of morse functions. Rroceedings of IEEE Interna-
tional Conference on robotics and automation (ICRA;Q@Jume 3, pages
2270-2277, April 2000.

[15] H. Choset and P. Pignon. Coverage path planning: The Bmplstdon de-
composition. Ininternational Conference on Field and Service Robotics
1997.

[16] J. Colegrave and A. Branch. A case study of autonomousatald vacuum
cleaner. AIAA/NASA CIRFFS9994.

[17] T. T. Cormen, C. E. Leiserson, and R. L. Rivdsitroduction to algorithms
MIT Press, 1990.

[18] N. Correll and A. Matrtinoli. Distributed coverage: Frometerministic to
probabilistic models. IiProceedings of IEEE International Conference on
Robotics and Automation (ICRA-Q'Pages 379-384, 2007.

[19] K. Decker, K. Sycara, and M. Williamson. Middle-agefdsthe internet. In
Proceedings of the International Joint Conference on Aréfitntelligence
(IJCAI-97) Nagoya, Japan, 1997.

[20] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte cédolcalization for
mobile robots. INCRA pages 1322-1328, 1999.

[21] V. V. Dimakopoulos and E. Pitoura. On the performancéajding-based
resource discovenlEEE Trans. Parallel Distrib. Syst17(11):1242-1252,
2006.

[22] B. P. Ebrahimi, K. Bertels, S. Vassiliadis, and K. SigdeMatchmaking
within multi-agent systems. I®roceeding of ProRisc-2004November
2004.

94

[23] A. Elfes. Sonar-based real-world mapping and navagatiEEE Journal of
Robotics and Automatigpages 233—-249, 1990.

[24] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robotesa patrol under
frequency constraints. Ii€CRA-07 2007.

[25] Z. Fan, J. Borenstein, D. Wehe, and Y. Koren. Experimestaluation of
an encoder trailer for dead-reckoning intracked mobiletebInProceed-
ings of the 1995 IEEE International Symposium on Intelliggontrol, pages
571-576, 1995.

[26] L. N. Foner. Yenta: A multi-agent, referral-based nma@aking system. In
Proceedings of the First International Conference on Autooaos Agents
(Agents-97)1997.

[27] Y. Gabriely and E. Rimon. Spanning-tree based coverdgmotinuous
areas by a mobile roboAnnals of Math and Atrtificial Intelligen¢e881:77—
98, 2001.

[28] Y. Gabriely and E. Rimon. Competitive on-line coveragegafl environ-
ments by a mobile roboComputational Geometyp4:197-224, 2003.

[29] N. Hazon and G. Kaminka. On redundancy, efficiency, afzlistness in
coverage for multiple robotfkobotics and Autonomous Syste@308.

[30] N. Hazon and G. A. Kaminka. Redundancy, efficiency, arfaustness in
multi-robot coverage. IIICRA-05 2005.

[31] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robustlore multi-robot
coverage. INCRA-06 2006.

[32] S. Hert, S. Tiwari, and V. Lumelsky. A terrain-coveriaggorithm for an
AUV. Autonomous Robqt8:91-119, 1996.

[33] T. Hongo, H. Arakawa, G. Sugimoto, K. Tange, and Y. Yamn&m An
automatic guidance system of a self-controlled vehidlatonomous robot
vehicles pages 32-37, 1990.

[34] W. H. Huang. Optimal line-sweep-based decompositionsoverage algo-
rithms. InProceedings of IEEE International Conference on Robotia$ an
Automation (ICRA-01volume 1, pages 27-32, 2001.

[35] G.-J. Jang, S. Kim, W.-H. Lee, and I.-S. Kweon. Color laradk based
self-localization for indoor mobile robots. pages 103742,2002.

95

[36] N. Johnson, S. Kotz, and N. Balakrishna@ontinuous univariate distribu-
tions. Vol. 2 Wiley, 1994.

[37] M. Koubarakis. Multi-agent systems and peer-to-pesnguting: Meth-
ods, systems, and challenges. In M. Klusch, S. Ossowski,nAicidi, and
H. Laamanen, editor§ 1A, volume 2782 ot.ecture Notes in Computer Sci-
ence pages 46-61. Springer, 2003.

[38] A.Kruling. A novel approach to the mobile robot location problem using
tracking methods. IRobotics and Applications and TelematidsEE, 2002.

[39] J. D. Nicoud and M. K. Habib. The Pemex-B autonomous aémgi robot:
perception and navigation strategiesIROS-95 volume 1, 1995.

[40] E. Ogston and S. Vassiliadis. Matchmaking among mihigants without
a facilitator. InAgents pages 608—-615, 2001.

[41] F. Preparata and M. Shamo€.omputational Geometry: An Introduction
Springer, 1985.

[42] I. M. RekKleitis, G. Dudek, and E. E. Milios. Multi-robokploration of an
unknown environment, efficiently reducing the odometrperin IJCAI97,
pages 1340-1345, 1997.

[43] O. Shehory. A scalable agent location mechanism. In NldRnings and
Y. Lesperance, editorsATAL volume 1757 ofLecture Notes in Computer
Sciencepages 162—-172. Springer, 1999.

[44] G. W. Snedecor and W. G. CochranStatistical Methods lowa State
Un.Press, Ames 10, 1967.

[45] M. A. Stephens. EDF statistics for goodness of fit and es@wmparisons.
Journal of the American Statistical Associatj@®9(347):730-737, 1974.

[46] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Baishnan. Chord:
A scalable peer-to-peer lookup service for internet apgibns. InProceed-
ings of the ACM SIGCOMM '01 Conferencgan Diego, California, August
2001.

[47] S. Thrun. Finding landmarks for mobile robot navigatidn ICRA, pages
958-963, 1998.

[48] S. Thrun, W. Burgard, and D. Fofrobabilistic RoboticsMIT Press, 2005.

96

[49] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta. Plannpaghs of com-
plete coverage of an unstructured environment by a mobbetro In In

Proceedings of International Conference on Advanced Rohqages 533—
538, 1993.

97

