
Multilateral Matchmaking and Hybrid
Coverage in Multi Agent Systems

Master Thesis

By: Victor Shafran
Advisers: Prof. Sarit Kraus,

Dr. Gal A. Kaminka

Submitted in partial fulfillment of the requirements for theMasters degree in the
Department of Computer Science Bar-Ilan University

Ramat Gan, Israel
2008

1

Abstract

This thesis has two parts. The first part presents a hybrid approach to the cov-
erge problem under dead reckoning errors. Coverage is a canonical robotics task,
where single or multiple robots are given a target work area,and move about the
area until every point in the area is visited by the robots. There are many efficient
exact-motion coverage algorithms, that cannot be used in practice, because they
assume accurate movements by the robot; unfortunately, real robots have navi-
gational errors—calleddead reckoning errors. A standard costly solution is to
utilize a hybrid approach where an exact-motion algorithm is used on a robot that
continuously localizes, so as to make course corrections. We propose a novel hy-
brid coverage algorithm, called TRIM SAIL . It takes as input an exact-movement
algorithm, the coverage tool size, and a maximal dead-reckoning error bound. It
optimizes use of the exact-movement algorithm, so as to execute its coverage plan
while minimizing movement and localization costs. TRIM SAIL guarantees com-
plete coverage, even under dead-reckoning errors. We present several variants of
TRIM SAIL and demonstrate their efficacy in systematic experiments using data
collected from real robots. We show that (i) the analytical predictions for execu-
tion costs match the actual performance of the robot; (ii) all versions outperform
the standard hybrid; and (iii) TRIM SAIL ’s performance is robust to errors in cost
estimates.

The second part discuss multilater matchmaking under time constraints. In
open multiagent systems (MAS), agents need mechanisms to locate possible part-
ners for joint activities. Matchmaking is the process of introducing two or more
agents to one another. Many approaches to matchmaking use a centralized method,
in which one or a fewmiddle agentsrespond to matchmaking requests from all
agents in the system. However, recent technology trends limit the efficacy of cen-
tralized systems. As a result we focus on distributed matchmaking, where each
agent is capable of searching and announcing the activitiesit is seeking. Previous
works on distributed matchmaking used techniques that are unidirectional in na-
ture: One agent searches, while the other passively waits tobe contacted. In con-
trast, we allow for multidirectional searches to take place, in which all potential
partners are involved. We present a new distributed technique which scales well,
and still maintains a relatively low matchmaking time and little communication
overhead. In addition, our technique introduces very low storage and computa-
tional overhead for the agents. We empirically evaluate theproposed technique
on bilateral matchmaking and show that it outperforms the existing techniques.
Then, we further enhance our technique by using partial match queries for the

case of multilateral (more than two partners) matchmaking and demonstrate its
advantages.

2

Acknowledgments

This work could not have been conducted and completed without the invaluable
guidance, inspiration, and support of my wonderful advisers, Sarit Kraus and Gal
Kaminka. I would like to thank them for the challenging research topics, instruc-
tive guidance and the time they spent with me. While working with them I ac-
cumulated invaluable experience on how to tackle research problems. More then
that, working with Sarit and Gal was a pleasant experience not only as a research
but also as a human being.

I would like to thank Meir Kalech for his help with the second part of this
work.

I would like to mention the great support of everyone at the MAVERICK
group. In particular: Natalie Fridman ,Nirom Cohen-Nov-Slapak, Ari Yakir, Efi
Merdler, Dan Erusalimchik, Vova Sadov ,Yehuda Elmaliach, Tom Shpigelman. I
enjoyed every visit and every discussion I had with this and other people in the
group. The warm and friendly environment of this laboratoryis a great place
for any researcher. Special thanks goes to Yael Termin for the moral support she
provided during my first steps in MAVERICK and research.

I gratefully acknowledge Meytal Traub for providing important data for the
first part of this research and Claudia Goldman-Shenhar with Vlad Luzin for their
assistance with the second part of this work.

Lastly and most importantly, I am forever indebted to my parents Vladimir
and Rima who has been the generous supporter and source of my strength for the
last 28 years. Additional thanks goes to my sisters Polina, Sasha, Asia and Mira
for always being the source of my happiness.

Last but not least, I thank my spouse Nastia for the all those additional kilo-
meters she walked on my behalf with our dogs Dzhokhar and Tchika.

This research was supported in part by a research grant from Samsung Telecom-
munications Research, Israel (STRI), and by research grant #1685/07 from the
Israel Science Foundation (ISF).

The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies or endorsements,
either expressed or implied, of Bar-Ilan University.

1

Contents

I Coverage Under Dead Reckoning Errors: A Hybrid Ap-
proach 9

1 Introduction 10

2 Related Work 12

3 Dead-Reckoning in Coverage 14

4 A Hybrid Coverage Algorithm 17

5 Reducing Localization Cost 23
5.1 Choosingd: Worst Case Analysis 23
5.2 Using a Heuristicα Estimate . 28

6 Experiments 31
6.1 Experiment Settings . 31
6.2 Calculatingd: The Basic Technique 33
6.3 Comparing Complete Coverage Algorithms 33
6.4 Sensitivity to Cost Estimations 36

7 Conclusions 38

II Distributed Matchmaking under Time Constraints 39

8 Introduction 40

9 Motivation and Background 42

10 Multidirectional Matchmaking 46
10.1 Bilateral Matchmaking . 47
10.2 Multilateral (k-partner) matchmaking 49

2

10.3 Cache size . 50

11 Experiments 52
11.1 Experiment Setup . 53
11.2 Bilateral Matchmaking using a Matching Cache54
11.3 Unidirectional versus Multidirectional Matchmaking. 58
11.4 Multilateral Matchmaking . 63

12 Conclusions 74

13 Appendix A. Heuristic α Experiments for Coverage Algorithm 75
13.0.1 Simple Symmetric Heuristic 76
13.0.2 Absolute Value Symmetric Heuristic 77
13.0.3 Non Symmetric Heuristic. 79
13.0.4 The Comparison of Heuristics 80

14 Appendix B. Network Characteristics for Multilaterl Matchmaking 83
14.0.5 The effects of graph connectivity 84
14.0.6 The effects of TTL . 85
14.0.7 The effects of teeming probability 86
14.0.8 The effects of the workload. 86

3

List of Algorithms

1 TRIM SAIL (W, d, D, α, Algorig) 18
2 CALCULATE (d, D, α, x, y, φ) . 19
3 CALCULATE NS (d, D, α, x, y, φ) 22
4 Bilateral Matchmaking Algorithm. 48
5 Multilateral Matchmaking Algorithm. 50

4

List of Tables

3.1 Notations used in this work. 15

6.1 Coverage by an unmodifiedAlgorig. Results averaged over 50 trials. 34
6.2 A Comparison of coverage results by different algorithms. All

algorithms resulted in 100% coverage. Two best costs are in bold.
Results averaged over 50 trials. 35

6.3 A Comparison of total costs for each algorithms, under different
travel-to-localization cost ratios. Best costs are in bold.. 37

13.1 Distribution functions used in the experiment. 78
13.2 Non Symmetric Experiment Settings 79

5

List of Figures

3.1 Example of robot motion which covers all cells, while still deviating. 16

4.1 Calculate the direction and distance for the robot, basedon its
current location. The robot’s center is located at pointC. The
CALCULATE () algorithm sets the robot to move the distance ofr

onCD. ThenEO = OF = D−d
2

. 20
4.2 Calculate robot moving direction with asymmetric error bounds.

α1 is an error bound to the left,α2 is an error bound to the right. . 22

5.1 Worst case for robot localization. The robot makes localization
when it deviatesD− d. In the worst case the robot starts atA and
the worst possible error assumed. So the robot passesAB before
making the next localization. 24

5.2 Total cost as a function ofd. Thea(drive cost) is small relative to
b(localization cost) . 25

5.3 Total cost as a function ofd. Thea(drive cost) is large relative to
b(localization cost) . 26

5.4 The value ofdmin as function ofD. c = Costdrive

Costloc
. 27

5.5 The value ofCosttotal(d) as a function ofD. 28
5.6 The value ofdmin as a function ofα. c = Costdrive

Costloc
. 29

5.7 dmin as a function ofCostdrive

Costloc
. 30

6.1 An RV-400 robot, used in experiments. 32
6.2 A histogram of RV-400 heading errors, in radians. Bin width is

0.015. A measurement at -0.27 is not shown (but was included in
the calculations below). 32

6.3 Comparison of running Algorithm 1 with real-world data (aver-
aged over 50 trials), with the predicted cost obtained from Equa-
tion 5.2. The algorithm’s cost is a function ofd. 34

11.1 Success rate as a function of the matching cache size. 55
11.2 Time for matchmaking as a function of matching cache size. . . . 56

6

11.3 Number of messages as a function of the matching cache size. . . 57
11.4 Messages sent by Teeming, TTL and Matching Cache techniques

to achieve the same success rate. 58
11.5 Teeming vs. TTL vs. Match Cache 59
11.6 Success Rate as a function of provider/consumer ratio 60
11.7 Normalized Success Rate as a function of provider/consumer ratio 61
11.8 Average waiting time for the agents that did successfulmatch-

making as a function of provider/consumer ratio62
11.9 Average waiting time for all active agents as a functionof provider/consumer

ratio . 63
11.10Total number of messages as a function of provider/consumer ratio 64
11.11Number of messages as a function of the matching cache size for

unilateral and bilateral matchmaking. 65
11.12Success Rate as a function of active/passive agent ratio 66
11.13Average waiting time for the agents that did successful match-

making as a function of active/passive agent ratio 67
11.14Average waiting time for all active agents as a function of ac-

tive/passive agent ratio . 67
11.15Total number of messages as a function of active/passive agent ratio 68
11.16Success rate Of active agents for as a function of matching cache

size. Different lines shows different active/passive agent ratio. . . 68
11.17Success rate Of passive agents as a function of matching cache

size. Different lines shows different active/passive agent ratio. . . 69
11.18Success rate as a function of the matching cache size, for different

numbers of partners. Original Matching-Cache Algorithm. 69
11.19Time for matchmaking as a function of matching cache size, for

different numbers of partners. Original Matching-Cache Algorithm. 70
11.20Number of messages as a function of matching cache size, for

different numbers of partners. Original Matching-Cache Algorithm. 70
11.21Success rate as a function of the matching cache size, showing the

original and extended-query algorithms for groups of size 4. . . . 71
11.22Time for matchmaking as a function of the matching cache size,

showing the original and extended-query algorithms for groups of
size 4. 71

11.23Number of messages as a function of the matching cache size,
showing the original and extended-query algorithms for groups of
size 4. 72

11.24The difference in performance of Algorithm 5 over Algorithm 4,
under different sizes of activities. 72

7

11.25Total Message Number as a function of Success rate for TTL,
Teeming and Partial Matching Cache Techniques for groups of
size 4. 73

13.1 The cost of the algorithms as a function of angelα used by the
robot’s algorithm . 76

13.2 Compare the cost of coverage of the worst caseα with the cost of
the algorithm that uses simple symmetric heuristic. 77

13.3 Compare the cost of coverage of worst caseα with the cost of the
algorithm that use absolute value symmetric heuristic. 78

13.4 Cost of the algorithm that uses different error bounds tothe pos-
itive and the negative errors. Categories E1–E6 are explained in
Table 13.2. 80

13.5 Compare the best costs obtained by different heuristics. 81
13.6 The Arithmetic Average Values computed as suggested bydiffer-

ent heuristics for use asα value. 82

14.1 Success rate as a function of graph connectivity (as measured by
edge creation probabilityp). 85

14.2 Time for matchmaking as a function of graph connectivity (as
measured by edge creation probabilityp). 86

14.3 Number of messages as a function of graph connectivity (as mea-
sured by edge creation probabilityp). 87

14.4 Success rate as a function of TTL. 88
14.5 Time for matchmaking as a function of TTL. 88
14.6 Number of messages as a function of TTL. 89
14.7 Success rate as a function of teeming probability. 89
14.8 Time for matchmaking as a function of teeming probability. 90
14.9 Number of messages as a function of teeming probability. 90
14.10Success rate as a function of scenario length. 91
14.11Time for matchmaking as a function of scenario length.. 91
14.12Number of messages as a function of scenario length. 92

8

Part I

Coverage Under Dead Reckoning
Errors: A Hybrid Approach

9

Chapter 1

Introduction

Coverage is a canonical robotics task, where single or multiple robots are given
a target work area, and move about the area until every point in the area is cov-
ered by a coverage tool associated with each robot. This toolis assumed to be
the robots’ sensors or specialized actuator. There are manyapplications and vari-
ations of coverage. Examples of coverage applications includes among others,
harvesting, patrolling [24], de-minin [39] and floor cleaning [16]. See [13] for a
comprehensive survey.

There exist a number of elegant and efficient algorithms for single- and multi-
robot coverage, that all assume accurate and exact movements by the robot. Among
these we include essentially all grid-based and cell-decomposition methods, that
divide the target area into smaller cells. [49, 41, 15, 34, 27, 29]. These include the
family of Spanning-Tree coverage/patrolling algorithms [27, 28, 30, 31, 29, 2, 24]
[27, 29]; the family of Boustrophedon algorithms [15, 34, 14], the trapezoidal de-
composition based algorithms [41], and others [32, 49]. These algorithms output a
coverage plan, which—if followed without movement errors—results in complete
coverage of the work area.

Unfortunately, real robots have navigation or motion errors—calleddead reck-
oning errors, which prohibit the direct use of exact-movement algorithms. The
problem is that the accumulating position errors, due to theinaccuracy of the
robot’s locomotion actuators, cause the robot to drift awayfrom its planned tra-
jectory. Dead reckoning errors are a result of physical (mechanical) properties
of the interaction between the robot and the environment [9]. They are caused
by finite wheel encoder resolution, misalignment of robots’wheels, and wheel
slippage due to slippery floors.

There are several approaches to tackling dead-reckoning errors. One approach
attempts to reduce the errors directly, by calibration or mechanical means [8, 9],
or compensating for errors by using relative locations of multiple robots [42]. An-
other approach uses a hybrid system. The exact-movement algorithm’s coverage

10

plan is executed by a robot, which continuously calls localization procedures (e.g.,
which use landmarks and/or absolute location devices [47, 20, 11, 48]) to correct
the motion errors, such that the exact algorithm’s assumption of error-free motion
is maintained. However, because these methods are task independent, they do
not address challenges raised—and unique opportunities offered—by focusing on
dead-reckoning in the context of coverage.

Coverage presents a unique challenge and opportunity related to dead-reckoning.
On one hand, coverage requires more accurate movements; unlike other naviga-
tion tasks, when a robot is tocoversome area betweenA andB, each point in its
trajectory is important. If a robot misses a point in the trajectory betweenA and
B, the coverage is incomplete, and is considered to be in failure. However, on
the other hand, if the coverage tool is sufficiently large, then some motion errors
can be ignored, as long as the points on the trajectories are within the area of the
coverage tool.

In this work we propose a novel hybrid coverage algorithm, called TRIM

SAIL . TRIM SAIL takes as input an exact-movement algorithm, the coverage
tool size, and a maximal dead-reckoning error bound. It optimizes use of the
exact-movement algorithm, so as to execute its coverage plan while minimizing
localization checks and corrections, i.e., minimizing movement and localization
costs (e.g., in terms of time and battery). Given the error bound, TRIM SAIL guar-
antees complete coverage, even under dead-reckoning errors. We present several
variants of TRIM SAIL , including a variant which explicitly assumes the worst-
case dead-reckoning errors, as well as average-case heuristics which may reduce
costs.

To evaluate TRIM SAIL , we experiment using data collected from real robots.
We show that the analytical predictions for execution costsmatch the actual per-
formance of the robot. We additionally show that all versions of TRIM SAIL

outperform a task-independent hybrid approach, in which localizations are con-
tinuously performed to correct dead-reckoning errors. Finally, we show that TRIM

SAIL ’s performance is not sensitive to cost estimates—thus evenif it uses incor-
rect estimates as to the movement and localization costs, itwill still perform well
in practice.

11

Chapter 2

Related Work

Early investigations of dead reckoning explored mechanical methods that reduce
errors, a-priori. These methods include mounting additional non-load bearing en-
coding wheels [33], using additional encoder trails [25] and systematic calibra-
tion of the robot [8]. These methods are capable of reducing systematic odometry
errors [9], e.g., those stemming from robot sensor misalignments.

However, dead-reckoning errors cannot be completely eliminated. There are
non-systematic errors that are caused by environmental uncertainties, e.g., wheel
slippage. In order to overcome this type of dead reckoning errors, many works
proposed the use of additional sensors, such as accelerometers and gyros [5], to
augment the information available to the robot. Borenstein et al. [9] provide a
comprehensive survey of these and other methods.

Increasingly, probabilistic methods are used to carry out the process of fusing
information from sensors, over time, to reduce the localization errors (which oth-
erwise accumulate with movement). In general, such methodsrequire significant
computational and sensorial resources, and may also involve interfering with the
robots operations. For instance, in the RoboCup soccer games (AIBO league), the
robots have to decide to physically stop tracking the ball and the opponents, in
order to free the camera to identify landmarks for localization.

The examples of probabilistic methods includes the use of landmarks and fea-
ture points as presented in the works by Thrun et al. [47], Dellaert et al. [20],
and Jang et al. [35]. A similar approach is taken by Kruling [38]. In his work,
static sensors are located in the environment and the robot,using a Kalman Fil-
ter technique, founds it’s position based on the information it receives from static
sensors. Scan matching[11] is another popular probabilistic technique used for
localization.

These probabilistic techniques successfully reduce odometry error by com-
paring the data obtained from the sensors in a different point of time, taking into
account the movements of the robot and the noise in the readings. They also utilize

12

absolute location information (e.g., from GPS), if available.
Our work focuses on optimizing the use of localization procedures for cover-

age tasks. In particular, our work attempts to schedule localization requests during
coverage tasks, so as to reduce costs. An important motivation for our work is the
prevalence of exact-motion coverage algorithms that are highly efficient, yet as-
sume no dead reckoning errors. Choset [13] provides a survey of such coverage
algorithms, classified asapproximate cell decompositionalgorithms. Our work
complements these approaches.

The Boustrophedon coverage algorithm is the one example of anefficient ex-
act cell-decomposition method, which relies on perfect localization [15, 34, 14].
Choset [13] presents a wide range of examples where Boustrophedon method is
used. The method was extended to handle multiple robots, e.g., in [42]. Spanning
Tree Coverage (STC) [27] is another good example of approximate cell decompo-
sition algorithms. STC-based algorithms divide the workingarea into cells of size
equal to the robot tool, and build a Hamiltonian cycle that goes through all cells.
The robot(s) then circumnavigate the cycle. In recent years, a large number of
algorithms for coverage were developed based on STC coverage. These include
algorithms for multi-robot coverage [29], and patrolling [24]. While STC-based
algorithms are efficient and easy to implement, they assume zero dead-reckoning
errors, and do not work well in robots that have restricted capabilities [18].

Mapping [23] is a related task in which robots are required tomap an un-
known area. This task is similar to coverage problem in a sense that the envi-
ronment should be sensed. However, in contrast to coverage,the robot does not
need to physically visit every point of the environment. Fora further discussion
of mapping see [48].

13

Chapter 3

Dead-Reckoning in Coverage

Let us define the problem of coverage under dead reckoning errors more formally.
First, we restrict ourselves to offline coverage, where a mapof the work areaW ,
of sizeM ×M , is given. We focus oncomplete coveragealgorithms, which seek
to guarantee that a robot visits every point in the working areaW . In particular,
we focus on grid tessellation of the work-area, though in principle the techniques
can be extended to other regular tessellation as well.

The robot’s tool size isD × D. Thus, when placed at a pointp in the work-
area, the robot covers a square of sizeD ×D, whose center is atp. The robot is
assumed to be capable of moving forward and turning in place,or alternatively, be
omnidirectional. It is given that the robot has a motion error which is bounded by
angleα, to the left and to the right relative to the direction of the movement. The
robot has a cost associated with a distance it travels, denoted byCostdrive for each
distance unit. This cost abstracts real-world cost components, such as execution
time, battery usage, etc. Table 3.1 summarizes the notationused in this work.

Now, suppose we have an exact-motion coverage algorithm, denotedAlgorig.
This algorithm takesW andD as an input and computesa coverage plan—an
ordered sequence of movements and turns, which take the robot through cells,
to completely coverW . Denote bydist1 the distance the robot travels in order
to perform this task. Then, the total cost of this coverage task would be equal
to CostAlgorig

= Costdrive · dist1. If D grows, the robot cover more area in
each one of the steps. As a result, the robot needs to travel less to cover the
environment, under the assumptions that its movements are accurate, and thus
require no corrections (which add to the overall cost).

However, dead-reckoning errors interfere in executing thecoverage-plan. A
robot blindly following the sequence of moves may not go through the intended
cells, because dead-reckoning errors will cause its actualcourse to deviate.

Thus to execute the coverage plan, the robot must use localization procedures
to assert its position on the intended trajectory, and to make corrections if nec-

14

Notation Definition
M ×M The size of the map
D ×D The size of the tool coverage

α The dead reckoning error bound
Algorig The exact-motion coverage algorithm.

Costdrive The cost of drive
Costloc The cost of one active localization.
Costtotal The total cost of the algorithm

Table 3.1: Notations used in this work.
essary. We will refer to such corrections aslocalizationsin this section. We
abstract away from the actual method of localization, and consider only the cost
of this operation—in terms of time and battery power—which will be referred as
Costloc. Also, for now we assumeactive localization. Active localization means
that localization involves explicit decisions and actionson behalf of the robot: Lo-
calization information is not available all the time. In order to obtain localization
information, the robot needs to stop performingAlgorig, carry out the localization
actions, and only then continue withAlgorig.

The number of localizations made during coverage is denotedby N . When
the robot deviates, it accumulates the additional travel distance. This accumulated
distance (which includes course corrections) is denoted bydist2. Then, the total
cost of the algorithm is given by:

Costtotal = Costdrive · dist2 + Costloc ·N (3.1)

To minimize the cost of coverage using algorithm, the robot developer must
carefully balance its use of localization. Increasing the number of localization
checks (N), increases the overall costs. When such localization checks are rela-
tively expensive (for instance, in RoboCup AIBO league, where robots must stop
tracking the ball in order to localize), this significantly increases the overall costs.
On the other hand, reducingN too much requires larger corrections after each
localization, and thus increasesdist2, the travel distance including deviations and
their correction. Thus the problem is to minimize the total cost (Eq. 3.1). We do
this by considering the error boundα, and its relation toN .

To simplify the discussion, we address a movement in a straight line, and as-
sume for now that turns are error-less and are only results ofthe robot deviation or
robot attempts to fix this deviation. The relaxation of this assumption is straight-
forward. One simple way to address the robot turns that result from usingAlgorig

is to assume that the robot is required to localize with everyturn. In this case,
when the robot arrives to the cell where a turn is required byAlgorig it will turn,
and carry out localization to ensure zero errors, and then continue to perform the
task.

15

Without loss of generality, suppose that the path of the robot is in the direction
of the x-axis. The ideal robot, without dead reckoning errors, will simply move
in a straight line along the x-axis. A realistic robot will diverge from the straight
line, with the accumulating dead-reckoning errors accelerating its departure from
the x-axis.

Note, however, that localizations—and subsequent corrections—are notcon-
stantlyrequired, i.e., are only required at some key locations. Suppose the size of
each cell in the grid isd ≤ d. Then the straight line thatAlgorig generates goes
through a number ofd × d-sized cells. But because its coverage areaD × D is
actually greater thand × d, it can in fact allow some deviation from the intended
course.

For instance, supposed = D
2

and the robot is sent to cover cells of sized× d

along the x-axis. The robot can deviate byD
4

along the y-axis and still cover the
cells. Figure 3.1 shows an example of such an erroneous path,which still covers
the cells.

Robot Sensing Area

Step 1

Dd

(C
o
rr
id
o
r
th
a
t
s
h
o
u
ld
 b
e
 c
o
v
e
re
d
)

Robot Sensing Area

Step 2

Robot Sensing Area

Step 3

Robot Sensing Area

Step 4

Robot moving direction (referred as x-axis)

Figure 3.1: Example of robot motion which covers all cells, while still deviating.

This example exposes an opportunity for grid-based exact-motion coverage
algorithms (represented byAlgorig). We can control the value ofd (the size of the
grid used byAlgorig), such that it optimizes the use of localizations to minimize
cost. Indeed, given such a value ofd, we can create a hybrid algorithm which
would schedule localization actions (and their corrections) forAlgorig’s coverage
plan; the plan would be augmented by periodic localization actions (and subse-
quent corrections, as necessary), resulting in a complete coverage, at a minimal
cost. We describe this hybrid algorithm in Section 4. In Section 5, we show how
to compute an optimal value ofd.

16

Chapter 4

A Hybrid Coverage Algorithm

Assume for now that the value ofd, the grid-cell size parameter, is given. In this
section we present an algorithm that utilizesd to provide complete coverage under
dead-reckoning, using localizations only when necessary (based ond).

The TRIM SAIL 1 algorithm (Algorithm 1) takes as input the exact-motion cov-
erage algorithmAlgorig; the grid-size parameterd; the robot coverage tool sizeD;
the work areaW ; andα, the maximal dead-reckoning error bound angle (which
can be readily computed from distance error measurements).It executesAlgorig to
create a coverage plan, and then executes the coverage plan while interleaving lo-
calization and course-corrections actions, as necessary.This results in movements
as in Figure 3.1.

The algorithm works as follows. It calls onAlgorig to receive a coverage-
plan, which assumes no dead-reckoning errors (line 1). Thiscoverage plan is
an ordered sequence of turns and corridor steps, where a corridor is defined as
forward movement of some length. For each plan step, TRIM SAIL executes nec-
essary localizations. For turns (lines 3–5), it executes the turn and then calls on
LOCALIZE-TURN() for any needed angle corrections. For corridor steps, it inter-
leaves calls to the localization action LOCALIZE() (line 8) with short movements
(line 15), whose angle and distance are computed in CALCULATE () (line 9), which
we discuss in detail below. TRIM SAIL continues this interleaved execution until
the corridor is completely covered.

The robot pose (in the 2D area) is defined by three parameters(x, y, φ), which
can be read by calling LOCALIZE(). x, y define the robot position, whileφ defines
the robot yaw (heading). For now, we assume LOCALIZE() returns exact answers.

The interleaving condition (line 9) checks whether the robot is still covering
the corridor, or has possibly moved outside of it. The actualsize of the robot tool

1Trim sail is a method used by a wind-driven ship to move windward, by navigating left and
right of its intended heading. The resulting trajectory recalls the trajectory produced by our algo-
rithm.

17

Algorithm 1 TRIM SAIL (W, d, D, α, Algorig)

1: CP ← Algorig(W, d){Exact-motion coverage plan}
2: for all Plan stepstp ∈ CP (in order)do
3: if stp is a turnthen
4: executestp
5: call LOCALIZE-TURN()
6: else {stp is a corridor}
7: while corridorSq is not covereddo
8: (x, y, φ)← Localize()
9: if |Sq

⋂

Sqrobot| = d× d then
10: (r, δ)← CALCULATE (d,D, α, x, y, φ)
11: if y > 0 then
12: Turn robot angleδ clockwise .
13: else
14: Turn robot angleδ counterclockwise.
15: Set robot to travel distance ofr.
16: else
17: Track back until|Sq

⋂

Sqrobot| = d× d

area isD ×D. The area that this tool covered in a given point of time is denoted
by Sqrobot, and the corridor (of widthd) is denoted bySq. The |Sq| denotes the
size of the area. If|Sq

⋂

Sqrobot| = d × d then the robot continues to cover the
defined corridor. If|Sq

⋂

Sqrobot| < d× d then the robot deviation is too big and
there is some portion of the corridor the robot missed to cover. In this case, it
needs to track back to its previous location to re-cover the corridor.

The CALCULATE algorithm (Algorithm 2) calculates the maximum distance
r and heading-changeδ the robot can travel until the next localization is required,
under the assumption of the maximal error boundα. We will show that using
CALCULATE ensures that|Sq

⋂

Sqrobot| = d× d is always true i.e. when the
current version of Algorithm 2 is used, the line 17 in Algorithm 1 is never reached.
We will use line 17 in a heuristic versions of Trim Sail algorithm, discussed in
Section 5.2.
Theorem 4.0.1. If |Sq

⋂

Sqrobot| = d× d holds at the initial position of the robot,
then Algorithm 1 achieves complete coverage of the environment.

Proof. To aid in explaining the proof, we refer to Figure 4.1. Suppose the robot
has just performed a localization, and is located at pointC in the figure. Without
loss of generality, we assume thaty ≥ 0, and moves along the x-axis (then the
check for|Sq

⋂

Sqrobot| = d×d becomes|y| < D−d). We look to maximize the
distancer that the robot will travel until the next localization, and to determine an
appropriate heading angle.

18

Algorithm 2 CALCULATE (d, D, α, x, y, φ)

1: y‘← |y|
2: m← cos 2α(y‘ + 0.5(D − d)) + 0.5(D − d)− y‘
3: n← sin 2α(y‘ + 0.5(D − d))
4: θ ← tan−1(m

n
)

5: δ ← π
2

+ φ− θ − α

6: r ← y‘+0.5(D−d)
cos θ

7: returnr, δ

We make the following observations (see Figure 4.1). The robot will move
a distance ofr on CD, which bisects∠ABC. At worst, the robot will deviate
at an angle ofα to the left or to the right relative to its moving direction and
then will accordingly stop at pointA or B. ThusCA andCB are the worst case
robot trajectories. To maximize the distance until the nextlocalization, we require
CA = CB. DenoteCA = CB = r.

We need to findr andθ to guide the robot for a single moving step, until the
next localization. From∠CEA, we knowr = y+0.5·(D−d)

cos θ
. From ∠CFB, we

know r = 0.5·(D−d)−y
− cos (2·α+θ)

. It thus follows that:

y + 0.5 · (D − d)

cos θ
=

0.5 · (D − d)− y

− cos (2 · α + θ)
(4.1)

y + 0.5 · (D − d)

cos θ
=

0.5 · (D − d)− y

−(cos 2α cos θ + sin 2α sin θ)
(4.2)

Moving terms to the left side, we get:

(y + 0.5(D − d))(cos 2α cos θ − sin 2α sin θ)

+ cos θ(0.5(D − d)− y) = 0 (4.3)

cos θ(cos 2α(y + 0.5(D − d)) + 0.5(D − d)− y)

− sin θ(sin2α(y + 0.5(D − d))) = 0 (4.4)

Let us set:

m = cos 2α(y + 0.5(D − d)) + 0.5(D − d)− y (4.5)

n = sin2α(y + 0.5(D − d)) (4.6)

And we rewrite Eq. 4.4 asm cos θ − n sin θ = 0. Dividing by cos θ, we get
tan θ = m

n
⇒ θ = tan−1 m

n
.

19

D
-d

2α

θ

A

B

C

D

Robot moving direction (referred as x-axis)

F

E

O

Figure 4.1: Calculate the direction and distance for the robot, based on its current
location. The robot’s center is located at pointC. The CALCULATE () algorithm
sets the robot to move the distance ofr onCD. ThenEO = OF = D−d

2
.

Given the current robot yaw (heading direction)φ, we need to turn the robot
by angleδ clockwise, whereδ = π

2
+ φ − θ − α. The robot then travels the

distancer = y+0.5(D−d)
cos θ

until the next localization. The possible positions of the
robot after this step are defined by circular arcCBA centered atC of radiusr and
angle2α. The calculations above ensure that|y| ≤ 0.5(D − d). In other words,
|Sq

⋂

Sqrobot| = d× d always holds.
Now, let see what is the smallest possible distance the robottravels along the

x-axis. Denote this distance bya. Then

a = r sin θ (4.7)

= (y + 0.5(D − d)) tan θ (4.8)

= (y + 0.5(D − d))
m

n
(4.9)

=
−y(1− cos 2α) + 0.5(D − d)(cos 2α + 1)

sin 2α
(4.10)

If y ≥ 0 thena has a minimal value wheny has a maximum value. Hence,
y = 0.5(D−d). This case corresponds to the case whenC = F in the Figure 4.1.
In this case:

a = (D − d) tan θ =
D − d

tan 2α
(4.11)

20

From Equation 4.11 it follows that at with any step of algorithm, the robot ad-
vances at least the distance ofa = D−d

tan 2α
in the direction defined byAlgorig. It

covers the area that should be covered since|y| ≤ 0.5(D − d) holds. Then, after
|corridorlength|

a
steps, the robot completely covered the corridor.

The completeness of the coverage is provided byAlgorig since in each step
robot cover the area required byAlgorig. As a result, the robot performs a complete
coverage and stops.

We proved the correctness of Algorithm 1. Now, we want to listtwo corollary
that would be used in the Section 5. Those corollary will helpus to build the cost
function for Algorithm 1.

Corollary 4.0.2. If Sq
⋂

Sqrobot = d× d holds at the initial position of the robot,
thenSq

⋂

Sqrobot = d× d during the execution of algorithm. Also, at any point
of time|y| ≤ 0.5(D − d) holds.

Corollary 4.0.3. For any given distancex that robot is required to travel by
Algorig, the robot that is guided by the Algorithm 1 path the distancer ≤ x

cos 2α
.

Proof. From Theorem 4.0.1 it follows that the worst possible advance in x-axis
(the direction defined byAlgorig) is obtained whenC = F and the robot follows
theCA = FA line in Figure 4.1. In this case∠BFA = ∠BCA = 2α. At any
time, the projection of the robot path to x-axis is equal to the distance traveled by
the robot divided bycos 2α.

Non Symmetric Errors. Up until now, we made the assumption thatα was a
symmetric error bound, i.e., the maximal error bound to the left and right was the
same. However, more commonly, the maximal deviations to theleft (α1) and to
the right (α2), relative to the heading, differ, and as a result,∠BCA = α1 + α2

instead of2α (Figure 4.2). To accommodate this asymmetry, a slight change in
CALCULATE (Algorithm 2) is necessary, where the term2α is replaced byα1+α2,
and the termδ is calculated using onlyα2 (if y > 0), or α1, otherwise. Also,
Algorithm TRIM SAIL must be changed to accept the two separate bounds.

The revised algorithm CALCULATE NS is presented in Algorithm 3. All the
correctness and corollary proofs regarding CALCULATE are maintained, with ap-
propriate changes.

21

D
-d

θ

A

B

C

D

Robot moving direction (referred as x-axis)

F

E

O

α1

α2

Figure 4.2: Calculate robot moving direction with asymmetric error bounds.α1 is
an error bound to the left,α2 is an error bound to the right.

Algorithm 3 CALCULATE NS (d, D, α, x, y, φ)

1: y‘← |y|
2: m← cos (α1 + α2)(y‘ + 0.5(D − d)) + 0.5(D − d)− y‘
3: n← sin (α1 + α2)(y‘ + 0.5(D − d))
4: θ ← tan−1(m

n
)

5: if y > 0 then
6: δ ← π

2
+ φ− θ − α2

7: else
8: δ ← π

2
+ φ− θ − α1

9: r ← y‘+0.5(D−d)
cos θ

10: returnr, δ

22

Chapter 5

Reducing Localization Cost

The TRIM SAIL algorithm requires some inputs which are typically given (such
asD), but also algorithmic parameters which we can vary (such asthe parameter
d, and the estimated boundα). d is provided as input to the coverage algorithm
Algorig, so that it determines the grid-size to use. Larger values ofd will issue
smaller sequences of moves, and will cover larger chunks of uncovered space at a
time; moreover, corrections distances would be smaller. Butsuch large values also
mean that there is a need to localize more frequently, i.e.,N increases and thus the
cost of localization and corrections increases. In contrast, smallerd values allow
for less frequent localizations (smallerN) but increase the correction distance.

We first (Section 5.1) find the optimal value for thed analytically, based on
a worst-case assumption of the maximal dead-reckoning error α, defined earlier.
We then (Section 5.2) discuss heuristics for estimating an average-cased, which
would work well in practice.

5.1 Choosing d: Worst Case Analysis

Since the size of the map isM ×M , the number of cells of sized × d is M2

d2 . In
order to cover or patrol each cell usingAlgorig, the robot should travel the distance
of d. Hence, the total distance the robot should travel given thecell size isM2

d
.

The total travel cost isM
2·Costdrive

d
.

A robot that usesAlgorig should travel the distance ofd for each cell. Instead,
from Corollary 4.0.3, it follows that in the worst case the robot will actually pass
the distance of d

cos 2α
. The total distance the robot will pass is equal toM

2

d·cos 2α

Localization is required each time the robot might be venturing outside its
coverage plan, i.e., a corridor of widthd. Suppose the corridor is parallel to the
x axis. At maximum, the robot can pass a distance ofD − d (measured along
the y-axis) before doing localization once again. Using theworst case scenario

23

defined by Corollary 4.0.3, the localization will happen eachD−d
sin 2α

units(meters)
(Figure 5.1). So, the maximum total number of times localization is required is

M2·sin 2α
d·(D−d)·cos 2α

.

D
-d

2α

A

B

Figure 5.1: Worst case for robot localization. The robot makes localization when
it deviatesD − d. In the worst case the robot starts atA and the worst possible
error assumed. So the robot passesAB before making the next localization.

Now, we can extend the Equation 3.1 and write down the expression for the
total cost of the robot’s work:

Costtotal = Costdrive ·
M2

d · cos 2α
+ Costloc ·

M2 · sin 2α

d · (D − d) · cos 2α
(5.1)

Equation 5.1 is a function ofd and we aim to findd that keeps the cost at
minimum. We definea (related to the drive cost), andb (related to the localization
cost):

a ≡ M2 · Costdrive

cos 2α
, b ≡ M2 · Costloc · sin 2α

cos 2α

Then:

Costtotal(d) =
a

d
+

b

d(D − d)
(5.2)

Equation 5.2 is a function ofd only. Now, we can analytically find the local
minimum for Equation 5.2. The minimum in range[0.D] will give us the optimal
value ford.

Cost′total(d) =
−a

d2
+
−b(D − 2d)

(d(D − d))2

=
1

d2
(−a− b(D − 2d)

(D − d)2
)

24

We then find the derivative roots:

−a(D − d)2 − b(D − 2d) = 0

−a(D2 − 2dD + d2)− bD + 2bd = 0

−aD2 + (2aD)d− ad2 − bD + 2bd = 0

−ad2 + (2aD + 2b)d− (aD2 + bD) = 0

d1,2 =
−(2aD + 2b)±

√

(2aD + 2b)2 − 4aD(aD + b)

−2a
(5.3)

Equation 5.3 provides the value ford while equation 5.2 provides an upper
bound on the cost of the coverage under dead reckoning errors. We will compare
this bound to the real costs in the experiments (Section 6).

0.625D 0.375D

C
os

t to
ta

l

d

a/b=1/100
a/b=1/20

Figure 5.2: Total cost as a function ofd. Thea(drive cost) is small relative to
b(localization cost)

Figures 5.2 and 5.3 show examples ofCosttotal(d). Figures 5.3 presents an
example in which the drive cost is high relatively to the localization cost. In this
case, the value ofd is close toD since the robot will prefer to make localization
seldom and preserve the robot from unnecessary drive cost. Figure 5.2 presents
a different scenario, in which localization is expensive compare to the drive cost.
In this cased is much smaller since the robot will try to minimize the number of
times it does localization.

25

D0.825D

C
os

t to
ta

l

d

a/b=100
a/b=20
a/b=10

Figure 5.3: Total cost as a function ofd. The a(drive cost) is large relative to
b(localization cost)

Now we can compute the value ofd analytically for any given domain. Denote
the optimal value ofd by dmin. While looking at equation 5.1 we can notice that
M has effect onCosttotal but not on the value ofdmin. This means that we can
find the value ofdmin even when the size and shape of the map is not known. In
other words the analysis here is applicable not only to online coverage problem
but also to the offline coverage case, where the map of the environment in not
given in advance.

We now turn to investigate the general behavior ofCosttotal(d) function. We
are interested in understanding the relationship among different parameters and
their influence on the costCosttotal(d) anddmin. In order to do this we will show
dmin as function ofCostdrive

Costloc
, α andD. Let us rewrite equitation 5.3 in order to

make this equation clearer:

d1,2 =
−(2aD′ + 2b)±

√

(2aD′ + 2b)
√

2b

−2a
(5.4)

a
b

= sin 2αCostdrive

Costloc
. Substitute this to Equation 5.4

d1,2 =
−(D′ sin 2αCostdrive

Costloc
+ 1)±

√

D′ sin 2αCostdrive

Costloc
+ 1

− sin 2αCostdrive

Costloc

(5.5)

Figure 5.4 shows the change indmin value as a result of changes inD. As
D increases, also thedmin increases. Thedmin is bounded byD, so the larger

26

values ofD enablesdmin to be larger and, as a result, to keep theCosttotal at
minimum. Figure 5.5 compliments this observation and showsthat asD increases,
theCosttotal of the coverage decreases. Thec value shows the ratio of drive and
localization cost. If localization cost is cheap relative to drive cost (c = 10) then
the value ofdmin grows faster since it is cheap to make localizations.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

d
-

op
tim

al
 s

iz
e

of
 ’v

irt
ua

l’
se

ns
or

D - the size of physical sensor

c=0.1
c=10

Figure 5.4: The value ofdmin as function ofD. c = Costdrive

Costloc

Figure 5.6 shows how our model finds the balance between the localization
and the drive costs. If locomotion error grows, then our model will try to increase
the size ofdmin to make the number of localization smaller as long as the drive
cost not grows too much. When the error is very high, drive costbecomes high
too, and then, the value ofdmin decreases to make more localizations and shorter
drive.

Also, Figure 5.7 shows the balance between the drive and the localization cost.
If localization cost is high, then the model tries to keepdmin as high as possible to
compensate the localization by the drive cost.

To summarize, we used a worst case (maximal error bound) angle α to find
dmin value. Because it relies on a worst-case analysis, this variant of TRIM SAIL

takes no risks in computing when to next localize, and as a result, it is guaranteed
to never require corrections. Thedmin is an optimal value since it minimize the
total cost incurred by the algorithm. At the end, we investigated how different
settings of the robot and the environment affect thedminvalue.

27

 10 5

C
os

t to
ta

l

d

D=10
D=5

Figure 5.5: The value ofCosttotal(d) as a function ofD.

5.2 Using a Heuristic α Estimate

Observing the dead-reckoning errors of real robots, we find that most of the errors
are much smaller than the worst case robot error, i.e., errors are not distributed
uniformly in the error range bounded by the worst caseα (see Section 6 for actual
results from robots used in the experiments). Thus, we can use smaller values
of theα in the TRIM SAIL algorithm (and Equations 5.3 and 5.2), to reduce the
number of localizations. However, this risks greater travel costs, as corrections
might be required: When the actual dead reckoning error is larger then theα
value used, the robot will need to turn back to the point wherethe robot deviation
was less or equal to the one allowed by the currentdmin andα values (Line 17 in
Trim Sail Algorithm). From that point the robot can continuethe coverage task.
Thus the selection of a smallerα value must be carefully balanced against the cost
incurred for corrections.

In order to find a heuristic value forα we use error data measured on a real
robot. We propose (and empirically compare in Section 6) three heuristics, all
based on analysis of the robot errors. Dead-reckoning errordata can be measured
in pre-deployment experiments, or at run-time (e.g., by measuring errors with
every call to the localization procedure). With all of theseheuristics, we stick
with the analysis fordmin value, but use theα values estimated by the different
heuristics.

Simple Symmetric Heuristic. Use the mean of the distribution, ignoring the er-

28

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90

d
-

op
tim

al
 s

iz
e

of
 ’v

irt
ua

l’
se

ns
or

alpha (degree)

c=0.1
c=10

Figure 5.6: The value ofdmin as a function ofα. c = Costdrive

Costloc

ror sign (errors left of heading have a positive sign, othersnegative). This
mean value is used asα.

Absolute-Value Symmetric Heuristic. Estimate the mean from all errors, while
ignoring the sign of the error.

Non-Symmetric Heuristic. Collect the errors of each side separately, into two
distributions. Estimate their means separately, and use them asα1 andα2,
respectively.

29

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 20 40 60 80 100

d
-

op
tim

al
 s

iz
e

of
 ’v

irt
ua

l’
se

ns
or

The ration of drive and localization cost

c=10
c=40

Figure 5.7:dmin as a function ofCostdrive

Costloc

30

Chapter 6

Experiments

In this section we complement the analysis from previous sections with experi-
ments with data from real robots. The experiment settings are described in Section
6.1. The first experiment (Section 6.2) compares the data obtained from real robot
with the analytic estimates. Then, we compare the performance of the TRIM SAIL

coverage algorithm—and the different heuristic estimatesfor α—with a näıve hy-
brid, which uses localization continuously (Section 6.3).Finally, we conduct sen-
sitivity analysis to examine the robustness of the techniques to inaccuracies in cost
estimates.

6.1 Experiment Settings

In order to evaluate the techniques described above, we obtained error data from
a Friendly Robotics RV-400 robot, and used it to simulate the robot’s movements
across the hundreds of robot runs used in the experiments below. The robot and
coverage algorithm settings are described below. For the current set of experi-
ments we assume that robot deviates from it’s original location by a straight line
and as a result, the dead reckoning error is defined by the angel robot deviates
from its original heading.

Robot settings. The RV-400 is a commercial vacuum-cleaning robot, which we
fitted with our own control software (Figure 6.1). The RV-400runs its own cov-
erage software, but this software was disabled in these experiments. Instead, we
run our own coverage algorithms.

To generate a data set of dead-reckoning errors, the RV-400 robot was com-
manded to move in a straight line, for a distance of 40cm. Thiswas repeated 50
times, resulting a data set of 50 measurements. For each movement, we mea-
sured the error in the robot position at the end of the movement, and calculated
the resulting error in heading (angle). This data set forms the basis for the motion

31

Figure 6.1: An RV-400 robot, used in experiments.

�0.1 �0.05 0 0.05 0.1
0

5

10

15

20

Figure 6.2: A histogram of RV-400 heading errors, in radians. Bin width is 0.015.
A measurement at -0.27 is not shown (but was included in the calculations below).

error models that we use in this section. A histogram of thesemeasurements is
presented in Figure 6.2.

Evaluating the techniques presented above requires measuring a large num-
ber of configurations, multiple times. For instance, to evaluate the upper bound
computed in Equations 5.2 and 5.3, we varyd in the range[0, D], and repeat each
setting 50 times. We additionally vary the heuristic technique used withAlgorig.
This would have made for an impractical number of runs with the physical robots.
We therefore chose to conduct controlled experiments by simulating the move-
ments of the robot, using the motion errors described above.With each simulated
forward movement (each step) required by the controlling algorithm (TRIM SAIL ,
Algorig, etc.), we randomly picked one of the error values and moved the robot
under the influence of this error. As a result, the simulated robot’s movements
accurately simulate its movements in our lab.

Using the collected errors, we found that the maximal robot deviationαmax is
bounded by15.6◦. All experiment results are averages over 50 trials.

32

Coverage algorithm settings. In each one of the experiments robot is set to
cover the area of2500 square meters. The real robot sensors rangeD was set to5
meters. The different costs vary between experiments, but unless otherwise noted,
were set with a 1:5 ratio (i.e.,Costdrive = 100 andCostloc = 500). We used
a simple corridor map, where no robot turns are required.Theuse of a corridor
was motivated by two factors: First, all coverage algorithms behave similarly (if
not identically) in this environment, and thus the results would not depend on
our choice ofAlgorig. Second, as TRIM SAIL ’s localization in turns is the same
as any other exact-motion algorithm, this environment highlights TRIM SAIL ’s
differences with existing work.

6.2 Calculating d: The Basic Technique

We noted that Equations 5.2 and 5.3 provide an upper bound forthe algorithm cost
(Costtotal). We first evaluate this upper bound with real-world data. Wecompare
the cost of using TRIM SAIL (Algorithm 1) on real-world data, with the values
obtained from Equation 5.2. We vary the virtual sensor sized. Moreover, we will
ensure that the minimum in the Equation 5.3 corresponds to the minimum in the
real runs.

We set d to 1, 2, 2.5, 3, 3.16 (thedmin value), 3.5, 4, and 4.5 meters. For each
one of these ’virtual’ grid sizes, we run a coverage algorithm for 50 times using the
error data we obtained from the real robot. Figure 6.3 presents the data obtained
in these experiments. This figure compares the cost functionof Algorithm 1 run in
our simulation testbed with the cost obtained from Equation5.2. The cost function
of the real run is bounded above by the function drown from Equation 5.2. The
real cost is indeed bounded by the results from Equation 5.2,by 14% in all the
measured points. The qualitative behavior of both functions is identical. For both,
d = 3.16 is a the minimum. This is the value computed by Equation 5.3 based on
the measuredαmax maximal error.

6.3 Comparing Complete Coverage Algorithms

To establish a baseline for the experiments, we first runAlgorig, as is, to measure
its cost and coverage success. The results appear in Table 6.1. The columns
measure the coverage percentage, the total simulated distance traveled (in steps of
40cm), and the number of localizations (fixed at 0, sinceAlgorig does not use any
localization). Because there are no localizations,Algorig never turns or travels to
correct its location. However, its coverage percentage is poor (43.25%). In the
different trials,Algorig coverage percentage ran 13.5% to 73% of the area.

33

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 1 1.5 2 2.5 3 3.5 4 4.5

C
os

t to
ta

l

d

Analytical Prediction
Real-world Robot Data

Figure 6.3: Comparison of running Algorithm 1 with real-world data (averaged
over 50 trials), with the predicted cost obtained from Equation 5.2. The algo-
rithm’s cost is a function ofd.

Name Percent Area Distance Number of
Covered Localizations

Algorig 43.25% 500 0

Table 6.1: Coverage by an unmodifiedAlgorig. Results averaged over 50 trials.

The results presented in Table 6.1 demonstrate the impact ofviolating the
perfect dead-reckoning assumptions of many exact-motion coverage algorithms.
Here, a provably-complete algorithm fails—by a significantmargin—to provide
complete coverage because its motion is erroneous. Many elegant exact-motion
solutions to the coverage problems would suffer from similar problems. Direct
comparison of TRIM SAIL to Algorig therefore does not make sense:Algorig

would fail to provide complete coverage, which TRIM SAIL provides.
TRIM SAIL hybridizes exact-motion coverage algorithms, modifying their use

in real-world settings, to maintain their proven properties of efficiency, robustness,
etc. while guaranteeing 100% (complete) coverage. However, a more direct ap-
proach is possible in principle, where an exact-motion algorithm would simply be
used together with continuous (repeating) localization. For instance, if landmarks
or beacons are always sensed by the robot, then the robot can—in principle at
least—run localization procedures repeatedly, without pause, resulting in contin-
uous error corrections, and complete coverage.

We therefore turn to empirically evaluate TRIM SAIL and its heuristic variants
(Section 5.2), against a naive use of an exact-motion algorithm with persistent

34

localization. We compare the following techniques:Algloc, which isAlgorig used
with persistent localization (to create the best possibleAlgloc, we assume perfect
localization); TSmax is the worst-case TRIM SAIL using the maximal heading
error boundαmax; andTSsimple, TSabs, TSns are TRIM SAIL variants using the
simple-symmetric, absolute-value symmetric, and non-symmetric heuristics. We
remind the reader that these heuristic variants attempt to reduce the number of
localizations, at the risk of added travel distance for corrections.

The three heuristic methodsTSsimple, TSabs, andTSns all rely on estimat-
ing the distribution(s) underlying the error measurements. To do this, we used
three distribution-fitting tests, namely Chi-square [44], Anderson-Darling [45],
and Kolmogorov-Smirnov [12]. We found that theTSabs, andTSns results are
best fitted by Pearson’s Type 5 distributions, also known asPearson5[1]. The
TSsimple result is best fitted with Logistic [36] distribution. For a complete diss-
cussion on heuristic methods and set of experiments with distribution-fitting tests
see Appendix 13. The distribution fit was done separately foreach heuristic. The
fitted mean (in the case of symmetric heuristics) or means (non-symmetric heuris-
tic) were taken as theα value(s) used in the algorithms. For instance, for the sim-
ple symmetric heuristic, the fitted distribution had a mean of αsimple = 1.4703◦.

The results of the comparison appear in Table 6.2. All the algorithms use
the dmin = 3.16. Each row corresponds to a single algorithm, and the val-
ues in it are averaged over 50 trials. We use horizontal linesto distinguish the
analytically-motivated algorithmsAlgloc andTSmax from the heuristic-based al-
gorithmsTSsimple, TSabs, andTSns. The columns (left to right) provide the to-
tal distance traveled (in meters), the number of localization actions, and the dis-
tance/localization ratio. The final column indicates the total cost resulting from
using the algorithm in question. Table 6.2 leads to several conclusions, explored
below.

Name Distance Number of Dist-Loc Total Cost
Localizations Ratio

Algloc 790.35 251 3.14 204544.98
TSmax 792.15 231.00 3.43 194715.00

TSsimple 1418.09 21.04 67.4 152329.00
TSabs 973.28 33.12 29.39 113888.00
TSns 977.25 34.57 28.27 115010.41

Table 6.2: A Comparison of coverage results by different algorithms. All algo-
rithms resulted in 100% coverage. Two best costs are in bold.Results averaged
over 50 trials.

First, we see that under the cost ratio defined (100:500), even the worst-
performing variant of TRIM SAIL —TSmax is better than using the exact-motion

35

algorithmAlgorig with continuous localization calls (Algloc). The distance trav-
eled byAlgloc is almost the same asTSmax, with a greater number of localiza-
tions. This is becauseAlgloc makes unnecessary corrections. Because it does not
consider the geometry/size of the coverage tool, it repositions even if the area is
already covered. Thus TRIM SAIL indeed offers a more effective hybridization of
the original algorithm.

Second, the results reveal a qualitative significant difference between the ana-
lytical method which seeks to guarantee performance using only the maximal er-
ror bound (TSmax), and the heuristic methods (TSsimple, TSabs, andTSns) which
seek to minimize cost by relying on additional knowledge (here, about the dis-
tribution of heading errors). The heuristic methods significantly outperform their
worst-case counterpart, demonstrating their effective utilization of the additional
knowledge they have.

Third, the Absolute Symmetric (TSabs) and Non-Symmetric (TSns) algorithms
are significantly better than all others. They are in fact non-distinguishable as far
as providing the best overall results (two-tailed t-test results inp = 0.32). In par-
ticular, given that both methods relying on our fitting the error distribution to the
Pearson5 distribution, we believe that this indicates thatindeed this distribution
type is appropriate for modeling dead-reckoning errors. Tocheck this, we also
experimented with other distribution types, and showed that Pearson5 is indeed
superior. The details of this experiments are avaiable in Appendix 13.

6.4 Sensitivity to Cost Estimations

In this section we explore the robustness of the techniques to inaccuracies in cost
estimates. The ratio between localization and driving costis reflected indmin

calculation. However, in some cases this cost can change during the run of the
algorithm or can be inaccurately estimated. In such casedmin will not represent
the optimald value.

The distance-localization ratio of the best algorithms (Table 6.2) is lower than
that of TSsimple, though higher than that ofTSmax. The conclusion is that the
results in Table 6.2 might be dependent on the actual cost estimates (travel cost and
localization cost), which are used in TRIM SAIL . Here, we explore the sensitivity
of the results to errors in the cost estimates provided to thealgorithms.

Table 6.3 shows the total costs for the different algorithms, when the travel-to-
localization cost ratio is systematically changed from theoriginal settings (marked,
fourth column from left). First, we note that theTSabs, which we found earlier to
be the best, remains so under extreme changes to the cost ratio: The result holds
from a cost ratio of 1:25 until a cost ratio of 1:1. Thus one conclusion is that
the top performing heuristic technique is in fact extremelyrobust to cost estimate

36

Ratio→ 1:50 (0.02) 1:25 (0.04) 1:10 (0.1) 1:5 (0.2) 1:1 (1) 5:1 (5) 10:1 (10) 25:1 (25) 50:1 (50)
Name↓ (original)
Algloc 1334035 706535 330035 204535 104135 420275 8154502000975 3976850
TSmax 1234215 656715 310215 194715 102315419175 815250 2003475 3983850
TSabs 262928 180128 130448 113888 100640 489952 976592 2436512 4869712
TSns 270582 184153 132296 115010 101181 492080 980704 2446575 4889692

TSsimple 247009 194409 162849 152329 143913 711149 1420194 3547329 7092554

Table 6.3: A Comparison of total costs for each algorithms, under different travel-
to-localization cost ratios. Best costs are in bold.

errors. We see that TRIM SAIL provides superior performance relative toAlglog

up until the ratio of the cost changes extrimly to 25:1.

37

Chapter 7

Conclusions

In this paper we presented TRIM SAIL , a hybrid coverage algorithm (and asso-
ciated heuristics, geometric optimizations) for real-world settings. TRIM SAIL

takes an exact-motion coverage algorithm, which assumes nodead-reckoning er-
rors, and uses it to guide angled movements that guarantee complete coverage
of the target work area, while minimizing the use of localization to that strictly
necessary. The key idea behind TRIM SAIL is to adjust the grid-size used in the
exact-motion coverage algorithm, so that it optimizes the number of expected cor-
rections (in the worst case). We presented an analytical worst-case version of
TRIM SAIL , and three heuristics which further reduce total coverage costs.

We have conducted extensive experiments with TRIM SAIL , using data col-
lected from the RV-400 robot. The experiments demonstratedthat (1) the analyti-
cal methods accurately predict an upper bound for total costs, and minimum cost,
given robot error bounds and coverage range; (2) the heuristic methods outper-
form the analytical methods in the cost ratio chosen; (3) TRIM SAIL variants are
sensitive to errors in cost estimates only when the cost ratio extremely changes.
In the future, we hope to explore new heuristic directions which take more risks
in terms of completeness of coverage, but provide reduced costs.

38

Part II

Distributed Matchmaking under
Time Constraints

39

Chapter 8

Introduction

Matchmaking is the process of introducing two or more agentsto one another. In
the context of multi agent systems (MAS), this process is used in order to obtain
service providers, create groups of shared interest, or form coalitions. Matchmak-
ing is important in dynamic, open, large multi-agent systems, where agents can
join and leave the system dynamically. In such systems, agents do not have full
information about the overall system configuration in advance, and thus match-
making mechanisms are needed for online discovery of resources and services.

Many approaches to matchmaking take a centralized approach, in which one
or a fewmiddle agentsrespond to matchmaking requests from all agents in the
system (see [6, 7, 22] for surveys). A key advantage of this approach is that it is
often fast, and is cheap in terms of the overall number of messages sent (though
of course the middle agents take most of the load).

However, recent technology trends limit the efficacy of centralized systems.
First, as the number of agents increases, load balancing becomes an important
issue; it is no longer possible for a few middle agents to support direct commu-
nications with all other agents. This is exacerbated as the system becomes more
dynamic, and thus the frequency of matchmaking requests increases. Second,
the single point of storage (of matchmaking information) isproblematic both for
system reliability, as well as security [6, 7, 26].

Hence in this paper we focus on distributed matchmaking. Here, each agent
is capable of searching and announcing the activities it is looking for. There is
no central point or special kind of agent that assists in finding matching agents;
instead, agents share information among themselves and help each other resolve
their matching requests. Such a distributed solution is very robust, and the com-
munication load is balanced by the agents. However, the number of messages that
are transferred among agents, and the time it takes to find matching partners, can
both increase significantly with a distributed approach [7,6, 3, 21].

Previous works on distributed matchmaking [40, 43, 7, 6] used techniques that

40

are unidirectional in nature: One agent searches, while theother passively waits
to be contacted. This approach is motivated by service-oriented applications, in
which it is natural for the passive server agent to be continuously available on-line,
waiting for a client agent to initiate a search. However, unidirectional searches
involved increased search time, sinve only one of the agentssearches for a match.

In contrast, we are motivated by dynamic peer-to-peer applications, in which
agents are on equal footing, and neither can be assumed to be always available;
the initiative for a transaction must come from all agents involved. Examples of
such applications involve networked pickup chess or multi-party card games using
Personal Digital Assistant (PDA) devices, where a given number of partners (that
satisfy some constraints) must be found quickly. Here, all matching agents are
active in the search; no agent—acting on behalf of a user—canbe assumed to be
available for game proposals at all times. Thus the matchmaking process is not
unidirectional but multi-directional.

This paper presents multi-directional matchmaking algorithms that are fast
and scalable, and in particular will minimize the amount of traffic generated in the
system. To carry out efficient multi-directional matchmaking, we use amatching
cache, stored with each participating agent. A matching cache is astructure that
enables the agents to collect information about queries andperform matching on
behalf of other agents.

We show that multi-directional matchmaking using the matching cache is sig-
nificantly more efficient than unidirectional matchmaking,in a variety of scenar-
ios. Moreover, in the case of matchmakingk > 2 partners, the matching cache
can contain information about partial matches. We provide away to utilize infor-
mation about such partial matches to further reduce matchmaking time.

This paper is organized as follows. The next section motivates the research
and discusses related work. Section 3 presents bidirectional matchmaking, and
extends it to multi-directional matchmaking. We then present experiments demon-
strating the efficacy of the approach, in contrast to previous techniques, and present
conclusion. In the appendix we discusses additional experiments, which are used
to determine baselines for the experiment setup.

41

Chapter 9

Motivation and Background

This research is motivated by real world applications. We are interested in de-
veloping matchmaking facilities for small device networks(e.g., networks of Per-
sonal Digital Assistants—PDAs). These facilities should enable their users to
search for partners in real time. For instance, we want usersto be able to search
for different kinds of games with a different number of participants. For example,
if a user wants to play pick-up chess, her agent, on its PDA, will actively query
the network for available partners. Another example includes looking for carpool
partners currently leaving for a similar destination.

A key challenge in this type of application is the highly dynamic nature of
the matchmaking requests: Users—and their agents—only require matchmaking
sporadically, and thus distributed techniques that rely onan agent to continuously
respond to matchmaking requests are inherently inefficient, since at most times,
the responses will be negative. Centralized techniques are possible in small-scale
systems, but as argued above, do not scale well when the number of agents grows
significantly. We discuss previous approaches in detail below; see Ebrahimi et
al. [22] for a survey of matchmaking techniques.

We begin by discussing centralized matchmaking techniques. A key difference
between the following reviewed investigations and the workin this paper is that
we focus on multi-directional matchmaking, while all the works mentioned below
utilized only unidirectional matchmaking. For instance, Decker and Sycara [19]
studied different types of middle agents and compared them using a number of pa-
rameters. Among these methods, they describe centralized matchmaking in which
a matchmaking agent is responsible for introducing two agents to one another.
One of the agents must initiate the transaction by contacting the matchmaker,
that is responsible for suggesting possible partners. The initiator then picks one of
these partners with wich to transact. In contrast, our work emphasizes multiple ini-
tiators, working in a distributed fashion. However, the asynchronous, distributed,
nature of the algorithms we present imply that the initiators do not receive a list of

42

potential partners at once. Instead, potential partners are incrementally reported
to the initiators, and they need to choose whether to contactthem, or to wait.

Ben-Ami and Shehory [7, 6] have empirically contrasted centralized and dis-
tributed unidirectional agent location mechanisms—whichform the basis for matchmaking—
and conclude that a centralized approach is fast and works well in small-scale sys-
tems, where matchmaking requests are relatively rare. However, it fails to satisfy
the needs of large systems, or systems that change quickly. Moreover, it intro-
duces a single point of failure to the whole system and may significantly raise
security and reliability challenges. Ben-Ami and Shehory conclude that in con-
trast, a distributed approach seems more appropriate for large scale open MAS
with high workloads. Also, the time required for agent location is longer in a
distributed approach, and a significant communication overhead exists in the dis-
tributed approach.

There have been several investigations on distributed matchmaking,wich have
attempted to reduce communication overhead and matchmaking time. Shehory
[43], introduced a distributed agent location mechanism inwhich each agent stores
information about some predefined number of other agents in the network. While
looking for some resource or service, an agent queries the agents it knows for the
required resources. The query propagates recursively through the system, until it
is resolved. Under the assumptions of Shehory’s work, it hasbeen shown that the
agent may know only a small portion of the MAS and still be ableto resole queries
efficiently in terms of time and communication costs. However, these results only
suit MAS that can be modeled as lattice graphs. Also, it is assumed that the MAS
changes adequately slow, to make the information which is sent over the network
sufficiently reliable. The latter assumption does not hold in our environment.

Additional research in matchmaking was performed by Ogstonand Vassiliadis
[40].Their environment included simple agents with limited resources and they
studied distributed techniques that would be suitable to solve consumer-provider
problems. They proposed to use local search and investigated the system behav-
ior with different numbers of agents and different numbers of tasks. Only local
communications were allowed.

Foner [26] describes Yenta, a distributed referral-based matchmaking system
in which agents group themselves into clusters of potentialmatchmaking partners.
Such clusters provide improved matchmaking performance, as potential partners
are logically connected. However, an underlying assumption is that the interests
of the potential partners—the basis for the matchmaking—remain static or change
very slowly.

Matchmaking is related to works conducted on searching for resources in peer-
to-peer (P2P) networks [37]. For instance, a clustering-based technique was in-
troduced by Banaei-Kashani and Shahabi [4], who proposed amulti-directional
activesearch process, in which all partners take active searchingactions to ac-

43

celerate the search process (at the potential expense of increasing the number of
messages). This is done through the use of a matching-cache located at intermedi-
ate nodes, which allow agents to find each other’s “trails” inthe network, and thus
discover matches. This work provides an analytical foundation for using cluster-
ing for distributed resource search. Clustering can providean efficient solution
for a different types of search queries, but fails to addressenvironments where the
basis for matchmaking changes quickly. Clustering is thus a complementary tech-
nique to the one we are advocating. The technique we present addresses one-shot
matchmaking, without prior clustering.

Other investigations have explored alternative ways to structure the topology
of the distributed system to improve search performance. Distributed Hash Tables
(DHT) [46] impose some structure on the system based on the query key each
agent provides. As a result, the system must be restructuredeach time an agent
joins or leaves the network, and whenever an agent places or removes a request
for a partner (which changes query keys). Thus DHT methods can be problematic
for our application domains, in which agents continuously leave the system, and
query items change rapidly. Thus in our work we focus on an unstructured system
approach.

Banaei-Kashani and Shahabi proposed modeling P2P resource-discovery us-
ing methods from statistical physics and the percolation theory [3]. Since MAS
or P2P systems can be very complex, these methods are important for analytical
studies of the matchmaking problem. Using a criticality-based analysis Banaei-
Kashani and Shahabi reduced communication overhead introduced by the dis-
tributed search query which is sent over the network. They proposed a technique
called probabilistic flooding, in which a message is sent with some predefined
probability to each one of the sender’s neighbors. The exactvalue of the prob-
ability for sending the message is determined analytically. They then presented
a general framework for complex unidirectional resource search analysis (for a
static system) but did not model a specific problem like matchmaking [3]. In
contrast to this work, we focus on multi-directional search. However, we do not
provide an analytical model of our algorithm’s performance.

Dimakopoulos and Pitoura studied distributed resource discovery in [21]. They
presented three basic distributed approaches for resourcediscovery: Flooding,
random walk and teeming (probabilistic flooding). Assuminga static environ-
ment, they found an analytical representation of the performance of the resource
discovery process, including the success rate, the time andcommunication over-
head. These analytical results were evaluated against empirical results. Although
the model presented in [21] is insufficient for highly dynamic environments it
presents a platform upon which models for more complicated settings can be built.

A final related set of techniques addresses two-sided economic search (e.g.,
[10]). Here, the focus is on the economics of making the partner choice, among

44

all possible partners. However, the underlying matchmaking algorithms—which
generate the list of potential partners—are not discussed.Consequently the algo-
rithms in this paper can complement such investigations.

45

Chapter 10

Multidirectional Matchmaking

Due to the size of the environment and its high dynamics, noneof the agents
has full knowledge of all other agents in the system. Instead, agents have an
address book of a limited size where they store connection information to a small
number of other agents. This situation can be modeled as a directed graph, where
nodes are agents and edges correspond to links stored in the address book. In
graph-theoretic terms, the graph isnot fully-connected; actually, it is fairly sparse
(though connected)[17].

To locate (i.e., to match) an agent that is not in the seeker’saddress book, the
seeker can send a query to one or more of its peers (agents in its address-book),
and ask them to forward the query to their own peers. The cost of such a query is
proportional to the number of messages the query creates. Once a match is found,
however, the connection information is obtained, and the cost of communication
is constant, since a direct one-to-one connection is established.

We want the agents to query the MAS for available matches, butthe distributed
nature of the environment makes it difficult to reduce the required matchmaking
time together with a reduced number of messages. Previous works have proposed
two basic techniques to reduce the number of messages in uni-directional search:
The first one is calledteeming[21]. Instead of forwarding a matchmaking query
message to all the agents in the address book, teeming proposes to send messages
to the neighboring agents with some predefined probability.Given the random
nature of the address book graph, the proper probability value will ensure delivery
of the message the to a bounded number of peers, and thus some bound on the
message number can be guaranteed. The second technique, standard in network-
ing, limits the number of times each message is sent. This limitation is referred to
asTime To Live (TTL)[3]. Both techniques can keep matchmaking time low. We
assume that our environment supports both techniques and that proper values for
both TTL and teeming parameters are given (e.g., based on analytical estimation
or empirical testing).

46

The key to our techniques is the use of amatching cachein intermediate
agents. The matching cache stores incoming queries until a match is found (e.g., a
matching query arrives at the same node), or until the time-limit expires (in which
case the matchmaking is no longer relevant). If the cache is full it will throw out
older queries and will store new ones. Here, we investigate the effect of the match-
ing cache size, along with other network parameters, on the matching success rate
and the time needed to resolve matches. We will demonstrate empirically that the
matching cache helps to increase the number of successful matches. We will also
show that it reduces the matching time and the total number ofmessages sent.

10.1 Bilateral Matchmaking

In bilateral matching, both agents actively query the MAS for a possible match.
These two queries travel through the network, in essence executing a bi-directional
distributed search process. In a simple case, a match is successfully resolved if
one of the queries reaches a second matching agent.

To increase the likelihood (and to reduce the time) of a successful match, we
introduce the matching cache data-structure. Each agent stores a FIFO cache of
incoming queries of a predefined size and matches new queriesagainst this cache.
The cache stores agent connection information, together with the information nec-
essary for matching (i.e., the activity type sought). Due tothe distributed nature
of the system, it is possible that information stored in the cache may be outdated.
But if the cache size is chosen properly, and the data flow is fast, the portion of
the outdated information will be relatively small.

To limit the number of messages in a network, and to prevent aninfinite cy-
cling of messages, two common techniques are used in the literature. The first is
a visitor’s cachein every node, so that messages that arrive at a node for the first
time, are stored in the cache. Then, if the message reaches the same node again,
it is rejected. This technique requires significant memory,and may also fail, if the
cycles are very large.

The more common technique in the literature (and indeed, in the common
Internet protocols), is a network hop counter with each message, called TTL (Time
To Live). The TTL defines the number of hops (edge traversals)that a message can
travel in a network until it expires. Every node that receives a message forwards
it only if the TTL is greater than 0; when it carries out such forwarding, it reduces
the TTL by one. When a node receives a message with a TTL of 0, it discards
it. In principle, the TTL and the visitor’s cache are equivalent techniques, but as
we discuss above, the TTL mechanism is more robust and requires less memory
of each agent. In the experiments below, we implemented two cases: when only
the TTL was used and a combination of both the visitor’s cacheand TTL methods

47

were used.
We assume that there are different kinds of activities in ourenvironment. For

example in the same MAS there are agents looking for chess game players and
agents looking for checkers players. These activities are referred to as having
different activity types. Agents that are willing to participate in an activity are
referred to as partners.

The agents pass simple query messages to each other, composed of the fol-
lowing data items:

• The already known partner (the initiator of the query).

• The partner’s activity deadline.

• Activity type.

• TTL (Time To Live): The amount of time a message is allowed to travel
along the MAS.

Each agentA in the system performs Algorithm 4, running forever.

Algorithm 4 Bilateral Matchmaking Algorithm.

1. For each incoming query from agentB do:

(a) If agentA is interested in the query (i.e., it is a match), try to contact
B to start the activity.

(b) Otherwise, try to match the query to queries inA’s cache.

i. If a match is found, inform the matching agents.

ii. Otherwise, store the query in the cache and forward the query
using teeming.

2. For each new activity seeking a match forA do:

(a) Create a queryq.

(b) If q is satisfied by a query fromB on the local matching cache, then
try to contactB to start the activity.

(c) Otherwise, forward the query using teeming.

The cache stores received queries, including their associated activity types,
partners sought, partners found, and deadlines. A separateprocess is assumed to
maintain the cache, in terms of deadlines: When a message query in the cache
reaches its deadline (i.e., the amount of the time the user iswilling to wait), the

48

process discards the query. In addition, the process is in charge of throwing out
the oldest queries (even if still valid) when the cache is full, and new queries need
to be stored.

10.2 Multilateral (k-partner) matchmaking

Activities that require more than two partners are quite common. For example,
agents that want to play a bridge card game are required to create groups of four,
in order to start the game. Thek-partner matchmaking problem is to find such
groups of sizek. To the best of our knowledge,k-partner matchmaking has not
been tackled in the literature, especially not using multilateral active search.

Seemingly,k-partner matchmaking can utilize the techniques proposed for
bilateral matchmaking. Agents that receive queries from upto k − 1 agents will
store them in their matching cache, and once ak’th query arrives, thek agents are
introduced to each other. However, ask increases, the likelihood of at least one
of the queries being out of date increases, together with thereduced likelihood for
all k queries to hit a single node. We thus seek techniques that canimprove the
simple matching, ink-partner matchmaking.

We generalize the 2-partner matchmaking algorithm such that query forward-
ing is always based on the number of queries received thus far. For instance,
when two queries of three have been received at a nodeA, A does not forward
the second query to its peers; instead nodeA composes acomplex querywhich
includes information about both matching queries it already has in its matching
cache. Thus, a single message informs others about up tok−1 partners that are al-
ready matched. Sending this information makes the MAS information flow faster
and essentially does not add communication cost since the amount of information
that is added to the query is small.

A complex query message thus contains the following information:

• The number of partners sought.Note that this is new compared to the pre-
vious description.

• A list of partners already found.Note that this generalizes the earlier de-
scription.

• For each one of the partners found, an activity deadline.Note that this
generalizes the earlier description.

• Activity type.

• TTL (Time To Live): This TTL value is the maximum over the TTL values
of the single requests that compose this query.

49

The revised algorithm for thek-partner matchmaking is run by each agentA,
forever (Algorithm 5). Note that when receiving a complex query, it is decom-
posed into individual simple queries for each partner already found, before being
stored in the cache. Thus the structure of the cache remains exactly the same.
This allows the timeout mechanism to work as in the previous section, throwing
out queries when their timeout expires.

Algorithm 5 Multilateral Matchmaking Algorithm.

1. For each incoming queryq, looking fork partners do:

(a) If A is interested in the proposed activity ofq then

i. Check matching cache for partners matchingq.

ii. If k− 1 partners (including those inq) are found, then initiate the
activity. (k − 1 partners, andA, make fork partners).

iii. Otherwise, storeq in the matching cache. Also, forward theq
query using teeming, adding toq that A is a partner.

(b) Else, check the matching cache for partners matchingq

i. If k partners (including those inq) are found, then contact one of
thek found partners to initiate the activity (We assume that this
agent will contact all other agents to initiate activity).

ii. Otherwise, if at least one partner is already in the matching cache,
addq to this partner to create a newq and forwardq using teeming.

2. If A wants to initiate a match withk − 1 other partners:

(a) Create a matching queryq which includes a single partner (A) and
check it against the local matching cache

(b) Goto 1.a.ii

The cache stores received queries, including their associated activity types,
partners sought, partners found, and deadlines. As in algorithm 4, a separate
process is assumed to maintain the cache, in terms of deadlines and throwing out
the oldest queries when the cache is full, and the new queriesshould be stored.

10.3 Cache size

The cache stores only unmatched requests; when a matching request is satisfied
it is removed from the cache. As a result, if an activity requiresk participants, at

50

mostk − 1 requests are stored in the cache. Assume that the number of differ-
ent activities in the system ism. This provides us with an upper bound for the
matching cache size:MatchingCacheSize = m (k − 1)

The above formula provides only an upper bound. Moreover it should be
noted that the cache can also reduce the performance of the system. This can
happen since the cache stores knowledge about the whole system. According to
our model, the system is distributed and highly dynamic, and, as a result the in-
formation stored in the cache can be incorrect. Assume that some, already invalid
request is stored in the cache. When, a new valid request arrives it is matched with
an invalid request and is not forwarded.

The negative effect of the cache size is application specific. It depends on net-
work parameters, the number of active peers and on amount of activities. Thus, the
proper value for the cache size is chosen empirically and guided by the heuristics
proposed on this section.

51

Chapter 11

Experiments

We conducted a number of experiment sets to evaluate the techniques presented
in this report. We begun with a set that examines the effects of different net-
work characteristics (e.g., connectivity, TTL levels, teeming probability) on per-
formance. The reason for conduction these experiments was to establish baselines.
As a result we have chooses to summarize these experiments in11.1 and present
the full report in Appendix 14. We discuss the matching cachein Section 11.2.
Then, in Section 11.3, we compare unidirectional and bidirectional matchmaking.
We conclude with the study of bilateral and multilateral techniques, and contrast
simple and generalized matchmaking for the multilateral case (Section 11.4).

In our experiments, we examined matchmaking performance along four inde-
pendent measures:

• Matching Success Rate. This measures the percentage of matching at-
tempts ending in a successful match. A higher value indicates improved
performance.

• Number of messages. This measures the total number of query messages
sent during an experiment. The lower the value the better.

• Matchmaking Time. This measures the time (in units of network hops)
that it takes the agents to establish a successful match. Again, the lower the
value the better. Note that this measureonly applies to successful matches,
and is thus biased toward such successes.

• Average Response Time.This measures the average time matching agents
wait for a match. This measure includes both successful and unsuccessful
matches. The lower the value the better.

52

11.1 Experiment Setup

We examined the effects of different network characteristics on matchmaking per-
formance in order to establish some baselines for the many different parameters
that can potentially affect performance. The full report onthese experiments is
provided in Appendix 14. Trends that are derived from the experiments are sum-
marized below.

As stated previously, the network of agents is modeled as a directed graph.
In order to evaluate the algorithms proposed earlier, different graphs (correspond-
ing to different networks) were generated using the following procedure: First, a
complete simple cycle, encompassing allN agents in the network, was created
(essentially anN -size ring topology was established) to ensure that the graph is
connected. Then, we created each possible edge in the graph (i.e., an edge may
connect any two agents), with a probability ofp. For the purpose of the experi-
ments in this section, we generated graphs withN = 1200, and we experimented
with differentp values1.

We focused on bi-directional searches for matches of different types of ac-
tivities (e.g., game types). We tested systems with 1200 agents and 10 different
types of activities. We simulated different workloads on the system by creating
2 types of scenarios. In the first one, 120 randomly chosen agents were looking
for matches. In the second one, the number of such active agents was set to 600.
We randomly generated 9 graphs and 3 scenarios and ran each scenario on each
graph, creating 27 samples for each simulation. In order to make our simulations
more realistic, we activated the agents searching for a match one by one during
the first 120 (or 600) time steps.

The next network characteristic we checked was the teeming probability [21].
This value defines the probability that a message will be sentto a given neighbor-
ing (linked) node . For example, when the teeming probability is 1, the message
will be sent to all the entries in the agent’s address book. This case is also called
flooding. If the teeming probability is 0, no message is forwarded. In our experi-
ments we varied the teeming parameter from 0.1 to 0.7.

The last network characteristics we examined were the TTL and the visitor
cache. The purpose of both parameters is to limit the message’s life in the network.
We varied the TTL parameter form 1 to 20 and the visitor cache size from 0 to 10.

As the values of the TTL and the teeming probabilities grow, the overall suc-
cess rate of the system and the total number of messages increases as well. Later,
we compare the performance obtained with our distributed matchmaking tech-
nique based on the matching cache with the search technique that is based only

1We also experimented with graphs of up to10000 agents, but found that as long as the scale-
up factors were maintained, the results were essentially identical. We thus utilize a fixedN in this
section.

53

on teeming or on the TTL parameter. As we show later, the matching cache tech-
nique is qualitatively and quantitatively distinct from the use of TTL and increased
teeming probabilities.

In the following experiments, the graph sizeN was set to 1200, the TTL value
was set to 5, the visitor’s cache was set to 0, and the scenariowas set to matchmak-
ing 600 agents. The edge probabilityp was 0.005, and the teeming probabilityt

was 0.3. These values were set as default values (unless explicitly stated dif-
ferently) after having tested a large range of values and having obtained similar
trends.

11.2 Bilateral Matchmaking using a Matching Cache

The second set of experiments, described in this section, evaluated the effect of
the matching cache size on the performance of our matchmaking algorithm. In
these experiments, we set the matching cache size to 0,1,5 and 10.

We compare our distributed bilateral algorithm to the passive matchmaking
(unilateral search) algorithm in which only one of the agents is sending out queries,
and the other is passively awaiting a message to reach it. We would like to show
that Algorithm 4 with a matching cache set to 0 provides an upper bound for the
passive (unilateral) search. We assume that both the bilateral (Algorithm 4) and
unilateral search algorithms use the same network parameters (TTL, Teeming,
Edge probability, Visitor cache).

Proposition 1. Let Tb, Mb andSb be the time, number of messages and success
rate of Algorithm 4 that finds a match between any 2 agents assuming that the size
of the matching cache is zero. LetTu, Mu andSu be the time, number of messages
and success rate of two unilateral searches run in parallel tofind the same match
between any 2 agents in the same network.Then,Tu ≥ Tb, Mu ≥ 2 · Mb and
Su ≤ Sb.

Proof. First, we need to show that given any successfully resolved matching task
with a unilateral search, our algorithm run with a matching cache of size zero will
also perform the same task successfully. A match is considered successful if and
only if both agents looking for a match have found each other.

Assume first that only pairs of agents look for a match. That issome agent B is
looking for some agent A with certain characteristics (and similarly A is looking
for B). This match can be resolved successfully with a simple unidirectional algo-
rithm when the query of agent A reaches agent B or the query of agent B reaches
A. The same result will be obtained when running our bilateral algorithm with a
matching cache set to zero. A successful match can only be found when either
one of the agent’s message reaches the other agent directly (no intermediate node

54

can help when the cache is kept of size zero). In such case, thebilateral algorithm
cannot incur a larger cost in terms of time and number of messages. Also, the rate
of the successes is equal in both cases.

We are comparing the performance of the bilateral and unilateral algorithm
assuming that the same network parameters are set and the same instances of
search occur. Therefore, even when the match is searched fora group of more than
two partners our claim holds. In such case, a match is found when all queries from
n − 1 partners arrive at thenth partner. Since the size of the cache is zero, these
queries will traverse the same edges when both algorithms are run. Therefore, the
performance of our bilateral algorithm can not be worse thanthe performance of
the unilateral search.

Proposition 1 helps us to evaluate performance of bilateralmatchmaking and
compare it to unilaterl case. In this section we use upper andlower bounds pro-
vided by this Proposition to show the benefits of the tecniqueproposed in this
section. We will make more detailed study on unidirectionalmatchmaking in
Section 11.3

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0 2 4 6 8 10

S
uc

ce
ss

 r
at

e

Match cache size

Bidirectional matchmaking
Unidirectional upper bound

Figure 11.1: Success rate as a function of the matching cachesize.

Figures 11.1,11.2 and 11.3 show the matchmaking success rate, the matching
time (for successful matches), and the number of messages, respectively, as a
function of the matching cache size. The figures show that as the matching cache
size increases, the success rate increases, and the number of messages and the
time needed to find a match drops. An interesting observationis that even a small

55

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 0 2 4 6 8 10

T
im

e
to

 r
es

ol
ve

 m
es

sa
ge

Match cache size

Bidirectional matchmaking
Unidirectional lower bound

Figure 11.2: Time for matchmaking as a function of matching cache size.

matching cache (size 1, in these experiments), is sufficientto provide a strong
improvement in the matching time and success rate. Also, increasing the size of
the matching cache further improves the other measures dramatically. Also note
that the total number of messages that travels through the network decreases with
larger caches. This happens because when agents receive a new query for which
they have a match, the query message is not forwarded. Following our approach,
a match can be resolved by any of the agents in the network. Therefore, we also
witness a sharp decrease in successful matching time. Sincewe are interested
in short-life interactions, this result is essential to finding matches as quickly as
possible.

Matching Cache versus Teeming and TTL In the previous section we com-
pared Algorithm 4 with unilateral search under the same network settings. As
we recall from Section 11.1 increasing the TTL or the teemingparameter will in-
crease the success rate. We want to compare the cost (in termsof the number of
messages) of a successful matchmaking process over TTL, teeming and Matching
Cache.

When testing the teeming method, we changed the teeming probability from
0.1 to 0.7 and kept the TTL to a value of 5 and the size of the matching cache was
set to zero. When testing the effects of the TTL at a value, it was changed from
1 to 10, the teeming probability was set to 0.3, and the matching cache remained
at zero. Finally to test the matching cache technique, the cache size was varied

56

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2 4 6 8 10

T
ot

al
 M

es
sa

ge
 N

um
be

r

Match cache size

Bidirectional matchmaking
Unidirectional upper bound

Figure 11.3: Number of messages as a function of the matchingcache size.

from zero to 10, while the TTL value was set to 5, and the teeming probability
to 0.3. We present results obtained in systems with a total of1200 agents, of
which 600 were active seekers for matches. Each point in the graphs represents
the average over 27 runs (of 9 graphs configurations of edges between the agents
and 3 scenarios of choices of the 600 active agents).

Figure 11.4 shows the number of messages sent as a function ofthe success
rate. Note that the y-axis is displayed in a logarithmic scale. The graph shows
that while it is possible to achieve a high success rate with either the TTL or the
teeming techniques alone (without the use of a matching cache) this will require
that a larger number of messages be sent. Moreover, not only will the matching
cache technique increase the success rate but it will also reduce the total number
of messages sent at the same time.

Figure 11.5 shows the time required to resolve successful matching queries.
The figure clearly shows the qualitative difference betweenthe performance of
the algorithm with a matching cache and the TTL/teeming techniques, which are
more suitable for controlling system traffic.

57

 100000

 1e+006

 1e+007

 1e+008

 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

M
es

sa
ge

 n
um

be
r

Success Rate

Ttl
Match Cache

Teeming

Figure 11.4: Messages sent by Teeming, TTL and Matching Cachetechniques to
achieve the same success rate.

11.3 Unidirectional versus Multidirectional Match-
making

In this section we would like to take a closer look at bidirectional matchmaking.
We will compare directional and bidirectional matchmakingin order to study the
impact of the bidirectionality on matchmaking. The are two types of directional
matchmaking we wish to explore. The first one assumes that there are two types
of agents providers and consumers. While consumers activelysearching for avail-
able providers(using the algorithm described in 10.1), providers passively wait for
requests. The second type assume that all agents are equal and only some fraction
of the agents that are wiling to find a matches actively searches for available part-
ners. While the former settings models the well known provider-consumer game,
the latter settings are applicable when agents are willing to play a game(i.e. chess)
and one of the agents wants to encourage another to play the game by paying a
matchmaking cost.

Environment with providers and consumers

The set of experiments described in this section evaluates the impact of bidirec-
tional search in provider/consumer environment. We compare 2 scenarios. In the
first scenario, consumers and providers actively search fora match. In the sec-

58

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

T
im

e
to

 R
es

ol
ve

 M
es

sa
ge

Success Rate

TTL
Matching
Teeming

Figure 11.5: Teeming vs. TTL vs. Match Cache

ond scenario only consumers actively search while providers passively wait for
consumer requests. In both scenarios we varied the providerconsumer ratio. The
fractions of providers from the total number of active agents were: 1/6, 1/4, 1/2,
3/4, 5/6. Six hundred agents of 1200 were set as active agents.

Figures 11.6–11.9 show the benefits of using bidirectional matchmaking while
Figure 11.10 shows the price that needs to be paid. First, we compared unidi-
rectional and bidirectional search with a cache equal to zero. This was done in
order ro separate the effect of bidirectional search from the effect of the matching
cache. This comparison shows that bidirectional search achieves a better success
rate and waiting time when using a larger amount of messages.In order to reduce
the amount of messages used by bidirectional matchmaking weused bidirectional
matchmaking with a cache size equal to 5. The Figures 11.6-11.10 show that in-
troducing matching cache not only helps to decrease the number of messages but
additionally improves the success rate and waiting time.

Figure 11.6 presents a global view of the system. It shows that the success
rate of the whole system is higher when the number of active providers is equal
to the number of active consumers. The global success rates decrease when there
is a lack of providers or consumers. Figure 11.7 complimentsthis view by pre-
senting a normalized success rate. A normalized success rate shows a success rate
normalized according to the number of possible matches in the scenario. For ex-
ample, if a provider/consumer ratio is 1/6, only 2/6 of totalnumber of agents have
a prospect of finding a match. Figure 11.7 suggests that deficiency in providers

59

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
uc

ce
ss

 R
at

e

The fraction of providers out of active agents.

Unidirectional
Bidirectional, Cache 0
Bidirectional, Cache 5

Figure 11.6: Success Rate as a function of provider/consumerratio

(consumers) result in a higher success rate among the available providers (con-
sumers). Both Figure 11.6 and 11.7 show that bidirectional matchmaking(with or
without cache) outperforms unidirectional matchmaking inall scenarios.

Figure 11.8 shows that when the number of providers grows, unidirectional
matchmaking needs more time to find a match, while in bidirectional matchmak-
ing the time remains relatively constant in all scenarios. Note, that this metric
is biased, due to the fact that different matchmaking techniques achieve different
success rates. As result we can not conclude from this graph that one technique
is faster the then the other. Figure 11.9 show a comparison ofthe matchmaking
time. This graph indicates that bidirectional matchmakingis faster in all system
settings and matching cache in conjunction with bilateral matchmaking only im-
proves this.

Figure 11.10 shows that the number of messages in unidirectional search is
highly depends on the provider/consumer ratio. Bidirectional matchmaking with-
out cache sends the same amount of messages all the time, while bidirectional
matchmaking with cache decreases the number of messages. The system per-
formed most efficiently when the number of providers was equal to the number of
consumers.This graph clearly indicates the cost involved in the improvement of
the success rate and time.

Proposition 1 helps us to evaluate matching cache performance in referebce
to the success rate and time, however we would also like to investigate matching
cache performance in respect to the number of messages. Figure 11.11 shows

60

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 S
uc

ce
ss

 R
at

e

The fraction of providers out of active agents.

Unidirectional
Bidirectional, Cache 0
Bidirectional, Cache 5

Figure 11.7: Normalized Success Rate as a function of provider/consumer ratio

that matching cache successfully reduces the total number of messages. When the
cache size is equal to 10, which is the maximum cache size according to Section
10.3 our algorithms use the same amount of messages as unidirectional match-
making. This means that the cost of improvement in success rate and time can be
paid either by the number of messages number or by agent storage capabilities.

Uniform environment

The experiments described in this section present an environment in wich all
agents are equal i.e. there is no distinction between providers and consumers.
In these environments, only a fraction of the active agents are allowed to perform
active search while the other active agents silently waits for incoming matchmak-
ing requests. The silent agents can model non cooperative agents that are wiling
to play but don’t want to pay the cost associated with matchmaking. We would
like to investigate system behavior under these settings.

We varied the ratio of active agents of the total number of agents. This ratio
was set to 1/6, 1/4, 1/2, 3/4, 5/6, 1 in this experiments. The ratio of 1 represents
the bidirectional search. The cache, if not explicitly mentioned, was set at zero.

Figures 11.12–11.15 show that when the fraction of the active agents grows,
the success rate and the time of matchmaking improves. The total number of
messages grows as long as the number of active agents grows.

Active agents can be seen as cooperative ones, while passiveagents are un-

61

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 15.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
at

ch
m

ak
in

g
T

im
e

The fraction of providers out of active agents.

Unidirectional
Bidirectional, Cache 0
Bidirectional, Cache 5

Figure 11.8: Average waiting time for the agents that did successful matchmaking
as a function of provider/consumer ratio

cooperative. Figure 11.12 also indicates that passive agents cause relatively little
damage to active agents. While the success rates for active agents decrease only
by 10%, passive agents loose in about 70% of the success rate.

The total number of messages (Figure fig:flat-msg)sent in thesystem decrease
dramatically when not all the agents are actively searching. This decrease occures
because active agents present a large amount of offers in thesystem. As a result
messages that are sent by active agents are not required to travel long distances
but are found and utilized fast in a relatively close neighbourhood. Figure 11.13
presents only those agents that successfully found a match.We can see that the
change in waiting time is relatively small compared to waiting time presented in
Figure 11.14 where the decrease is mostly caused by passive agents that had not
found a match at all. In the one hand, the success rate of active agents decreased by
10%, while on the other they benefitted from a faster and cheaper search. Passive
agents benefit from ”‘free”’ matchmaking but pay in terms of thir time. Passive
agents can announce their willingness to play for a longer period than active agents
and thereby find a match at some point of time.

While Figures 11.12–11.15 only show the effect of bidirectional matchmak-
ing, the matching cache has an important property in a context of cooperative and
non cooperative agents. Figures 11.16 and 11.17 suggest that the matching cache
increases success rates in a population of active agents anddecreases the success
rate in a population of passive agents. This property can be used as incentive for

62

 15

 20

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

The fraction of providers out of active agents.

Unidirectional
Bidirectional, Cache 0
Bidirectional, Cache 5

Figure 11.9: Average waiting time for all active agents as a function of
provider/consumer ratio

cooperation among agents in the system.

11.4 Multilateral Matchmaking

Finally, we examined multilateral (k-partner) matchmaking. We evaluated match-
making for groups of 3 to 6 partners. We first established the general perfor-
mance trend associated with Algorithm 4. Then, we conductedan in depth study
on the performance of the extended algorithm (Algorithm 5) for matchmaking
groups of 4 partners. We conclude with the general trends associated with mul-
tilateral matchmaking and a comparison of the performance of Algorithm 5 with
the Teeming and TTL techniques.

First, we studied the performance of the original matching cache algorithm
(Algorithm 4) in the case of multilateral matchmaking. Figures 11.18,11.19 and
11.20 present the matchmaking success rate, the matching time (for successful
matches), and the number of messages sent, as a function of the matching cache
size. In these experiments, all parameters were set as in section 11.2. The number
of partners per activity varied from 2 to 6. Figure 11.20 reveals an important prop-
erty of our technique. It shows that the upper bound on the number of messages
does not depend on the number of participants interested in the same activity. Fig-
ures 11.18, 11.19 and 11.20 illustrate that as the number of partners increases from
2 to 6, the improvements in all metrics are still significant but tend to become less

63

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

 n
um

be
r

The fraction of providers out of active agents.

Unidirectional
Bidirectional, Cache 0
Bidirectional, Cache 5

Figure 11.10: Total number of messages as a function of provider/consumer ratio

important when the number of partners per activity increases. To battle this trend,
in Section 10.2 we suggesredthe use of extended queries (Algorithm 5), which
allow agents to report to each other about groups of partially-matching partners.
Note that when activities require 2 partners, both algorithms are equal. Algorithm
4 provides an upper bound on the unilateral case as explainedin Proposition 1.

We contrasted the performance of Algorithm 5 and Algorithm 4in matchmak-
ing for groups of sizes 3–6. However, we present the detailedresults only for
groups of size 4. The behavior of the algorithms for groups ofdifferent size is
similar. Figures 11.21, 11.22, and 11.23 present a comparison of Algorithm 4
and Algorithm 5 for size 4 groups. Except for the number of partners, the simu-
lation settings are identical to the settings given in Section 11.2. We can see that
the Algorithm 5 improves the success rate and reduces the number of messages
sent, compared to the original matchmaking algorithm(Algorithm 4). When the
matching cache size is 0, the number of messages sent by Algorithm 5 is larger
than the number sent by Algorithm 4. This is due to the fact that with Algorithm
4 an agent receiving a query wich matches its request stores it whereas with Al-
gorithm 5 the agent passes it onward (and adds that it also wishes to participate in
the activity).

When examining the time needed for successful matchmaking, it appears that
for larger values of the matching-cache sizes, the originalalgorithm outperforms
the extended algorithm. We note, however, that the originalalgorithm seemingly
outperforms the extended one, only by insignificant amounts(approximately 0.2

64

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 340000

 360000

 0 2 4 6 8 10

M
es

sa
ge

 n
um

be
r

Cache Size

Unidirectional
Bidirectional

Figure 11.11: Number of messages as a function of the matching cache size for
unilateral and bilateral matchmaking.

hops). The reader should also remember that the graphs show the times only for
successful matches, thus they are biased. In other words, the extended algorithm
finds many more matches, but finds them about 0.2 hops slower.

We now turn to examine the trends as the group size increases from two to
six.Figure 11.24 thedifferencein success rates between Algorithm 5 and Algo-
rithm 4. The y-axis presents the difference in the success rates—increased values
are better. The x-axis shows the size of activity group. A matching cache of size
10 is used. The other simulation settings are identical to the settings presented in
Section 11.2. We can see that as the size of the activity groupgrows, the difference
in the performance between Algorithm 5 and the simpler algorithm increases as
well. In the case of bilateral matchmaking the extended and simple algorithms are
equal. Then, in groups of 3 we notice an insignificant downgrade (0.15%) in the
success rate but after that Algorithm 5 outperfoms Algorithm 4 by more than 30%.
Now, we would like to compare our extended matching technique (Algorithm 5)
with the performance achieved while varying teeming and TTLparameters. This
comparison is similar to the one made in Section 11.2. All system settings are
equal to those presented in Section 11.2. The only difference is the size of the
group in the activity. Once again, we chose a group of size 4 asthe representative
group, and omitted other activity sizes.The results for other sizes of activities are
similar.

Figure 11.25 plots the number of messages vs. success rate graph for the tech-

65

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 R
at

e

Active/Pasive Agents Ratio

Total Success Rate
Success Rate Of Active Agents

Success Rate Of Passive Agents

Figure 11.12: Success Rate as a function of active/passive agent ratio

niques mentioned above. This graph shows that it is cheaper to achieve the same
success rate with the partial message matching cache compared to the Teeming
and TTL techniques. Note that the y-axis is given on a logarithmic scale.

66

 12

 12.5

 13

 13.5

 14

 14.5

 15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
at

ch
m

ak
in

g
T

im
e

Active/Pasive Agents Ratio

Figure 11.13: Average waiting time for the agents that did successful matchmak-
ing as a function of active/passive agent ratio

 20

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Active/Pasive Agents Ratio

Figure 11.14: Average waiting time for all active agents as afunction of ac-
tive/passive agent ratio

67

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
es

sa
ge

 n
um

be
r

Active/Pasive Agents Ratio

Figure 11.15: Total number of messages as a function of active/passive agent ratio

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 2 4 6 8 10

S
uc

ce
ss

 R
at

e

Cache Size

1/2
3/4
5/6
1/6
1/4

Figure 11.16: Success rate Of active agents for as a functionof matching cache
size. Different lines shows different active/passive agent ratio.

68

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 2 4 6 8 10

S
uc

ce
ss

 R
at

e

Cache Size

1/2
3/4
5/6
1/6
1/4

Figure 11.17: Success rate Of passive agents as a function ofmatching cache size.
Different lines shows different active/passive agent ratio.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

S
uc

ce
ss

 r
at

e

Match cache

2 participants
3 participants
4 participants
5 participants
6 participants

Figure 11.18: Success rate as a function of the matching cache size, for different
numbers of partners. Original Matching-Cache Algorithm.

69

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2 4 6 8 10

T
im

e
to

 R
es

ol
ve

 M
es

sa
ge

Match cache

2 participants
3 participants
4 participants
5 participants
6 participants

Figure 11.19: Time for matchmaking as a function of matchingcache size, for
different numbers of partners. Original Matching-Cache Algorithm.

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2 4 6 8 10

M
es

sa
ge

 n
um

be
r

Match cache

2 participants
3 participants
4 participants
5 participants
6 participants

Figure 11.20: Number of messages as a function of matching cache size, for dif-
ferent numbers of partners. Original Matching-Cache Algorithm.

70

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 2 4 6 8 10

S
uc

ce
ss

 r
at

e

Match Cache

Simple Algorithm
Partial Match Algorithm

Figure 11.21: Success rate as a function of the matching cache size, showing the
original and extended-query algorithms for groups of size 4.

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 21

 0 2 4 6 8 10

T
im

e
to

 R
es

ol
ve

 M
es

sa
ge

Match Cache

Simple Algorithm
Partial Match Algorithm

Figure 11.22: Time for matchmaking as a function of the matching cache size,
showing the original and extended-query algorithms for groups of size 4.

71

 220000

 240000

 260000

 280000

 300000

 320000

 340000

 360000

 380000

 0 2 4 6 8 10

M
es

sa
ge

 n
um

be
r

Match Cache

Simple Algorithm
Partial Match Algorithm

Figure 11.23: Number of messages as a function of the matching cache size,
showing the original and extended-query algorithms for groups of size 4.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2 3 4 5 6

Im
pr

ov
em

en
t i

n
S

uc
ce

ss
 r

at
e

Number of Agents per Activity

Figure 11.24: The difference in performance of Algorithm 5 over Algorithm 4,
under different sizes of activities.

72

 100000

 1e+006

 1e+007

 1e+008

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
es

sa
ge

 n
um

be
r

Success Rate

Ttl
Teeming

Match Cache

Figure 11.25: Total Message Number as a function of Success rate for TTL, Teem-
ing and Partial Matching Cache Techniques for groups of size 4.

73

Chapter 12

Conclusions

In this paper we presented an empirical study on the distributed matchmaking
problem. In particular, we used of the multidirectional nature of the matchmaking
problem by introducing a matching cache which allows agentsto find each other’s
“trail” in the network and thus discover matches more efficiently.

We have studied matchmaking in both bilateral and multilateral settings. We
further improved the multilateral matchmaking results by introducing partial match-
ing messages. We evaluated our techniques using a testbed which we developed
and showed that we can solve the matchmaking process faster using our tech-
niques. In addition, our algorithms reduce the total numberof messages and im-
proves the success rate of the overall system. We also demonstrate that achieving
the same success rate using only the teeming or TTL techniques will require more
time and more messages.

The upper bound on the total number of messages used by our technique does
not depend on the size of the group interested in the same activity. Moreover,
our technique is inexpensive with regard to the agent’s storage and computational
abilities, making this technique applicable in devices like PDAs. Our study is the
first step towards implementing matching framework in highly dynamic networks
comprised of agents looking for short-life interactions. In the future, we aim to ex-
tend our techniques by implementing incentives for cooperation and considering
the topology of the agents’ network and its effects on the cost of the matchmaking
process.

74

Chapter 13

Appendix A. Heuristic α

Experiments for Coverage
Algorithm

The original algorithm use the angelα which bounds the robot deviation from
it’s original direction and guarantees that the robot does not need move backward.
In all the experiments in this sectionα was set to15.6 ◦ which means that robot
always covers the required area i.e. the Corollary 4.0.2 holds. In this section we
will study the scenario in which our algorithm will use smaller values forα, in
order to reduce the number of times localization is required. This will (hopefully)
reduce the total cost of the algorithm. On the other hand, when |y| > 0.5(D −
d) the robot will be required to go back to facilitate the exact coverage. This
operation will lead to additional drive and localization cost.

It should be noticed that in order to computedmin from Equation 5.2 we still
use the original value of angelα which is15.6 ◦ for our current set of experiments.

In order to show the motivation for the heuristicα value we experimented with
differentα values. Figure 13.1 summarizes the experiments we did with different
values ofα. Using the same settings we used in the worst caseα experiment we
changed the value ofα that was passed to the Trim Sail algorithm. We setα to
15.6 ◦ - the maximum obtained from the real robot,11.459 ◦ 5.7296 ◦ 0.57296 ◦

0.1323 ◦ - the minimum error of real robot. Figure 13.1 shows that tillthe value of
α is not too small and the robot deviation from the required corridor is rare the cost
is reduced. Then, when the robot is required to go back too frequently the cost
starts to grow and becomes larger than the cost of our original technique (Trim
Sail algorithm with the worst caseα). Usingα smaller than the upper bound we
successfully reduced the algorithm cost by 36%. and achiveda complete coverage
at the same time.

Now when the reason for heuristic is clear we will experimentwith heuristics

75

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 2 4 6 8 10 12 14 16

A
lg

or
ith

m
 C

os
t

α in in degrees

Simulation

Figure 13.1: The cost of the algorithms as a function of angelα used by the robot’s
algorithm

explained in Section 5.2 and compare their quality.

13.0.1 Simple Symmetric Heuristic

In this section we will investigate Simple Symmetric Heuristic. We took an error
data obtained from the real robot and built a probability function that corresponds
to the error data, taking into account the sign of the error. As we mentioned in
Section 5.2, there are three tests to find the best probability fit for a given data [44,
45, 12]. We executed all three tests and in this case all threetests suggested that
Logistic [36] distribution provides the best fit to the data.Logistic distribution

probability function is defined asf(x) =
sech2(

(x−α)
2β

)

4β
. The sech is a Hyperbolic

Secant Function [36]. The second best probability fit function suggested by all the
test is a Normal distribution.

With a distribution function in hand we setα1 = 0.3398 ◦ which is the mean
value of the Logistic distribution. In addition we evaluated the average of the error
values which gives usα2 = 0.6921 ◦. According with the heuristics, average takes
into account the sign of the error. The mean value of the Normal distribution is
equal toα2 soα2 corresponds to both, the average of the error values and the mean
value of the Normal distribution.

Figure 13.2 presents the results obtained by usingα values proposed by the
simple symmetric heuristics. It shows that the mean value ofthe Logistic distri-

76

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 300000

 320000

Original αAverageLogistic

A
lg

or
ith

m
 C

os
t

Figure 13.2: Compare the cost of coverage of the worst caseα with the cost of the
algorithm that uses simple symmetric heuristic.

bution only increases the cost of the algorithm while the Normal distribution or
the average error value decrease the cost by 20% comparing tothe worst caseα
value. From the result above it is impossible to conclude on the usefulness of this
heuristics. Also, the intuition for this kind of heuristic is problematic: assume
that the robot makes similar error to the left and to the right. This will make the
distribution to look like a Normal distribution with mean value set to zero. The
heuristic achieves the complete coverage of the environment.

13.0.2 Absolute Value Symmetric Heuristic

This section deals with Absolute Value Symmetric Heuristic. This heuristic sug-
gests to take the absolute value of the robot’s errors and build a distribution func-
tion for those values. As in the previous experiment we used 3different proba-
bility tests to find the best distribution fit. This time the tests suggested different
distributions functions for the provided data and we decided to evaluate them all.
For eachα value discussed below the correspondingdmin value was calculated.

Table 13.1 summarizes theα values used in experiments and the probability
functions that corresponds to them. TheΓ(α) in the Pearson5 distribution is a
Γ(z) =

∫ ∞
0

tz−1e−tdt function[1]. Like in the previous heuristic we also evaluated
the average of the error values, i.e the average of the absolute values of the errors.
This time, the average is equivalent to the mean value of InvGaussian.

77

Distribution Name Probability Density Function The mean(α value)

Inverse Gaussian[1] f(x; µ, λ) = (λ
2πx3)

0.5 exp −λ(x−µ)2

2µ·x α1 = 1.3181 ◦

LogNormal[1] f(x; µ, σ) = (1
xσ

√
2π

) exp− (ln x−µ)2

2σ2 α2 = 1.6538 ◦

Pearson5[1] f(x; α, β) = 1
βΓ(α)

· exp
−β
x

(x/β)α+1 α3 = 1.4703 ◦

Table 13.1: Distribution functions used in the experiment.

 110000
 120000
 130000
 140000
 150000
 160000
 170000
 180000
 190000
 200000

Original α
Pearson5

LogNormal
Inverse Gausian

A
lg

or
ith

m
 C

os
t

Figure 13.3: Compare the cost of coverage of worst caseα with the cost of the
algorithm that use absolute value symmetric heuristic.

We made 50 runs for each one of theα values presented in the table. The
results are presented in Figure 13.3. The figure show that allthe presented proba-
bility distribution models successfully reduce the cost ofthe original (worst case)
α value. The best result is shown by Pearson Type 5 distribution function which
reduces the cost to 58% out of the cost of the original algorithm. The InvGaussian
and LogNormal reduces the cost to 63% and 62% correspondingly. The exper-
iment suggests that absolute value symmetric heuristic successfully reduces the
cost of the coverage algorithm, while the difference among different distribution
function is less than 4%. The heuristic achieves the complete coverage of the
environment.

78

Name α1 α2 The distribution used forα1 The distribution used forα2

E1 0.7595 ◦ 2.5059 ◦ Pearson5 Pearson5
E2 0.6878 ◦ 2.5059 ◦ Exp. distribution[1] Pearson5.
E3 0.7155 ◦ 1.7868 ◦ Arithmetic Average Arithmetic Average
E4 0.6912 ◦ 1.7868 ◦ ExtValue dist[1] Inverse Gaussian
E5 2.6025 ◦ 15.6165 ◦ Maximum Maximum
E6 15.6165 ◦ 15.6165 ◦ Originalα Originalα

Table 13.2: Non Symmetric Experiment Settings

13.0.3 Non Symmetric Heuristic.

We want to further reduce the algorithm cost by using Non Symmetric Heuristic.
Since the error introduced by the robot is not symmetric, we want to split those
errors and build different error models to positive and negative error values. In
this section we use a slightly modified version of the algorithm (Algorithm 3) as
introduced in Section 4.

Theα1 refers to the robot deviation to the left (positive error) relative to the
robot’s moving direction whileα2 refers to the deviation to the right (negative
error). We learned an error model forα1 andα2 separately and conducted an
extensive set of experiments using this values. Eachα value was tested for 50
times. We used probability fit test as introduced on Section 5.2 and compared the
models we learned to original (worst case) algorithm. We also evaluated the use
of separate worst case boundaries (E5 in Table 13.2) for the positive and negative
errors. In each one of the experiment we calculated thedmin value usingα =
max(α1, α2).

We summarize the settings used in this experiment in Table 13.2 while results
are presented in Figure 13.4. The Exponential Distribution[1] used in E2 is de-
fined asf(x; λ) = λ exp−λ·x and Extreme Value Distribution[1] used in E4 is
defined asf(x; a, b) = 1

b
(1

exp(z+exp−z)
) wherez = x−a

b
.

Figure 13.4 presents that Non Symmetric Heuristic successfully reduces the
cost of the original coverage algorithm (worst caseα). The best performance was
achieved in the E1 case where Pearson Type 5 distribution wasused to model both
the positive and the negative errors. In this case, heuristic achieves the cost that is
59% out of the cost of original (worst case) algorithm. As in the previous cases,
the heuristic achieves the complete coverage of the environment.

The additional question that should be answered here is if it’s worth to separate
the error bounds to the left and to the right, even without theuse of heuristics? The
answer here is positive, since the E3 bar which use non heuristics values forα1

andα2 achieves relatively good results compared to the original,worst caseα (E5
bar).

79

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 190000

 200000

E6E5E4E3E2E1

A
lg

or
ith

m
 C

os
t

Figure 13.4: Cost of the algorithm that uses different error bounds to the positive
and the negative errors. Categories E1–E6 are explained in Table 13.2.

13.0.4 The Comparison of Heuristics

Now we want to compare the results obtained from the different heuristics and
conclude with general remarks on the heuristics we used.

Figure 13.5 presents the best performance achieved by each of the heuristics.
It shows that the best performance was achieved by Absolute Value Symmetric
Heuristic with 58.7% out of original algorithm cost. Next comes the Non Sym-
metric Heuristic that achieves 59.3% out of the cost of original algorithm. The dif-
ference between those two heuristics is statistically insignificant (p-value is equal
to 0.32), while both heuristics significantly improve the cost relative to worst case
α. We suggest that both are suitable for use in a real time settings while it is
not clear if non symmetric heuristics can lead to a significant reduce in the cost
compare to absolute value symmetric heuristic. Both heuristics use a Perason5
probability distribution to model the real robot errors. Weconclude that this dis-
tribution model is the best for the environment and the robotwe used.

The best results presented in Figure 13.5 use probabilisticmodels and distri-
bution fits to find properα values. There is a computational cost associated with
this. On the other side we notice that the algorithm that use simple arithmetic
average (instead of Pearson5 distribution) performs very well compared to the
original (worst case) algorithm. Figure 13.6 show this. NonSymmetric and Ab-
solute Value Symmetric Heuristics shows the best result also in this case. They
achieve 61.5% and 63.3% correspondingly (p-value is equal to 6 · 10−9, so the

80

 110000
 120000
 130000
 140000
 150000
 160000
 170000
 180000
 190000
 200000

Original α

Simple Symetric

Non Symetric

Absolute Value Symetric

A
lg

or
ith

m
 C

os
t

Figure 13.5: Compare the best costs obtained by different heuristics

difference among two heuristics is significant) compared tooriginal algorithm.
The differences among the algorithm cost obtained by Person5 and arithmetic av-
erage is statistically significant in both cases. This property is important for the
cases where computing best fit probability and checking themis too expensive and
some simple solutions are required. Arithmetic Average provides us with such a
solution.

81

 110000
 120000
 130000
 140000
 150000
 160000
 170000
 180000
 190000
 200000

Original α

Simple Symetric

Absolute Value Symetric

Non Symetric

A
lg

or
ith

m
 C

os
t

Figure 13.6: The Arithmetic Average Values computed as suggested by different
heuristics for use asα value.

82

Chapter 14

Appendix B. Network
Characteristics for Multilaterl
Matchmaking

In the first set of experiments, we examined the effects of different network char-
acteristics on matchmaking performance in order to establish baselines for the
many different parameters that can potentially affect performance. The network
of agents was modeled as a directed graph where nodes represent agents and edges
correspond to entries in the agent’s address book, i.e., thelinks between the agents.
In order to evaluate the algorithms proposed earlier, different graphs, correspond-
ing to different networks, were generated using the following procedure.

First, a complete simple cycle, encompassing allN agents in the network,
was created (essentially establishing anN -size ring topology) to make sure that
the graph is connected. Then, with a probability ofp, we created the edges that
may connect any two agents. For the purpose of the experiments in this section,
we generated graphs withN = 1200, and experimented with differentp values1.

We focused on bi-directional searches for matches of different types of activi-
ties (e.g., game types). We tested systems with 1200 agents interested in ten differ-
ent types of activities. We simulated different workloads on the system by creating
2 types of scenarios. In the first one, 120 randomly chosen agents searched for
matches. In the second one, the number of such active agents was increased to
600. We randomly generated 9 graphs and 3 scenarios and ran each scenario on
each graph, creating 27 number of samples for each simulation. In order to make
our simulation more realistic, we activated the agents searching for a match one
by one during the first 120 (or 600) time steps.

1We have also experimented with graphs of up to10000 agents, but found that as long as the
scale-up factors were maintained, the results were essentially identical. We thus utilize a fixedN
in this section.

83

The next network characteristic is the teeming probability[21]. This value
defines the probability that a message will be sent to a given neighboring (linked)
node . For example, when the teeming probability is 1, the message is sent to
all the entries in agent’s address book. This case is also called flooding. If the
teeming probability is 0, no message is forwarded. This value was varied and the
results of its variance are presented below. In our experiments we varied the value
of the teeming parameter from 0.1 to 0.7.

To limit the number of messages in a network, and to prevent aninfinite cy-
cling of messages, two common techniques are used in the literature. The first
uses avisitor’s cachein every node, so that messages that arrive at a node for the
first time, are stored in the cache. Then, if the message reaches the same node
again, it is rejected. This technique requires significant memory, and may also
fail, if the cycles are very large.

The more common technique in the literature (and indeed, in the common
Internet protocols), is to use a network hop counter with each message, called
TTL (Time To Live). The TTL defines the number of hopes (edge traversals) that
a message can travel in network. Every node that receives a message forwards
it only if the TTL is greater than 0, and when it carries out such forwarding, it
reduces the TTL by one. When a node receives a message with a TTLof 0, it
discards it. In principle, the TTL and visitor’s cache are equivalent techniques,
but as we discuss above, the TTL mechanism is more robust and requires less
memory of each agent. In the experiments below, we utilized both combinations
of cache and TTL, or only TTL.

The last network characteristic is TTL. The purpose of this parameter is to
limit message life in the network. We varied this parameter from 1 to 20.

14.0.5 The effects of graph connectivity

We began by exploring the effect of graph connectivity on matchmaking perfor-
mance. We controled the connectivity by varying the edge creation probabilityp.
p was set to 0.0001, 0.001, 0.005 and 0.01. Higher values induce more strongly-
connected graphs.

Figures 14.1, 14.2, and 14.3 show the matchmaking success rate, the matching
time (for successful matches), and the number of messages, as a function of the
connectivity (as measured by the edge generation probability p). In these experi-
ments, the teeming probability was set to 0.3, the visitor’scache was set to 0, and
the scenario was set to matchmaking 600 agents. The TTL was set to 5.

The figures show that as graph connectivity increases, the success rate dramat-
ically rises, and the time required to find a match decreases.However, the number
of messages increases very quickly.

84

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.002 0.004 0.006 0.008 0.01

S
uc

ce
ss

 r
at

e

Edge Probability

Figure 14.1: Success rate as a function of graph connectivity (as measured by
edge creation probabilityp).

14.0.6 The effects of TTL

We then explored the effect of TTL on matchmaking performance. The TTL is
controlled directly, and is assumed to be uniform for all messages. The TTL levels
were set at 1, 2, 3, 5, 7, and 10. Higher values will mean that messages traverse
the graph for longer periods of time, thus increasing the number of messages (but
hopefully also the chances of a successful match).

Figures 14.4, 14.5, and 14.6 show the matchmaking success rate, the match-
ing time (for successful matches), and the number of messages, as a function of
the TTL value. In these experiments, the teeming probability was set to 0.3, the
visitor’s cache was set to 0, and scenario was set to matchmaking 500 agents. The
edge probabilityp was 0.005.

The figures show that as TTL increases, the success rate increases, as does
the number of messages. The time for finding a match appears tochange non-
monotonically in the graph. However, the careful reading reveals that the range
on the y-axis is on the approximately 0.2 hops. That is, unfortunately the figure
is misleading: The time requred to find a resolution is essentially constant, and is
not affected by larger TTL values.

85

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 0.002 0.004 0.006 0.008 0.01

T
im

e
to

 R
es

ol
ve

 m
es

sa
ge

Edge Probability

Figure 14.2: Time for matchmaking as a function of graph connectivity (as mea-
sured by edge creation probabilityp).

14.0.7 The effects of teeming probability

We subsequently explored the effect of the teeming probability t on matchmaking
performance.t is controlled directly, and is assumed to be uniform for all agents.
This parameter was set to values of 0.001, 0.01, 0.1, 0.25, 0.3, 0.4, and 0.5. Higher
values would mean that on average, more messages would be forwarded by each
agent, and thus network traffic (number of messages) would increase. With such
an increase, we expect higher a success rate.

Figures 14.7, 14.8, and 14.9 show the matchmaking success rate, the matching
time (for successful matches), and the number of messages, as a function of the
teeming value. In these experiments, the TTL value was set to5, the visitor’s
cache was set to 0, and the scenario was set to matchmaking 600agents. The edge
probabilityp was 0.005.

The figures show that as teeming increases, the success rate increases, as does
the number of messages. The time required to find a match decreases.

14.0.8 The effects of the workload.

Lastly we explored the effect of the workload on the performance of our algorithm.
Using size 1200 graphs we set number of active agents to be 100, 200, 400, 600,
800, 1000 and 1200. The TTL was set to 5, teeming was equal to 30Figures
14.10, 14.11, and 14.12 show the matchmaking success rate, the matching time

86

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 1.4e+007

 0.002 0.004 0.006 0.008 0.01

T
ot

al
 M

es
sa

ge
 N

um
be

r

Edge Probability

Figure 14.3: Number of messages as a function of graph connectivity (as mea-
sured by edge creation probabilityp).

(required for successful matches), and the number of messages for scenarios of
different length. As long as the scenario length increase the total workload on the
system increase but this does not affect the success rate andthe time required for
successfull match resolution.

87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

S
uc

ce
ss

 r
at

e

TTL

Figure 14.4: Success rate as a function of TTL.

 8

 9

 10

 11

 12

 13

 14

 15

 1 2 3 4 5 6 7 8 9 10

T
im

e
to

 r
es

ol
ve

 m
es

sa
ge

TTL

Figure 14.5: Time for matchmaking as a function of TTL.

88

 0

 1e+007

 2e+007

 3e+007

 4e+007

 5e+007

 6e+007

 7e+007

 8e+007

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 M

es
sa

ge
 N

um
be

r

TTL

Figure 14.6: Number of messages as a function of TTL.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
uc

ce
ss

 r
at

e

Teeming

Figure 14.7: Success rate as a function of teeming probability.

89

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
im

e
to

 r
es

ol
ve

 m
es

sa
ge

Teeming

Figure 14.8: Time for matchmaking as a function of teeming probability.

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
ot

al
 M

es
sa

ge
 N

um
be

r

Teeming

Figure 14.9: Number of messages as a function of teeming probability.

90

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200

S
uc

ce
ss

 r
at

e

Number of Active Agents

Match cahce of size 0
Match cahce of size 5

Figure 14.10: Success rate as a function of scenario length.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 200 400 600 800 1000 1200

M
es

sa
ge

 n
um

be
r

Number of Active Agents

Match cahce of size 0
Match cahce of size 5

Figure 14.11: Time for matchmaking as a function of scenariolength.

91

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 0 200 400 600 800 1000 1200

T
im

e
to

 R
es

ol
ve

 M
es

sa
ge

Number of Active Agents

Match cahce of size 0
Match cahce of size 5

Figure 14.12: Number of messages as a function of scenario length.

92

Bibliography

[1] M. Abramowitz and I. A. Stegun.Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1964.

[2] N. Agmon, N. Hazon, and G. A. Kaminka. The giving tree: Constructing
trees for efficient offline and online multi-robot coverage.AMAI, 2008.

[3] F. Banaei-Kashani and C. Shahabi. Criticality-based analysis and design
of unstructured peer-to-peer networks as ”complex systems”. In CCGRID,
pages 351–358. IEEE Computer Society, 2003.

[4] F. Banaei-Kashani and C. Shahabi. SWAM: a family of access methods for
similarity-search in peer-to-peer data networks. InCIKM ’04: Proceedings
of the thirteenth ACM international conference on Information and knowl-
edge management, pages 304–313, New York, NY, USA, 2004. ACM Press.

[5] B. Barshan and H. Durrant-Whyte. An inertial navigation system for a mo-
bile robot. InIROS-93, pages 1367–1372, 1993.

[6] D. Ben-Ami and O. Shehory. Evaluation of distributed and centralized agent
location mechanisms. In M. Klusch, S. Ossowski, and O. Shehory, editors,
CIA, volume 2446 ofLecture Notes in Computer Science, pages 264–278.
Springer, 2002.

[7] D. Ben-Ami and O. Shehory. A comparative evaluation of agent location
mechanisms in large-scale multi-agent systems. InProceedings of the Fourth
International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS-05), pages 339–346. ACM, 2005.

[8] J. Borenstein. Internal correction of dead-reckoning errors with the smart
encoder trailer. InIROS-94, pages 127–134, 1994.

[9] J. Borenstein., H. Everett, and L. Feng.Navigating Mobile Robots: Sensors
and Techniques. A. K. Peters, Ltd., Wellesley, MA, 1996.

93

[10] K. Burdett and R. Wright. Two-sided search with nontransferable utility.
Review of Economic Dynamics, 1(1):220–245, January 1998.

[11] A. Burguera, G. Oliver, and J. Tardos. Robust scan matching localization
using ultrasonic range finders. InIROS-05, pages 1367–1372, 2005.

[12] Chakravarti, Laha, and Roy.Handbook of Methods of Applied Statistics,
volume 1. John Wiley and Sons, 1967.

[13] H. Choset. Coverage for robotics - A survey of recent results. Annals of
Math and Artificial Intelligence, 31(1–4):113–126, 2001.

[14] H. Choset, E. Acar, A. Rizzi, and J. Luntz. Exact cellular decompositions in
terms of critical points of morse functions. InProceedings of IEEE Interna-
tional Conference on robotics and automation (ICRA-00), volume 3, pages
2270–2277, April 2000.

[15] H. Choset and P. Pignon. Coverage path planning: The Boustrophedon de-
composition. InInternational Conference on Field and Service Robotics,
1997.

[16] J. Colegrave and A. Branch. A case study of autonomous household vacuum
cleaner.AIAA/NASA CIRFFSS, 1994.

[17] T. T. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to algorithms.
MIT Press, 1990.

[18] N. Correll and A. Martinoli. Distributed coverage: Fromdeterministic to
probabilistic models. InProceedings of IEEE International Conference on
Robotics and Automation (ICRA-07), pages 379–384, 2007.

[19] K. Decker, K. Sycara, and M. Williamson. Middle-agentsfor the internet. In
Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI-97), Nagoya, Japan, 1997.

[20] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlolocalization for
mobile robots. InICRA, pages 1322–1328, 1999.

[21] V. V. Dimakopoulos and E. Pitoura. On the performance offlooding-based
resource discovery.IEEE Trans. Parallel Distrib. Syst., 17(11):1242–1252,
2006.

[22] B. P. Ebrahimi, K. Bertels, S. Vassiliadis, and K. Sigdel.Matchmaking
within multi-agent systems. InProceeding of ProRisc-2004, November
2004.

94

[23] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of
Robotics and Automation, pages 233–249, 1990.

[24] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol under
frequency constraints. InICRA-07, 2007.

[25] Z. Fan, J. Borenstein, D. Wehe, and Y. Koren. Experimental evaluation of
an encoder trailer for dead-reckoning intracked mobile robots. InProceed-
ings of the 1995 IEEE International Symposium on Intelligent Control, pages
571–576, 1995.

[26] L. N. Foner. Yenta: A multi-agent, referral-based matchmaking system. In
Proceedings of the First International Conference on Autonomous Agents
(Agents-97), 1997.

[27] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot.Annals of Math and Artificial Intelligence, 31:77–
98, 2001.

[28] Y. Gabriely and E. Rimon. Competitive on-line coverage ofgrid environ-
ments by a mobile robot.Computational Geometry, 24:197–224, 2003.

[29] N. Hazon and G. Kaminka. On redundancy, efficiency, and robustness in
coverage for multiple robots.Robotics and Autonomous Systems, 2008.

[30] N. Hazon and G. A. Kaminka. Redundancy, efficiency, and robustness in
multi-robot coverage. InICRA-05, 2005.

[31] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robust on-line multi-robot
coverage. InICRA-06, 2006.

[32] S. Hert, S. Tiwari, and V. Lumelsky. A terrain-coveringalgorithm for an
AUV. Autonomous Robots, 3:91–119, 1996.

[33] T. Hongo, H. Arakawa, G. Sugimoto, K. Tange, and Y. Yamamoto. An
automatic guidance system of a self-controlled vehicle.Autonomous robot
vehicles, pages 32–37, 1990.

[34] W. H. Huang. Optimal line-sweep-based decompositionsfor coverage algo-
rithms. InProceedings of IEEE International Conference on Robotics and
Automation (ICRA-01), volume 1, pages 27–32, 2001.

[35] G.-J. Jang, S. Kim, W.-H. Lee, and I.-S. Kweon. Color landmark based
self-localization for indoor mobile robots. pages 1037–1042, 2002.

95

[36] N. Johnson, S. Kotz, and N. Balakrishnan.Continuous univariate distribu-
tions. Vol. 2. Wiley, 1994.

[37] M. Koubarakis. Multi-agent systems and peer-to-peer computing: Meth-
ods, systems, and challenges. In M. Klusch, S. Ossowski, A. Omicini, and
H. Laamanen, editors,CIA, volume 2782 ofLecture Notes in Computer Sci-
ence, pages 46–61. Springer, 2003.

[38] A. Kruling. A novel approach to the mobile robot localization problem using
tracking methods. InRobotics and Applications and Telematics. IEEE, 2002.

[39] J. D. Nicoud and M. K. Habib. The Pemex-B autonomous demining robot:
perception and navigation strategies. InIROS-95, volume 1, 1995.

[40] E. Ogston and S. Vassiliadis. Matchmaking among minimal agents without
a facilitator. InAgents, pages 608–615, 2001.

[41] F. Preparata and M. Shamos.Computational Geometry: An Introduction.
Springer, 1985.

[42] I. M. Rekleitis, G. Dudek, and E. E. Milios. Multi-robot exploration of an
unknown environment, efficiently reducing the odometry error. In IJCAI97,
pages 1340–1345, 1997.

[43] O. Shehory. A scalable agent location mechanism. In N. R.Jennings and
Y. Lesṕerance, editors,ATAL, volume 1757 ofLecture Notes in Computer
Science, pages 162–172. Springer, 1999.

[44] G. W. Snedecor and W. G. Cochran.Statistical Methods. Iowa State
Un.Press, Ames IO, 1967.

[45] M. A. Stephens. EDF statistics for goodness of fit and some comparisons.
Journal of the American Statistical Association, 69(347):730–737, 1974.

[46] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. InProceed-
ings of the ACM SIGCOMM ’01 Conference, San Diego, California, August
2001.

[47] S. Thrun. Finding landmarks for mobile robot navigation. In ICRA, pages
958–963, 1998.

[48] S. Thrun, W. Burgard, and D. Fox.Probabilistic Robotics. MIT Press, 2005.

96

[49] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta. Planningpaths of com-
plete coverage of an unstructured environment by a mobile robot. In In
Proceedings of International Conference on Advanced Robotics, pages 533–
538, 1993.

97

