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a b s t r a c t

In the robotics community, there exist implicit assumptions concerning the computational
capabilities of robots. Two computational classes of robots emerge as focal points of recent
research: robot ants and robot elephants. Ants have poor memory and communication
capabilities, but are able to communicate using pheromones, in effect, turning their work
area into a shared memory. By comparison, elephants are computationally stronger, have
large memory, and are equipped with strong sensing and communication capabilities.
Unfortunately, not much is known about the relation between the capabilities of these
models in terms of the tasks they can address. In this paper, we present formal models
of both ants and elephants, and investigate if one dominates the other. We present
two algorithms: AntEater, which allows elephant robots to execute ant algorithms and
ElephantGun, which converts elephant algorithms – specified as Turing machines – into
ant algorithms. By exploring the computational capabilities of these algorithms, we reach
interesting conclusions regarding the computational power of both models.
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1. Introduction

Investigations of multi-robot systems, from a computational perspective, often focus on algorithms for specific tasks and
applications [1,2]. Such algorithms make explicit their assumptions concerning the sensing and actuation morphologies of
the robots. However, more often than not, assumptions as to the computational capabilities of the robots are left implicit.
They can be determined by examining the requirements of the algorithms, and the basic set of atomic actions they utilize.

This paper defines two important computational classes of robots: robot ants and robot elephants. We examine the
computability of these classes. We find that on one hand, one robot ant is computationally equivalent to one robot elephant.
On the other hand, multiple robot elephants strictly dominate multiple robot ants. These are the first computability results
in this area.

Despite the lack of explicit attention to the formal computational capabilities of robots, two computational classes of
realistic robots emerge as marking extreme points in recent research: robot ants, which have restricted computational
and communication capabilities, but can utilize pheromones to read/write messages in their environment, and robot
elephants, which have strong computation and communication capabilities, but no pheromones. Other computational
classes lie somewhere in between these extremes, e.g., many types of swarm-robotics models [3,4] which often share some
computation restrictions with ants, but similarly to elephants, do not have pheromones. We restrict our focus herein to ants
and elephants.

Robot ants [5–8] are usually memoryless (or have severe memory limitations) and have relatively weak sensing abilities,
if any [9,10]. However, they can communicate through the environment, by leaving behind pheromones which essentially
turn the environment into a shared memory. Robot ants have been shown to be able to carry out impressive robotic tasks,
such as terrain coverage [9–11] and foraging [5,12].

Robot elephants seem – by comparison – significantly stronger from a computational perspective. These have a large
amount of memory (as large as needed, for instance, to hold a full map of the work area), and are equipped with strong
sensing, computation, and communication machinery. Robot elephants have similarly been shown to work in the same
tasks as above (e.g., [1,2]).

However, while researchers of ant-robotics and elephant-robotics have tackled similar tasks, the actual computational
capabilities and limitations of the twomodels remain open questions. Empirical comparisons between solutions are difficult
and rare, in part due to the different metrics and experiment designs in each community. Moreover, most robots in
practice are more limited than the prototypical elephants described above, but less restricted than the robot ants; this
makes distinguishing the underlying computational advantages and disadvantages of different robot models even more
challenging.

In this paper, we seek to theoretically distinguish the two extreme models and their basic computability capabilities.
We present formal models of both ants and elephants in a grid environment, and investigate if one dominates the other,
they are equivalent, or rather each has its own advantage over the other and thus, they are incomparable. We present two
algorithms: AntEater, which allows elephant robots to execute ant algorithms; and ElephantGun, which converts elephant
algorithms – specified as Turing machines – into ant algorithms.

By exploring the computational capabilities of these algorithms, we reach interesting conclusions regarding the
computational power of both models. We find that a group of elephant robots can easily simulate every ant algorithm run
by a group of ant robots. Moreover, we find that a single ant robot can fully simulate a single elephant robot, given infinite
space. However, we show that there exist problems, which multiple elephants can solve and ants cannot. This is the first
general computability result in this area.

2. Background and related work

Ant robots are usually described as memoryless or more formally as finite state machines [10,7] i.e., having only a
constant amount of internal memory, the size of which is independent of the problem size. Furthermore, they typically
have limited sensing capabilities [9,6]. Common to all previous work is the assumption that the ants are not able to use
conventional planning methods such as POMDPs [6]. What distinguishes the ants from other simple mobile robots is the
usage of pheromones to communicate with each other. These pheromones are basically pieces of information that can take
any physical form such as chemicals [5], heat [13], markings [9], RFID [14], etc., and are sometimes evaporative [7,13].

This usage of pheromones as an indirect communication through the modification of the environment is the very basis
of stigmergy [15]. This concept of using stigmergic behavior repeatedly in order to evolve self-organization is one of the
strengths of the ant model, as it enables a group of ants to create probabilistic algorithms that solve problems in dynamic
environments [16,15]. Nevertheless, in this paper we only use basic active stigmergic concepts, since we are interested in
non-probabilistic solutions.

Bruckstein and Wagner have shown algorithms for area coverage by a team of ants, using evaporative [7] and non-
evaporative [17] markings. While some of these pheromones are laid by the robots themselves [17], others are a part of
the given workspace [10]. They considered simple robots with a bounded amount of memory [10,8] for their model of ant
robots. Their works and additional works by Koenig et al. [18] produced upper bounds for the time it takes to complete a
single or a repeated coverage by a swarm of ants. However, none of the works above prove any concrete boundaries on the
ant model abilities in general.
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It is important to differentiate between ants and other types of swarms robots. All swarm robotmodels are decentralized
and have very limited sensorial and computational abilities [3,4,19]. However, ants have the usage of pheromones that can
be placed and sensed, and by that transform their environment into a shared memory. Other swarm robot models exist
which do not use pheromones, and yet do not have the unbounded communications of robot elephants [3,4]. We do not
investigate these in this paper.

Unfortunately, model comparisons of robots had not been often discussed. There is, indeed, an extensive theory of
computation, which includes a hierarchy of calculating machines from finite state machines to Turing machines [20].
However, to the best of our knowledge, we are the first to utilize these computability results to analyze the computational
power of robots. O’Kane and LaValle [21] produced amodel for comparing the power of robot based on sensory abilities, but
did not address computational and memory differences.

Several papers investigated classes of semi-synchronous [22] and asynchronous [23–28] mobile robots that have all
powerful sensing abilities, such as taking a snapshot of the world, in contrast to their weak memory functionality, no
localization, and no sense of direction. Some interesting boundaries to these robots’ abilities were found, yet we do not
know if those limits stand when these robots are equipped with pheromones.

3. Definitions

In this section, we provide formal definitions of the ant and elephant models used throughout our work (Section 3). For
simplicity, we will use a grid as the environment in which the ants and elephants interact. Nonetheless, we note that some
of the proofs (Section 4) ahead are valid even on continuous domains.

Definition 1 (World). The world is an infinite two-dimensional regular square grid. Each cell can be either blocked (with
an obstacle, even if only partly) or free. Pheromones may only be placed in free cells. In this paper, we handle three types of
grids: (1)ClearGrid—an infinite gridwith no obstacles. (2)RectangleGrid—an infinite gridwith a bounded-sized rectangular
obstacles. (3) ObstacleGrid — an infinite grid with an unbounded-sized any-shape obstacles.

Grid decomposition of the environment is a well known approximation for problems solving of this kind [2,10]. The cell
unit should be at least as large as the smallest square that can surround the ant.

We define the ant model as having a representative subset of properties from the models discussed above:

Definition 2 (Ant). An ant is a robot that has the following attributes and abilities:
Attributes:

• Homogeneity: Ants are homogeneous; they all have the same capabilities, and run the same algorithm.
• Localization: Ants cannot recognize their location.
• Directionality: Ants do not have a notion of a global ‘‘north’’, but can be aware of their directionality relative to the

direction they started at.
• Communication: No direct communication is allowed between ants. They communicate only using pheromones

(Definition 3).
• Computational power: From a computational point of view, ants are finite state machines. They cannot manipulate

variables and cannot use recursions.
• Anonymity: Ants are anonymous and cannot identify each other.

Actions:

• Move: in four directions, north, south, east, west. In other words, they can only move between neighboring cells.
• Sense: Ants can sense the content of cells which are distanced up to a given radius. The outcome of a sense reveals

the content of that cell which is either blocked, free, contains a pheromone, or contains another ant. In this paper, we
assume that the sense radius of the ant is one unit. That is, it can sense the content of its current cell and any of its eight
neighboring cells.1
• Write: (or change) pheromones in its current cell. There is no limit on the number of cells that an ant can write a

pheromone in (if it is located there), i.e., they have unlimited ‘‘ink’’.

Communication in ants is done using pheromones as defined below:

Definition 3 (Pheromone). A pheromone is a symbol that can be read/written by ants in cells. Each cell can contain at most
one pheromone. When a pheromone is encoded, it is divided into a finite number of fields. Each field can have a finite set
of different values. Therefore a pheromone has a finite set of symbols. Pheromones do not evaporate by themselves but can
be erased and rewritten by ants.

1 Shiloni et al. [29] show how to modify algorithms to a sense radius of zero, where an ant must physically move to a cell in order to learn about its
content.



Author's personal copy

5774 A. Shiloni et al. / Theoretical Computer Science 412 (2011) 5771–5788

To focus the comparison between the ant and the elephant models on issues rather than sensing (already handled by
[21]), we assume that the elephants have the same sensing capabilities as the ants.

Definition 4 (Elephant). An elephant is a robot that has the following attributes and abilities. We use emphasized text to
denote differences with ants:

Attributes:

• Homogeneity: Elephants are homogeneous in the sense that they all have the same capabilities and run the same
algorithm.
• Localization: Elephants can typically perfectly localize themselves on a shared coordinate system. We call these LF-Ants (the

L stands for localized). We also explore a variant of elephants that cannot localize within a global grid, called NF-Ants
(Section 4.2).
• Directionality: Elephants have a notion of a global ‘‘north’’.
• Communication: Elephants have reliable, instantaneous communications among each other.
• Computational power: Elephants have unbounded memory. From a computational point of view, elephants are Turing

machines.
• Anonymity: Elephants have distinct identities and all know of each other.

Actions:

• move: in four directions, north, south, east, west, all relative to their initial pose (can be arbitrarily chosen to be ‘‘north’’).
As the ants, they can only move between neighboring cells.
• sense: Elephants can sense the content of cells which are distanced up to a given radius.

The difference in computational ability betweenmodels is measured by the ability to solve different classes of problems.
We define computational dominance similarly to the definition in [21]. Dominance is defined as follows:

Definition 5. Let AN and BM be models of N andM mobile robots, respectively. Then:

• We say that AN dominates BM and notate it AN D BM if the computational ability of AN is at least as powerful as those of
BM , i.e., if every problem solvable by BM is also solvable by AN .
• We say that AN strictly dominates BM and notate it AN ◃ BM if AN D BM is true, and in addition there exists at least one

problem solvable by AN , but unsolvable by BM .
• We say that AN is equivalent to BM and notate it AN ≡ BM if AN D BM and BM D AN .
• We say that AN is incomparable to BM and notate it AN ◃▹ BM if there exists at least one problem solvable by AN , but

unsolvable by BM and at least one problem solvable by BN , but unsolvable by AM .

4. Elephants imitating ants

In this section, we begin to compare between the computational power of themodels, using a first algorithm (Section 4.1)
that allows multiple elephants to execute an algorithm for multiple ants. Moreover, we show an algorithm for a group of a
more restricted variant of elephants, which achieves the same property (Section 4.2).

4.1. The anteater

First, we show that N LF-Ants (elephants with localization) computationally dominate N ants in the sense that N LF-Ants
can simulate N ants, where N ≥ 1. To do this, we use an algorithm AntEater, that is executed by the LF-Ants and simulates
the behavior of the ants. We prove that this algorithm transforms the ants’ algorithm, while keeping the characteristics of
the original algorithm.

The underlying idea in AntEater is to execute exactly the same movements as the ant algorithm A, but distribute the
shared memory created by the use of pheromones. The elephant receives a map M , large enough to contain the work
area, with current position from localization device. Whenever A writes a pheromone value in the environment, AntEater
writes it in the internal map kept by each LF-Ant robot. And whenever A reads a pheromone value, the map is accessed in
memory to retrieve the value stored. The LF-Ant robots continuously communicate their map information to each other,
thus making sure that their maps are identical—therefore simulated pheromones written in one LF-Ant robot’s memory are
readily available to all others for reading. We formally show this in Theorem 1.

Theorem 1. Let B be a problem that can be solved by a group of N ants running algorithm A on an ObstacleGrid. Then, B
can be solved by a group of N LF-Ants running procedure AntEater on an ObstacleGrid in polynomial time while preserving A’s
robustness.

Proof. Task completion: Assume that the solution for problemB is a collection of paths and that this collection is achieved
by the ant algorithm A at a certain time t . Therefore, since AntEater performs the same movements as the original ant
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Algorithm 1 AntEater (Ant algorithm A, list of robots R, mapM)
1: Initialize MapM with current global position (x, y).
2: Initialize pointer p to point to first instruction in A.
3: while A has not stopped do
4: if step in p is to write pheromone l in location (x, y) then
5: write l in M(x, y)
6: else if step in p is read pheromone l from location (x, y) then
7: read value l from M(x, y)
8: else if step in p is sense location (x, y) then
9: Sense location (x, y) in space

10: else if step in p is calculate values (z0, . . . , zn) then
11: Simulate calculation of (z0, . . . , zn)
12: BroadcastM to all r ∈ R
13: UpdateM with maps received
14: if step in p ismove to (x, y) then
15: Move to location (x, y) in space
16: Set p to point to next instruction in A

algorithm A and simulates its calculations and pheromones in space, the LF-Ants will perform the same collection of paths
and thus, will solve the given problem.

Time complexity: Let O(n) be the time complexity of the original ant algorithm A, such that n is the number of steps
taken by the ant. Since in every step AntEater is going over exactly the step that would have been taken by A, its time
complexity will be nc = O(n), where c is the cost of broadcasting the robot’s map and thus, is still a function of the number
of robots. This can be achieved because AntEater does not perform any extra actions per step.

Robustness:AntEaterpreservesA’s original robustness, for they eventually behave exactly the same. Lastly, as it emerges
from line 3, AntEater assures termination in case the original ant algorithm itself terminates. �

We will use a coverage algorithm for ant robots called Mark-Ant-Walk, proposed by Osherovich et al. [17], in order
to exemplify the above theorem. The Mark-Ant-Walk algorithm is intended for one or more memoryless robots who use
pheromones as indirect communication to perform a coverage task of an area. As advertised, Mark-Ant-Walk guarantees
full coverage of a continuous area within n

 d
r


+ 1 steps, where n is the number of cells in the domain, d is the diameter

of the domain, and r is the radius of the robot effector (although, the above algorithm does not know when to stop). Also, it
promises immunity to noise and robustness to robot death: As long as at least one robot is alive, the area will be complete.

The Mark-Ant-Walk algorithm is given below (Algorithm 2). This algorithm is called continuously by each ant robots,
with p given as the current location (whose coordinates are unknown to the robot). R(r, 2r, p) denotes the robot’s ability to
sense pheromone level at its current position p and in a closed ring of radii r and 2r around p. D(r, p) denotes the open disk
radius r around the robot in which it can set the pheromone level, and σ(a) denotes the pheromone level at point a:

Algorithm 2Mark-Ant-Walk (current location p)
1: Let x← argminq∈R(r,2r,p) σ(q)
2: if σ(p) ≤ σ(x) then
3: for all u ∈ D(r, p) do
4: σ(u)← σ(x)+ 1 {We mark open disk of radius r around p}
5: Move to x

Therefore, if we run AntEater with Mark-Ant-Walk as an input on LF-Ants with the same sensing capability yet with
direct communication instead of the ability to read and write pheromones, it will behave as follows: First, the LF-Ant will
initialize a map with its own location on it and keep updating that map all along its run time with information it receives
from other robots. This can be done since LF-Ants have enough memory to create such a map. Then, in each step the LF-Ant
will move exactly as the ant would have, use its effector just as the ant would have, but instead of placing pheromones, it
will update their value in its own map. Also, instead of sensing for pheromones it will fetch the pheromone level from its
ownmap. Eventually, after completing a step, it will broadcast all other robots the changes it made to the map, in case there
are any. Based on Theorem 1, we maintain the original upper bound of Mark-Ant–Walk.

Moreover, we claim that not only does the AntEater preserve the original ant algorithm, but with some additions which
are built specifically for a certain ant algorithm, we can improve its run time, efficiency, and/or robustness. As an example,
the aboveMark-Ant-Walk algorithmdoes not knowwhen to stop. This is due to its boundedmemory, which is not a function
of the problem size and thus, cannot count steps to know to stop after n

 d
r


+ 1 steps, when it is assured that the area is

covered. However, our LF-Ant’s memory is not bounded and therefore, an addition to the algorithm of counting steps and a
condition to stop after n

 d
r


+ 1 improves the original algorithm.

Indeed, we show (Theorem 2) that a group of N LF-Ants computationally dominates a group of N ants:
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Theorem 2. Let ANTN and LF-ANTN be themodels presented in Section 3, where N is the number of robots, then LF-ANTN DANTN
for N ≥ 1.

Proof. Following Theorem 1, every algorithm executed by ants can be executed by LF-Ants, while completing the same goal
in atmost the same computational complexity andwhilemaintaining the same characteristics. Therefore the computational
ability of N LF-Ants is at least as strong as the computational ability of N ants. �

4.2. LF-Ants and NF-Ants

The LF-Ants above use a shared coordinated system thanks to their localization devices. This localization within a shared
coordinate system is a key component in their dominance over ants. However, localization is not a trivial capability.

We therefore introduce the NF-Ant, which is a weaker version of the LF-Ant model. The NF-Ant model is identical to
the LF-Ant model except it does not have localization and thus, two or more NF-Ants do not necessarily share the same
coordinate system.

Hence, we provide a way for NF-Ants to simulate ants, of course, without localizing themselves on a shared coordinated
system. This is done by an algorithm called NFantSpiral.

Algorithm 3 NFantSpiral (Ant algorithm A, list of robots R, mapM)
1: if ID == 0 then
2: Set current location asM(0, 0)
3: r ← 1 {The number of robots traveling in the group}
4: while r < |R| − 1 do
5: Move within a clockwise spiral {recording movements}
6: if ∃ robot ri in current location (x, y) then
7: Send (−x,−y) to robot ri
8: r ← r + 1
9: Return to M(0, 0)

10: Send all robots ‘RUN’
11: else
12: while Not received ‘RUN’ do
13: if Received position (x, y) then
14: Set M(x, y) as point of origin onM
15: Run AntEater on (A, R,M)

The main idea in the above NFantSpiral algorithm is for one robot to search for all other robots, update the new origin of
their coordinate systems as it own origin, and then return to it own starting point to run the previous AntEater algorithm.

To do so, all robots will receive amap large enough to contain the work area and thenwill elect the robot with the lowest
id as the leader (id = 0w.l.o.g). The leader will then start moving in a spiral around its original position until it finds another
robot. It will then send the difference between its own origin and the robot position as the robot’s new origin. The leader
will continue searching for other robots andwill stop only if the group size equals the size of the list of robots given as input,
when it will then return to its own origin. Lastly, all of the NF-Ants run AntEater.2

Therefore, we can show that a group of N NF-Ants computationally dominate a group of N ants:

Theorem 3. Let ANTN and NF-ANTN be the models discussed above, where N is the number of robots, then NF-ANTN DANTN for
N ≥ 1.

Proof. By applying NFantSpiral, a group of N NF-Ants first agree upon the origin of their map. From that moment on, they
are equivalent to a group of N LF-Ants, which we have shown in Theorem 2 to simulate any ant algorithm they are given.
Thus, by running AntEater the group of N NF-Ants simulates the group of N ants, and therefore NF-ANTN D ANTN . �

5. Ants simulating elephants

So, we know that a group of N NF-Ants that are communicating explicitly among themselves dominate a group of N ants.
That raises the question, whether a group of ants dominates a group of NF-Ants.We start by showing that one ant dominates
one NF-Ant on a ClearGrid (Section 5.1) and on an ObstacleGrid (Section 5.2). Then, we discuss two examples of problems
that can be solved by both ants and elephants (Section 5.3) followed by two problems that can be solved by elephants, yet
not by ants (Sections 5.4 and 5.5).

2 The spiralingmovementwill work for ClearGrid, but forObstacleGrid the NF-Ant leader needs tomove in amemoryless Depth First Iterative Deepening
(DFID) similarly to the movement in the General Obstacle Algorithm (GOA) in [29].
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5.1. A single ant

We have established the fact that a group of N LF-Ants dominates a group of N ants for N ≥ 1. This is strongly based
on the communication between the LF-Ants. Therefore the question that arises is whether a single LF-Ant still dominates a
single ant. In other words, after neutralizing the communication factor, is an LF-Ant computationally stronger than an ant?

We consider the subset of the general LF-Ant model—the NF-Ant model, in which the LF-Ants have no localization
abilities. In the following, we prove that, surprisingly, for NF-Ants the answer is that one ant is equivalent to one NF-Ant.

The intuition is that while an ant has constant limitedmemory (making it equivalent to a finite state machine), it can use
its own pheromones in space to give the ant the external storage needed to have the strength of a Turing machine, given
it has an infinite space to work in. Hence, in the proof we use a finite state machine and a Turing machine as the ant’s and
NF-Ant’s computational mechanisms respectively.

However, the ant robot will need to move in space for two independent purposes: First, to simulate the NF-Ant’s
movements in space. And second, to utilize pheromones for storage. Thus, it will need to remember if it is simulating
movements or conducting a calculation.

To solve that, we will keep track of the following two positions:

• Physical position: This position marks the actual position of the ant in space. The physical position moves only when
the elephant simulated by the ant moves.
• Memory position: This position marks the location of the Turing machine head that is physically simulated by the ant.

The memory position moves only during a calculation performed by the ant.

Also, we will add information to the pheromones, which will point to the directions of each position: east, west, south,
north, and here. So, the pheromones will be divided into three fields: the original alphabet, a pointer with the direction to
thememory position, and a pointer with the direction to the physical position. Each of the last two fields can take the form of
all four basic directions as well as a symbol for pointing out that the ant is located exactly where the position is. Note that
we restrict ourselves here to movements on a grid, and thus all directions include the four basic movements on a grid: east,
west, south, and north.3

Thus, when the ant simulates a calculation done by the NF-Ant, it will move in space, acting as a physical Turingmachine.
But, if interrupted by amovement of the NF-Ant it will first follow its own trail to find the physical position and once reaching
that position, it will move the physical position to the target location, which the NF-Ant was supposed to move to. Similarly,
when needed to continue a calculation, the ant will follow the trail to the memory position and once reaching that position,
it will continue the calculation, changing the trail to point to the newmemory position.

However, in order to accomplish the above routine, the ant will need to be careful not to create loops of pointers or rather
not to follow old trails that lead nowhere. Therefore, when the ant moves the memory position, it will both create a pointer
to the memory position in every step, even if there is already a pointer there, and create a pointer to the physical position
opposite of its ownmovement, except when there is already a pointer there. On the other hand, when the antmoves toward
thememory position it will not change any pointers, but follow the pointers that already exist.

We refer the reader to Appendix for a formal definition of the finite state machine ElephantGun, which simulates the
execution of an elephant algorithm when being run by an ant.

Let us observe an example of an ElephantGun execution. Assume we are given the following simple NF-Ant algorithm
ElephantGunExample Algorithm 4.

Algorithm 4 ElephantGunExample ()
1: x← 150
2: move(north, 2)
3: move(east, 2)
4: move(north, 4)
5: move(east, 2)
6: move(south, 2)
7: move(west, 4)
8: x← x+ 1

An ant running ElephantGun is given the Turingmachine representation of ElephantGunExample as an input. Fig. 1 shows
the snapshot of the world 4 steps after the last line of the algorithmwas executed (before the ant has finished simulating it).
The ant starts at the bold frame at the southwest part of the figure. It first saves the number 150 on the physical Turing
machine it creates from west to east (shaded in the figure). It will do so using pheromones such that their symbol field will
mark the original actions by the original Turing machine (here, the numbers 1, 0, 0, 1, 0, 1, 1, 0) and their physical field mark
the direction in which the physical position is (here, the directions are all ‘‘west’’). Once, finished simulating the first line it

3 All four directions are relative to the robot’s initial orientation, which is arbitrarily chosen to be ‘‘north’’.
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Fig. 1. An example of ElephantGun. The shaded region is the simulated Turing machine. P symbols are the physical position pointers. M symbols are the
memory position pointers. The bold cell is the ant’s starting location.

will need to return to the physical position in order to simulate movements along the grid. But, it will need to remember
where thememory position is, i.e., the physical Turing machine’s head. So, it will mark the memory field in its pheromone as
‘‘here’’ and will place ‘‘east’’ pointers all along the way to the physical position. Then, it will start simulating lines (2–7) and
move along the grid, while placing pointers to the memory position. Notice that once it crosses its own line of pheromones
it does not change the memory pointer. Thus, when returning back to thememory position for simulating the last line it will
not make the same steps it has done before and go along the loop, but shortcut using the old marks. Of course, it will do so
while leaving pointers to the physical position.

In order to be sure that the procedure of moving between thememory position and the physical position does not include
any loops or dead ends, we prove the following two lemmas.

Lemma 4. At every instance in ElephantGun there is no infinite loop of pointers.

Proof. Assume, toward contradiction, that there is a set of pointers X = (x1, x2, . . . , xn) pointing to head a such that
∀i, i = 1] . . . n, xi → xi+1 mod n (w.l.o.g), forming a loop. Thus, there exist no pointer xi which points to the inside nor
the outside of the loop. Also, none of xi is the head itself, otherwise it would not be a loop. If the loop was created by head
a itself, then the last pointer in the loop will replace the first one and will point toward head a and thus, break the loop.
Otherwise, if the loop was created by head b, the first pointer in the loop will not be replaced and will still point toward
head a. But head a is not a part of the loop, leading to a contradiction. �

Lemma 5. At every instance in ElephantGun there is a path of pointers between the two heads in each direction (not necessarily
the same path).

Proof. Assume, toward contradiction, that there is no path of pointers from head a to head b (w.l.o.g). Thus, there exist at
least one pointer in the path of pointers from a to b that does not lead to b. Since the two heads start from the same place and
since there is no action of erasing, we can deduce that there was a path until the above pointer was replaced, and not by b.
But, although both heads can add pointers, each of them can only replace its own pointers, leading to a contradiction. �

The former two lemmas therefore assure us that such consistentmovement between thememory head and physical head
can be achieved and thus, we can proceed toward constructing such simulation of the NF-Ant by the ant. Thus, we reach
the following important conclusions: The first is that the ant’s finite state machine with the assistance of the workspace is
equivalent to the NF-Ant’s Turingmachine. This implies that the antmodel is as least as strong as the NF-Antwhen involving
only one robot (Lemma 6).

Lemma 6. The finite state machine ElephantGun, when equipped with infinite amount of pheromones and being run on a
ClearGrid, is equivalent to the Turing machine ElephantAlgorithm, as it preserves the original task completion in polynomial
time using a polynomial number of constant-sized pheromones.

Proof. Task completion: It is easy to see that one can construct such a finite state machine. The new transitions, states,
and alphabet, though each is larger then the original, are still finite and thus, can be constructed to simulate the Turing
machine. Furthermore, once created, ElephantGun uses its infinite amount of pheromones as the Turing machine’s alphabet
and the grid it is located in as the Turing machine’s tape to write in and read from. Lastly, the extra transitions added allow
ElephantGun to simulate both the ElephantAlgorithm’s movements and calculations independently.
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Time complexity: There are 4 actions that can be taken by the ant: move→ move, write→ write, move→ write, and
write → move. The cost of the first two actions is 1, since the ant does not need to switch between memory and physical
positions. Thus, in the worst case scenario there is a set |A| = n of actions A = move, write,move, . . . , write such that the
movements and writing actions are toward opposite directions. Suppose that the ant’s simulated tape is written from north
to south and all moves in A are moves in the north direction, then for each action the distance between the memory and
physical positions grows by one. Therefore, the number of steps for action i is exactly i and altogether, for n actions the ant
makes

∑n
i=1 i = n(n + 1)/2 steps which is O(n2) as opposed to the n steps performed by the elephant running the same

algorithm.
Memory complexity: Recall that ElephantGun is a Turing machine without a tape and has also a finite number of states.

Therefore, its internal memory is constant.
Size of pheromone: Let g = |Γ | be the size of the original NF-Ant alphabet. Then, we can construct a pheromone, which

will have the following three fields: (1) A log g size field to represent the original symbol. (2) A 3-bit field to represent the
five directions to the memory head (east, west, south, north, and here). (3) Another 3-bit field to represent the same five
directions to the physical robot head. Altogether, the size of the pheromone is log g + 6 bits.4

Total number of pheromones used: In the worst case the ant places at most one pheromone in every step and thus, it
will use no more than O(n) pheromones for a task that requires n steps for the original NF-Ant. �

Theorem 7. Let ANT1 and NF-ANT1 be the models portrayed above correspondingly. Then, ANT1 D NF-ANT1 on a ClearGrid.

Proof. Following Lemma 6, we can construct an ant that simulates the NF-Ant model which has no localization. Therefore,
each problem that can be solved by the model NF-ANT1 can be solved by ANT1. Thus, ANT1 D NF-ANT1 on a ClearGrid. �

When combining Theorem 2 and Theorem 7, we get the following conclusion for a single ant and a single NF-Ant.

Corollary 1. ANT1 ≡ NF-ANT1 on a ClearGrid.

Proof. Since we have shown in Theorem 2 that NF-ANTN D ANTN for N ≥ 1, then NF-ANT1 D ANT1. Also, we have shown in
Theorem 7 that ANT1 D NF-ANT1. Therefore, ANT1 ≡ NF-ANT1 on a ClearGrid. �

Hence, we are left with two open questions: First, what happens if there are obstacles in the environment? Secondly,
what happens to the dominance relationship when we need to simulate N elephants? In the following sections we will try
to extend the ant–elephant dominance problem to these two scenarios.

5.2. Environments with obstacles

We have indeed created a mechanism for the ant to simulate any algorithm it is given by using the space around it
for memory purposes. However, in reality, most robotic environments have a certain amount of obstacles and therefore,
the ant cannot assume a clear working area in a predefined shape and therefore, might find itself with no empty cells to
store new memory in them. Thus, assuming an infinite grid with an unknown number of obstacles which still maintain
connectivity within the area (ObstacleGrid), in order to create a virtual Turing machine, we would like to have an algorithm
that would iterate the grid in such a way which produces a new empty cell in each step. Fortunately, the General Obstacle
Algorithm (GOA) from [29] achieves that property, since it performs a memoryless Depth First Iterative Deepening (DFID),
which enables the ant to cover the whole area uniformly while ignoring obstacles and of course, while using only constant
memory per move.

We introduce the RightMovement algorithm, which produces a right movement on a Turing machine within an obstacle
prone environment (ObstacleGrid). In order to move one cell to the right in our Turing machine the ant will run the
RightMovement algorithm until it has reached the next empty cell to work on. Just the same, in order to move one cell
to the left within the Turing machine the ant can invoke the LeftMovement, which works similarly to RightMovement, in
addition to the ability to identify when the ant reaches the Turing machine’s leftmost cell. In DFID, a bounded Depth First
Search is being run repeatedly, such that in each run the depth limit is increasing by one. Therefore, a variable d must be
maintained in order to decide when to backtrack (when we reach the current limit). The number of bits for this variable
depends on the maximal value of d and is not constant. The ant can either store it in its internal memory, or alternatively,
place it as a pheromone in a cell. However, with a constant amount of memory or with limited size of pheromone the depth
of the search will be bounded and could not increase anymore beyond a certain level. To overcome this, on each cell the ant
visits, it stores the last direction it has taken from that cell (using a constant memory per cell). After visiting all directions,
the ant returns to the previous depth without actually knowing what depth it is in.

So, in order to use these two new algorithms, we need to add two new fields to the pheromone used by the ant:

4 We are aware that the size of the pheromone can be reduced to log g + 5. There are 5× 5 = 25 < 32 combinations of the two pointers and therefore,
they can be represented in 5 bits altogether.



Author's personal copy

5780 A. Shiloni et al. / Theoretical Computer Science 412 (2011) 5771–5788

• parent: This field of the pheromonewill point to the direction of the cell fromwhich the ant (who placed the pheromone)
arrived. There are four possible directions, a fifth symbol for the end of the Turingmachine, and a null value for an empty
cell. Thus, 3 bits are sufficient for this field. This field changes when the Turing machine head is moving over the current
cell.
• direction:While the parent field at cell c points to the cell that the ant came from to c , the direction field points to the cell

that the antmoved to after leaving c. Based on this field the ant determineswhere to go next andwhether to continue the
deepening or to backtrack. The direction field stores only 4 different values (2 bits only), one for each possible direction.
This field changes at every visit to a cell.

Algorithm 5 RightMovement (symbol b, state p)
1: write(b)
2: state← p
3: while true do
4: if current.direction = NULL then
5: current.direction = EAST
6: last_direction← current.direction
7: nbr = sense(current.direction)
8: if nbr.parent = NULL then
9: move(current.direction)

10: current.parent, current.direction← last_direction+ 180 ◦
11: break
12: else if nbr.parent = current.direction+ 180 ◦

∨ current.direction = current.parent then
13: move(current.direction)
14: current.direction← current.direction+ 90 ◦
15: else
16: current.direction← current.direction+ 90 ◦

The idea behind this algorithm (Algorithm 5) is to produce right movements in a sequence determined by the DFID.
Of course, due to the algorithm’s nonlinear behavior (the number of steps per right movement changes dramatically when
moving fromonedepth to another),while advancing to next cell the antmoves through old cells. This can be hazardouswhen
implementing a Turing machine because the ant can write and read from the wrong cells. However, the ant can overcome
that problem by marking every cell it passes by and by stopping its movement only when reaching an unmarked cell (the
parent field is NULL). The marking is done of course independently from the other ElephantGun marking discussed above
since it is done only in the two new fields in the pheromone.

Let (q, a)→ (p, b, R) be the next transition the ant should take such that q and p are the old and new states respectively, a
and b are the old and new symbols respectively and the ant shouldmove right at the end of the transition (a rightmovement
on the physical Turing machine). The ant will first write symbol b in its current cell and changes its internal state to p (lines
1–2). Then, the ant enters a while loop for searching the next cell in the Turingmachine (lines 3–16). In each iterationwithin
the loop, the ant senses the content of the neighbor pointed by the direction field of the current cell and decides its next
action accordingly. If the parent field in that neighbor is empty then the ant has found the next cell in the Turing machine.
The ant then moves to this new cell, sets the parent and direction fields to point at the last cell, and then the algorithm
terminates (lines 8–11). Otherwise, if the neighbor is in the same branch in the tree as the ant (remember that DFID treats
the grid as a tree), the ant moves to this cell and toggles the direction field clockwise (lines 12–14). Lastly, if the neighbor
is blocked by an obstacle or belongs to another branch in the tree, the ant just toggles the direction field of the current cell
clockwise (line 15).

Algorithm LeftMovement works similarly to RightMovement with a few changes. Assuming transition (q, a)→ (p, b, L)
the ant first writes symbol b to the appropriate field in the pheromone and changes its internal state to p (lines 1–2). Then,
if the parent field in the current pheromone marks the end of the Turing machine the algorithmwill terminate (line 3). Else,
the ant leaves the current cell toward its neighbor pointed by the direction field while nullifying both direction and parent
fields in the current cell (lines 4–6). Then, the ant saves the current direction as the first direction taken (line 7) and enters a
while loop in order to find the next cell (lines 8–15). In each iteration within the loop, the ant first toggles the direction field
counterclockwise and terminates the algorithm if the ant already explored this direction (lines 10). Otherwise, it senses the
neighbor pointed by the direction field and if the neighbor’s direction field points at the current cell the ant moves toward
that neighbor (lines 13–6).

Therefore, we introduce the ObstacleGun algorithm (equivalent to an FSM), which is identical to the ElephantGun FSM
except when moving the Turing machine head the ant executes the RightMovement and LeftMovement algorithms (also
equivalent to FSMs) instead of just moving right and left on the Turing machine respectively.
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Algorithm 6 LeftMovement (symbol b, state p)
1: write(b)
2: state← p
3: if current.parent ≠ TM_END then
4: last_direction← current.direction
5: current.parent ← NULL
6: move(last_direction)
7: first_direction← current.direction
8: while true do
9: current.direction← current.direction− 90 ◦

10: if current.direction = first_direction then
11: break
12: nbr = sense(current.direction)
13: else if nbr.direction = current.direction+ 180 ◦ then
14: move(current.direction)
15: first_direction← current.direction

Theorem 8. The finite state machine ObstacleGun, when equipped with infinite amount of pheromones and being run on an
ObstacleGrid, is equivalent to the Turing machine ElephantAlgorithm, as it preserves the original task completion in polynomial
time using a polynomial number of constant-sized pheromones.

Proof. Task completion: Since ObstacleGun and ElephantGun are identical except movements with the Turing machine
head, we need to show that RightMovement and LeftMovement are traversing the Turing machine correctly on an
ObstacleGrid. Specifically, we need to prove the following:

• Claim 1: Procedure RightMovement finds the next cell of the Turing machine
• Claim 2: Procedure LeftMovement finds the previous cell of the Turing machine
• Claim 3: If the ant is at the end of the Turing machine procedure LeftMovement does not instruct a movement

Procedure RightMovement simulates a depth first iterative deepening search until it finds a next cell in the Turing
machine. At the beginning of execution the Turingmachine is empty and the ant places a pheromonewith a TM_END parent
field and arbitrarily a ‘‘north’’ direction field. From that point on, each cell that is being sensed fits in one of these four cases:

(1) The parent field is NULL, which means that the cell is empty and that the ant has found the next cell in the Turing
machine.5 In this case, the ant moves to that cell, initializes its parent and direction fields for a future use, and the algorithm
terminates.

(2) The parent field is pointing to the current cell, which means that the sensed cell is on the same branch in the tree as
the current cell. In this case, the ant moves to that cell and shifts the direction field clockwise for future usage.

(3) The parent and direction fields are equivalent, which means that the ant has pruned the current subtree and should
backtrack to explore a different subtree. In this case the ant acts similarly as in (2).

(4) The cell is blocked by an obstacle or its parent field does not point at the current cell, whichmeans that the sensed cell
belongs to another branch in the tree. In this case, the ant just shifts the direction field clockwise so it can sense a different
cell in the next iteration. Therefore, as long as there is a connected space around the ant, RightMovementwill find an empty
cell in a depth first iterative deepening fashion. And we are done with Claim 1.

Procedure LeftMovement finds the previous cell by retracing the steps in RightMovement. When invoked, the ant is at
the end of the tree. Thus, it first nullify the parent field for a future use and leaves the current cell to its parent in the tree.
Then, it systematically scans each cell’s neighbors in a counterclockwise manner while following the direction fields in each
cell. Each such direction field is initially pointed toward the current cell, since it was the last direction the ant have taken.
Therefore, the ant consistently follows the neighbor, which points at the ant and then start shifting its direction field until
it points at the next cell. Once the direction field returns to point at the first direction the algorithm terminates, since the
previous cell had been found. This is because the previous cell is always a leaf in the tree. This proves Claim 2.

Lastly, if the ant is at the end of the Turing machine procedure LeftMovement does not instruct a movement as shown in
line 3 in Algorithm 6. This proves Claim 3.

Time complexity: The costliest action in a DFID search is when finishing depth d andmoving toward depth d+1. At that
point, one needs to backtrack d steps toward the root of the tree and then d+ 1 steps toward the first node in depth d+ 1,
altogether 2d+1 steps. Therefore, if the ant is in amaze and canmove in one direction only then it performs a depth change in
every iteration and altogether

∑n−1
i=0 2i+ 1 = n2

= O(n2) steps for nmovements on the original Turingmachine.Moreover,
the cost of the 4 available actions is at the worst case as follows: cost(move→ move) = 1, cost(write→ write) = 2w+ 1,

5 Note that the cell could have been already visited and can contain a pheromonewith information, but its parent field will be empty. We are not looking
for the first unexplored cell in the Turing machine, but the next cell on the right.
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Fig. 2. NOA finite state machine representation.

cost(move → write) = m + 3w + 1, and cost(write → move) = w + m + 1, where w and m are the number of
write and move actions respectively such that w + m = n. Therefore, move → write is the costliest action. Assume an
ant located at a maze and starts at a dead end, where the only direction it can take is always east. Also, assume that a
sequence of n move → write actions is possible and that the ant start checking if it is on the memory or physical positions
only after it reached the root. In this impossible scenario, the ant produces 3w + 1 steps per write action and altogether∑n−1

i=0 3i+ 1 = n2
+n(n−1)/2 = O(n2) steps for n actions and therefore, the time complexity ofObstacleGun is stillO(n2)

(the same as ElephantGun) as opposed to the n steps performed by the elephant running the same algorithm.
Size of pheromone: ObstacleGun uses the same pheromone as ElephantGun with additional 3 bits for the parent field

and 2 bits for the direction field. Altogether, assuming the original NF-Ant algorithm had g symbols, then the ObstacleGun’s
pheromone needs log g + 6+ 5 = log g + 11 bits.

Number of pheromones used: In the worst case the ant places at most one pheromone in every step and thus, it will
use no more than O(n) pheromones for a task that requires n steps for the original NF-Ant. �

5.3. Multiple ants

When investigating the problems involvingN robots, it seems likewe could easily find oneswhich are solvable by a group
of N LF-Ants, yet are unsolvable by a group of N ants. However, looking more closely, we find that many of these problems
are indeed solvable by a group of N ants, usually at the price of additional time complexity. For instance, let the rendezvous
problem Rendezvous be defined as follows.

Definition 6 (Rendezvous). Given twomobile robots r1 and r2, which are positioned on a two-dimensional grid in positions
(x1, y1) and (x2, y2) respectively, we say that an algorithmA running on both robots succeeds ⇐⇒ for every pair of points
(x1, y1) and (x2, y2), r1 and r2 meet within a finite time.

It is easy to construct an algorithm for two LF-Ants that can solve Rendezvous on a ClearGrid like the followingManhattan
algorithm.

Algorithm 7 Manhattan (robot r)
1: broadcast initial position (xi, yi)
2: receive other robot’s position (x1−i, y1−i)
3: calculate midpoint p of the Manhattan distance between (xi, yi) and (x1−i, y1−i)
4: move toward p

Since LF-Ants can communicate directly, the first two steps are possible and so is the rest of the algorithm. The time
complexity for Manhattan is exactly the midpoint of the Manhattan distance m =


|y1−i−yi|+|x1−i−xi|

2


, which is optimal

in a grid. We will denote that time complexity as O(m). Moreover, by Algorithm 3, an NF-Ant can simulate Rendezvous
in Algorithm Manhattan. Nevertheless, there is also an ant algorithm which solves Rendezvous on a ClearGrid, called the
No-Obstacle Algorithm (in [29]), using a state machine to create a spiral and to meet the other ant (see Fig. 2).

In this finite state machine, the ant decides upon the next step according to the pheromone’s locations within the eight
squares surrounding it. In each step, the ant places a pheromone in its own location and then moves according to the FSM.
Whenever it senses another ant within its sensory radius, it moves toward the other ant.
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As we can see in [29], in the worst case both ants will meet after creating a spiral with a

|y1−i−yi|+|x1−i−xi|

2


radius. This

spiral has a total distance of


(|y1−i−yi|+|x1−i−xi|)2

4


and thus, O(m2) is its time complexity. Note that this time complexity is

only quadratic relative to the time complexity of Manhattan.
Let us look at another problem we call Stretcher, which is a variant of the foraging problem [30].

Definition 7 (Stretcher). Given a group of N robots, all of which start from some initial point pstart on a grid, the goal of the
robots is to find an injured person that is positioned in an unknown point pgoal on the grid, and then bring him back to pstart .
However, in order to carry the injured, the effort of all N robots is needed.

First, we present the following NF-Ant algorithm ElephantStretcher for solving Stretcher.

Algorithm 8 ElephantStretcher (robot r , subspace S)
1: while (not found injured person) ∧ (not received ‘FOUND’) do
2: Search along S
3: if received ‘FOUND’ message then
4: Go to position pgoal given in ‘FOUND’ message
5: else
6: Broadcast ‘FOUND’ with own position pgoal to all robots
7: Wait for all robots to arrive
8: Carry injured person to pstart

Now, we notice here that when we try to construct an ant algorithm for this problem, an ant could not inform all other
ants once it finds the injured person. Nevertheless, we find an ant algorithm AntStretcher that indeed solves Stretcher, yet
with a greater time complexity.

Algorithm 9 AntStretcher (subspace S)
1: while not found injured person do
2: Run Spiral
3: Carry injured person to pstart

Here, we see that all N ants ignore the searching subspace given, and instead spiral together until they find the injured
person, at the cost of searching the whole space and not splitting the searching task among the ants.

So, are there any problemswhich cannot be solved by a group of N ants? Unfortunately, the answer is yes. Two examples
are shown in Section 5.4–5.5.

5.4. Tragedy of the common Ant

In this section we will prove by a counter example that a group of N ants cannot fully simulate a group of N NF-Ants. As
a result, since N LF-Ants dominate N NF-Ants, then N LF-Ants strictly dominate N ants. In order to do this, we will define
the following problem we call LimitedKServer.
Definition 8 (LimitedKServer). Let R = r1, . . . , rN be a set of mobile robots with sensing radii of M

2N each, all are positioned
on a finite M × M grid such that all sensing radii are disjoint and their union covers the whole grid. Let C = c1, . . . , cx be
a set of requests and y be a positive integer such that y ≤ x where y is known, but neither C nor x is known. Assume that
within a finite period of time t , x requests are made such that no two requests are made in parallel. Assume that every robot
ri ∈ R can handle a request immediately only within its sensing radius and that each request lasts for one time cycle only.
We say that an algorithm A succeeds ⇐⇒ for every sequence of x requests, A handles exactly y. Otherwise, A fails.

Note that the above problem is a variant of a physical k-server [31] problem where there are a finite number of requests
and the servers need to collectively handle only a certain number of these requests (see Fig. 3). This problem represents
an abstraction of problems related to the tragedy of the commons such as overfishing [32]. For our purpose of showing
that NF-Ants dominate ants we will first show that there exist an algorithm called Fisherman for NF-Ants which solves
LimitedKServer. Following that, we will prove that there exist no algorithm for ants which solves that same problem.
Theorem 9. Algorithm Fisherman solves LimitedKServer when running N NF-Ants on an ObstacleGrid.
Proof. Let X be the finite set of requests. Since the N NF-Ants cover the M × M entirely, there exist no request that is
overlooked by all of the NF-Ants. Also, since each NF-Ant reigns over a disjoint territory, no request is being handled by two
NF-Ants. In addition, since an NF-Ant is only occupied for one cycle per request and no two requests are made in parallel,
there is no situation in which an NF-Ant is occupied and cannot handle a new request. Thus, after y requests the herd of NF-
Ants have handled exactly y requests and therefore, all NF-Ants break from the while loop upon receiving the yth ‘REQUEST’
message. Lastly, there is no usage of localization along the messages transferred by the NF-Ants and thus, the NF-Ants will
have no problem processing the algorithm. �
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Algorithm 10 Fisherman (list of robots R, request limit y)
1: requests← 0
2: while requests < y do
3: if a message ‘REQUEST’ has been received then
4: requests← requests+ 1
5: if requests = y then
6: break
7: else if ∃ request c within sensing radius then
8: broadcast ‘REQUEST’ to all r ∈ R
9: requests← requests+ 1

10: handle request

1 2

43

Fig. 3. An illustration of LimitedKServer with four robots.

Now, if we inspect the ant behavior within LimitedKServer we can conclude the following lemmas:

Lemma 10. There is no ant algorithm which solves LimitedKServer when running N ants and at least one ant moves from its
initial position.

Proof. Assume y = x. Therefore, if an ant algorithm involves an ant moving from its initial position p at time t , there can
always exist a sequence with a request at time t at position pwhich will be missed and thus, the algorithm will fail. �

Lemma 11. Every ant algorithmA solving LimitedKServer requires at least one ant tomove from its position during its execution.

Proof. Since ants do not have any direct communication, the only way they can propagate information among themselves
is by leaving pheromones over the grid or moving toward each other, both involve at least one ant moving. Now, suppose
that there is an ant algorithm A, which attempts to solve LimitedKServer without any movement by any of the ants. Then,
there is no way an ant could know whether or not to handle the (y + 1)th request for it cannot know that there were y
requests before. �

Based on Lemmas 10 and 11 we can now conclude:

Theorem 12. There is no ant algorithm which solves LimitedKServer when running N ants on ObstacleGrid.

Proof. Recall that we assume that the ant’s sensing radius is identical to the LF-Ant’s sensing radius. Since ants do not
have explicit communication beyond their sensing radius, we can extract from the above lemma that no information can
be transferred from one ant to another when trying to solve LimitedKServer. So, in order to solve LimitedKServer, any ant
algorithmwould need to knowwhich requests to handle in advance, and since this information is not available we conclude
that there is no ant algorithm which solves LimitedKServer when running N ants. �

Notice that the infinite space inObstacleGriddoes not assist in order to create an ant algorithm for solving LimitedKServer.
This is because every ant algorithm A solving LimitedKServer requires at least one ant to move from its position during its
execution, as we have seen in Lemma 11. Therefore, NF-ANTN ◃ ANTN , regardless of the size of the working space.

In other words, we reach the conclusion that it is not the memory deficiency, but the lack of instant communication
that is what ultimately distinguishes computationally the ants from the NF-Ants. Thus, even an infinite workspace is not
sufficient for ants to simulate NF-Ants in certain problems.
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5.5. Duplicate robot patrol problem

The LimitedKServer problemmight strike the reader as just a latency problem, i.e, if the requests were to hold a bit longer
then the antsmight have been able to both handle them all andmove around the area in order to propagate the total number
of requests. Therefore, we would like to introduce another counter example, which will emphasize the computational
inferiority of robot ants relative to robot elephants, due to the lack of instant communication.

One of the canonical problems in multi-robot research which was mentioned earlier is the patrol problem [2,33,34],
where a group of robots perform continuous coverage around an open or closed polygon (also known as fence patrol) or
within an area (also known as area patrol). Many variants exist for this patrol problem, each changes the assumptions
regarding the domain of the patrolled area or fence (friendly versus adversarial), the given task (cleaning, surveillance, etc.)
and the topology of the map (graphs, continuous domains, etc.).

We would like to focus on the following variant. Assume that a top secret area is to be guarded by a group of robots
patrolling the perimeter around it. This area is to be continuously visited by robots, each having a unique id. Therefore, we
assume that if a robot enters the area and there is another robot already in the area with the same id, then the entering robot
is a duplicate robot and therefore, should be held by the patrolling robots. Thus, we seek to find an algorithm that will be
run by all robots and will assure that no duplicate robot crosses the area’s perimeter.

We define the Duplicate problem formally as follows:

Definition 9 (Duplicate). Let R = r1, . . . , rN be a set of mobile robots which are positioned on a perimeter fence p, which
surrounds a secluded area, and let G = g1, . . . , gM be a set of mobile robots, which move about the area while trying to
enter and leave the secluded area by crossing p. Each of the robots is having a not necessarily unique id marked gi.id. Let gi
and gj be two robots such that gi.id = gj.id and assume gi crossed p at time ti. Then, robot gj is called a duplicate if it crosses
p at time tj such that ti < tj. We say that an algorithm A succeeds ⇐⇒ each time a duplicate robot gdup advances toward
p there exists a robot r ∈ R such that r stops gdup. Otherwise, A fails.

It is easy to see that a group of N NF-Ants can solve Duplicate using any of the perimeter patrol algorithms in [34,33] as a
baseline. We propose the following DuplicateFinder algorithm for elephants (Algorithm 11).

Algorithm 11 DuplicateFinder (list of robots R, patrol algorithm PA)
1: robot_list ← NULL
2: run PA
3: while no duplicate found do
4: if received ‘DUPLICATE’ message then
5: break
6: if received robot.IDmessage then
7: add robot.ID to robot_list
8: if encountered robot then
9: if robot.ID ∈ robot_list then

10: broadcast ‘DUPLICATE’ to all r ∈ R
11: break
12: else
13: add robot.ID to robot_list
14: broadcast robot.ID to all r ∈ R

Theorem 13. Algorithm DuplicateFinder solves Duplicate when running N NF-Ants on an ObstacleGrid.

Proof. Each NF-Ant initializes a list of robots and runs a given patrol algorithm. Each time an NF-Ant encounters an robot
(lines 8–14) it adds its id to the list and update all other NF-Ants, creating a global list. Since NF-Ants have instantaneous
communication, this list is updated immediately upon sensing an robot (line 6). Therefore, suppose there exist an robot g1
that approaches NF-Ant r1 at time t and a corresponding duplicate robot that approaches NF-Ant r2 at time t + 1, r2 will
already have g1.id at time t (since communication is instantaneous) and therefore, will spot g2 as a duplicate (lines 9–11). �

However, this problem cannot be solved by ants.

Theorem 14. There is no ant algorithm which solves Duplicate when running N ants on ObstacleGrid.

Proof. Assume |p| = P such that r1 and r2 are two ants that are positioned on perimeter p at points p1 and p2 respectively
and that d(p1, p2) = P/2. Now, assuming g1 approaches r1 at time t and r1 is trying to propagate g1.id to all other ants. Then,
in the best case g1.id is carried a distance of P/2 and assuming the ants can move one cell per time step the time it takes
for a message to travel P/2 cells is P/2. Thus, if a duplicate robot gdup approaches r2 at time t ′ < t + P/2 then it cannot be
spotted as a duplicate and the algorithm will fail. �
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Table 1
Models Dominance Relationship.

Model dominance Algorithm Time complexity

(1) LF-ANTN D ANTN , N ≥ 1 AntEater O(n)
(2) NF-ANTN D ANTN , N ≥ 1 NFantSpiral O(n)
(3) ANT1 D NF-ANT1 ObstacleGun O(n2)

(4) ANT1 ≡ NF-ANT1 (2) and (3)
(5) ANTN 4 NF-ANTN , N > 1 LimitedKServer Counter Example
(6) NF-ANTN ◃ ANTN , N > 1 (2) and (5)

6. Conclusions

It was proposed that ant robots can perform difficult computational tasks despite their weak computational abilities [10].
However, the computational limits of this model were not known. We defined elephant, as the most used model of robots
with strong computational, sensing, and communication abilities and investigated the computational relationship between
the two models. We have shown that assuming reliable, instantaneous communication, elephant robots can simulate any
task done by ant robots and therefore, are at least as computationally strong as ants. This result is not surprising, as elephants
are by definition stronger. However, more surprisingly, we have also shown that given a large enough space and infinite
amount of pheromones, a single ant can simulate any task done by a single elephant that has no localization abilities. Lastly,
we have shown that this simulation still holds even when there are obstacles in the environment. Unfortunately, we have
found a boundary for ants computational strength, as we have shown that there exist some problems that can be solved by
N elephants, but not with N ants. The results can be summarized in Table 1.

Now that the basic computability differences between these models are known, we hope to extend the analysis to more
realistic robots, which for the most part are in between the two computational extremes discussed above. Moreover, we
wish to explore dynamic environments, in which stigmergy can be a strong factor. We also seek to combine the analysis
with sensing models (e.g., as in [21]), determining complexity tradeoffs for the subset of problems that are solvable by both
models, or finding out exactly how many ants are needed to simulate an elephant in minimal time and space overhead.

Appendix

An NF-Ant algorithm is a Turing machine ElephantAlgorithm such that:

ElephantAlgorithm = (Q , Σ, c, Γ , δ, s, F)

where Q is the set of states, Σ is the input’s alphabet, c is the blank symbol, Γ is the tape’s alphabet, δ is the transition
function, s is the starting state, and F is the set of accepting states. We will define the finite state machine ElephantGun as a
Turing machine without a tape (since both models are equivalent [20]), such that:

ElephantGun = (Q ′, Σ ′, c, Γ ′, δ′, s′, F ′)

ElephantGunwill have the states Q ′ = Q ∪Q ’’, s′ = s, F ′ = F where Q ’’ is a set of additional states that are specified below;
also transitions δ′ will be specified below. In addition it will be equipped with an infinite amount of each of the possible
pheromones to be used. These pheromones will be constructed from a finite number of types, such that each of the symbols
in Γ ′ is divided into three fields: The first field represents a symbol of the original alphabet Γ , the second points to the
memory position, i.e. east, west, south, north, or here, and the third points to the physical position with the same 5 options.
Let us also define the operator x such that ∀x ∈ {E,W , S,N,H}, E = W ,W = E, S = N,N = S,H = H where E = east ,
W = west , S = south, N = north, and H = here. Lastly, the input alphabet stays the same and hence, Σ ′ = Σ . Assume
(w.l.o.g), that the ElephantGun simulates the Turing Machine tape from east to west.

The new states Q ’’, will be composed as follows for each q ∈ Q and Z ∈ {E,W , S,N,H}:

• qsetmem(E) — an intermediate state to update the current slot as the memory head
• qsetmem(W ) — an intermediate state to update the current slot as the memory head
• qsetloc(Z) — an intermediate state to update the current slot as the robot’s location
• qfind — an intermediate state to find the robot’s location
• qfind(Z) — an intermediate state to find the robot’s location and move one slot to Z ∈ {E,W , S,N,H}.

Also, for each q ∈ Q , q’’ ∈ Q ’’, a ∈ Γ , b ∈ Γ :

• qa,b,q’’,E — an intermediate state to find the memory head’s location and perform the (q, a)→ (q’’, b, E) transition
• qa,b,q’’,W — an intermediate state to find the memory head’s location and perform the (q, a)→ (q’’, b,W ) transition.
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In addition, we will replace the transitions δ by the new set of transitions δ′ such that every transition from the form
(q, a) → (q’’, b, E) will be replaced by the following transitions, where y ∈ {E,W , S,N,H}, z ∈ {E,W , S,N,H}, and ⊔ is
the empty pheromone:

• (q, (a, y, z))→ (qa,b,q’’,E, (a, y, z), y) — for the case that the ant is not on the memory head
• (q, (a,H, z))→ (q’’setmem(E), (b, E, z), E) — for the case that the ant is on the memory head.

Also, we will add the following transitions, where S stands for no movement:

• (qa,b,q’’,E, (a, y, z))→ (qa,b,q’’,E, (a, y, z), y) — continue searching the memory head in the pointed direction
• (qa,b,q’’,E, (a,H, z))→ (q’’setmem(E), (b, E,W ), E) — found memory head, process transition, and move to the east
• (qsetmem(E), (a,⊔,⊔))→ (q, (a,H,W ), S) — update memory head pointer to ‘‘here’’ and pointer to physical head
• (qsetmem(E), (a, y, z))→ (q, (a,H, z), S) — update memory head pointer to ‘‘here’’.

Likewise, every transition in the form (q, a)→ (q’’, b,W ) will be replaced by the following transitions:

• (q, (a, y, z))→ (qa,b,q’’,W , (a, y, z), y) — for the case that the ant is not on the memory head
• (q, (a,H, z))→ (q’’setmem(W ), (a,W , z),W ) — for the case that the ant is on the memory head.

Also, we will add the following transitions:

• (qa,b,q’’,W , (a, y, z))→ (qa,b,q’’,W , (a, y, z), y) — continue searching the memory head in the pointed direction
• (qa,b,q’’,W , (a,H, z))→ (q’’setmem(W ), (b,W , E), E) — found memory head, process transition, and move to the east
• (qsetmem(W ), (a,⊔,⊔))→ (q, (a,H, E), S) — update memory head pointer to ‘‘here’’ and pointer to physical head
• (qsetmem(W ), (a, y, z))→ (q, (a,H, z), S) — update memory head pointer to ‘‘here’’.

However, for every movement Z ∈ {E,W , S,N} and every z ∈ {E,W , S,N}, y ∈ {E,W , S,N,H} of the physical robot,
the ant will have the following new transitions:

• (q, (a, y, z))→ (qfind(Z), (a, y, z), z) — for the case that the ant is not on the physical robot head
• (q, (a, y,H))→ (qsetloc(Z), (a, y, Z), Z) — for the case that the ant is on the physical robot head.

Together with the following new transitions:

• (qfind(Z), (a, y, z))→ (qfind(Z), (a, y, z), z) — continue searching the physical robot head in the pointed direction
• (qfind(Z), (a, y,H)) → (qsetloc(Z), (a, y, Z), Z) — found physical robot head, update pointer, and move to the desired

direction Z ∈ {E,W , S,N}
• (qsetloc(Z), (a,⊔,⊔)) → (q, (a, Z,H), S) — update physical robot head pointer to ‘‘here’’ and memory head pointer to

where you came from
• (qsetloc(Z), (a, y, z))→ (q, (a, y,H), S) — update physical robot head pointer to ‘‘here’’.

And lastly, for any action or sensing need to be done while the ant is in its own physical location:

• (q, (a, y, z))→ (qfind, (a, y, z), z) — for the case that the ant is not on the physical robot head
• (q, (a, y,H))→ (q, (a, y,H), S) — for the case that the ant is on the physical robot head.

Together with the following new transitions:

• (qfind, (a, y, z))→ (qfind, (a, y, z), z) — continue searching the physical robot head in the pointed direction
• (qfind, (a, y,H))→ (q, (a, y,H), S) — found physical robot head, the ant can sense or act.
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