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Abstract

Modeling crowd behavior is an important challenge for cog-
nitive modelers. Models of crowd behavior facilitate analysis
and prediction of the behavior of groups of people, who are in
close geographical or logical states, and that are affected by
each other’s presence and actions. Existing models of crowd
behavior, in a variety of fields, leave many open challenges.
In particular, psychological models often offer only qualita-
tive description, and do not easily permit algorithmic repli-
cation, while computer science models are often simplistic,
treating agents as simple deterministic particles. We propose
a novel model of crowd behavior, based on Festinger’s So-
cial Comparison Theory (SCT), a social psychology theory
known and expanded since the early 1950’s. We propose a
concrete algorithmic framework for SCT, and evaluate its im-
plementations in several crowd behavior scenarios. We show
that our SCT model produces improved results compared to
base models from the literature. We also discuss an imple-
mentation of SCT in the Soar cognitive architecture, and the
question this implementation raises as to the role of social
reasoning in cognitive architectures.

Introduction
Modeling crowd behavior is an important challenge for cog-
nitive modelers. Models of crowd behavior facilitate analy-
sis and prediction of the behavior of groups of people, who
are in close geographical or logical states, and that are af-
fected by each other’s presence and actions. Accurate mod-
els of crowd behavior are sought in training simulations
(Thalmann 2001), safety decision-support systems (Braun
et al. 2003), traffic management (Helbing & Molnar 1997;
Rymill & Dodgson 2005), business and organizational sci-
ence.

Existing models of crowd behavior, in a variety of fields,
leave many open challenges. In social sciences and psychol-
ogy, models often offer only qualitative description, and do
not easily permit algorithmic replication. In computer sci-
ence, models are often simplistic, and typically not tied to
specific cognitive science theories or data. Moreover, exist-
ing computer science models often focus only on a specific
phenomenon (e.g., pedestrian movement on a sidewalk), and
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thus must be switched depending on the goals of the simu-
lation.

We propose a novel model of crowd behavior, based on
Social Comparison Theory (SCT) (Festinger 1954), a pop-
ular social psychology theory that has been continuously
evolving since the 1950s. The key idea in this theory is
that humans, lacking objective means to evaluate their state,
compare themselves to others that are similar. Similarity, in
SCT, is very loosely defined—indeed much of the literature
on SCT addresses with exploring different ways in which
humans judge similarity.

While inspired by SCT, we remain deeply grounded in
computer science; we propose a concrete algorithmic frame-
work for SCT, and evaluate its implementations in several
crowd behavior scenarios. We quantitatively compare the
performance of SCT crowd behavior models compared to
popular models in the literature, and show that SCT gen-
erates behavior more in-tune with human crowd behavior.
In particular, the SCT models generate improved pedestrian
movements and accounts for group formation in pedestri-
ans that are inter-related, a phenomenon unaccounted for by
previous models.

We describe the implementation of SCT in Soar, as an
impasse-resolution method. We argue that SCT is a weak
(read: general) problem-solving method, which issocial in
nature. This view of SCT raises questions as to the role of
social reasoning in cognitive architectures and the mind. In
particular, it may lead to the conclusion that modeling of
other agents, which is a precursor to social comparison, oc-
curs as a fundamental cognitive process at an architectural
level.

Background and Motivation
Social psychology literature provides several views on the
emergence of crowds and the mechanisms underlying its be-
haviors. These views can inspire computational models, but
are unfortunately too abstract to be used algorithmically. In
contrast, computational models (described below) tend to be
simplistic, and ignore the psychological studies.

Social psychology. A phenomenon observed with crowds,
and discovered early in crowd behavior research, is that peo-
ple in the crowd act similar to one another, often acting in a



coordinated fashion, as if governed by a single mind (Le Bon
1968; Allport 1924). However, this coordination is achieved
with little or no verbal communications.

Le Bon (Le Bon 1968) emphasized a view of crowd be-
haviors as ”Collective Mind”, and observed that an individ-
ual who becomes a part of the crowd is transformed into be-
coming identical with the others in the crowd. Le Bon noted
that individuals seem to lose their individuality (in terms of
personality and thought) when becoming part of a crowd.
Le Bon explains the homogeneous behavior of a crowd by
two processes: (i)Imitation, where people in crowds imitate
each other; and (ii)Contagion, where people in the crowd
behave very differently from how they usually behave, indi-
vidually. Freud (Freud 1951) expanded on Le Bon by theo-
rizing that individuals in the crowd identify with the leader
and with each other, and that is they behave as one. The
crowd behavior can be controlled by the leader, as the indi-
viduals imitate the leader.

Another phenomenon that occupies the researches is how
a crowd is created from the first place or to be more specific
is what causes an individual to be part of a crowd. Accord-
ing to Allport (Allport 1924) an individual becomes part of a
crowd when he has ”common stimulus” with people inside
the crowd. For example, a common cause. Allport agrees
with Le Bon (Le Bon 1968) about homogeneous behaviors
of a crowd, but his explanation to this phenomena is that
similar people act in similar ways, otherwise they are not
part of the same group. Thus according to Allport, ”the in-
dividual in the crowd behaves just as he would behave alone,
only more so.”

We base our work on the Social Comparison Theory (Fes-
tinger 1954), which (to the best of our knowledge) has never
been applied to modelling crowd behavior. Nevertheless, as
we show in the next section, key elements of the theory are
at the very least compatible with theories discussed above.

Computational models. Work on modelling crowd be-
havior has been carried out in other branches of sci-
ence, in particular for modelling and simulation. Reynolds
(Reynolds 1987) has simulated bird flocking using simple,
individual-local rules, which interact to create coherent col-
lective movement. There are only three rules: avoid colli-
sion with neighbors, match velocity with neighbors and stay
close to the center of gravity of all neighbors. Each simu-
lated bird is treated as a particle, attracted and repelled by
others. On the one hand there is a desire to stay close to
the flock, but on the other hand, there is a desire to avoid
collisions.

Similar ideas have been applied in swarm robotics.
Mataric (Mataríc 1995) sees collective (complex) behaviors
as a combination of basic behaviors. Each robot has spatial
behaviors (controllers) which are combined to create differ-
ent kinds of group behavior. For example, flocking com-
bined of safe-wandering(move around without bumping),
homing, dispersion(move away from other agents), andag-
gregation(move towards other agents). The combined out-
puts of the basis behaviors provide a velocity vector which
is used to control the robot.

Much of the work we describe in this paper has been im-
plemented and evaluated in the context of pedestrian move-
ment. Several important previous investigations have exam-
ined this task.

Blue and Adler (Blue & Adler 2000) use Cellular Au-
tomata (CA) in order to simulate collective behaviors, in
particular pedestrian movement. The focus is again on lo-
cal interactions: Each simulated pedestrian is controlled by
an automaton, which decides on its next action or behavior,
based on its local neighborhoods. These rules are responsi-
ble for making a decision about lane changing and forward
movement: If the way forward is free, then it is taken. If
not, then the automaton seeks to go left or right. If both
lanes are available, one is chosen arbitrarily. Blue and Adler
show that this simple rule results in the formation of lanes
in movement, similarly to those formed in human pedestrian
movement (Wolff 1973).

Helbing et al. (Helbing & Molnar 1997; Helbinget
al. 2001) also focuses on simulating pedestrian movement.
Each entity moves according to forces of attraction and re-
pulsion. Pedestrians react both to obstacles and to other
pedestrians. The study shows that this also results in lane
formation.

Our work differs from those that have been described
above in that we aim to develop a cognitive model of crowd
behavior, one based on psychology, rather than particle
physics. As a result, the model we present in this work
covers phenomenons uncovered by the simplistic CA and
particle models, such as that the choice of lane changing in
pedestrians depends on subgroups within the crowd, and is
not random.

A Model Based on Social Comparison Theory
The research question we address in this paper deals with
the development of a computerized cognitive model which,
when executed individually by many agents, will cause them
to behave as humans do in crowds.

We took Festinger’s Social Comparison Theory (Fes-
tinger 1954) as inspiration for the social skills necessary
for our agent. According to the social comparison theory,
people tend to compare their behavior with others that are
most like them. To be more specific, when lacking objec-
tive means for appraisal of their opinions and capabilities,
people compare their opinions and capabilities to those of
others that are similar to them. They then attempt to correct
any differences found.

We believe that the social comparison theory may account
for some characteristics of crowd behavior:

Common stimulus between crowd participants.One of
the social comparison theory implications is group for-
mation. Festinger notes (Festinger 1954): ”To the extent
that self evaluation can only be accomplished by means
of comparison with other persons, the drive for self eval-
uation is a force acting on persons to belong to groups,
to associate with others. People, then, tend to move into
groups which, in their judgment, hold opinions which
agree with their own and whose abilities are near their
own”.



Imitational behavior. By social comparison, people may
adopt others’ behaviors. Festinger writes (Festinger
1954): ”The existence of a discrepancy in a group with
respect to opinions or abilities will lead to action on the
part of members of that group to reduce the discrepancy”.

To be usable by computerized models, the social compari-
son theory must be transformed into a set of algorithms that,
when executed by an agent, will proscribe social compari-
son behavior. A first step towards this goal has been take by
Newell, which describes the social comparison theory as a
set of axioms (Newell 1990):

1. If the agent can’t evaluate its opinions and abilities ob-
jectively, then it compares them against the opinion and
abilities of others.

2. Comparing against others decreases as the difference with
others increases.

3. The more important a group for comparison of an opinion
or ability, the more pressure there is toward uniformity on
that opinion or ability.

We take another step towards the modelling of social com-
parison theory. Each observed agent is assumed to be mod-
elled by a set of features and their associated values. For
each such agent, we calculate a similarity values(x), which
measures the similarity between the observed agent and the
agent carrying out the comparison process. The agent with
the highest such value is selected. If its similarity is between
given maximum and minimum values, then this triggers ac-
tions by the comparing agent to reduce the discrepancy.

The process is described in the following algorithm,
which is executed by the comparing agent.

1. For each known agentx calculate similaritys(x)
2. c ← argmax s(x), such thatSmin < s(c) < Smax

3. D ← differences between me and agentc

4. Apply actions to minimize differences inD.

In line 1, the comparing agent (me, for short) compares
itself with other agents. We model each agent as an ordered
set of features, where similarity can be calculated for each
feature independently. We use a weighted linear sum to ag-
gregate feature values into one similarity measure:

s(x) =
k∑

i=0

wifi

wherek is the feature index,fi similarity in featurei, 0 ≤
fi ≤ 1, andwi the weight of the feature in overall similarity
(non-negative).

For each calculated similarity value, we check in line 2
if it is bounded bySmin andSmax, and pick the agent that
maximizes the similarity, but still falls within the bounds.
Smin denotes values that are too dissimilar, and the associ-
ated agents are ignored. Festinger writes (Festinger 1954):
“When a discrepancy exists with respect to opinions or abil-
ities there will be tendencies to cease comparing oneself
with those in the group who are very different from one-
self”. Respectively, there is also an upper bound on similar-
ity Smax, which prevents the agent from trying to minimize

differences where they are not meaningful or helpful. For
instance, without this upper bound, an agent that is stuck in
a location may compare itself to others, and prefer those that
are similarly stuck in place.

In line 3, we determine the list of featuresfi that indicate a
difference with the selected agentc. We order these features
in an increasing order of weightwi, such that the first feature
to trigger corrective action is the one with the least weight.
The reason for this ordering is intuitive, and we admittedly
did not find evidence for it in the literature. However, no ev-
idence was provided against this ordering, and it empirically
worked better in the experiments (see below).

Finally, in step 4 of the algorithm, the comparing agent
takes corrective action on the selected feature. Note that we
assume here that every feature has associated corrective ac-
tion that minimize gaps in it, to a target agent, independently
of other features. Festinger writes (Festinger 1954): “The
stronger the attraction to the group the stronger will be the
pressure toward uniformity concerning abilities and opin-
ions within that group”. To model this, we use a gain func-
tion g(o) for the actiono, which translates into the amount
of effort or power invested in the action. For instance, for
movement, the gain function would translate into velocity;
the greater the gain, the greater the velocity.

g(o) =
Smax − s(c)
Smax − Smin

Modeling Pedestrian Movement
To learn more about microscopic and macroscopic pedes-
trians’ behavior, Daamen & Hoogendoorn 2003 performed
empirical experiments on human crowds, in particular in
terms of movement as pedestrians. In these experiments,
participants were asked to walk through a monitored area,
in both directions. Their movements were recorded. One
conclusion was that ”During capacity conditions, two trails
or lanes are formed: pedestrians tend to walk diagonally be-
hind each other, thereby reducing the head ways and thus
maximizing the use of the infrastructure supply”.

Since then, lane formations have been a hallmark of
pedestrian movement models. Quicker lane formations typ-
ically lead to improved flow through the area, and the more
agents organized into lanes, the less they need to spend ef-
forts coordinating with others (change lanes). It is thus gen-
erally assumed that when measuring lane changes over time,
improved models lead to a reduction in the number of lane
changes.

Our goal is to explore the use of our social comparison
model in accounting pedestrian movement phenomena like
lane formations in bidirectional movement and movement in
groups, with and without obstacles.

To implement the model for pedestrian movement exper-
iments, we used NetLogo (netlogo ). We simulated a side-
walk where agents can move in a circular fashion from east
to west, or in the opposite direction. Each agent has limited
vision distance (beyond this distance it cannot see). It also
has a cone-shaped field-of-view of 120 degrees. Each agent
initially moves with a default walking velocity (in our case,



 

Figure 1:Initial NetLogo sidewalk.
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Figure 2:Lane formations.

0.1). Agents are not allowed to move through other agents,
and thus no two agents can occupy the same space.

Figure 1 shows the NetLogo sidewalk environment, in
an initial state where simulated pedestrians are randomly
placed about. Each small triangle is a simulated pedestrian,
able to move left-to-right or right-to-left. Pedestrians exiting
the sidewalk on any side appear on the other side, heading
in the same direction. Figure 2 shows an end-result from
one of the experiments (described below), where lanes have
been formed.

Each agent has a set of features and its corresponding
weight. For simulating pedestrian movement, we used the
following features and weights:

Walking direction (weight: 2). Agents can move in two
opposite directions, east and west.

Color (weight: 3). Each agent has a color (blue, pink, red,
green, etc.)

Position (weight 1). Each agent has a position, given in
terms of distance and angle. Distance - Represents the
vicinity in position between me and the other agent.

The similarities in different features (fi) are calculated
as follows. fcolor = 1 if color is the same,0 otherwise.
fdirection = 1 if direction is the same,0 otherwise. and fi-
nally, fdistance = 1

dist , wheredist is the Euclidean distance
between the positions of the agents.

The rationale for feature priorities, as represented in their
weights, follows from our intuition and common experience
as to how pedestrians act. Distance is the easiest difference
to correct, and the least indicative of a similarity between
pedestrians. Direction is more indicative of a similarity be-
tween agents, and color even more so. If an agent sees two
agents, one in the same direction as it (and far away), and
the other very close to it (but in the opposite direction), it
will calculate greater similarity to the first agent, and try to
minimize the distance to it (this may cause a lane change).

Each agent calculatesc(x) according to the model. If the
chosen feature for closing the gap is distance, then the veloc-
ity for movement will be multiplied by the calculated gain
g(o). For other features (which are binary), the gain is ig-
nored.

Experiments in Pedestrian Movement

This section explores the use of the social comparison model
and its implementation in modelling pedestrian movement.
The basic movement pattern that our simulated pedestrians
follow, stemming from the social comparison model, is as
follows. The agents follow initially set directions. They
choose moving in this direction, unless blocked. If forward
movement is indeed blocked, the agents can choose between
changing lanes to the left or right. It will choose the lane
where there is an agent similar to it (if available). If there is
no similar agent, it will arbitrarily choose any lane.

Individual Pedestrians Our first experiment contrasted
the social comparison model with previous models. We be-
gan by examining individual pedestrian movements, where
each synthetic pedestrian is independent of others. We con-
trasted the social comparison model with that of random
choice, which was shown to produce lane formations (Hel-
bing & Molnar 1997; Helbinget al. 2001) and is considered
to be a base model for pedestrian models.

As is commonly done in pedestrian movement experi-
ments, we controlled forcrowd density, calculated as the
number of agents divided by the area. To do this, we fixed
the number of agents at 100, and changed the width of the
sidewalk. Each agent had a unique color. Each agent’s direc-
tion (east or west) and initial position was chosen randomly.
We follow the literature in measuring two principal charac-
teristics of pedestrian movement: the total number oflane
changes, and theflow (average speed divided by the space-
per-agent).

For the purpose of this experiment, we fixed the gain com-
ponent at 1 (see below for experiments examining gain).
Smax was set at 6, which means any dissimilarity other than
color triggers action.Smin was set at 2, which means that
agents that differed only in distance were not considered
similar. Each trial was executed for 5000 cycles.

Figure 3 shows lane changes for the random-choice and
social comparison models. The X-axis measures density.
The Y-axis measures the number of lane changes during
the course of 5000 cycles. Each configuration was repeated
multiple times. Figure 4 measures flow for the two models.
The X-axis again measures density. The Y-axis measures the
flow.
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Figure 3:Individual Pedestrians’ lane changes.
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Figure 4:Individual Pedestrians’ flow.

The figures shows that the number of lane changes is sig-
nificantly lower than that of the random-choice model, im-
plying that lanes form faster and are maintained longer with
the social-comparison models. However, as the flow re-
sults show, there are no significant differences in flow. In
other words, the social comparison model performs better,
but with no cost to the flow.

Individual Pedestrians, with Variable Gain The next set
of experiments explored the performance of the model when
the gain component was allowed to vary, per its definition in
the social comparison model. We repeated the individual
pedestrian experiments, though ignoring color: All agents
moving east were colored red, and all agents moving west
were colored blue. Because of this, agents really see only
two kinds of agents: Those who have similarity of 1 (or less),
and those with similarity of 5 (or more). Thus the only way
to vary the gain, is to vary theSmin andSmax values, as
they set the denominator in gain calculation.

To evaluate the effect of the gain, we contrasted three vari-
ants of the social comparison model introduced earlier:

• Smax = 5.5, Smin = 5, i.e., g(o) = 1 (ignoring the
distance).

• Smax = 5.5, Smin = 5, i.e.,g(o) = 3
• Smax = 5.5, Smin = 2, i.e.,g(o) = 7

Figure 5 shows the initial positions of the agents in one
of the trials (5(a)), and the typical results after 5000 cycles,
with a gain of 1 (5(b)), gain of 3 (5(c)), and gain of 7 (5(d)).
The figures show how the increased gain causes the agents
to group more closely together.

Figures 6 and 7 show the lane-changes and flow in these
experiments. The figures show that while again, there is
no reduction in flow, there is significant improvement to the
number of lane changes, with an increased gain.

Grouped Pedestrian Movements We now move away
from considering scenarios that have previously appeared
in the literature, and start exploring new types of move-
ments. In particular, we experiment with pedestrian move-
ment where the pedestrians belong to different groups inter-
nally. This type of situation arises, for instance, in pedes-
trians that are composed of families and/or friends. The

 

(a) Initial positions.
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(b) g(o) = 1.

 

(c) g(o) = 3.

 

(d) g(o) = 7.

Figure 5:Individual Pedestrians: Varied Gains.
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Figure 6:lane changes
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(a) Initial random positions.

 
(b) After 5000 cycles, random-choice model.

 

(c) After 5000 cycles, social comparison model.

Figure 8:Screen shots, Grouped Pedestrian Movement.

random-choice model does not cover such phenomena, be-
cause it does not treat internal groups in any way. In con-
trast, we expect our social comparison model to treat groups
(agents that belong to the same group would be more simi-
lar).

To examine this hypothesis, we carried out experiments
in which color is meaningful: Agents belonging to the same
group have the same color. In these experiments, all agents
move in the same direction, again, for 5000 cycles. Gain was
allowed to vary per the model, as described above. The pop-
ulation contains 150 agents with a different number of colors
(we experimented with 5, 10, and 20 and color). Agents use
comparison at all times, and not just when stuck. Walking
direction of all agents was West.Smax was set at 6.5, and
Smin was set at 2.

To account for the intuition that friends (and family) walk
side-by-side, rather than in columns, we added another fea-
ture: The similarity in position along the x-axis. The revised
features and weights are as follows:

Direction with weight 2.

Distance with weight 0.5.

Color with weight 3.

X-Coordinate with weight 1.

The rationale behind these weights is that the agent will
first close the distance gap with the agent selected as most
similar, and only then try to locate itself on the same X-
Coordinate.

Figure 8 shows the initial random positions of the agents
(8(a)), their positions after moving for 5000 cycles using the
random-choice model (8(b), and their positions after mov-
ing 5000 cycles using the social comparison model (8(c)).
The figures show that the social comparison model causes
similar-colored agents to group together. This group form-
ing does not occur in the random-choice model.

# Colors Random-Choice Social Comparison
5 173.2 87.4
10 143.3 85.8
20 101.5 60.1

Table 1:Grouping measurements of random-choice and
social comparison models. Lower values indicate im-
proved grouping.

There exists a significant challenge in being able to quan-
titatively measure the grouping results of the experiments.
Normally, a simple clustering measure would do, as all
agents of same color would group together. However, due to
the initial random positions and the limited visual range of
agents, agents of the same color may never group together,
instead forming several groups that are far from each other.

Balch (Balch 1998) has offered a clustering measure,hi-
erarchical social entropy, that can address such cases. While
(Balch 1998) provides the details, the key intuition behind
this measure is to iteratively sum entropy over increasing ar-
eas. The measure equals 0 when all agents are positioned in
the exact same spot, and grows with their spreading around.
Thus lower values indicate improved grouping.

Table 1 shows the hierarchical social entropy results for
the random-choice and social-comparison models. Each row
corresponds to an experiment with a different number of col-
ors. The table shows (final column) that the social com-
parison model provides for significantly improved grouping
compared to the random-choice model.

Groups and Obstacles Our final set of pedestrian move-
ment experiments addresses the response of groups within
moving pedestrian crowds to obstacles. Intuitively, we
recognize that such groups will choose to stick together
when face an obstacle (moving together to one side of it),
while independent pedestrians choose arbitrarily. We sought
to examine whether the social comparison models would ac-
count for this behavior.

We created a sidewalk environment as described earlier,
but this time with an elongated rectangular obstacle in the
middle of it. When agents approached the obstacle, they had
to move to one of its sides. In the experiments, we allowed
100 agents of two colors (red and blue) to move west from
their initial positions. Each agent had the following features:
Direction, distance and color (weights: same as in the indi-
vidual pedestrian experiments). Agents used comparison at
all times, and not just when stuck.Smax was set at 6.5,Smin

at 3.
Figure 9 shows the initial random positions of the agents

(9(a)), their positions after moving for a while using the
random-choice model (9(b), and their positions when mov-
ing using the social comparison model (9(c)). The fig-
ures show clearly that the social comparison model causes
similar-colored agents to group together on one side of the
obstacle, passing it together. In contrast, the random-choice
model has no such effect on the behavior of the agents.

Quantitative analysis again proved challenging, as here no
clusters form. We needed, instead, to measure to what de-



 

(a) Initial random positions.

 

(b) Final positions, with random-choice model.

 

(c) Final positions, with social-comparison model.

Figure 9: Initial and final positions of agents in grouped
pedestrian experiments.
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Figure 10: Entropy of Grouped Pedestrian Movement
around Obstacle.

gree agents of the same color stay on one side of the obsta-
cle. To do this, we defined virtual “gates” on either side of
the obstacle, and monitored agents that move through them.
Each trial allowed 100 agents to pass through the gates 10
times (i.e., 10waves). At the end of each wave, we calcu-
lated (separately) the entropy of each color as its agents are
divided between the two gates. A score of 0 indicates per-
fect grouping (all agents of same color pass through same
gate). A score of 1 indicates perfect lack of grouping (the
agents are evenly split between the two groups). The final
result of each wave is the average entropy value across the
two colors.

Figure 10 shows the average entropy value for each wave,
for the ten waves. The results are averaged over multiple
trials. The X-axis shows the wave number (1–10). The Y-
axis measures the entropy. The figure shows that the en-
tropy value of the social-comparison model quickly goes
down from 1 and approaches 0, while it remains around 1
for the random-choice model. Indeed, after 10 waves, the
average entropy value for the social comparison model is
0.131, while it is 0.992 for the random-choice model.

An Initial Implementation in Soar
We have developed an initial implementation of the social
comparison theory model, as described above, in the Soar

cognitive architecture (Newell 1990). Soar uses globally-
accessible working memory, and production rules that test
and modify this memory. Efficient algorithms maintain the
working memory in face of changes to specific propositions.
Soar operates in several phases, one of which is a decision
phase in which all relevant knowledge is brought to bear
to make a selection of an operator, that will then carry out
deliberate mental (and sometimes physical) actions. A key
novelty in Soar is that it automatically recognizes situations
in which this decision-phases is stumped, either because no
operator is available for selection (state no-change impasse),
or because conflicting alternatives are proposed (operator
tie impasse). When impasses are detected, a subgoal is au-
tomatically created to resolve it. Results of this decision
process can be chunked for future reference, through Soar’s
integrated learning capabilities. Over the years, the impasse-
mechanism has shown to be very general, in that general
problem-solving strategies could be brought to bear for re-
solving impasses.

Social comparison theory, as described by Festinger,
seems to naturally fit Soar’s impasse-driven operation. In
particular, Festinger describes the trigger to using compari-
son as a situation in which people are unable to evaluate their
opinions and capabilities, which seems to match an impasse
situation.

We thus chose to treat social comparison theory as a
new kind of impasse-resolution method. Unlike previous
impasse-resolution (problem-solving) techniques, in which
the agent focus on using its own resources, here the agent
uses knowledge of others as a keystone to resolving the im-
passe. Our goal is therefore to determine a general way to
describe social comparison processes in Soar, in such a way
that they can be used for solving a wide variety of problems.

A snapshot from a log showing Soar using our current
implementation (here, to decide on movement) is shown be-
low. Soar’s decision cycles are denoted by numbers before
colons. In the first and second decision cycles, operators
calledinit andexplore-decision, respectively, are selected by
Soar. But then, more than 20 different instantiations of an
operator calledelaborate-targetare proposed by the system;
Soar is faced with the task of choosing one among them for
execution. Since it cannot decide, an operator-tie impasse is
declared; see the line marked

3: ==> S: S3 (operator tie)

This triggers our social comparison process, which is car-
ried out, in sequence, by the following operators: (i)sct-init,
which sets up the new state, and copies relevant information.
(ii) sct-add-entities, which copies information about other
agents for use in ranking operators.rank-itemthen calcu-
lates a rank for all proposed operators, based on associated
agents and their own choices. Finallyselect-itemselects the
highest-ranking operator and makes the decision. Indeed the
last decision cycle (#8 in the log) shows a specific instance
of theelaborate-targetis chosen.

1: O: O2 (init)
root is active

->proposed child : explore-decision
->by : root



2: O: O4 (explore-decision)
->proposed child : elaborate-target
->by : explore-decision

->proposed child : elaborate-target
->by : explore-decision

[ . . . . . 19 additional proposals for elaborate-target . . . . . ]

->proposed child : elaborate-target
->by : explore-decision

3: ==>S: S3 (operator tie)
4: O: O27 (sct-init)
5: O: O28 (sct-add-entities)
6: O: O51 (rank-item)

7: O: O68 (select-item)
SCT Done. Chose O21 : elaborate-target

8: O: O21 (elaborate-target)
elaborate-target is active

[ . . . . . . . . . . . . . . . . . . . Soar continues . . . . . . . . . . . . . . . . . . . ]
We believe our treatment of social comparison processes

as generic impasse-resolution methods raise novel ques-
tions as to the role of social reasoning in cognitive architec-
tures. Most cognitive architectures do not commit to social
processes being a part of the architecture. Instead, most so-
cial reasoning is done by manipulating knowledge and be-
liefs, not as a problem-solving method. This view is quite
common in robotics and agent literature, which often treats
reasoning about multiple agents as a process that is carried
out at a higher, task-dependent, level of reasoning.

If our view of social comparison is correct, then this im-
plies that cognitive architectures must somehow specialize
to cover rudimentary social reasoning at an architectural
level. In particular, for social comparison processes to be
possible, the architecture itself must distinguish between in-
puts that describe other agents from those that describe ob-
jects or features in the environment. Without such a distinc-
tion, any reasoning will necessarily be limited to where prior
knowledge distinguishes the agents from other knowledge.

Summary and Future Work
This paper presented a preliminary algorithmic model pro-
scribing crowd behavior, inspired by Festinger’s social com-
parison theory (Festinger 1954). The model intuitively
matches many of the characteristic observations made of hu-
man crowd behavior, and was shown to cover phenomena
reported on in the literature. Though there is lack of objec-
tive data against which the model can be tested, the results
are promising and seem to match intuitions as to observed
behavior. We also presented an initial implementation of the
model in Soar, and show how it can be integrated very well
with the impasse-resolution mode of this architecture. This
view of social-comparison processes, as a social impasse-
resolution method, is novel and raises important questions
as to the role of agent modeling (from observations) in cog-
nitive architectures.
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