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Summary. Agents monitor other agents to coordinate and collaborate robustly.
The goals of such monitoring include detection of coordination failures. However, as
the number of monitored agents is scaled up, two key challenges arise: (i) Agents
become physically and logically unconnected (unobservable) to their peers; and (ii)
the number of possible coordination failures grows exponentially, with all potential
interactions. This paper examines these challenges in teams of cooperating agents.
We provide a brief survey of the evolution of two key approaches to handling coor-
dination failures in large-scale teams: Restricting the number of agents that must
be monitored, and using model-based rather than fault-based detection methods.
We focus on a monitoring task that is of particular importance to robust teamwork:
detecting disagreements among team-members.

1 Introduction

Agents in realistic, complex, domains must monitor other agents to accom-
plish their tasks, detect failures, coordinate, and collaborate. Indeed, the im-
portance of agent monitoring in deployed multi-agent systems has long been
recognized in theory (e.g., [2, 7, 9]), and in practice. Monitoring has been dis-
cussed in the context of industrial systems (e.g., [16]), to virtual environments
for training and research (e.g., [36, 37, 30, 31]), to human-computer interaction
(e-g., [27]), and multi-robot teams (e.g., [28, 6, 21]). Agent monitoring infras-
tructure is of particular importance in teams of cooperating agents, since the
correct execution of teamwork mandates that team-members come to agree on
the task that is jointly executed by the team, and manage interdependencies
among team-members [2, 9].

One specific goal of monitoring in teams is detection and resolution
of teamwork and coordination failures [24, 29, 38]. These may occur be-
cause of unanticipated environment states—likely in complex, dynamic
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environments—or from communication, sensor, or actuator uncertainties. For
instance, intermittent failures in communications may cause a failure where
one agent has sent a message, while its peers have not received it.

Thus deployed multi-agent systems must include facilities for detecting,
diagnosing, and resolving failures. Indeed, a number of investigations have
begun to explore mechanisms for detecting failures in coordination and team-
work [23, 25, 24, 3, 29, 38] and for diagnosing such failures [22, 32, 33, 12, 17].

However, large-scale multi-agent systems—where the number of agents is
the principal scale factor—pose a number of challenges to the ability of agents
to monitor each other, and thus to handle failures. Two of these challenges
are: (i) Limited connectivity, where agents become physically and logically
separated, and thus less able to monitor each other; and (ii) a combinatorial
complezity of possible failures, as the number of possible failures grows with
the number of all possible interactions between failures.

This paper discusses these challenges in depth, and explores their signifi-
cance in large-scale multi-agent systems. We also discuss the implications of
these challenges with respect to existing approaches to failure detection. We
find in the literature two approaches to failure detection. Some investigations
take an approach based on fault-models, where possible faults are enumerated
at design time and recognized at run-time. Other investigations take a model-
based approach where agents detect failures at run-time as deviations from a
model of the normative coordination in the system.

To illustrate, we focus on the example of detecting disagreements—a prin-
cipal failure in multi-agent teamwork—to show the evolution of existing meth-
ods in recent years to address large-scale systems. We show how an analysis of
the monitoring requirements of disagreement detection can lead to improved,
reduced, bounds on the connectivity of team-members. We also discuss rele-
vant model-based detection work, which can represent the state of multiple
agents together, and can therefore be utilized for highly-scalable disagreement
detection.

This chapter is organized as follows. Section 2 provides motivation for this
work by showing concrete examples of limited connectivity and combinatorial
failure complexity in monitoring for disagreements. Section 3 focuses on lim-
ited connectivity, and discusses a general approach in which only specific key
agents must be monitored, while detection is guaranteed. Section 4 focuses on
the exponential complexity of the number of possible coordination failures.
Finally, Section 5 concludes.

2 Motivation and Background

Teamwork literature, addressing human and synthetic teams, has often em-
phasized the importance of team-members being in agreement on various fea-
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tures of their state, such as goals, plans, and beliefs'. Teamwork theory often
defines agreement as a state of mutual belief, where agents reason to infinite
recursion about their beliefs and their beliefs in others’ beliefs in a proposition.
For instance, SharedPlans theory requires team-members to mutually believe
in a shared recipe [9] during the planning and execution phases of the task;
the Joint Intentions framework emphasizes mutual belief in the team goals’
selection, as well as in team-members’ beliefs about the goals’ achievability
and relevance [2, 26]. Other investigations of agent teams have emphasized
agreement on team plans to be jointly executed by team-members [16], on hi-
erarchical team operators [35], on tasks to be executed collectively [28, 5, 21],
etc. Investigations of human teamwork have not only emphasized agreement
on the joint task, but also agreement on features of the environment that are
important to the task being carried out by the team [1].

However, the literature also recognizes that achieving and maintaining
agreement can be difficult. Teamwork theory recognizes that attainment of
agreement by mutual belief is undecidable [10] and must therefore be approx-
imated in practice. Such approximations frequently involve assumptions of
trustworthiness of team-members, of foolproof communications [16], of team-
members being able to observe each other [14], and/or of a mutually-visible
environment [8]. As is often the case with approximations, they sometimes fail
in practice (e.g., due to communications failures, sensing differences due to
different physical locations of agents, etc.), and therefore team-members may
find themselves in disagreement with each other. Such disagreements are often
catastrophic, due to the unique importance of agreement in collaboration.

It is therefore critical that teams are monitored to detect such disagree-
ments. A monitoring agent that identifies the state of team-members can
compare the state of different team-members and detect differences on state
features that, by design or by selection, should have been agreed upon [24].
However, as the number of monitored agents is scaled up, two challenges arise:
(i) difficulty to observe or communicate with all agents, due to latency, range,
occlusion and other separation factors (Section 2.1); and (ii) an exponential
number of possible coordination failures (Section 2.2).

2.1 Limited Connectivity

As the number of agents grows, agents become logically and physically dis-
tributed, and cannot maintain continuous contact with each other. This may
occur due to physical separation factors, such as occlusion and limited sensor
range; or it may occur due to logical separation, such as limited communica-
tion reliability, interference, latency, or bandwidth. We use the term limited
comnectivity in a general sense to describe this phenomenon. Limited connec-
tivity thus denotes both limited ability to observe a particular agent’s actions
as well as limited ability to communicate with the agent.

1 Of course, the literature also addresses other critical features of teamwork aside
from agreement. But agreement is a repeating theme in recent work.
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The challenge of limited connectivity is of course only of limited concern
in small-scale systems. Given a few cycles, the agents can typically integrate
multiple attempts at communications and sensing of the world, over time, to
form a fairly coherent mental picture of what their peers are up to. However,
as the number of agents grows, the ability to integrate such information over
time diminishes rapidly. For instance, existing peer-to-peer (P2P) include mil-
lions of simultaneously-active nodes. Yet not one node is able to communicate
directly with all of its peers at once, due to both bandwidth and processing
power issues. Even spreading the efforts over time will not be sufficient, as the
duration of time required is too long for any practical interest.

2.2 Combinatorial Failure Complexity

A different concern with large scale system is the number of potential coor-
dination failures it may get into. Suppose each of N agents may be in one of
k internal states. Then the number of possible joint states is £%. In loosely-
coupled systems, each agent is essentially independent of its peers, and may
select between its k possible states freely. In such systems, the vast majority
of joint states—if not all—are considered valid states.

However, in a coordinated multi-agent system, the selection of an internal
state by an agent is conditional by the selection of its peers’ internal state.
In other words, agents move between joint states together. Typically, only a
limited portion of these states would be valid coordinated states, from the
designer’s perspective. Thus most joint states may in fact be invalid from a
coordination point of view.

Disagreements are a good example of this. Suppose a team of N agents
agrees that their selection of internal state would be synchronous, i.e., for
every selected state of one agent, all others must be in some agreed-upon
internal state. For simplicity in notation, we describe this case as mutual
selection of states 1...k, i.e., all all agents select the same state. There would
be O(k) valid agreement joint states, and the rest of the k™ joint states would
be considered invalid—coordination failure—states.

Note that the number of possible coordination failure states grows ex-
ponentially in the number of agents. Thus large-scale systems where agents
coordinate may have to face an exponential number of possible faults.

3 Monitoring Graphs for Limited Connectivity

As the number of monitored team-members increases, it becomes increasingly
difficult to monitor all of them (Section 2). Thus a key question is how to
guarantee failure-handling results while limiting the number of agents that
must be monitored.
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The approach we take to this involves the construction and analysis of
monitoring graphs, which represent information about which agent can mon-
itor whom. We show that for disagreement detection, one can set conditions
on the structure of the graph which, when satisfied, guarantee that detection
is complete and sound. Complete detection guarantees all failures will be de-
tected (i-e., no false negatives). Sound detection guarantees only failures will
be detected (i.e., no false positives). Using the conditions we explore in this
section, one can guarantee sound and complete detection of disagreements
while setting conditions on the connectivity of agents.

Definition 1. A monitoring graph of a team T is a directed (possibly cyclic)
graph in which nodes correspond to team-members of T', and edges correspond
to monitoring conditions: If an agent A is able to monitor an agent B (either
visually or by communicating with it), then an edge (A, B) exists in the graph.
We say that monitoring graph is connected, if its underlying undirected graph
is connected.

If the monitoring graph of a team is not connected, then there is an agent
which is not monitored by any agent, and is not monitoring any agent. Obvi-
ously, a disagreement can go undetected in such a team: If the isolated agent
chooses an internal state different from what has been agreed upon with its
peers, it would go undetected.

It is easy to see that if the graph is connected, and each agent knows
exactly the selection of its monitored peer, then sound and complete detection
is possible, in a distributed fashion. Each agent A monitors at least one other
agent B (or is monitored by another agent B). If A selects an internal state
different from B, then at least one of them would detect the disagreement
immediately. For instance, if A monitors B—and knows with certainty B’s
state—then simple comparison with A’s selected state is all that is needed.

In the general case, however, connectivity is insufficient. Suppose an agent
A has selected state P;, and is monitoring another agent B that has selected
state P,. A disagreement exists here since agent B should have selected P;.
However, since the internal state of B may not be known to A with certainty,
A may have several interpretations of B’s chosen state. The set of these inter-
pretations may contain Pj, in which case A may come to incorrectly believe
that B is not in a state of disagreement with A.

To treat this formally, let us use the following notation when discussing
agent A’s hypotheses as to the state of an agent B: Suppose B’s state is P
(for instance, P is a plan selected by B). We denote by M (A, B/P) the set
of agent-monitoring hypotheses that A constructs based on communications
from B, or inference from B’s observable behavior (i.e., via plan recognition).
In other words, M (A, B/P) is the set of all A’s hypotheses as to B’s state,
when B’s state (e.g., selected plan) is P. Note that when A monitors itself, it
has direct access to its own state and so M (A, A/P) = {P}.

We make the following definitions which ground our assumptions about
the underlying monitoring process that implements M:
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Definition 2. Given a monitoring agent A, and a monitored agent B, we say
that A’s monitoring of B is complete if for any state P that may be selected
by B, P € M(A,B/P). If A is monitoring a team of agents By,...,B,, we
say that A’s team-monitoring of the team is complete if A’s monitoring of
each of By,..., B, is complete.

Monitoring completeness is commonly assumed (in its individual form) in
plan-recognition work, (e.g., [34, 4, 15]), and generally holds in many appli-
cations. It means that the set M (A, B/P) includes the correct hypothesis P,
but will typically include other matching hypotheses besides P. Using this no-
tation, we can now formally explore disagreement detection under uncertainty
in monitoring.

Centralized Disagreement Detection

In general, as discussed above, the condition of monitoring graph connectivity
is necessary, but insufficient, to guarantee complete and sound detection. In-
deed, in [23], Kaminka and Tambe show that if a single centralized monitoring
agent monitors all others, it can guarantee either sound or complete detection
of disagreements, but not both (Figure 1-a).

However, Kaminka and Tambe found that if certain key agents exist, then
it may be possible to reduce the monitoring requirements in the system.
Key agents have the property that their behavior, when selecting one of two
given states, is sufficiently unambiguous, such that any agent that monitors
them and has selected either one of the two states can identify with certainty
whether a disagreement exists between it and the key agents. We repeat here
the formal definition of key agents from [24]:

Definition 3. Let Py, P, be two agent states. Suppose an agent A is monitor-
ing an agent B. If M(A,B/P,) N M (A, B/P) = 0 for any agent A, we say
that B has observably-different roles in Py and P, and call B o key agent
in {P1,Py}. We assume symmetry so that if two states are not observably
different, then M(A,B/P,) N M(A,B/P:) D {P P}.

The key-agent is the basis for the conditions under which a team-member
A; will detect a disagreement with a team-member As. This is done by pre-
ferring mazximally-coherent hypotheses as to the state of the monitored agent.
Maximally-coherent hypotheses are optimistic—they are hypotheses that min-
imize the number of disagreements between the two agents. The use of such
hypotheses leads to sound disagreement detection [23, 24].

An agent A; (selecting state P;) will detect a disagreement with a team-
member A, (selecting a different state P,) if A, is a key agent for the plans
P, P, [24, Lemma 1]. A; knows that it has selected P;. If Ay has selected
P, and is a key-agent in P; and P», then A; is guaranteed to notice that
a disagreement exists between itself and A,, since A, is acting observably
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different than it would if it had selected P;. A; can now alert its teammate,
diagnose the failure, etc.

When key agents exist in a team, it is sufficient for a single agent to
monitor them to guarantee sound detection in the centralized case [20]. More
accurately, if the team is observably-partitioned, i.e., a key agent exists for
any pair of internal states potentially selected by team-members, then it is
sufficient for a single agent to monitor only the key agents, to guarantee sound
detection of disagreements. However, all key agents must be monitored (Figure
1-b).

[ °
° °
® °
° °
° . °
°
(a) Centralized mon- (b) Centralized
itoring, sound or monitoring, sound,
complete, but mnot in [20].
both, in [24].

Fig. 1. Illustration of centralized monitoring graphs. Non-filled dots indicate key
agents.

Distributed Disagreement Detection

We now consider the case of distributed monitoring settings, where team-
members monitor each other. First, in [23] Kaminka and Tambe have shown
that if at least a single key agent exists for every pair of plans (i.e., the team
employs an observably-partitioned set of team plans), and if all team-members
monitor all agents, then detection is not only sound, but also complete (see
Figure 2-a for illustration). Later on [24, Theorem 4], the result was clarified:
All agents must monitor the key agents only—all of them—and the key agents
must monitor each other (Figure 2-b). Guaranteed sound and complete detec-
tion here means that at least one team-members will detect a disagreement if
one occurs, and no false detections will take place.

This result is of particular interest to building practical robust teams, and
fortunately the conditions for it are often easy to satisfy: Teams are very often
composed such that not all agents have the same role in the same plan, and
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itoring, in [23]. itoring, in [24]. itoring, in [20].

Fig. 2. Illustration of distributed monitoring graphs. Non-filled dots indicate key
agents. All cases allow for sound and complete disagreement detection.

in general, roles do have observable differences between them. Often, the set
M(A, B/P) can be computed offline, in advance; this allows the designer to
identify the key agents in a team prior to deployment. Furthermore, any agent
can become a key-agent simply by communicating its state to the monitoring
agent and therefore eliminating ambiguity; thus a team can use highly-focused
communications to guarantee detection.

However, the requirement that all key-agents be monitored prohibits de-
ployment of scaled-up applications: First, as the size of the team grows, lim-
ited connectivity becomes more common, since agents become more physically
and logically distributed. Thus not all agents, and in particular key agents, are
going to be visible. Second, the monitoring task itself would need to process
observations of each agent. Thus reducing the number of observed agents can
improve monitoring run-time in practice.

The theorem below takes a step towards addressing this issue by provid-
ing more relaxed conditions on the connected nature of the monitoring graph,
in particular with respect to the connectivity of the nodes representing key
agents. These conditions are: (i) every non-key agent selecting a state P moni-
tors a single key agent for each possible pair of plans involving P (i.e., for each
pair of plans, where one of the plans is P); and (ii) the monitoring sub-graph
for all key agents for a given pair of states forms a clique (i.e., key agents are
fully connected between themselves). This case is illustrated in Figure 2-c.

Theorem 1. Let T be a team in which: (i) Each team-member A, selecting
a state Py, who is not a key agent for Py, Py monitors one key agent for
Py, Py; (i) all key agents for a pair of states X,Z monitor all other key
agents for X,Z (forming a bidirectional clique in the underlying monitoring
graph); (iii) the team is observably-partitioned; and (iv) all monitoring carried
out is complete, and uses mazximal-coherence. Then disagreement detection in
T is sound and complete.
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Proof. By induction on the number of agents in T'. The full proof is provided
in [19].

This theorem allows teams to overcome significant connectivity limitations,
without sacrificing detection quality. The theorem translates into significant
freedom for the designer or the agents in choosing whom (if any) to monitor;
when a monitored agent is unobservable, an agent may choose to monitor
another: Non-key agents need monitor only a single key agent, rather than all
key agents (for every pair of states). The upper-bound the theorem provides is
more general than may seem at first glance. First, the theorem holds for any
state feature of interest—beliefs about a shared environment, goals, etc.; it is
up to the designer to pick a monitoring technique that acquires the needed
information for constructing the monitoring hypotheses. Second, the theorem
does not depend at all on the method by which monitoring occurs, whether
by communications or by observations. Thus the connectivity of a monitoring
graph does not have to be maintained visually. Some or all of the edges in the
monitoring graph may actually correspond to communication links between
agents.

Though this theorem represents a significant advance in lowering the
bound on the number of agents that must be monitored, all key agents must
still monitor each other. This is a critical constraint in practice. For instance,
we have reconstructed the visual monitoring graph in thousands of RoboCup
game situations, to find that even with this new bound, sound and com-
plete disagreement detection would have been possible without communica-
tions only in small percentage (approximately 5%) of a game. Typically, each
RoboCup player can only see 2—-3 key agents, this means that key agents can-
not typically monitor all others. To illustrate, Figure 3 shows the monitoring
graph of two teams overlayed on a screen-shot of an actual game situation.
For both teams, the monitoring graph does not guarantee sound and com-
plete disagreement detection under the known bound, despite the fact that it
is connected. This empiric constraint raises the bar on the challenge to find
a lower bound on the number of agents that must be monitored to guarantee
detection.

4 Model-Based Disagreement Detection

There are, in general, two approaches for detecting (and later, diagnosing)
failures [11]. The first is called a consistency-based approach (and sometimes,
model-based). A model of the correct behavior of the system is utilized to
make predictions as to the observed output of the system in question. When
these predictions fail, a fault is detected. Provided that the model is sufficiently
detailed, it may be used to identify the exact nature of the failure by a process
of model-based diagnosis. The second approach is fault-model-based (fault-
based, for short). Here, models of possible faults are matched against the
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Fig. 3. Monitoring graphs in a RoboCup simulation-league game situation.

observed behavior of the system. When the observed behavior matches the
models, an alarm is triggered. Often, fault-models are used together with
prescribed resolution procedures, which are called into action to resolve the
faults that were detected.

The same two approaches can be found in literature addressing coordi-
nation failure detection and diagnosis. On one hand, investigations such as
[22, 23, 24, 20, 29] focus on using models of the correct behavior of agents to
detect failures as deviations from the model, while others take a fault-based
approach [25, 13, 3, 12, 38].

4.1 Detection Based on Fault-Models

We begin by examining the use of fault models to detect coordination failures.
Dellarocas and Klein [25, 3] have proposed a centralized approach to detecting
failures (which they refer to as exceptions) in coordination. Their work utilizes
agent sentinels, which monitor agents to identify their state or actions, and
report on it to a centralized fault detection system. The system then matches
the reported information against a database of known coordination failures,
for detection.

An important facet to this work is the population of the fault database.
Unlike standard fault-model approaches, where fault models are closely tied to
the domain and task at hand, Klein and Dellarocas propose to use general co-
ordination fault-models. These are generated offline, before the deployment of
the system, by manual analysis of domain-independent coordination models.

A different—distributed—approach is taken by Horling et al. [13, 12]. They
present an integrated failure-detection and diagnosis system for a multi-agent
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system in the context of an intelligent home environment. The system uses
the TAEMS domain-independent multi-agent task-decomposition and mod-
eling language to describe the ideal behavior of each agent. The agents are
also supplied with additional information about the expected behavior of the
environment they inhabit under different conditions, and their role within the
multi-agent organization. A distributed diagnosis system, made of diagnosis
agents that use fault-models, is used to identify failures in components (such
as erroneous repeated requests for resources) and inefficiencies (such as over-
or under-coordination). The fault-models are used in planning monitoring ac-
tions, in identifying failures responsible for multiple symptoms, and in guiding
recovery actions. Multiple diagnosis agents may use communications to inform
each other of their actions and diagnoses.

A key issue with fault-model approaches is their scalability, given that the
number of possible faults in large-scale multi-agent systems is likely to be
exponential. Models that attempt to be specific to agents (e.g., "If A does
X and B does Y then that is a failure", "If A does X and C does Z then
that is a failure") are not likely to scale well. On the other hand, fault models
that can utilize some abstraction or capture general failure conditions may do
better.

As an example, Wilkins, Lee, and Berry [38] offer an execution monitor-
ing approach which encompasses both coordination and task-execution fail-
ures. Their work introduces a taxonomy of generic failure types, which must
be adapted and specialized to the domain and task. Agents responsible for
monitoring rely on communicated state reports from the monitored agents to
identify failures. While experiments with the system were carried out only on
relatively small multi-agent systems, the modeling of the failures shows exam-
ple of how fault-models can be sufficiently non-specific so that they may be
reused in larger-scale systems. For instance, the fault models included distance
failures (units getting too close), which are triggered when an adversary gets
closer to a friendly unit). It does not matter who the adversary or friendly
units are, nor their specific location, etc.

A common theme running through all of the above works is that they
mostly ignore the issue of uncertainty in monitoring, and utilize communica-
tions or direct observations to acquire knowledge as to the state of monitored
agents. This is a potentially limiting factor in their use in large-scale networks,
where limited connectivity will necessarily lead to uncertainty in monitoring.

4.2 Model-Based Detection

Our own work—and those of others—took a different approach to detecting
failures. This consistency-based approach utilizes a model of ideal behavior
(in terms of the relationships), not a model of how failure symptoms relate
to possible failure diagnoses. The model-based approach has the advantages
of generality and model re-use [11]. In particular, fault models, as described
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above, are anticipatory; they are only able to capture failures which the de-
signer has been able to anticipate in advance. A consistency-based approach
to diagnosing failures is not limited in this respect.

We focus here on disagreement detection. In order to detect disagreements,
the monitoring agent must first know which internal states are ideally to be
agreed upon. Executable teamwork models such as STEAM [35] or GRATE*
[16] allow the designer to specify hierarchical team plans whose execution
must be synchronized across agents. To detect a disagreement, we compare
the team plans selected by different agents. If they do not match, then a
disagreement has occurred [24].

The seeming simplicity of the task is misleading. In the general monitoring
case, there can be multiple hypotheses as to the plan selected by each indi-
vidual. As a result, there can be an exponential number of hypotheses for the
team as a whole. To address this, the techniques described in the previous sec-
tion can guarantee detection results, as long as we select maximally-coherent
hypotheses. However, this would seem to require going over the exponential
number of hypotheses.

Fortunately, this is not the case. Initial work used the RESL plan-
recognition algorithm to represent—implicitly—all possible hypotheses [24].
The savings here were significant, as each agent was modeled individually, and
so memory use was O(NL) where N is the number of agents, and L the size
of all possible plans for a single agent. However, run-time was still essentially
O(LYN), as the algorithm still had to go through multiple hypotheses.

Recently, this result was improved, with the YOYO algorithm [20]. YOYO
represents all agents in a single structure, which can only represent fully-
coherent hypotheses, i.e., no disagreements. The key observation here is that
if something is not representable in YOYO, then it must indicate a disagree-
ment. Thus YOYO detects failures essentially by trying to interpret their
actions as if they are not in disagreement. If there is no way to do it, then
a disagreement must have occurred. YOYO is thus maximally coherent, and
perfectly suited to the monitoring techniques discussed in the previous sec-
tion. Its space requirements are O(N + L) and runtime is O(N + L). We refer
the interested reader to [20] for additional details.

5 Discussion and Future Work

Multi-agent literature has often emphasized that an agent must monitor other
agents in order to carry out its tasks. However, as the numbers of agents in
deployed teams is scaled up, the challenges of limited connectivity and an
exponential number of potential failures are raised. This paper has discussed
recent approaches addressing these challenges, in the context of a critical
monitoring task—detection of critical disagreements between teammates.
However, many open challenges exist in monitoring large-scale multi-agent
systems. One important challenge is in reducing the load on the monitoring



Handling Coordination Failures in Large-Scale Multi-Agent Systems 13

agent. Durfee [7] discussed decision-theoretic and heuristic methods for re-
ducing the amount of knowledge that agents consider in coordinating. The
methods include pruning nested (recursive) models, using communications
to alleviate uncertainty, using hierarchies and abstractions, etc. This work is
complementary to the methods discussed above. We focus on monitoring in
teams of cooperating (rather than self-interested) agents, allowing exploita-
tion of the fact that agents are coordinating, both to limit connectivity, as
well as to use model-based techniques in detection. Thus, while Durfee’s work
focuses on reducing computational loads in monitoring each single agent, our
work focuses on reducing the number of monitored agents, and on savings
possible only when monitoring teams together.

Recent work on model-based diagnosis has also begun to address limited
connectivity, though indirectly, and only to a limited extent. Work by Roos et
al. [32, 33] has examined the use of model-based diagnosis by agents diagnosing
a distributed system. While the methods describe do not address coordination
failures, they are certainly relevant in terms of discussing the type of connec-
tivity assumptions required for the diagnosis to work. Our recent preliminary
work [18] on the use of model-based diagnosis of disagreements also limits
connectivity: A key focus is on using only a handful of agents to represent
all others in the diagnosis process, thus limiting runtime and communication
load.
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