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The emergence of collective order in swarms
from local, myopic interactions of their individual
members is of interest to biology, sociology,
psychology, computer science, robotics, physics
and economics. Cooperative swarms, whose members
unknowingly work towards a common goal, are
particularly perplexing: members sometimes take
individual actions that maximize collective utility, at
the expense of their own. This seems to contradict
expectations of individual rationality. Moreover,
members choose these actions without knowing
their effect on the collective utility. I examine this
puzzle through game theory, machine learning and
robots. I show that in some settings, the collective
utility can be transformed into individual rewards
that can be measured locally: when interacting,
members individually choose actions that receive
a reward based on how quickly the interaction
was resolved, how much individual work time is
gained and the approximate effect on others. This
internally measurable reward is individually and
independently maximized by learning. This results
in a equilibrium, where the learned response of each
individual maximizes both its individual reward and
the collective utility, i.e. both the swarm and the
individuals are rational.

This article is part of the theme issue ‘The road
forward with swarm systems’.

1. The perplexing nature of cooperative
swarms

Individual members of collectives must interact to
achieve their goals, yet their interaction capacity is
bounded. Individual interaction bounds arise from
logical and physical limits on perception range, latency
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and bandwidth, from analogous limits on the reach and impact of actions and from computa-
tional limits on processing incoming and outgoing signals.

By nature, individual interaction bounds do not change with the size of the collective, or
its inherent requirements for interaction complexity. When a collective is small, or its inherent
interaction requirements are sufficiently low, individuals have no problem interacting with
others as needed. However, as collectives grow in size or interactions grow in complexity,
individuals are prohibited, by their bounds, from keeping up. Discord and disorder ensue.
These may be alleviated when individuals interact explicitly to organize the collective, form-
ing hierarchies (management, command) and divisions (ministries, departments). Otherwise,
however, collectives may become swarms.

For the purposes of this paper, I define swarms intuitively, as collectives of agents whose
individual interaction capabilities permit them to interact with a few others (local interactions),
but not with all (global interactions). They are flat organizations (no hierarchy), whose members
are essentially anonymous and replaceable. Swarms permeate our natural, societal and artificial
surroundings. They are found in the collective motion of animals [1–3], human pedestrians
[4–6] and traffic [7,8] and multi-robot applications [9–17]. They inspire novel methods for
optimization [18,19], safe collision-avoidance [20–24] and future medicinal molecular robots
[25–29].

Swarms are investigated not (only) for their ubiquity but for their puzzling nature: they
are fantastic exemplars of an ordered system-wide phenomenon arising out of synergistic local
interactions between components. Swarm members cannot possibly know the collective state of
the swarm, nor can they take actions that directly impact the collective state. Yet time and again,
despite the limitations of their constituent members, we see examples of swarms achieving and
maintaining an ordered (coordinated) collective state.

Cooperative swarms, whose behaviour is understood in terms of collective objectives, are
particularly perplexing. Given a measure of collective utility, one could describe a cooperative
swarm by its collective rationality, the pursuit of the swarm’s members, in aggregate, to maximize
the expected collective utility. This follows the definition of the principle of rationality [30–33]
at the swarm level [34]. For example, the order of a swarm’s collective motion can serve as a
measure of collective utility, as could the total amount of food gathered by a foraging swarm, or
the rate at which the food is gathered, or the number of items found as swarm members carry
out a collective search. Cooperative swarms maximize these measures.

However, introducing rationality as a methodological lens raises significant difficulties when
it comes to individuals. While the collective objectives of the swarm may be understood and
formalized, their decomposition to individual, self-interested, rational decision making is not
at all clear. Agents in cooperative swarms may sometimes need to take actions at their own
resource expense, to benefit the swarm. This seems to contradict expectations of individual
rationality, whereby agents maximize their individually perceived reward. Moreover, even
assuming that agents simply adopt the swarm’s collective utility as their own (thus they benefit
with others from their individual expenses), swarm agents cannot possibly perceive (measure)
the collective utility, as they are limited to local perception. They cannot perceive the collective
effects of their actions, and cannot verify that their actions improve the collective utility.

For instance, suppose the collective utility is measured by the total number of food items
brought to the nest by foragers. An individual agent can (at best) measure this only when it is at
the nest. As it forages, it cannot use the number of food items as a guide to its decision making.
Moreover, suppose an agent leaving the nest to forage is about to collide with an incoming
forager. Just as it is likely better to let people off the elevator before attempting to move in,
the incoming forager may need to back off; but this depends on whether it is holding a food
item, how close it is to depositing it and what others (occluded or far) are doing. In swarms, the
individuals do not know this information.

Given this difficulty in accounting for individual rationality in cooperative swarms, Game
Theory, one of the fundamental principled tools for studying multi-agent interactions, is often
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ignored in cooperative swarm research (see [35,36] for exceptions). Instead, existing approaches
rely on task-specific black-box procedures that mechanistically proscribe individual behaviour
that increases collective rewards [16], without regarding individual costs and gains. Examples
include procedures for collective motion [37–42], area coverage [43–46] and foraging [47–50].
These bypass the question of individual self-interest, and are understood and studied in terms
of the collective phenomenon [38,51–58]. They do not lend themselves to analysis from a
game-theoretic point of view.

In this article, I present rational swarms, a game-theoretic model of cooperative robot swarms,
as infinite-horizon fully cooperative Markov games (also known as Markov team games), with
significant restrictions on the knowledge of the agents. Agents in such games are awarded
the collective utility resulting from the joint actions, and thus have an individual incentive to
maximize the collective utility. Given their limitations, swarm agents can only receive local
rewards, partial proxies of the collective utility. As a result, when they seek to maximize their
own local rewards, they can cause the collective utility to decrease, a phenomenon generally
referred to as the price of anarchy, made famous in the game of Prisoner’s Dilemma.

Focusing on robot swarms, I begin by showing how under modest assumptions, collective
utility can be approximated by aggregating the individual work times of the robots in the swarm: the
times in which they are engaged in their individual tasks, rather than the overhead of coordina-
tion. As embodied agents (animals, robots) can be assumed to measure time, this allows swarm
members to all use a common, always-accessible, measure of utility. It only requires them to
differentiate time and resources spent on their task, from those spent on coordination.

Naively, if each agent maximizes its operational time, and minimizes interference due to
miscoordination (e.g. collisions), then the aggregated times increase, and so does the abstract
swarm utility [51,56]. However, as the agents know nothing about the effects of their actions on
others, attempts to increase their own working time may actually hurt others' efforts.

To address this, I next show that it is possible to reduce collective rewards to individual
rewards that are aligned, by approximating the individual difference rewards [36,59,60]. These
turn the Markov game into a potential game [61], where maximizing the individual rewards
maximizes the collective rewards [35,62].

Using the rational swarms difference reward with distributed multi-agent reinforcement
learning [63–67], the robots learn to coordinate and resolve collisions efficiently, maximizing
the swarm’s collective utility. The technique has been demonstrated in extensive experiments, in
various tasks and settings (figure 1), over the last 15 years.

This article presents a synthesis of the rational swarms model. It begins by showing how the
cooperative swarm can be represented as Markov team games, and how the inherent locality of
perception of swarm agents can prevent them from individually acting rationally (§2). Then, the
rational swarms model is introduced in §3. The §4 discusses lessons learned and insights gained
from 15 years of research and development of the model. Finally, §5 discusses the way forward
for rational swarms research, and concludes.

2. Cooperative swarms as Markov team games
Preliminaries. We consider swarms composed of set N of embodied agents, that perceive and
act locally, i.e. within some bounded range of their position. The swarm is active for a durationT, which is unknown to us. During this time, each agent i ∈ N takes actions ati (action ai taken
at time t < T), drawn from a set of possible actions Ai by the strategy πi, which determines
the action taken by agent i at any given time. Given the local perception of the agents, each
individual agent i ∈ N knows only the action it has taken ati; the effects of the action are
localized, affecting only n≪ |N| agents (their social neighbourhood).

We follow up on previous work [68,69] in distinguishing actions taken by each individ-
ual carrying out its task independently of others, and actions taken by agents to coordinate
with each other. The need for coordination in swarms arises in two distinct situations. First,
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agents may inadvertently interfere with each other, i.e. they are in conflict [23,51,52,56,68]. This
happens for example when their motion trajectories intersect and they (are about to) collide.
A second form of coordination may be needed materially for the task, when robots cannot
perform a component of the task independently of each other, i.e. more than a single robot is
needed to carry out an atomic component of a task (e.g. lifting a long table from both ends
requires two robots).

We focus on swarm tasks where coordination is used to resolve conflicts. In these, the
individual agent repeatedly switches between two abstract modes of operation, back and
forth: an individual task-execution mode (called Program mode) where each individual agent
is independently carrying out its task within the swarm, and an Avoidance mode, where it
takes coordination actions to resolve conflicts with other agents, e.g. avoiding collisions. The

(a)

(c)

(d)

(e)

(b)

Figure 1. Agents and robots in environments used in experiments with the rational swarms model described herein; the
agents used reinforcement learning. (a, b) Real robots; (c) agents moving on a discrete grid; (d, e) simulated robots moving
in continuous spaces. In all, agents sensed and acted locally, with no communications with their neighbours. Learning was
only applied in selecting actions for collision handling. (a) AIBO robots collecting cans [68]. (b) Krembot robots searching
for objects [69]. (c) Foraging on a grid [70]. (d) ARGoS [71]-simulated Krembot robot swarms in a search task [72,73]. (e)
Alphabet Soup [74] simulation of robots in a warehouse [69].
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total operating duration of a swarm member is segmented into stages, by conflicts requiring
coordination to resolve. Each stage starts with a conflict. Then, coordination actions are taken
in avoidance mode to resolve the conflict. This allows the agent to go back to work in program
mode, until a new conflict occurs (see figure 2 for illustration).

Multi-robot foraging [49,50,56,75] is a good example. Here, the robots leave the nest in
search for food items, which they individually bring back to the nest. Their individual program
mode would consist of actions that do not require coordination with others: searching for
items, picking them up, finding the way home, dropping collected items. In the course of these
activities, they inevitably come near each other (e.g. when some agents are heading with items
into the nest area, while others are heading away). Impending collisions trigger a conflict state,
which switches the robots to coordination mode, where they take actions to resolve or prevent
the collision. Once done, they switch back to program mode.

For now, let us assume that all agents are involved in every collision, i.e. the swarm
works from one stage to the next. While all swarm members enter a collision together, they
do not necessarily resolve it at the same time: different joint actions may result in some
agents leaving the avoidance mode sooner than others. For example, this can occur when
three agents collide, and two remain entangled for a while longer, while the third turns
away immediately (see figure 2, in the second stage: Robot 1 resolved the conflict earlier
than Robots 2 and 3).

We distinguish and focus on cooperative swarms, where a collective objective is defined, that
agents collectively try to achieve. For example, in collective foraging, the goal of the swarm is to
maximize the total number of items collected from the work area. In common collective-motion
models, the goal is to establish a common movement heading for the agents. In collective
search, the goal is to maximize the number of items discovered. Agents in cooperative swarms
individually select actions that maximize achievement of the swarm goals.

This view of the robot’s timeline allows us to position our work with respect to others. Many
methods focus on improving the efficiency of the program-mode actions (see e.g. [47,76,77]
in foraging). Others focus on improving the entire stage (avoidance and program), by restrict-
ing the behaviour of the robot during both program and avoidance, such that collisions and
conflicts are minimized [51], e.g. by pre-allocating robots to different areas [78] or tasks [79]. We
go beyond the single-agent stage, by examining the stages of all agents, collectively.

Team (Fully Cooperative) Markov Games. Each stage (collision resolution and subsequent
task activity; figure 2, top) can be viewed as a normal-form team game, where the agents all
receive an identical payoff for their joint actions. During the avoidance-mode interval of the
conflict, agents (players) individually select conflict-resolution actions, synthesizing joint actions.
In team games, all agents receive this identical payoff for their joint actions. Different joint actions
can yield different joint rewards, but whatever the joint reward, every agent individually
receives it.

The sequence of stages—subgames—forms a view of the swarm’s agents as engaged in
a stochastic team game (also called a Markov team game) [80–83]. A Markov team game is
defined by a tuple G := ⟨N , S, A,D,R⟩, where N is the set of agents, S is the set of states (each
representing a subgame type, associated with a conflict that could begin a stage), A the set
of potential conflict-resolution joint actions, D a state-transition probability function and R a
function determining the swarm reward from taking an action at a state S. The components ofG are explained in detail below. The swarm seeks to maximize the accumulated reward R over
many stages. As their number is unknown, this is formally an infinite-horizon game [81,82].

States S. Conflicts are events that interrupt an individual agent’s program mode, and require
coordination to resolve. S is the set of recognizable types of conflicts. Collisions are a good
example: we can define all collisions to be the same (i.e. a single type, as done in [68,69]),
or we can distinguish different types of collisions, especially when the distinction matters to
the actions taken. For example, a collision front-to-front may require a different response to
a collision front-to-rear, and so the relative position of agents may distinguish conflict states
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[72]. Similarly, the position of agents in the work area [70], or the local density [84], can also
distinguish states.

The joint actions set A. The set of all possible joint actions is defined by the sets of potential
individual actions A = A1 × A2 × ⋯ × A|N|. Each agent i selects its own action ai ∈ Ai. Then, a
specific joint action a ∈ A is a tuple (a1, a2, …,a|N|).

State-Transition Probability Function D. A joint action at ∈ A can be applied in any states ∈ S. It transitions the swarm from the state s to the next state s′ ∈ S. This transition corre-
sponds to a single stage (figure 2): the agents begin in a conflict of type s, individually apply
πi to select avoidance action ai ∈ Ai. The individual actions of all agents compose a joint actiona, which resolves the conflict and allows each agent to continue in program mode (drawing
actions from πPi ). The next state s′ is determined stochastically, by the transition probability
function D : S × A × S [0,1], measuring the probability of transitioning from state s to state s′
after applying the joint action a.

The Collective Reward R. In the common definition of stochastic games, there are |N|indi-
vidual reward functions {Ri},∀i ∈ N, where function Ri returns the player’s individual payoff,
having been in state s, where the joint action a was taken, and reaching state s′, determined by
the state-transition probability D.

The definition we use here, of team games, differs from the common definition. Instead, we
use a single collective reward, R : S × A × S ℝ, describing the collective payoff from performing
the joint action a at state s (resolving the conflict), and reaching a new state s′. All agents share
the payoff R(s, a, s′), as this is a fully cooperative (team) game. Note that R is stationary; it does
not vary with time, but only with state and action.

Maximizing the Swarm Collective Reward Accumulated Over Time. Given a conflict states, every agent i ∈ N selects its conflict resolution action ai using its strategy πi, i.e. ai := πi(s). The
individual actions of all agents compose the joint action a that is then applied to the conflict
state s to resolve it. This allows the agents to go back to their independent individual programs,
until the next conflict state occurs (determined stochastically by D), and a new stage begins. The
joint strategy of the swarm is defined by the agents’ π := (π1, …, π|N|).

We use st to denote the state of conflict that had begun at time t. At that time, a joint actionat is taken, whose durative effects last until a new conflict arises at time st′. The associated stage
is denoted (st, π(st), st′) = (st,at, st′). The state st′ is a stochastic result of applying the action at; the
probability of reaching st′ is given by D(st, π(st), st′), and the reward for this stage is given byR(st, π(st), st′).

Figure 2. A visual illustration of a swarm member's activity timeline. Duration of Avoidance and Program modes are
implicitly shown by the length of the respective boxes along the horizontal axis. Each stage begins when a conflict state is
detected, sending all agents to switch to avoidance mode. Switching back to program mode is done when the conflict is
deemed resolved, by each individual separately. Conflict states are assumed to be recognized by all agents.
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A possible play η(π) is a sequence ⟨(st0, at0), (st1,at1), …, (stk, atk), …⟩, generated by repeatedly
applying a strategy π to states, beginning with state s0 (i.e. t0 = 0), such that for any k ∈ ℕ, tk is a
time-stamp, and D(stk − 1,atk − 1, stk) > 0. The accumulating reward over K stages of a specific play η0
is RK(η0) := ∑k = 1

K R(stk − 1, atk − 1, stk), where tk are specified by η0.
As the new state stk resulting from applying atk − 1 is determined stochastically by D, a better

characterization of the rewards of π is by the expected collective reward over K stages, i.e. all of
the possible plays π may induce, with K stages:

(2.1)RK(π): = E[RK(η(π))]

(2.2)= ∑k = 1

K
∑stk ∈ S[R(stk − 1, π(stk − 1), stk) ⋅ D(stk − 1, π(stk − 1), stk)] .

As a notational shortcut, we used Rk(π) for R(stk − 1,atk − 1, stk), and analogously, Dk(π) forD(stk − 1, π(stk − 1), stk). Therefore,

(2.3)= ∑k = 1

K
∑stk ∈ S Rk(π) ⋅ Dk(π) .

We seek a strategy π* that maximizes the expected collective reward generated, in comparison
with alternative strategies. However, as K tends towards infinity, as long as R is positive, RK(π)
will grow unbounded for any strategy π. In other words, when K tends to infinity, strategies
might not be differentiated by their collective rewards.

We therefore use a standard alternative objective, where the swarm seeks to maximize the
average collective rewards (limit of means) of RK:

(2.4)R(π) := limK → ∞
1KRK(π) = limK → ∞

1K ∑k = 1

K
∑stk ∈ S Rk(π) ⋅ Dk(π) .

A strategy π* is then one that maximizes R(π):

π∗ := arg max
π

R(π) .

If all the agents know how R changes as a result of their individual actions (i.e. they all receive
R), it is straightforward to show (i) that their individual self-interested selections will lead to
a Nash equilibrium (i.e. the strategy guarantees stability), and (ii) that the Nash equilibrium
also maximizes R (i.e. it guarantees collective reward optimality). Allowing the agents to be
rational and self-interested in maximizing their rewards will necessarily maximize the collective
rewards, as they are one and the same.

The rewards of the collective are said to be aligned with those of the individual [36,60]. In this
case, by utilizing reinforcement learning, the agents may evaluate different strategies π by the
collective rewards R(π), until converging to the optimal strategy π*.

Locality of Perception Leads to Loss of Collective Information. Unfortunately, the
condition that all agents know R does not hold in swarms: the agents cannot measure the
collective reward R, as they can only perceive in their immediate local environment. Having no
ability to measure R, they naturally also have no way to learn or predict how any joint action,
affects it. Individually, they may follow their own self-interested, rational decision-making
preferring actions that appear best from their perspective, but we lose all guarantees that this will
maximize the collective reward.

It may therefore appear that framing cooperative swarms as fully cooperative games yields
little insight as to how individual agents should select their actions to maximize the collective
reward. As I show next, this is not the case.
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3. Rational swarms: overcoming locality of perception
The key difficulty with the view of cooperative swarms as Markov team games lies in the fact
that swarm agents cannot be assumed to measure the collective reward R, as they can only
perceive in their immediate local environment. Thus the first step we take (§3(a)) is to transform
the arbitrary collective reward measure into a proxy measure that is individually accessible to
all agents. In §3(b) we then show how agents can—in principle—maximize their individually
accessible reward, such that it maximizes the collective reward R.

(a) Local measurement of swarm utility measures
The reward of a cooperative swarm depends on its task, and so is measured in terms that,
in general, agents cannot measure directly. While we may model the swarm as seeking to
maximize the average swarm utility over an infinite horizon (equation 2.4), no agent can
realistically measure it. A foraging agent away from the nest cannot keep track of the number of
items collected, nor can they assess whether resolving a collision using a specific action is better
(improves the R) than another. We therefore seek to transform the utility measure into a form
that is accessible to every agent, regardless of where it is.

We focus on time as a proxy to the utility gained by swarm members. In particular, we
consider the relation between time spent by the swarm members on the task, and the utility
resulting from it; we expect maximization of the former to be equivalent to maximization of the
latter. As the measurement of time can be carried out individually, without even knowing what
the task is, the swarm agents can focus on increasing the time spent on the task, rather than
maximizing some abstract notion of utility (this is not trivial to do, see next section).

We remind the reader that we view the swarm’s operation as a series of stages, wherein each
agent has two modes of operation: an avoidance mode, triggered by collisions or other interfer-
ence requiring coordination (for which they choose a joint action), and a resulting program mode
where they carry out their individual tasks, undisturbed.

Here, we examine the agents’ individual intervals of avoidance and program execution,
whose duration depends on the individual action taken by each agent (figure 2). The duration
of the avoidance interval for agent i ∈ N is denoted Cki (πi) = Ci(stk − 1, πi(stk − 1), stk), and the duration
of the subsequent program interval is denoted Pki (πi) = Pi(stk − 1, πi(stk − 1), stk). Their sum is the total
duration of the stage Cki (πi) + Pki (πi) = tk − tk − 1. While Ci and Pi generally vary between agents,
their total is common to all agents (as we assume all agents are involved in every conflict). For
any stage k, the following holds: ∀i, j ∈ N Cki (πi) + Pki (πi) = Ckj(πj) + Pkj(πj) .

It is reasonable to assume that the collective reward grows as agents spend more time in
program mode, and less in avoidance mode, i.e. that it monotonically grows with the collective
time spent in program mode. For simplicity, we assume proportionality; there exist constantsβi,αi ∈ ℝ where βi > 0,αi ≥ 0, such that for any stage (stk − 1, π(stk − 1), stk),

(3.1)Rk(π) = ∑i ∈ N βiPki (πi) − αiCki (πi) .

From this we derive the expected time-based reward ΓK(π) of a policy π over K stages from
RK(π):

(3.2)RK(π) = ∑k = 1

K
∑stk ∈ S Rk(π) ⋅ Dk(π) from equation (2.3)

(3.3)= ∑k = 1

K
∑stk ∈ S ∑i ∈ N βiPki (πi) − αiCki (πi) ⋅ Dk(π) from equation (3.1)

and since D is defined for the joint action π(stk − 1), it is the same for all agents i ∈ N,
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(3.4)= ∑k = 1

K
∑stk ∈ SDk(π) ∑i ∈ N βiPki (πi) − αiCki (πi) .

(3.5)=: ΓK(π) .

It is tempting to then redefine R(π) as the limit of 1KΓK(π), as K → ∞. However, this is incorrect,
as it averages over the number of conflicts, giving equal weight to short and long intervals,
regardless of their accumulating contributions to the reward. Instead, we should use the
average over the accumulating time spent by the swarm agents working through the K stages.
The accumulated time T is tk − to (absolute time of the current conflict, minus the absolute time
of the initial conflict that marks the beginning of the swarm task). Simply T = tk, if we measure
the beginning of the swarm task as t0 = 0. However, the conflict state stk and its time tk are
determined stochastically by D. Therefore, the total duration T varies, depending on π and D.

(3.6)Γ(π) := limK → ∞
∑k = 1

K
∑stk ∈ SDk(π) ∑i ∈ NβiPki (πi) − αiCki (πi)tk − t0 . Plugging in equation (3.5)

(3.7)= limK → ∞
∑k = 1

K
∑stk ∈ SDk(π)T ∑i ∈ N βiPki (πi) − αiCki (πi) . T = tk − t0 is same for any i, j ∈ N

We now have a measure of the collective reward, which is accessible in principle to any agenti ∈ N, since it relies solely on time, which any of the agents can measure. Noting that the term
limK → ∞ ∑k = 1

K ∑stk ∈ SD(stk − 1, π(stk − 1), stk)T  is common to all agents, we denote by Γki (π) the contribution
of agent i ∈ N to Γ(π) in stage k − 1:

(3.8)Γki (πi) := βiPki (πi) − αiCki (πi) ,

i.e. Γ(π) = limK → ∞ ∑k = 1
K ∑stk ∈ SDk(π)T ∑i ∈ NΓki (π).

Γki (π) (equation 3.8) can be independently computed by agents, and is therefore a step
towards compensating for missing information: with every collision, every agent, independ-
ently of others, can record the time it spent resolving the previous conflict Ck and the time spent
working in program mode since the conflict was resolved Pki . The terms αi, βi are also knowable
to the agent i. In addition, it also knows T, which is the total time the swarm has been operating,
and is therefore the same for all agents.

However, some information remains beyond the immediate perception of the agent,
preventing it from computing the collective reward (equation 3.7) from the individual Γki (π)
(equation 3.8). In particular, the local perception of each swarm agent i prevents it from
knowing Pj, Cj for any agent j ≠ i ∈ N. It cannot perceive N, and so does not know how many
other agents there are. As a result, agents seem to have little choice but to attempt to rationally
maximize their own perceived individual reward Γπ|i, based on their own local knowledge,
substituting πi for the strategy π, their own locally perceived state si for s, etc.

As the reward to one agent may be at the expense of another, each agent’s individual reward
is no longer aligned with the actual collective reward: maximization of one does not lead to
maximizing the other. To intuitively see why this happens, imagine some agents are attempting
to leave the nest after dropping collected items off, while others are attempting to enter the
nest. Those attempting to enter should ideally back off, allowing those inside the nest to go out.
However, backing off adds to the duration of the avoidance mode, and reduces the duration of
the program mode. Thus those agents are motivated to push forward. This hinders the swarm
from collecting items. The next section addresses this challenge.

(b) Computing a swarm-aligned reward
We can align the individual rewards with those of the collective by finding a utility potential
function [61]. A utility potential function assigns a scalar (potential) to the joint actions of agents,
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such that any change to the local reward of player i ∈ N, stemming from its unilateral prefer-
ence of an individual action ai over a different individual action ai, is reflected by a matching
change to the potential: if an agent seeks greater individual reward, it will necessarily cause
an increase in the potential. Games that possess such a function are called potential games [61],
and have the property that rational strategic individual preferences for greater local rewards
necessarily result in a Nash equilibrium that also maximizes the rewards of others.

Such a potential function was proposed by Wolpert & Tumer [36]. Initially called Wonderful
Life Utility, it was later renamed and extended as difference rewards [59,60], and shown to be
related to the economic concept of marginal contribution [62,85].

The difference reward Δ(i) of agent i ∈ N captures the contribution of agent i to the collective
reward of the swarm. It is defined as Δi(π) := δ+i(π) − δ−i(π), where δ+i(π) denotes the collective
reward achieved in the presence (involvement) of the agent, and δ−i(π) denotes the hypothetical
counterfactual reward achieved in the agent’s absence. We discuss this in detail below, and
point the reader elsewhere for analytical discussion of the difference reward as a potential
[35,62].

(i) The collective reward when agent i is present, δk+i(π).

When agent i ∈ N is involved (and utilizing strategy π), it is straightforward to take δk+i(π) to be
the collective time-based reward Γk(π) at any given stage k − 1 = (stk − 1, π(stk − 1), stk). We rewrite it
using Γi(π) to emphasize the role of agent i:

(3.9)δk+i(π) := Γk(π) = ∑j ∈ NΓkj(π)

(3.10)= Γki (π) + ∑j ∈ N ∖ {i}Γkj(π),

where N ∖ {i} is the set of agents N, without the agent i. Substituting by the respective defini-
tions, this yields:

(3.11)= βiPki (πi) − αiCki (πi) + ∑j ∈ N ∖ {i} βjPkj(πj) − αjCkj(πj) .

(ii) The collective reward when agent i is not present, δ−i(π).

δ−i(π) is a counterfactual: it asks what the collective reward would have been, had the agent not
participated or contributed. Computing the counterfactual takes into account detailed informa-
tion about the task at hand [60,86], and sometimes can be be computed directly [60]. However,
the locality of perception, and thus the limited information available to each agent, makes
analytical computation of the counterfactual difficulty. Our one aid in this discussion is that all
possibilities are reflective, rather than predictive: any assessment of δk−i(π) is made at time tk,
looking back at the duration from the conflict state at time tk − 1. Thus, the action taken and the
resulting duration of the stage τk are known at the point of assessment.

We may naively believe δ−i(π) is equal to ∑j ∈ N ∖ {i}Γj(π) + 0, where the 0 component marks
the lack of contribution, of any kind, by agent i (i.e. it is the result of some null action, and
Γi(π) = 0). In that case,

Δki (π) =Γki (π) + ∑j ∈ N ∖ {i}Γkj(π)

δk+i(π), equation 3.10

− ∑j ∈ N ∖ {i}Γkj(π) − 0

δk−i(π)

= Γki (π) .

However, this is incorrect. The agents we discuss are embodied, necessarily having physical mass
and body geometry, and existing over time. When they interact with others, they necessarily
affect them. An agent that is not affecting others in a collision is one that simply goes
through them, undisturbed and undisturbing. Thus while it is possible for an agent to have
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zero individual contribution over the duration of a stage (Γi(π) = βiPki − αiCki = 0), its physical
embodied existence affects others during the interval. It is perceived by others, and it can block
or facilitate their movement. Furthermore, even if we consider the agent’s hypothetical physical
removal from the system altogether, its absence would still affect others.

Lacking an analytical model of interactions that is parameterized by information about each
individual agent (e.g. its position and velocity, its communicative acts when interacting, etc.),
we are left with essentially philosophical approaches for building such a model. We distinguish
two components: (i) a model, denoted Γk−j(π), of how other agents j ≠ i are affected when agenti is hypothetically absent from the conflict; and (ii) a model, denoted Γk−i(π), for how agent i is
affected in this case.

How others are hypothetically affected. We argued above that in principle, it is unreasona-
ble to expect all other N − 1 agents participating in a collision to be generally unaffected by the
absence of agent i. Instead, I consider the direction of the effect.

In principle, the others can do worse without i: their respective avoidance periods grow
longer, and necessarily their productivity decreases, i.e. Γk−j(π) < Γkj(π). In the extreme case, they
hypothetically remain in avoidance mode for the duration of the stage, and so,

(3.12)Γk−j(π) := −αjτk = −αj Pkj(πj) + Ckj(πj) .

Adapting this interpretation requires a narcissist view of agent i’s importance to the interaction:
without its involvement as a benefactor, others are unable to proceed.

The opposite view is that without agent i, the conflict did not occur (i.e. agent i is a disruptor,
the only cause for a conflict). In that case, the other agents would have spent the duration
of their now-hypothetical avoidance interval working their own task (program mode), and
the avoidance mode duration for all agents j ∈ N ∖ {i} would have been as rewarding as the
program mode. Instead of reducing the reward by −αjCkj, we increase the reward by βjCkj, as
the entire duration of stage k is considered to have been spent by any agent j carrying out its
program:

(3.13)Γk−j(π) := βjτk = βj Pkj(πj) + Ckj(πj) .

The two models mark extreme points that bound the true values from above and below.
If agent i was responsible for the conflict, its removal from the system increases everyone’s
productivity up to βj Pkj(πj) + Ckj(πj)  (equation 3.13). If instead agent i was the benefactor,
whose presence allowed the conflict to be resolved, then everyone’s productivity would be
reduced to −αj Pkj(πj) + Ckj(πj)  (equation 3.12) in its absence.

How agent i is hypothetically affected. Agent i knows its own actual Γki . There are several
ways of approaching the question of how this value changes when i is absent from the system.
Clearly, one possibility is indeed to assume that it in its absence, its own counterfactual
contribution is 0 (as discussed above):

(3.14)Γk−i := 0 ≤ Γki .
I see two other interpretations, that bound the unknown real value from above and below. One
possibility is that the agent i had spent the entire stage in avoidance mode, i.e. it is absent from
the stage in the sense that it is not producing anything:

(3.15)Γk−i := −αiτk = −αi Pki (πi) + Cki (πi) .

The other interpretation is that in its absence from the conflict, it never went through the
avoidance interval, and so,

(3.16)Γk−i := βiτk = βi Pki (πi) + Cki (πi) .

Putting Γk−j(π) and Γk−i together. We can now define the counterfactual using the above. While
multiple possibilities exist, most recent work [72,73] empirically demonstrated that it is useful
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to take the so-called benefactor view, whereby without agent i, the conflict did not occur (or at
least, the avoidance duration decreased [69,87]) (equation 3.13), while the agent’s hypothetical
contribution in its absence is 0 (equation 3.14):

(3.17)δk−i(π) := Γk−i(π) + ∑j ∈ N ∖ {i}Γk−j(π)

(3.18)= 0
equation (3.14)

+ ∑j ∈ N ∖ {i} βjPkj(πj) + βjCkj(πj)
equation (3.13)

.

(iii) Putting it all together: an aligned individual reward, Δki (π)
Δki (π) can now be defined as follows:

(3.19)Δki (π) := δk+i(π) − δk−i(π)

(3.20)= βiPki (πi) − αiCki (πi) + ∑j ∈ N ∖ {i} βjPkj(πj) − αjCkj(πj)
δk+i(π), equation 3.10

− ∑j ∈ N ∖ {i}[βjPkj(πj) + βjCkj(πj)]
δk−i(π), equation 3.18

(3.21)= βiPki (πi) − αiCki (πi) + ∑j ∈ N ∖ {i} βjPkj(πj) − αjCkj(πj) − βjPkj(πj) − βjCkj(πj)
(3.22)= βiPki (πi) − αiCki (πi) − ∑j ∈ N ∖ {i}(αj + βj)Ckj(πj) .

Note that when the agent i is alone (no neighbours, i.e. N∖{i} = ∅), Δki (π) is simply its own
time-based reward Γki (π) = βiPki πi − αiCki πi . The aligned difference reward elegantly simplifies
to the natural individual reward in this case. There is no need for the agent to switch between
reward functions depending on its social settings.

(c) Determining π* by reinforcement learning
Through a completely distributed learning process, every agent i ∈ N uses its own computed Δki
to learn its own optimal strategy πi, maximizing

limK → ∞
∑k = 1

K
∑stk ∈ SDk(π)T Δki (πi),

such that the composed joint policy is optimal π*. While equation (3.22) removes some of the
knowledge requirements from the individual agent (e.g. it does not need to know Pj and T), it
still leaves some unknowns (N ,αj, βj,Pj, Cj). These will be approximated below. The transition
probability function D is not known to the agent, and will be addressed through the learning
process.

First, assuming agents are homogeneous, we may set αi = αj, βi = βj, and rewrite equation
(3.22):

(3.23)Δki (πi) ≈ βiPki (πi) − αiCki (πi) − ∑j ∈ N ∖ {i} (αi + βi)
replacing αj, βjCk

j(πj) .

Next, we can estimate the unknown duration Cj by the mean duration of Ci in previous stages,
i.e. CKi (πi) := 1K ∑k = 1

K
Cki (πi). Both last assumptions follow a common approach in multi-agent reinforce-

ment learning [88], where the learners assume others are similar. Using this last estimate, we
can continue rewriting,

(3.24)≈ βiPki (πi) − αiCki (πi) − ∑j ∈ N ∖ {i}(αi + βi)Cki (πi) (Ckj(πj) ≈ Cki (πi))
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and finally, as N ∖ {i} is unknown, we use the locally perceived social neighbourhood, of sizen≪ |N| (n here includes the agent i) as a sufficient estimator [72,73,84]. The intuition for this is
that in collisions, agents that are not sensed are not part of the collision. They are therefore not
affected by it, nor do they affect it, and so their C duration is 0, having no impact on Δki (π) (their
P duration is not needed for the computation in any case). We therefore finally rewrite

(3.25)≈ βiPki (πi) − αiCki (πi) − (n − 1)(αi + βi)Cki (πi) (local neighbours).

This last step touches on a key assumption in the model, that conflicts involve all agents inN. This assumption is generally violated in swarms, and most certainly when we examine
collisions as the source of conflicts: there is no reason, and no possibility, that all robots
collide together. The intuition provided above for the use of only the n robots locally
perceivable by the robot argued on practical grounds that the C,P  can be ignored or
nullified. However, this is a practical approximation. Theoretically, the assumption still
needs to be addressed.

From a mathematical point of view, Douchan [84] shows that it is enough to consider
agents that are not involved in a conflict to have selected a special individual action aP,
which has a C duration of 0, and therefore is maximally productive (has a program interval
of length τk). However, this mathematical equivalence is not amenable to local approximation.
In future work, the rational swarms model should be developed to address sparse interactions,
by appropriate shaping of the reward [89] or using specialized algorithms [90].

Necessarily, each agent uses its own estimated Δki (πi) (equation 3.25), using no information
about others. Agents are therefore independent learners in multi-agent reinforcement learning.
Despite the well-known inherent challenges of using reinforcement learning with independent
learners [63–66,82,91–94], many algorithms have been developed to allow cooperative learning
in multi-agent settings [67,81,92,95,96]. Surprisingly, the approach presented here has been
repeatedly demonstrated to reach stable and highly optimized collective swarm rewards in
many experimental settings, using the most basic of algorithms (see discussion below). Note
that as the rational swarm model is stated—naturally—as an average (undiscounted) rewards
optimization criterion, rather than discounted rewards, some algorithms may be better suited
than others [97–99].

4. Lessons from experiments with artificial rational swarms
Over the last 15 years, the rational swarms approach was investigated in different experimental
settings, involving embodied agents and robots (figure 1). The discussion above presents an
up-to-date perspective, which allows us to view earlier work as special cases and approxima-
tions. In this section, I highlight insights from experiments carried out as part of the research.
The next section (§5) will discuss future work, informed by this perspective.

Working in continuous spaces, with no communications between the agents, the rational
swarms approach used with reinforcement learning (§3) has been consistently demonstrated
to achieve superior swarm collective rewards when compared with manually tuned colli-
sion-avoidance methods (including methods allowing stochasticity in algorithm selection) [68–
70,72,73,87,100,101]. A bird’s eye view of the experiments reveals the importance of both
components of the model: the use of time as a measure of utility (§3(a)), as well as the alignment
of individual and collective rewards (§3(b)).

Earlier formulations and experiments [68,70] did not account for alignment of collective
and individual rewards, instead nullifying the impact on others. They focused on minimizing
the impact of the avoidance interval (C), ignoring the program interval and its gains for the
most part. Later experiments used various alignment approximations, and produced superior
results [69,87], though still focusing on the avoidance interval. These also demonstrated that
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the aligned time-based rewards worked on-par, or even better, than aligned rewards using the
utility measure used in the task (e.g. number of items picked). We believe that this is due to
the time-based difference rewards offering a more sensitive, finer-resolution measure; similar
observations were also made by others [60,86].

More recently [72,73] the rational swarms model was clarified and simplified, as a result of
mathematical derivation of the time-based collective reward from the perspective of the swarm.
The model presented in §3 is a generalization and synthesis of these latter investigations. It
builds on the empirical evidence to prefer the so-called benefactor view, whereby without agenti, the conflict did not occur (or at least, the avoidance duration decreased [69,87]), and also the
use of equation (3.14) (Γk−i = 0) for the agent’s own counterfactual contribution. However, the
other models are useful as analytical bounds [87].

The success of the rational swarms model in continuous settings is particularly noteworthy.
Most of the work on Markov games and much of the literature on game-theory in general is
carried out in discrete settings and discrete time (differential games being the notable exception
[102,103]). It is therefore not straightforward to be able to apply a model based on Markov
games, with its assumptions of discrete actions and states, to continuous settings.

I believe the observed success in continuous action spaces owes much to the use of collision-
avoidance algorithms as actions used by the individual (i.e. composing the set of actions Ai). Each
algorithm works as a macro-action or option [104]: once selected, it takes over control of the
agent, generating motion actions at a fine resolution to resolve the collision. Deciding on a
macro-action is carried out at a higher level of abstraction than the fine resolution of continuous
motion. Robotics literature reports on many such algorithms [20,21,23,24,105–107]. In fact, this
research direction began by observing that no one algorithm could be shown to be superior
[23,52]. It seemed reasonable to let the swarm learn when and which algorithm to use.

More specifically, as agents learn independently of each other, each agent i learns its own
strategy πi that determines which algorithm to apply, and when. The strategy may differ from
that of other agents. A repeating observation is that the swarm rarely converged to a homogene-
ous choice of collision-avoidance algorithms. Rather, in the great majority of experiments, the
post-learning swarm was composed of groups, each distinguished by the fact that its member
agents had learned to deal with collisions using a specific macro-action, different from those of
other groups. In other words, the swarm has learned to diversify, in terms of collision-handling
responses. Repeatedly, it had become behaviourally heterogeneous [53,108], even if the robots
are physically homogeneous (contrast with investigations on heterogeneous robots [109–111]).
Kaminka & Douchan [87] present detailed results analysing the behavioural heterogeneity of
the swarm, albeit using a dated variant of the rational swarms model.

The use of a limited set of macro-actions also greatly simplifies the requirements from the
learning mechanism used. Although there has been much progress in utilizing reinforcement
learning in continuous spaces, and especially in robotics [112–116], the model results in simple
formulations of the learning settings: so-called stateless settings (equivalent to classic multiarm
bandits), where every conflict state is considered to be identical to any other (i.e. |S| = 1, in
which case the Markov game model above is reduced to a repeating games model [68,69]); or
settings including only a handful of states, distinguished by the local density of the social
neighbourhood of the agents [84], the position of the agents [70], or the side of the collision
[72]. In these simple settings, even the simplest classic algorithms for reinforcement learning
work well in practice: UCB1 [99] for multiarm bandits, and Q-Learning [117,118] for multi-state
settings.

Some of the lessons from these 15 years of investigations are negative in nature, and point
the way towards needed improvements in the theory and practice of rational swarms. Most
importantly, while the use of the rewards is robust (i.e. the agents learn), it is necessary to
carefully check that the proportionality assumptions underlying equation (3.1) (relating the
rewards to the time spent in program and avoidance modes) are maintained. We had, on
occasion, discovered that robots learned to move about doing essentially nothing when the
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underlying program was ineffective (i.e. βi was close to 0). A related challenge for future
research is to allow associating actions πi(s) with their time constants α or β. This, for instance,
would allow us to differentiate collision-avoidance algorithms that take the same amount of
time (i.e. their resulting Ci(πi)) is the same), but they have other costs differentiating them (e.g.
energy consumption).

Two important challenges are raised in using the rational swarms model with real robots.
First, robots may face difficulties distinguishing collisions with walls, from collisions with other
robots. Such a distinction is critical: collisions with robots signify conflict, while collisions with
walls are handled as part of the robot program or avoidance modes, without changing the
conflict state. Second, attempting to introduce states into the learning process (e.g. distinguish-
ing actions taken in different spatial arrangements of neighbours around the robot) results in
a combinatorial explosion in the number of states, a problem that is exacerbated when we
consider continuous spaces. The use of state-decomposition or neural network methods may be
useful.

5. The way forward: natural and artificial rational swarms
To the best of my knowledge, the rational swarms model offers the first game-theoretic view of
cooperative robot swarms, bridging a perplexing gap between the rationality of the swarm as a
collective, and the individual rationality of its members. Continued development of the model
is informed through empirical work. The model is currently being investigated as a basis for
analysis and development of simulated and real robot swarms carrying out various cooperative
tasks. It has already been extended and demonstrated in swarm-competitive foraging [73],
where two or more cooperative swarms compete with one another with respect to the number
of items collected.

New tasks point the way towards needed generalization and sophistication, that promise to
broaden the applicable scope of the approach, and deepen its impact. For example, collective
transport is a foraging variant, where some items require more than one robot to carry: some
items require multiple robots to carry. This simple variation changes the underlying assumption
of the model: here, robots coordinate not only to avoid interfering with each other, but also
to carry out their task. In terms of the rational swarms approach, this requires extending
the approach to address coordination during program mode. Such extensions will also offer
an opportunity to interact with orthogonal investigations by others, for improving individual
foraging: better search patterns, localization capabilities, homing, etc. [47,49,119].

A primary open question, raised empirically to be addressed theoretically, deals with bounds
on errors due to estimations used in the calculation of the difference reward, in particular of
the counterfactual collective reward without the participation of the agent. A few steps towards
such bounds are discussed in §3(b)-ii: upper and lower bounds for counterfactual values are
presented, and may be used in future theoretical analysis.

However, other components in the rational swarms model are also approximated. For
instance, the specific agent’s mean experience (mean duration of avoidance) is used as an
estimate for the contributions of others. This follows in the general spirit of assumptions, that
the agents are homogeneous, anonymous and replaceable. However, it has no formal basis, and
an empirical investigation of this estimator versus others (e.g. min  or max ) in [84,87] proved
largely inconclusive. These issues remain open for future investigations.

Perhaps the most urgent open question is that of the convergence of the aggregated
individual difference reward (equation 3.22), or its approximation in equation (3.25), to the
time-based collective reward (equation 3.7). To my best knowledge, no theoretical proof exists
that the difference reward, when used in a distributed fashion, convergence to the maximum-
payoff social–welfare equilibrium in which the collective reward is maximized. Yet empirically,
it seems to do just that across a wide variety of environments. The challenge is exacerbated
because in independent learners settings (the case here), multi-agent distributed learning is
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hampered by the non-stationary nature of the rewards, and the potential existence of multiple
equilibria [66,81,92,96].

More generally, despite the promise of the rational swarm model in terms of providing
an individually rational account of cooperative swarms, I note that its current state offers
no predictions at a fine resolution (e.g. the time that it would take for the swarm to reach
maximum mean collective reward), nor tools for analysis (e.g. would the swarm end up being
heterogeneous in its individual strategies, and to what degree). These are questions that are
open for many models of swarms, and restrict both our understanding of natural swarms
and our use of synthetic swarms in important application areas. A detailed predictive model
of foraging is presented by Lerman & Galstyan [56], demonstrating that such predictions are
possible.

The use of robots as exploratory tools for investigating swarms is a direct connection to
applications of swarm robotics. It is also an approach to investigating swarms synthetically.
Robots and animals are both embodied, and share design constraints: energy use, geometrical
and kinematic constraints restricting motions, noise in sensing and actuation, computational
processing limitations and more. Understanding of animal swarms can and does inform our
understanding of synthetic swarms. However, the reverse can also be true [120–122].

I wish to highlight two example swarm research areas, one of natural swarms, and one of
synthetic swarms, to illustrate both the promise of the rational swarms model and the questions
it leaves open:

1. Are Swarm Animals Individually Rational? The nymbot–locust hybrid swarm [123,124] mixes
locust nymphs and robots in laboratory settings. The investigation seeks to answer fundamen-
tal questions about individual locust decision making, by using robots to conduct controlled
experiments; controlling robot swarm motions, we measure the animal responses. It also
attempts to construct algorithmic models of natural behaviour (see [4,6,122], for like-minded
modelling attempts).

In principle, the rational swarms model is applicable here (to guide robot motions).
However, a key open question touches on its suitability for modelling the animals, not driving the
robots. Is there a detailed account of individual animal decision making, that is both individ-
ually rational, as well as collectively optimal? In other words, can we demonstrate that the
locust (or other animals) perceive their neighbours through the transformation imposed by a
difference reward? Do they use internal time measurements as part of their reward?

2. Molecular Medicinal Robot Swarms. There are many investigations of nanometer-scale
molecular devices, some as simple as particles whose size and shape yield medically use-
ful results, some as complex three-dimensional structures with local actuation [125]. These
so-called nanobots offer an opportunity for clinical targeting of specific organs or biosites, which
are not typical of more familiar types of medicine. While most investigations focus on the
affinity between the device and its target location, there is growing evidence that by combining
different nano-devices, i.e. creating a heterogeneous drug swarm, better results can be achieved
[25–29,126].

These advanced therapies necessarily require consideration of the interactions of nano-devi-
ces within the body, by direct chemical reactions [26–28] or through synergistic interactions in
the bio-chemical environment [25,29,126]. The extreme limitations of nano-devices inherently
mean that they are inherently and myopically 'selfish', following chemical gradients and
reactions, with no capacity for prediction or foresight. As medical applications require the
devices to serve a collective medical goal, a method is needed to align the greedy, self-interes-
ted behaviour of the nano-devices (viewed here as nanobots) with the goals of the swarm.
I envision a biochemical version of the rational swarm model—if developed for biochemical
use—whereby it is used to plan both the construction and reactions of nanobots such that the
affinity of different particles with respect to each other or target areas is guaranteed to achieve a
clinical collective result. In other words, the nanobots would be designed such that they follow
a collectively aligned gradient.
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6. Conclusions
The research presented in this paper, and the future directions described above, should be
understood in the context of a call to arms, for multidisciplinary research into rational swarms,
to fill our world in its natural as well as in its urban, technological aspects. Natural and
synthetic swarms are similarly constrained and can share analysis and modelling approaches,
as have been demonstrated. The focus on rationality of swarms, from a multidisciplinary
perspective, can generate significant impact on all disciplines involved in swarm research.
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