AnySURF': Flexible Local Features Computation

Eran Sadeh-Or and Gal A. Kaminka
Computer Science Department
Bar Ilan University, Israel

Abstract. Many vision-based tasks for autonomous robotics are based
on feature matching algorithm, finding point correspondences between
two images. Unfortunately, existing algorithms for such tasks require sig-
nificant computational resources and are designed under the assumption
that they will run to completion and only then return a complete result.
Since partial results—a subset of all features in the image—are often
sufficient, we propose in this paper a computationally-flexible algorithm,
where results monotonically increase in quality, given additional compu-
tation time. The proposed algorithm, coined AnySURF (Anytime SURF),
is based on the SURF scale- and rotation-invariant interest point detec-
tor and descriptor. We achieve flexibility by re-designing several major
steps, mainly the feature search process, allowing results with increasing
quality to be accumulated.

We contrast different design choices for AnySURF and evaluate the use
of AnySURF in a series of experiments. Results are promising, and show
the potential for dynamic anytime performance, robust to the available
computation time.

1 Introduction

The use of computer vision in autonomous robotics has been studied for decades.
Recently, applications such as autonomous vision-based vehicle navigation [1],
3-D localization and mapping [11,4,3] and object recognition [10] have gained
popularity due to the combination of increased processing power, new algorithms
with real-time performance and the advancements in high quality, low-cost dig-
ital cameras. These factors enable autonomous robots to perform complex, real-
time, tasks using visual sensors.

Such applications are often based on a local feature matching algorithm,
finding point correspondences between two images. There are many different
algorithms for feature matching, however in recent years there is a growing re-
search on algorithms that use local invariant features (for a survey see [16,13]).
These features are usually invariant to image scale and rotation and also robust
to changes in illumination, noise and minor changes in viewpoint. In addition,
these features are distinctive and easy to match against a large database of local
features.

Unfortunately, existing algorithms for local feature matching [2,11,12] are
designed under the assumption that they will run to completion and only then
return a complete result. Many of these algorithms therefore require significant



computational resources to run in real-time. As we show in the experiments, this
prohibits some of the algorithms from being used in current robotic platforms
(where computation is limited). For instance, a Nao* humanoid robot computing
the full set of features in an image of size 640 x 480 requires 2.4 seconds using a
state-of-the-art implementation of the SURF algorithm [2, 15].

Note, however, that for many robotics applications, even partial results—a
subset of all features in the image—would have been sufficient (for example,
to estimate the pose of the robot for obstacle detection). On the other hand,
being able to invest computation time in getting higher-quality results is also
important, e.g., in object recognition or in building accurate maps. Indeed, robots
can benefit from computationally-flexible algorithms, where the computation
time is traded for the accuracy requirements of the task. To do this, simply
interrupting the algorithm when needed is not enough: We need to guarantee
that the results of the algorithm would necessarily monotonically increase in
quality, given additional computation time. This class of algorithms is called
Anytime [17].

In this paper we present AnySURF, an anytime feature-matching algorithm,
which can accumulate results iteratively, with monotonically increasing quality
and minimal overhead. We achieve flexibility by re-designing several major steps
in the SURF algorithm [2], mainly the feature search process and the order of
interest point detection. We additionally discuss the design choices underlying
AnySURF.

We evaluate the use of AnySURF in a series of experiments. We first demon-
strate that non-anytime feature matching indeed suffers from significant com-
putation time on limited platforms (including, in particular, the Nao humanoid
robot). Then, we contrast different design choices for AnySURF, and analyze
its performance profile under different image types. We also demonstrate the
usability of AnySURF in computing approximate homography.

2 Related Work

Image matching using local features (or interest points) has been around for al-
most three decades — the term “interest point” was first introduced by Moravec in
1979 [14]. A decade ago Lowe [10] introduced Scale Invariant Feature Transform
(SIFT), which had a significant impact on the popularity of local features. Since
SIFT was published, several new algorithms inspired by SIFT have emerged,
including PCA-SIFT [8], GLOH [12] and SURF |[2].

SURF |[2] is a state of the art algorithm for local invariant feature matching
- a scale and rotation invariant interest point detector and descriptor. SURF is
composed of three steps similar to SIFT, however it uses faster feature detec-
tion / extraction algorithms (approximation of the Hessian matrix and using
the distribution of Haar-wavelet responses within the interest point neighbor-
hood, relying on integral images to reduce computation time). SURF is faster
to compute than SIFT, while allowing for comparable results.

! http://www.aldebaran-robotics.com



SIFT, SURF and other such algorithms are not anytime algorithms. Al-
though several authors did accomplish complex real-time visual tasks such as
Visual SLAM, using SIFT-like features [3] and correlation with reference tem-
plates [4], these implementations were tailored for a specific platform and are
not computationally flexible. Therefore, they do not answer out research goals.

3 Methodology

The proposed AnySURF algorithm is based on SURF, which was selected over
SIFT and SIFT-like algorithms since it is more suitable for an anytime im-
plementation while also having an excellent quality /run-time ratio. It is more
suitable for a flexible implementation because whereas SIFT begins with the
computationally expensive operation of constructing several scale space repre-
sentations (DoG, Difference of Gaussians approximation), SURF is based on a
basic approximation of the Hessian matrix where an integral image is computed
once for all scales and only the filter size changes when working on each scale.
This means that in SURF there is very little overhead for working with specific
scales or areas and this is very suitable for a flexible algorithm.

3.1 How does SURF works?

SURF 2] is composed of three steps: Detecting interest points, calculating de-
scriptors and matching them (Alg. 1).

The first step, detection of interest points, starts with scale-space extrema
detection: search over all scales and image locations is performed, using an ap-
proximation of the Hessian matrix to identify potential interest points that are
invariant to scale and rotation. Calculation of the Hessian approximation relies
on an integral image to reduce computation time. Interest points are first thresh-
olded so that all values below a predetermined threshold are removed, then a
non-maximal suppression is performed to find candidate points (each pixel is
compared to its 26 neighbours, comprised of the 8 points in the native scale and
9 in each of the scales above and below) and finally they are localized in both
scale and space by fitting a 3D quadratic.

The second step, calculation of the keypoint descriptors, is based on a distri-
bution of Haar-wavelet responses within the interest point neighborhood, again
relying on integral images for speed. The SURF descriptor describes how the
pixel intensities are distributed within a scale dependent neighbourhood around
each detected interest point. It is calculated by first assigning a repeatable ori-
entation via Haar wavelet responses weighted with a Gaussian centered at the
interest point, then a square oriented window is constructed around the interest
point, divided into 4 x 4 regular sub-regions. For each sub-region 4 Haar wavelets
responses are summed up (dz, dy, |dz|, |dy]), so a vector of length 4 x 4 x 4 = 64
is produced.

The third step, matching different descriptors, is done via the Euclidean
distance of their feature vectors. A fast nearest-neighbor algorithm is used that



Algorithm 1 Generic SURF
(Input: image; Output: list of matched descriptors)

Construct integral image
Over all octaves (Fine—to—Coarse)
Pre—calculate discriminants
Over inner octave layers
Over all pixels
Find interest point
Over all interest points
Calculate descriptor
Over all descriptors
Match descriptor
Add matched descriptor to list
Return list of matched descriptors

B W W W NRE R RFERFE RO
W N N O WN =

can perform this computation rapidly against large databases. SURF uses the
sign of the Laplacian (the trace of the Hessian matrix) to distinguish bright
features on dark background from the reverse situation. Since SURF’s descriptor
uses 64 dimensions, time for feature computation and matching is reduced.

3.2 Making SURF computationally flexible

In order to make SURF computationally flexible, several important design deci-
sions had to be made. These are: accumulating results iteratively, using a suitable
search strategy and calculating the Hessian in-place. An in-depth explanation
of these design decision follows. The impact of these decisions is presented in
Section 4.

Guaranteeing Monotonically-Improving Descriptor List The first step
in making an anytime version of SURF is trivial: Accumulate results iteratively.
SURF divides the work to several large consecutive steps (get all interest points
from all scales, compute descriptors for all interest points, match all descriptors
against database - Alg. 1, steps 1-3) and so if the final stage is not reached —
there might be no useful results. Contrary to this batch approach, we propose
an iterative approach, where results are accumulated during the execution of the
algorithm and are returned when the algorithm is interrupted.

This can be achieved by computing a full result, including a descriptor, in
each iteration. The new descriptor can immediately be used to match against
a database. This change is trivial yet vital as it guarantees good anytime func-
tionality: usable results are generated such that the number of results is mono-
tonically increasing.

Generating Descriptors Faster Now that we can guarantee that the list of
matched descriptors will be monotonically-increasing in length, we can explore



design choices that can make sure quality descriptors are generated faster. Below
we discuss two such design choices.

Search strategy Detection of interest points (Alg. 1, step 1) is done by scanning
the entire image in multiple octaves. This search usually starts with the smallest
kernel and continues applying kernels of increasing size to the image. Since our
flexible algorithm accumulates results iteratively, we have an opportunity to
select an ordering on the search of octaves for interest points (Alg. 1, step 1.1),
thereby allowing detection of more promising features earlier. Note that this
search strategy need not be hard-coded, but can be changed according to the
image or task at hand.

We considered two types of general search strategies: Coarse-to-Fine and
Fine-to-Coarse. Coarse-to-Fine means we start with the largest filter size and
continue to use smaller filter sizes so that we find larger features first and smaller
ones later, while Fine-to-Coarse means the exact opposite. Note that if the al-
gorithm runs to completion the search order does not matter and exactly the
same features are found. Additional search strategies are also possible: order of
going over inner octave layers (Alg. 1, step 1.3), order of going over pixels (Alg.
1, step 1.4), however we did not consider them here.

Selecting an appropriate search strategy according to the image type (e.g.,
blurry image) can maximize the number of features detected during the early
phase of the search. However, sometimes the number of features is not what we
prefer to optimize. For example, some vision tasks work better when the features
have a good spatial distribution over the image (e.g., homography calculation
[7]) or when coarse features are first matched and only then fine features are
searched for in a limited area to complete the match (e.g., object recognition
[10]). In such cases it might be preferable to use Coarse-to-Fine search, even if
the initial number of features is smaller when compared to the Fine-to-Coarse
strategy. In other cases, such as when we have prior information that there are
very few Coarse features or when we know we search for small (Fine) features,
Fine-to-Coarse strategy can be used.

Calculating the Hessian discriminants in-place All SURF implementations we
inspected (Pan-o-matic, OpenSURF[5], OpenCV) pre-calculate the determinant
of Hessian (discriminant) for each octave, over the entire image (Alg. 1, step 1.2).
This step has high initial computational cost, however once calculated, results
are faster to compute so the total running time is lower. Since we assume the
algorithm might not run till completion, it might be preferable to sacrifice some
of the running-time in order to get initial results sooner.

Memory consumption by the pre-calculated arrays is another issue to con-
sider. Pre-calculating the determinant of Hessian requires several 2D arrays to
be kept in memory. The SURF implementations we inspected (see above) use
arrays the size of a full image to simplify coding (smaller arrays can however be
used). So we have number of layersximage widthximage height, which means
multiple arrays each one the size of a full image are saved in memory. For large
images or platforms with little memory available, this can be quite problematic.



Algorithm 2 AnySURF
(Input: image; Output: list of matched descriptors)

Construct integral image
While not interrupted
Over all octaves (Coarse—to—Fine)
Over inner octave layers
Over all pixels
Find interest point
Calculate descriptor
Match descriptor
Add matched descriptor to list
Return list of matched descriptors

WINNDNDNNDNDNDND O
~N O T W N

Obviously, when pre-calculation is not used and the determinant of Hessian is
calculated in-place, there is no need to save multiple arrays in memory.

3.3 AnySURF - Anytime SURF

The following algorithm (Alg. 2), coined AnySURF (Anytime SURF), is a com-
putationally flexible SURF algorithm. Results are accumulated iteratively, with
a descriptor computed in each iteration. Octaves are searched in Coarse-to-Fine
order and the determinant of Hessian is calculated in-place. We believe these
design choices are appropriate for a generic Anytime SURF algorithm and an
analysis of the Anytime performance profile is performed in Section 4.

A possible variant of AnySURF is to use pre-calculation. Compared to a
batch approach such as panosurf, this alternative is more suitable to anytime
since results are produced earlier yet the total computation time is exactly the
same. Compared to the AnySURF without pre-calculation, the total computa-
tion time of this variant is lower yet first results are generated much later since
pre-calculation has a high initial computational cost (see Figure 1).

4 Results

A flexible algorithm is required only when the non-flexible algorithm is slow and
when partial / low accuracy results are useful. In this section we will show that
both criteria are met in SURF. In addition, we analyze the design decisions ex-
plained in Section 3.2 and present an example of using AnySURF to approximate
homography between 2 images.

To demonstrate that SURF is not fast enough for real-time full image feature
search on current robotic platforms which have limited computational power,
Table 1 shows computation time on multiple platforms for the same image in
different sizes (QVGA: 320 x 240, VGA: 640 x 480, 3MP: 2048 x 1536). Evalu-
ation was done using Pan-o-matic open-source SURF implementation [15] with



default parameters, which produces very similar results compared to the pub-
lished SURF binary [6] to which source code is not available.

Table 1. SURF detector-descriptor computation time (ms) on different image sizes
and platforms

| Platform [QVGA[VGA[ 3MP |
Desktop PC (Intel Q9400 2.66GHz) 27 | 103 | 1021
Mini-ITX (Intel T7200 2.0GHz) 74 249 | 1599

Nao Robot (x86 AMD GEODE 500MHz)| 560 |2425 | 26367
Nokia N900 (ARM Cortex-A8 600MHz) | 938 |3656 442512

From Table 1 it is clear that in order to run real-time full-image feature search
with SURF we need to work on a small resolution image coupled with a powerful
platform. In addition, in this test the CPU and memory were devoted entirely
to the SURF process, while in robotic applications additional non-vision tasks
might also require processing time and memory usage (localization, mapping,
motion generation, behavior selection, etc.).

Table 2 shows where the processing time is spent across the different major
steps. The Intel Q9400 platform was selected for this test, to eliminate as many
bottlenecks as possible and allow the optimal behavior of the algorithm show.

Table 2. Analysis of SURF detector-descriptor computation time (ms), on Intel Q9400
2.66 GHz

lImage size‘integral image‘ keypoints ‘descriptors‘
QVGA 1 (3.7%) 19 (70.4%) | 7 (25.9%)
VGA 3 (2.9%) 80 (77.7%) |20 (19.4%)
3MP 32 (3.1%) (910 (89.1%)| 79 (7.8%)

As can be seen in Table 2, calculation of the integral image is minor (~3.2%)
and detection of keypoints takes most of the time (779%). In the context of
a flexible algorithm, since detecting keypoints takes most of the time, it seems
beneficial to calculate the descriptor immediately upon keypoint detection, thus
significantly shortening the time till partial results are available. We now turn
to analyzing the impact of the various design choices of AnySURF (presented in
Section 3.2).

The image database used in all following figures is a standard evaluation set,
provided by Mikolajczyk [12]. It contains 48 images across 8 different scenes. All
images are of medium resolution (approximately 800 x 640 pixels) and are either
of planar scenes or the camera position is fixed during acquisition, so that in
all cases the images are related by homographies (plane projective transforma-
tions). The scenes contain different imaging conditions: viewpoint changes, scale
changes, image blur, JPEG compression and illumination changes.



Figure 1 shows the averaged rate of acquiring descriptors (%) as a func-
tion of run-time (%). Three alternatives are considered: First, a SURF imple-
mentation called Pan-o-matic [15] (henceforth will be referred to as panosurf).
This implementation first detects all keypoints at all scales and only then cal-
culates descriptors (as in Alg. 1). In addition, the determinant of Hessian is
pre-calculated. Next, we tested two variants of the AnySURF algorithm (Alg.
2), where descriptors are computed immediately upon keypoint detection. In
the first variant pre-calculation of the determinant of Hessian is used and in the
other it is calculated in-place.

Descriptors as a function of run-time (averaged)

1 =
* [
0.8 K
-
-
= X
% 0.6 - *
2 o o
Q - *
[a) = ~
s 04 . " *
IS - *
L *
[ a("
0.2 " %
* ¥
M ¥ panosurf
o J AnySURF, use precalc -
0 o / __AnySURF, no precale -
0 0.2 0.4 0.6 0.8 1 1.2

% Time (out of panosurf implementation)

Fig. 1. The descriptors (%) vs. time (%) graph for different algorithms. Data is aver-
aged across all (48) database images. Time (%) is compared to panosurf time (therefore
can be > 1.0).

Figure 1 allows us to inspect the impact of calculating descriptors immedi-
ately upon keypoint detection and also the effect of pre-calculation. First, let us
consider AnySURF with pre-calculation: calculating descriptors immediately is
beneficial compared to the original panosurf approach since it does not adversely
affect the total computation time while allowing results to start accumulating
earlier (after 39% of time passed instead of 57% as in panosurf). Now, let us
consider AnySURF without pre-calculation: although the algorithm does take
longer to complete (13.5% more on average), we start getting results almost
immediately (after 4% of time passed), with a near-linear acquire rate. Note
that pre-calculation is only useful when all descriptors are needed or when it
can be assumed that the algorithm will run to near completion (AnySURF with
pre-calculation supersedes the no pre-calculation version after 80% of the time
passed).



Next, let us inspect the impact of the search strategy. As explained in Section
3.2, since AnySURF accumulates results iteratively, we can select an ordering on
the search for interest points. The following figure is of a specific images (1st im-
age of “bricks” sequence), showing the number of descriptors as a function of run-
time. All four combinations are shown (with/without pre-calculation, Coarse-to-
Fine/Fine-to-Coarse search strategy), compared to the baseline panosurf.

Descriptors as a function of run-time

1000 -~
Z 800
g
=)
St
2
L 600 4-"
Q -
—
o »
2 40
§ u ,"/ ¥ £
Z " o £ F
= s ¥4
o s panosurf
200 g s o7 F-to-C, use precalc %
M # ro 7 C-to-F, use precalc -+
e S ** Vi F-to-C, no precalc —=
0 g e ,GC-to-F, no precalc ---o---

0 50 100 150 200 250 300 350 400 450
Time (ms)

Fig. 2. 1st image of bricks sequence, panosurf displayed as a baseline, AnySURF with
Coarse-to-Fine and Fine-to-Coarse search strategies displayed with and without pre-
calculation

In Figure 2, the Fine-to-Coarse search strategy produces results much faster
than Coarse-to-Fine (in other images the opposite might be true). Note that
results start sooner, accumulate faster and the difference in number of descriptors
is significant, up to an order of magnitude (e.g., after “30ms). This means that
appropriate selection of the search strategy is vital for an efficient Anytime
performance.

As for the use of pre-calculation, it seems that our previous conclusion holds
and for an anytime algorithm an in-place calculation is preferred. However, in
other images (not shown here due to lack of space) the pre-calculated (Coarse-to-
Fine) version supersedes the in-place (Fine-to-Coarse) version. This only stresses
that selecting the appropriate search strategy is very important indeed: when
selecting the correct search strategy, the no pre-calculation (Coarse-to-Fine) ver-
sion triumphs again (at least until most of the descriptors are found, as explained
earlier).

After witnessing a major difference in the above specific image according to
the chosen search strategy, it is interesting how the Fine-to-Coarse vs. Coarse-



to-Fine search strategies perform in our full image database, across the different
scenes. To test this, Figure 3 shows the effect of search strategy in different
scenes on the first 50ms of AnySURF (without pre-calculation).

% Descriptors for C2F/F2C, averaged across scenes (50ms)

Coarse-to-Fine EC2F; °
Fine-to-Coarse (F2C) -«

1

=]
o)}
T

o
~
.
.

% of Descriptors

. H
: by H
bark bikes boat bricks cars graf trees ubc
Scene

Fig. 3. The descriptors (%) for Coarse-to-Fine and Fine-to-Coarse tested on different
scenes (first 50ms of AnySURF). The markers represent the mean for each scene, the
error bars are two standard deviation units in length.

Figure 3 demonstrates that it is beneficial to select the appropriate searching
strategy according to the type of image at hand if the number of descriptors is to
be optimized. The image sequences “bark” and “bricks” are clearly more suited for
Fine-to-Coarse search whereas “bikes” is more suited for Coarse-to-Fine search.
The reason behind this is that “bikes” is a sequence of blurred images (so there
are less fine features and processing time is wasted on searching for them) while
“bark” and “bricks” contain images with many fine features and few coarse ones.
It is also interesting to note that between 5% to 40% of all descriptors can be
acquired within 50ms (however, higher percentages are usually for images with
a lower total number of descriptors and a lower total computation time). The
average number of descriptors acquired after 50ms on our image database is 119
for Coarse-to-Fine and 138 for Fine-to-Coarse.

A higher number of descriptors is not necessarily better. For example, coarse
features are larger, fewer and usually more spread over the image so they might
suit some tasks better than fine features. One such task is homography estimation
[7]. Figure 4 shows the time passed till the homography between the 1st and 2nd
images in each scene could be estimated (to within an order of magnitude from
the optimal value). Homography was calculated via the RANSAC approach [7,
9].



Homography estimation time, C2F/F2C, across scenes

Coarse-to-Fine éCZF; °
Fine-to-Coarse (F2C

50 -

%) w IS
(=] [e] (=)
. .
o

—_
=]
T
o
o

Homography estimation time (ms)

bark bikes boat bricks cars graf trees ubc
Scene

Fig. 4. Homography approximation time for Coarse-to-Fine and Fine-to-Coarse, tested
across scenes. In each scene image 1 was processed fully. Image 2 was processed till the
homography could be estimated (to within an order of magnitude from optimal value).
The markers represent the mean for each sequence, the error bars are two standard
deviation units in length.

Figure 4 demonstrates that coarse features enable a quicker homography
estimation compared to fine features. The Coarse-to-Fine search strategy took
equal or less time to estimate the homography in most scenes (7/8) and more
time in just one scene (the bricks scene, which contains very few coarse features
and so a lot of time is wasted searching for coarse features). The results for the
bark, cars and trees scenes do not differ significantly, while results for others do
(two-tailed t-test, p=0.01). Also note that the homography could be estimated
within a very short time (720 ms).

Finally, we go back to evaluating the use of flexible local feature matching on
the Nao robot platform. Prior to AnySURF, estimating a homography between
two images on this platform took on average 4 seconds (averaged across all
images in database, similar to Figure 4). This processing time was spent not
on estimating the homography itself, but on computing all descriptors in the
image. However, for estimating a homography a subset of the results suffice,
so AnySURF can be used. Using AnySURF, this task is completed within 0.33
seconds, faster by an order of magnitude. Note that this homography can actually
assist in computing the remaining descriptors faster, since we can now estimate
their location.

5 Conclusion

We presented and analyzed AnySURF, a SURF-based anytime local feature
matching algorithm, which can trade quality of results for computation time:



It guarantees that the number of matched descriptors monotonically increases
with computation. For robotics applications that can work with a subset of
descriptors, this allows for much faster response times.

We discuss and carefully evaluate design choices in the feature search pro-
cess, using several computational platforms. We demonstrate that changing the
feature search order can significantly impact the rate at which descriptors are
generated. Surprisingly, avoiding pre-calculation steps that are intended to op-
timize the search process, leads to generating results at a faster rate. Future
work will focus on the problem of dynamically managing AnySURF within the
context of a flexible real-time vision-based autonomous navigation system.

References

1. DARPA grand challenge. http://www.darpa.mil/grandchallenge/index.asp, 2007.

2. H. Bay, T. Tuytelaars, and L. V. Gool. SURF: speeded up robust features. In
Computer Vision — ECCV 2006, pages 404—417. 2006.

3. D. Chekhlov, M. Pupilli, W. Mayol-cuevas, and A. Calway. Real-time and robust
monocular SLAM using predictive multi-resolution descriptors. In 2nd Interna-
tional Symposium on Visual Computing, 2006.

4. A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-Time single
camera SLAM. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 29(6):1052-1067, 2007.

5. C. Evans. Notes on the OpenSURF library. Technical report, University of Bristol,
Jan. 2009.

6. D. Gossow, D. Paulus, and P. Decker. An evaluation of open source SURF imple-
mentations. In RoboCup 2010: Robot Soccer World Cup XIV. 2010.

7. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2 edition, Apr. 2004.

8. Y. Ke and R. Sukthankar. PCA-SIFT: a more distinctive representation for local
image descriptors. null, 2:506—513, 2004.

9. P. D. Kovesi. MATLAB and Octave functions for computer vision and image
processing. http://www.csse.uwa.edu.au/~pk/Research/MatlabFns, 2000.

10. D. G. Lowe. Object recognition from local Scale-Invariant features. In Proceedings
of the International Conference on Computer Vision - Volume 2, page 1150. IEEE
Computer Society, 1999.

11. D. G. Lowe. Distinctive image features from Scale-Invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91-110, Nov. 2004.

12. K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615—
1630, 2005.

13. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. V. Gool. A comparison of affine region detectors. Int. J. Comput.
Vision, 65(1-2):43-72, 2005.

14. H. P. Moravec. Visual Mapping by a Robot Rover. 1979.

15. A. Orlinski. Pan-o-matic - automatic control point creator for hugin.

16. T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: a survey.
Found. Trends. Comput. Graph. Vis., 3(3):177-280, 2008.

17. S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine,
17(3):73-83, 1996.



