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Abstract
In this paper, we study the problem of multi-robot
perimeter patrol in adversarial environments, un-
der uncertainty. In this problem, the robots patrol
around a closed area, where their goal is to patrol
in a way that maximizes their chances of detect-
ing an adversary trying to penetrate into the area.
Uncertainties may rise in different aspects in this
domain, and herein our focus is twofold. First,
uncertainty in the robots’ sensing capabilities, and
second uncertainty of the adversary’s knowledge of
the patrol’s weak points. Specifically, in the first
part of the paper, we consider the case in which the
robots have realistic, and thus imperfect, sensors.
These cannot always detect the adversary, and their
detection capability changes with their range. In
the second part of the paper, we deal with different
possible choices of penetration spots by the adver-
sary, and find an optimal solution for the patrolling
robots in each such case.

1 Introduction
The problem of multi-robot patrol has gained growing inter-
est in the past years (e.g.[7; 4; 2]). In this problem, robots
are required to repeatedly visit a target area while monitoring
it in order to detect some change in the area’s state. Most re-
searches have concentrated on assuring some point-visit fre-
quency criteria by the patrol algorithm. Agmon et al. pre-
sented a new approach for multi-robot patrol in[2], where
they addressed the problem of multi-robot patrol in adversar-
ial environments, in which the robots’ goal is to patrol in a
way that maximizes their chances of detecting an adversary
trying to penetrate through the patrol path. They have shown
that this problem is inherently different from the frequency
driven patrol problem, and discussed optimality of patrol al-
gorithms in different adversarial environments.

Generally, when dealing with a system of robots, it is nec-
essary to consider deviation from the expected behavior of the
robots in order to adapt the system to real world constraints
settings (e.g.[11; 12]). One of the aspects of interest is un-
certainty in the robots’ sensing[11]. In reality, it is rarely the
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case that robots sense successfully and accurately everything
they are supposed to detect, and in this case it is important to
address the probability that their sensing will fail. A second
aspect is uncertainty in the capability and knowledge of the
adversary (depending, for example, on its confidence in the
information it attained on the patrolling robots). In this paper
we address these two different aspects, model the behavior of
the system in each case and describe polynomial-time opti-
mal theoretical solutions to the patrol algorithm of the robots
that correspond to each scenario.

A first attempt to deal with perception uncertainties in ad-
versarial patrol was given in[1], which altered the model of
multi-robot open fence(polyline) patrol to deal with cases
in which the robots will detect penetration in their current
location only with some probabilitypd ≤ 1. In this pa-
per we expand this result in several manners. First, we de-
scribe a solution for this case inperimeter(closed polyline)
patrol. Second, we consider the case in which the robots can
sense beyond their current physical location. We find an opti-
mal patrol algorithm for cases where the sensorial capabilities
changes as a function of distance from the robot.

Previous work in adversarial patrol has shown that the
optimality of patrol algorithm depends on the adversarial
model, specifically the knowledge obtained by the adversary
on the patrolling robots. Theoretical optimality results were
proven for a zero-knowledge adversary, in which the adver-
sary choose as its penetration spot at random with uniform
distribution, and for a full knowledge adversary, that is as-
sumed to choose the weakest point of the patrol as its pen-
etration spot. In the latter case the penetration spot is well
defined. However, since the calculation of probability of pen-
etration detection throughout the perimeter is not trivial, it
is likely that the adversary will choose to penetrate through
one of the weakest spots, and not through the exact optimal
spot. On the other hand, the adversary might choose to pen-
etrate through some physical proximity to the weakest spot.
In this paper we analyze both cases and provide optimal pa-
trol algorithms that deal with both options of uncertainty in
penetration spots.

2 Background

Systems of multiple robots, working together in order to pa-
trol in some target area, have been studied in various contexts,
concentrating on optimizing frequency criteria (e.g.[7]), or



on patrol in adversarial environments[2; 3; 4], which is the
focus of this paper.

Agmon et al. [2; 3] introduced the multi-robotadversar-
ial perimeter patrol along with the robotic model we base
our work upon. In their work, they consider three adver-
sarial models, which differ in the amount of knowledge the
adversary obtained on the patrol algorithm: full knowledge,
zero knowledge and patrial knowledge. They provide opti-
mal patrol algorithms for the first two cases, and consider a
heuristic algorithm for the last. In this paper we continue
the research on the patrial-knowledge adversarial model, and
provide a theoretical discussion and approaches towards de-
termining an optimal patrol algorithm in this scenario.

Agmon et al. suggest a solution to the adversarial patrol
along anopen fencein [1], where they refer also to the imper-
fect sensorial capabilities of the robots. However, their solu-
tion is limited only for open fences, and to imperfect sensing
in one segment the robot currently resides on. Here we ex-
tend their results also to perimeter patrol and to handle also
extended sensing range with possible different sensing capa-
bilities as the distance from the robot grows.

Elmaliach et al. [7] studied the problem of frequency-
based fence patrol, where they concentrated on optimizing
point-visit frequency criteria in realistic multi-robot systems.
They considered in their analysis of the system possible un-
certainties in the movement and velocity of the robots. In our
work we also model uncertainties in the system, however our
main goal is different - to optimize probability of detecting
penetrations, rather than optimize frequency criteria, hence
we also concentrate on sensing uncertainties.

Other closely related work is the work by Paruchuri et al.
[9; 8], which consider the problem of placing security check-
points in adversarial environments. They use policy random-
ization for the agents behavior in order to maximize their re-
wards. In their work, the adversary has full knowledge of
the agents’ behavior, therefore it can use it in order to mini-
mize its probability of being caught in some checkpoint. They
again do not consider sensorial scenarios which depend on
different sensorial models of the robots. Pita et al.[10] con-
tinue this research to consider the case in which the adversary
makes their choice based on their bounded rationality or un-
certainty, rather than make the optimal game-theoretic choice.
They consider three different types of uncertainty over the ad-
versary’s choices, and provide new algorithms that deal with
these types of uncertainties. In our work we discuss both un-
certainty in sensing and uncertainty in adversary’s choice, and
provide optimal polynomial-time solutions for both cases.

Amigoni et. al. [4] also used a game-theoretic approach
for determining the optimal strategy for patrolling agents, us-
ing leader-follower games. They consider an environment in
which a robot can move between any two nodes in a graph,
as opposed to the perimeter model we focus on. Their solu-
tion is suitable for one robot, and since the computation of
the optimal strategy is exponential, they described a heuristic
approach for finding a solution.

3 Robot and environment model
We are given a team ofk homogenous robots, required to
patrol around a closed area (perimeter). The perimeter is di-

vided intoN segments, where the travel time of each robot
through a segment is uniform, i.e., all robots travel through
one segment per time cycle . Hence the segments’ length is
uniform in time, but not necessarily in distance.

The robots have directionality associated with their move-
ment, i.e, if they go backwards they have to physically turn
around. We model the cost of turning around in time, and
denote time it takes the robots to turn around and stabilize in
their new direction byτ .

The system of perimeter patrol is linear, meaning that at
each time step the robots have one of two options: go straight
or turn around. Therefore the robot’s patrol algorithm is char-
acterized by a probabilityp, i.e., at each time step go straight
forward with probabilityp, or turn around with probability
q = 1− p.

Motivated by the optimality proofs in[3; 2], we assume
the robots are coordinated in the sense that if they decide to
turn around they do it simultaneously. Moreover, we assume
the robots are placed uniformly along the perimeter, with dis-
tance ofd = N/k segments between every two consecutive
robots along the path. The optimality proof of these require-
ments (synchronization and uniform distance) is based on the
fact that the probability of penetration detection decreases as
the distance from the robot increases (see Lemma3 in [2]).
Therefore it is best to minimize the maximal distance between
every two consecutive robots, and it is done by guarantee-
ing that the distance in time between every two consecutive
robots is equal, and this is maintained by the requirement that
the robots are coordinated.

In the adversarial models considered here, the adversary
decides at time0 (after possibly an observation period in
which it studies the patrol) through which segment to pene-
trate, and the time it takes it to penetrate is not instantaneous,
and lastst time units.

The chances of the robots to detect an adversary passing
through a segmentsi is defined as theprobability of penetra-
tion detectionat the segment, and denoted byppdi.

Finding the optimal patrol algorithm is divided into two
stages. In the first stage, theppd is calculated for all seg-
ments, whereppdi is a function ofp. In the second stage,
these functions are manipulated in a way that will maximize
a property suitable for the current adversarial model. For ex-
ample, for an adversary choosing at random its penetration
spot with uniform distribution, in the second stage the goal
will be to maximize the expectedppd throughout the perime-
ter, using as input theppdi functions.

4 Uncertainty in sensing
In this section we deal with uncertainty in the robots’ percep-
tion. Specifically, we consider the case in which the robot
could have imperfect sensorial capabilities. We introduce
three models of the robots’ sensing abilities. In the first
model,LRange, the robots have sensing abilities that exceed
the segment they currently reside on. In the second model,
ImpDetect, we present a solution to the case in which the
robots’ sensorial abilities might not be perfect, i.e., a robot
might not detect an adversary even if it is under its sensorial
range. This is an extension of the results presented in[1] to
include also perimeter patrol. This leads us to the last and



general model,ImpDetLRange, that combines both models
and deals with the case that the robots’ sensing abilities ex-
ceed their current location, yet the reliability of the detection
is not perfect. In this case we assume that the ability to detect
penetrations might change along the detection range, specifi-
cally it might decrease as the distance grows.

4.1 Extending sensing range
In this section we consider theLRange model, in which the
sensorial range of a robot exceeds the segment it currently re-
sides in. Denote the number of segments sensed by the robot
beyond the segment currently occupied by it byL (see Figure
1). If L > 0, we refer to theseL segments byshaded seg-
ments. Note that the location of the shaded segments depends
on the direction of the robot shading them, and are always in
the direction the robot is facing.

A trivial solution to dealing with such a situation is to en-
large the size of the segment, hence enlarge the length of the
time unit used as base for the system, such that it will enforce
L to be0. However, in this case we lose accuracy of the anal-
ysis of the system, as the length of the time cycle should be
as small as possible to suit also the velocity of the robots and
the value oft.

L

R

Figure 1: An illustration of theL segments shaded by robotR.
Here,R is facing right, therefore the shaded segments are to its right.

In [3], the values oft that can be handled by the system
are bounded by its relation tod (the distance between every
two robots along the path). In caseL > 0, this changes.
Specifically, ifL = 0, then the possible values oft considered
aredd/2e + τ ≤ t ≤ d − 1 [3]. However, ifL > 0, then it
is possible to handle even smaller values oft, i.e., even if
the penetration time of the adversary is short. Formally, the
possible values oft are given in the following equation.

dd/2e+ τ − L ≤ t ≤ d− L

If t is smaller thandd/2e + τ − L, then an adversary with
full knowledge will manage to penetrate with probability1,
i.e., there is a segment unreachable withint time units. On
the other hand, ift is greater thand − L, then a simple de-
terministic patrol algorithm will detect all penetrations with
probability 1. We assume that during theτ time units the
robot turns around, it can sense only its current segment.
Algorithm for finding ppdi with shaded segments:

For each segmentsi, ppdi is determined by the probabil-
ity that some robot will visit this segmentplusthe probability
that this segment is shaded by some robot. We use a dynamic-
programming inspired rule, similar to the one described in
[2], yet we expand it to include also the probability of being
shaded by some robot. The main idea is that in each tran-
sition phase, the algorithm checks whether the state shades
on an absorbing state, i.e., if the robot in its current location
and direction shades the given segment (distance from it is
smaller thanL). See Algorithm 1 for a full description of the
algorithm for calculatingppdloc, 1 ≤ loc ≤ d. The time
complexity of the algorithm isO(dt), which is the time it
takes to fill in the entire table.

Algorithm 1 FindPPDwShade(d, t, loc, L)
1: Create matrixM of size(2d+2)× (t+1), initialized with0s.
2: SetM [0, loccw] ← 1.
3: Fill all entries inM gradually using the following rules.
4: for r ← 1 to t do
5: for each entryM [r, scw

i ] do
6: Setv ← p ·M [r − 1, scw

i+1 mod d] + q ·M [r − 1, scc
i ]

7: SetM [r, scw
i ] ← v

8: if i + L ≥ d then
9: SetM [r, sabs] ← v {absorbing state}

10: for each entryM [r, scc
i ] do

11: Setv ← p ·M [r − 1, scw
i+1 mod d] + q ·M [r − 1, scc

i ]
12: SetM [r, scc

i ] ← v
13: if i− L ≤ 0 then
14: SetM [r, sabs] ← v {absorbing state}
15: for absorbing stateM [r, sabs] do
16: SetM [r, sabs] ← M [r− 1, sabs] + p · {M [r− 1, scw

1 ] +
M [r − 1, scc

d ]}
17: ReturnM [t, sabs]

4.2 Imperfect detection
Uncertainty in the perception of the robots should be taken
into consideration in practical multi-robot problems. There-
fore we consider the realistic case in which the robots have
imperfect sensorial capabilities, i.e., even if the adversary
passes through the sensorial range of the robot, it still does
not necessarily detect it.

We introduce theImpDetect model, in which a robot trav-
els through one segment per time cycle while monitoring it
(i.e.,L = 0), and has imperfect sensing. Denote the probabil-
ity that an adversary penetrating through a segmentsi while
it is monitored by some robotR andR will actually detect it
by pd ≤ 1.

Note that in casepd < 1, revisiting a segment by a robot
could be worthwhile - it could increase the probability of de-
tecting the adversary. Therefore the probability of detection
in a segmentsi (ppdi) is not equivalent to the probability of
first arriving atsi (as seen in[2]), but the probability of de-
tecting the adversary duringsomevisit y to si, 0 ≤ y ≤ t.
Denote the probability of they’th visit of some robot to seg-
mentsi by wy

i . Thereforeppdi is defined as follows.

ppdi = w1
i pd+w1

i (1−pd)×{w2
i pd+w2

i (1−pd)×{. . . {wt
i×pd}}}
(1)

In words, the probability of detecting the penetration is the
probability that it was detected in the first visit (w1

i ×pd) plus
the probability that it wasnot detected then, but during later
stages.

Note that aftert time units,wt
i = 0 for all currently un-

occupied segmentssi, and if a robot resides insi, thenwt
i is

exactly(1− pd)t.
One of the building blocks upon which the optimal patrol

algorithms are based, is the assumption that the probability of
detection decreases or remains the same as the distance from
a robot increases, i.e., it is a monotonic decreasing function.
This fact was used in[2] in proving that in order to main-
tain optimalppd, then the robots should be placed uniformly
around the perimeter (with uniform time distance), and main-
tain this distance by being coordinated. We omit the detailed
proof due to space constraints. The rational of the proof is that



the probability of detection decreases as the distance from the
location of the robot increases. Consequently, both minimal
ppd and averageppd are maximized if the distance between
the robots is as small as possible. Since the patrol path is
cyclic, this is achieved only if the distance between every two
consecutive robots is uniform, and remains uniform.
Theorem 1. For both the full knowledge and zero knowledge
adversarial models, a patrol algorithm in theImpDetect
model is optimal only if it satisfies these two conditions. a.
The robots are placed uniformly around the perimeter. b. The
robots are coordinated in the sense that if they turn around,
they do it simultaneously. By assuring these two conditions,
the robots preserve the uniform distance between them along
the execution.
Algorithm for finding ppdi with imperfect sensorial de-
tection:

We now describe AlgorithmFindPPDwImpDetect that
finds the probability of penetration detection in each segment
(ppdi). The algorithm computes the probability of all visits
to a segment duringt time units. The algorithm, similar to
algorithmFindFunc [2], is dynamic programming inspired.
As stated previously, the main difference between the algo-
rithms is thatFindFunc considers only the first visit to a seg-
ment, whereFindPPDwImpDetect considersall visits to a
segments and the probability of sensorial detection. Figure
2 describes a representation of transition between segments
as a Markov chain. This is later translated into construct-
ing gradually a table using a dynamic programming-inspired
rules, as described in AlgorithmFindPPDwImpDetect. The
time complexity of the algorithm isO(dt), which is the time
it takes to construct tableM . Extracting the polynomial co-
efficient is done in timeO(1).
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Figure 2: Representation of the system as a Markov chain along
with state transition. The robots are initially placed at the external
segments, heading right. States0 represents the segment currently
occupied by a robot.

Theorem 2. Algorithm FindPPDwImpDetect(d, t, i) com-
putesppdi.

4.3 Extending sensorial range along with
imperfect detection

In many cases, the actual sensorial capabilities of the robot
is composed of the two characteristics described in previous
sections, i.e., the robot can sense beyond its current segment,
however the sensing ability is imperfect. Therefore in this
section we introduce theImpDetLRange sensorial model,
which is a combination of theLRange and theImpDetect
models. Here the robot can senseL segments beyond its cur-
rent segment, yet thepd in each segment varies and is not
necessarily1. We therefore describe an algorithm that deals

Algorithm 2 FindPPDwImpDetect(d, t, loc)
1: Create matrixM of size(2d+2)× (t+1), initialized with0s.
2: SetM [0, loccw] ← 1.
3: Fill all entries inM gradually using the following rules.
4: for r ← 1 to t do
5: for i ← 1 to d (all other states)do
6: For each entryM [r, scw

i ] set value to
p ·M [r − 1, scw

(i+1 mod d)] + q ·M [r − 1, scc
i ].

7: For each entryM [r, scc
i ] set value to

p ·M [r − 1, scc
(i−1 mod d)] + q ·M [r − 1, scw

i ].
8: for scw

0 andscc
0 do

9: SetM [r, scw
0 ] ← f×{p·M [r−1, scw

1 ]+q·M [r−1, scc
0 ]}

10: SetM [r, scc
0 ] ← f×{p·M [r−1, scc

d ]+q·M [r−1, scw
0 ]}

11: wi
loc ← polynomial coefficients off i from sum ofM [r, scw

0 ]+
M [r, scc

0 ], for all 0 ≤ r ≤ t, 1 ≤ i ≤ t.
12: Return the result obtained by substituting thewi

loc values in
Equation 1.

with the most realistic form of sensorial capabilities[6]: im-
perfect, long range sensing.

The information regarding the sensorial capabilities of the
robots includes two parameters. The first describes the quan-
tity of the sensing ability, i.e., the number of segments that
exceeds the current segment the robot resides in, in which
the robot hassomesensing abilities, denoted byL. The sec-
ond parameter describes the quality of sensing in all segments
the robot can sense. This is given in the form of a vector
VS = {v0, v1, . . . , vL}, wherevi is the probability that the
robot residing ins0 will detect a penetration that occurs in
segmentsi. We assume that the values inVS is monotoni-
cally non-increasing, i.e., asi increases,vi decreases or re-
mains the same.

In the ImpDetLRange model, the probability of penetra-
tion detection is more complex, and has to take into consid-
eration also the possibility of being in the sensorial range of
some robot and the probability of being detected there. De-
note the probability thatsi is in distancej <= L from some
robot, i.e., within its sensorial range, for thej’th time by
wj

i (e). Denote the probability that the adversary insi will
not be detected at all byppdi. The probability that the ad-
versary will be detected is actually the complementary of the
probability that it will not be detected. Thereforeppdi is de-
fined as follows.

ppdi = 1− ppdi = 1−
t∏

j=1

L∏
e=1

{wj
i (e) · (1− ve)} (2)

In words, the probability of penetration detection is the
complementary of the probability that the adversary isnot
detected at allduring thet time units. This is the probabil-
ity that it is not detected at any possible occurrence in any
possible range (corresponding to a probability of detection)
during those time unit. The overall number of components is,
therefore,L× t.
Algorithm for finding ppdi with extended-range imper-
fect detection:

The algorithm for findingppdi in case we allow extended
range (L > 0) and imperfect detection with changing prob-
abilities of detection as a function of the distance from the
robot is composed by two stages. In the first stage, we need to



find the probability of being shaded with distance1 ≤ e ≤ L
from the robot for thej’th time, 1 ≤ j ≤ t. This provides
us with all valueswj

i (e). We then substitute all the acquired
values in Equation 2. The full description of the algorithm is
presented in AlgorithmFindComplexP below. Note that in
Algorithm FindPPDwImpDetect we had one objectf used
for identifying the number of the visit to the segment. Here,
since we have to consider all visits of all possible distances
that are less or equal toL (shaded segments), we useL + 1
objects,f0, . . . , fL. The time complexity of the algorithm is
O(dt + Lt) - the time to construct the tableM plus the time
to extract all polynomial coefficients (respectively). Since
L < d, this is againO(dt).

Algorithm 3 FindComplexP(d, t, loc, L, VS =
{v0, . . . vL})

1: Create matrixM of size(2d+2)× (t+1), initialized with0s.
2: SetM [0, loccw] ← 1.
3: SetRes ← 0
4: Fill all entries inM gradually using the following rules.
5: for r ← 1 to t do
6: for each entryM [r, scw

i ] do
7: Setu ← p ·M [r − 1, scw

i+1 mod d] + q ·M [r − 1, scc
i ]

8: if i + L ≥ d then
9: u ← u× fd−i

10: Res ← Res + u
11: SetM [r, scw

i ] ← u
12: for each entryM [r, scc

i ] do
13: Setu ← p ·M [r − 1, scw

i+1 mod d] + q ·M [r − 1, scc
i ].

14: if i− L ≤ 0 then
15: u ← u× fi

16: Res ← Res + u
17: SetM [r, scc

i ] ← u

18: wj
i (e) ← polynomial coefficient off j

e of Res, for all 1 ≤ j ≤
t, 0 ≤ e ≤ L (while substituting all otherf j

e′ , e′ 6= e in the
equation).

19: Return the result obtained by substituting thewj
i (e) values in

Equation 2.

4.4 Applying the sensorial models in different
adversarial models

Until now, we have presented three different algorithms for
finding theppdi for each segmentsi in three different sen-
sorial models -ImpDetect, LRange and ImpDetLRange.
This information can be used by the team of robots in order
to define their patrol algorithm, based on the adversarial envi-
ronment they operate in. We describe here how the different
sensorial models influence the patrol algorithm in two such
environments. The first is thefull knowledgeadversarial envi-
ronment[2], in which the adversary holds all the information
concerning the patrol algorithm of the robots, hence chooses
to penetrate through the segment with minimalppd. In the
second adversarial model, we assume the adversary has no
knowledge of the patrol algorithm ([3]), hence it decides to
penetrate through a currently vacant segment at random with
uniform distribution.

If the adversary has full knowledge of the robots’ pa-
trol algorithm, we can use theppd generated by the
three algorithms described here —FindPPDwShade,

FindPPDwImpDetect and
FindComplexP, as input to theMaxiMin algorithm de-
scribed in[2]. This algorithm finds the probabilityp in which
the minimalppdi is maximized, and does it by identifying
the maximal point in allppdi integral intersections.

A more interesting case is the zero-knowledge adversarial
model, in which the adversary has no knowledge of the patrol
algorithm, hence chooses at random with uniform distribution
through what segment to penetrate. In[3], it was proven that
the optimal patrol algorithm in this caseif the robots have
perfect sensorsis the simple deterministic algorithm (p = 1).
The rationale behind the optimality proof of the deterministic
algorithm lies in the fact that it is not worthwhile to go back
and revisit segments.

However, in case the probability of detecting the penetrator
is imperfect, i.e.,pd < 1, this argument does not necessarily
hold, i.e., revisiting a segment does have added value. In the
following, we show the surprising result that even ifpd <
1, if the adversary chooses its penetration spot at random, it
is still best to patrol deterministically around the perimeter.
Moreover, we strengthen our result by showing that even if
the robot makes a post analysis of its decision to go straight
or turn around, it will also decide to keep on going straight.

Theorem 3. In theImpDetect model, the deterministic algo-
rithm maximizes the expectedppd throughout the perimeter
for all pd ≤ 1 in case the adversary chooses its penetration
spot at random with uniform distribution.

We omit the proof due to space constraints. The idea be-
hind the proof lies in the fact that the gain (in probability of
penetration detection) from visiting a new segment exceeds
the gain from revisiting a segment, since by revisiting a seg-
ment we add also the probability of re-reaching it.

We strengthen this result by showing that it is beneficial
for the robot to keep visiting new segments in case the adver-
sary chooses its penetration spot randomly with uniform dis-
tribution (with probability1/d) even if the robot calculates its
benefit post factum, i.e., after visiting a segment. Denote the
probability that the adversary penetrated through a segmentsi

by PNi, and the probability that the robot visitedsi without
detecting it byNDi. Therefore, by conditional probability
law, if NDi > 0, P (PNi | NDi) =

PNi

⋂
NDi

NDi
=

1/d(1− pd)
(d− 1)/d + 1/d(1− pd)

=
1− pd

d− pd

On the other hand, the probability that the adversary
chooses to penetrate throughsi+1 given that the robot did not
detect it in segmentsi is

1− 1−pd

d−pd

d− 1
=

1
d− pd

>
1− pd

d− pd

In other words, the probability of revealing new informa-
tion in visiting a new segment is greater than the probability
of revealing new information from revisiting a segment that
was already visited at least once, even after knowing that the
adversary was not caught in the revisited segment. The in-
tuition is that by visiting a new segment, the probability of
penetration detection grows bypd, where if the robots revisits



a segment, it carries along with it the probability of arriving
there again, multiplied bypd. Since the probability of arriv-
ing again is smaller than1, the gain from revisiting a segment
is smaller.

Theorem 4. In the LRange model, the deterministic algo-
rithm guarantees maximal expectedppd for random-uniform
adversary ifL ≤ τ .

The proof of the theorem resembles the proof of Theorem
3 in [3], and we omit it due to lack of space.

5 Uncertainty in the adversary’s perspective
In this section we turn to examine uncertainties in the adver-
sary’s point of view. Specifically, we try to bound the level
of uncertainty the adversary has on the patrolling robots, and
specifically on its optimal choice of penetration spot. Quan-
tifying the uncertainty of the adversary is important in or-
der to find optimal patrol algorithms that are suitable to the
level of uncertainty of the adversary. In other words: Given a
bounded region of the adversary’s uncertainty, what is the pa-
trol algorithm that maximizes the probability of penetration
detection?

We suggest two general approaches for bounding the un-
certainty level. In the first approach, we examine the case in
which the adversary knows the probabilityp characterizing
the patrol algorithm with some uncertainty. Unfortunately,
we show that it is impossible to find an optimal patrol algo-
rithm in this case.

We therefore suggest an alternative approach, in which the
uncertainty is reflected by the choice of penetration spot. In
this case, we do not necessarily assume that the adversary
calculates the probabilityp, but tries to estimate the weakest
spot using two estimation methods - physical proximity, or
closeness to the minimalppd.

5.1 Uncertainty of the adversary’s knowledge of
the patrol - negative result

In this section we bring an attempt to deal with the uncer-
tainty of the adversary in the choice of the weakest spot of
the algorithm. In this case, we try to quantify the information
by the number of time cycles the adversary had to observe
the system before it attempts to penetrate. The result of the
knowledge obtained by the adversary is its assessment of the
probabilityp characterizing the robots’ patrol algorithm.

The problem of deducing the probabilityp can be consid-
ered as observing a Bernoulli trial, where a success is an event
of going straight with probabilityp, and loss is turning around
with probability1−p. We can use the Central Limit Theorem
[5] that gives us bounds to the expected error from the real
value ofp after viewing it fortv trials. Assuming the average
of successes after viewingtv trials isp, its value is inside the
boundaries[p−δ, p+δ] with probabilitypconfidence, whereδ
is a function oftv and depends onpconfidence. Therefore this
bounds the uncertainty of the adversary on the real value ofp
to an interval aroundp, and we will try to use this interval in
order to optimize the patrol algorithm of the robots.

A common way to handling uncertainties of systems is to
assume that when having no knowledge, a random choice,
with uniform probability, is made. In this domain, this ap-
proach was proven to be useful in an empirical evaluation

in [3], where a patrol algorithm proven to be optimal for a
random adversary performed substantially better than other
algorithms for humans playing the role of an adversary that
had no knowledge of the patrolling robots.

Therefore we tried to use a similar approach here, as we
considered the following problem.
P-Interval problem definition: Letp be the probability char-
acterizing the perimeter patrol algorithm of a team of robots.
Assume the adversary have a bounded interval of uncertainty,
i.e., the adversary knows that the real value ofp is inside the
interval [p − δ, p + δ]. Therefore it chooses its believedpb

at random with uniform probability inside this interval. Find
the probabilityp characterizing the patrol of the robots such
that it maximizes the expectedppd throughout the perimeter.

Unfortunately, we prove that this problem is unsolvable un-
lessδ = 0. We prove it by showing that the expectedppd
function inside the interval[0, 1] is monotonically increasing,
i.e., asp grows the expectedppd grows, hence the optimalp
does not converge unlessδ = 0.

Denote the number of times a robot switched directions
duringt time units byr, r ≥ 1, and theppd in segmentsj by
R0 after switching its directionr times byppd0

j (r).
Lemma 5. Consider a sequence of2d segments with one
robotR0 in the mid segment at time0. Then∑2d

j=1 ppd0
j (r) <

∑2d
j=1 ppd0

j (r − 1) for everyτ ≥ 1.

Proof. We first prove the lemma forτ = 1. We divide the
sequence of2d segments into two: the sequence to the right
of R0 and to the left ofR0. For everyj number of direction
switches, let

∑−1
i=−t+j+1 ppd0

i = δ(j), ppd0
−t+j = δ′(j),∑t−j

i=1 ppd0
i = α(j) andppd0

t−j = α′(j).
The sum ofppd0

i for r− 1 number of direction switches is
δ(r−1)+δ′(r−1)+α(r−1)+α′(r−1). Forr switches, since
the robots spend an extra time cycle for turning around, the
two extreme segments withppd > 0 are now unreachable,
hence in this caseδ′(r − 1) andα′(r − 1) no longer exist.
Now, δ(r) + δ′(r) is similar to changing the initial direction
of the robot (by multiplying by1− p), and obtaining exactly
α(r − 1), henceδ(r) + δ′(r) < (1 − p)α(r − 1). Similarly,
α(r)+α′(r) < (1−p)δ(r−1). Altogether,

∑2d
l=1 ppd0

l (r) =
δ(r)+δ′(r)+α(r)+α′(r) < (1−p)α(r−1)+(1−p)δ(r−1)
and since(1− p) < 1 this is smaller than

∑2d
l=1 ppd0

l (r− 1).
By the induction assumption, this is smaller thant.

The proof follows directly forτ > 1, as the number of
segments that become unreachable increases from1 to τ for
each direction switch, while the probability of penetration de-
tection in other segments is the same.

Denote the expectedppd for probabilityp (probability that
the robots will continue straight in each time unit during the
patrol),0 ≤ p ≤ 1 by Eppd(p).

Lemma 6. The expectedppd, as a function ofp, is a mono-
tonically decreasing function in the range[0, 1], i.e., for all
0 ≤ p′ < p ≤ 1, Eppd(p′) < Eppd(p)

Proof. p represents the probability of going straight (and not
switching directions) at each time unit. Denote the expected



number of direction switches of robotR during t time units
using probabilityp of going straight byEswitch(p). There-
foreEswitch(p) = t(1−p) andEswitch(p′) = t(1−p′) , and
sincep′ < p it follows thatEswitch(p) < Eswitch(p′).

It remains to show that if a robotR is expected to switch
its direction more times duringt time units, then the expected
ppd is smaller. Formally, for0 ≤ p′ < p ≤ 1, Eswitch(p) <
Eswitch(p′) ⇒ Eppd(p′) < Eppd(p).

The expectedppd along the perimeter withr direction
switches isEr

ppd = 1/N
∑N

i=1

∑k
j=1 ppdk

i (r). During

t < d time units the robot can influence only theppd along
at most2d, therefore the sum of each robot is not over allN
segments, but only the neighboringd segments from each of
its sides. Therefore, following Lemma 5,Er

ppd < Er−1

ppd.

Therefore ifEswitch(p) < Eswitch(p′) then Eppd(p′) <

Eppd(p).

Theorem 7. P-Interval is unsolvable unlessδ = 0.
Proof. Assume, towards contradiction thatδ > 0, yet there
existsp∗ that maximizes the expectedppd throughout the
perimeter. By the definition ofP-Interval, the adversary de-
duces an interval aroundp∗ in which it chooses its believedp
at random inside the interval[p∗−δ, p∗+δ]. By Lemma 6, the
expectedppd function is monotonically increasing, therefore
the maximal expectedppd inside this interval is obtained in
p ∗ +δ. This contradicts the assumption thatp∗ maximizes
the expectedppd, unlessδ = 0.

5.2 Uncertainty in the actual choice of penetration
spot

When trying to bound the uncertainty of the adversary to its
knowledge of the patrol, another option is to try and quantify
the uncertainty in its choice ofpenetration spot. For several
reasons, the adversary, even if knowing the patrol algorithm
of the robots (specifically the probabilityp), might not choose
to penetrate through theexact weakest spot. We present
herein two possible deviations from the weakest spots, and
hence two possible corresponding optimal ways of choosing
the value ofp in such cases.

The adversary, after studying the robots’ patrol for a period
of time, could result in several reasonable segments which the
ppd values, as it calculates, are small enough. In this case
it will choose at random, with a given probability distribu-
tion (for example uniform), the penetration spot between the
v possible weakest segments. Hence the robots should choose
p such that the expectedppd along thev segments with min-
imal ppd is maximal.

The second case is that the adversary might not choose to
penetrate through the segment with the minimalppd, but ei-
ther through that segment, or through one of its neighboring
segments at random. Hence in this case the robots should
choosep such that the expectedppd alongv neighboring with
minimal ppd is maximized.

Note the difference between the two cases - in the first we
are looking for the value0 ≤ p ≤ 1 such that the minimalv
ppd’s are maximized, and in the second case we are looking
for p such that the weighted average of minimal possiblev
neighboring segments is maximized.

In both cases, the two extremities of uncertainties—full
knowledge adversary (no uncertainty) and zero knowledge
adversary (complete uncertainty)—match the results obtained
by [2] and[3], respectively. Ifv = 1, i.e., there is no uncer-
tainty in the choice of the weakest spot, then the algorithms
are required to return exactly the valuep such that the min-
imal ppd is maximized, similar to theMaxiMin algorithm
presented in[2]. On the other hand, ifv = d and the proba-
bility distribution is uniform, then the algorithms will return
the valuep that maximized the expectedppd throughout the
perimeter (=averageppd). As proven in[3], the optimal al-
gorithm in this case isp = 1, i.e., the deterministic algorithm.

Note that the algorithms for finding optimal patrol uses the
ppdi functions. Hence this can be combined with any senso-
rial model presented in the previous section.

Algorithm 4 ComputeMinV(v, V, {ppd1, . . . , ppdd})
1: SetBufP ← {0, 1}.
2: for every pairppdi, ppdj , 1 ≤ i, j ≤ d, i 6= j do
3: Intersecti,j ← all intersection points betweenppdi and

ppdj .
4: BufP ← BufP

S
Intersecti,j

5: SortBufP in ascending order
6: for j ← 1 to |BufP | do
7: Findv minimal function within[BufP (j), BufP (j + 1)],

fji , fj2 , . . . , fjv

8: favg ←
Pv

i=1 vi × fji

9: m ← favg(p∗) such that∀p ∈ [BufP (j), BufP (j +

1)], f
(
avgp∗) ≥ favg(p)

10: if m > Resf then
11: Resf ← m
12: Resp ← p∗
13: ReturnResf

Maximizing expectedppd of v minimal segments
We first present AlgorithmComputeMinV that computes the
valuep such that the minimalv ppd’s are maximized, given a
probability distributionV = {vi, v2, . . . , vv}, wherevi is the
probability that the adversary will choose to penetrate through
thei’th weakest spot,

∑
i = 1vvi = 1. The algorithm works

as follows. First, it identifies all intersection points between
every pair ofppdi, ppdj functions (1 ≤ i, j ≤ d, i 6= j).
Then it divides the range[0, 1] to sections according to all in-
tersection points. For each section[pa, pb], the algorithm then
identifies the minimalv curves between[pa, pb], and finds the
average curve,favg of these three curves between the points
[pa, pb]. Since the adversary chooses to penetrate through one
of thev segments with lowestppd at random with the given
distributionV , theweighted average(given weightvi to the
i’th minimal curve) of thev curves represent theexpected
ppd in that section. Last,ComputeMinV calculates the max-
imal value offavg(a, b) in the section[pa, pb], and reports the
point popt that is maximal among all minimal points of the
average functions. Figure 3 illustrates this algorithm.

The time complexity of AlgorithmComputeMinV is
O(d4 + d3 log d3), compared to time complexity ofd3 of the
originalMaxiMin algorithm for full knowledge adversary.
Maximizing minimal ppd of v neighboring segments
As stated previously, the adversary might attempt to penetrate
not only through the weakest segment, but through one of its



Figure 3: An illustration of Algorithm ComputeMinV for d =
8, t = 6, v = 3 with vi = 1/3. The small stars mark the in-
tersection points and the bold curve is the average curves of the3
minimal curves at each section where the curves correspond to the
ppdi functions. The arrow marks the maximal point returned by
ComputeMinV.
neighboring segments. Therefore the information can be used
in order to find ap valuable more suitable for the situation.
Algorithm ComputeNeighborV computes the weighted av-
erage ofv neighboring segments (according to a distribution
V = {v1, . . . vv}), then finds the maximin point of the new
d curves. Note that if the robot currently resides inside the
v-neighborhood of the segment, it is excluded, i.e., we aver-
age less segments for that case. The probability distribution
can be used to express the fact that the adversary tends, for
example, to try and penetrate through the segments further
away from the robot in its current position. The time com-
plexity of Algorithm ComputeNeighborV isO(d3). Figure
4 illustrates the algorithm ford = 8, t = 6 andv = 3.
Algorithm 5 ComputeNeighborV(v, V, {ppd1, . . . , ppdd})

1: SetFuncSet ← ∅
2: for i ← 1 to d do
3: ie = min(d, i + v)

4: FuncSet ←Pie
j=i vj−i+1 × ppdj

5: popt ← MaxiMin(FuncSet, d)
6: Returnpopt

It is interesting to note the difference between the results of
the three possible algorithms used in the illustrated examples
of Figures 3 and 4. Note that in both casesd = 8, t = 6
andv = 3. The result returned by theMaxiMin algorithm
(used in case of a full knowledge adversary, i.e.,v = 1) is
p = 0.7037. When the input isv = 3, the optimalp in
case of maximizing minimalv− neighborhood isp = 0.7359,
and the optimalp for maximizing minimalv ppd values is
obtained inp = 0.9273.

Figure 4: An illustration of Algorithm ComputeNeighborV for
d = 8, t = 6, v = 3, v1 = v2 = v3 = 1/3. All curves arenot the
originalppdi functions, but the average ofv−neighborhood of each
segment. The arrow points to the maximin point of the new curves.

6 Conclusions and future work
In this paper we considered the problem of multi-robot patrol
in adversarial environments, with the existence of uncertain-
ties in the system. We discussed two types of uncertainties:

Uncertainty in the robots’ perception of their own capabili-
ties (originated in imperfect sensing), and uncertainty of the
adversary in its own choices (originated in the adversary’s im-
perfect ability to asses the best penetration spot). In the first
part of the paper, we presented three types of sensorial mod-
els of the robots, and shown how there models change the
probability of penetration detection along the perimeter. In
the second part of the paper, we analyzed the optimal patrol
algorithm of the robots in case the adversary is uncertain of
its optimal penetration spot.

In our future work we consider the following points. First,
we would like to further examine possible sensing models and
other possible errors in the robotic system, originated for ex-
ample in faulty movement (rather than faulty sensing). We
would also like to further investigate uncertainties of the ad-
versary. As first step in this direction, we are interested in em-
pirically evaluating the possible optimal algorithms we have
presented here, and examine their performance in different
adversarial models.
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