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Abstract

In this paper, we study the problem of multi-robot
perimeter patrol in adversarial environments, un-
der uncertainty. In this problem, the robots patrol
around a closed area, where their goal is to patrol
in a way that maximizes their chances of detect-
ing an adversary trying to penetrate into the area.
Uncertainties may rise in different aspects in this
domain, and herein our focus is twofold. First,
uncertainty in the robots’ sensing capabilities, and
second uncertainty of the adversary’s knowledge of
the patrol’s weak points. Specifically, in the first
part of the paper, we consider the case in which the
robots have realistic, and thus imperfect, sensors.
These cannot always detect the adversary, and their
detection capability changes with their range. In
the second part of the paper, we deal with different
possible choices of penetration spots by the adver-
sary, and find an optimal solution for the patrolling
robots in each such case.

Introduction

case that robots sense successfully and accurately everything
they are supposed to detect, and in this case it is important to
address the probability that their sensing will fail. A second
aspect is uncertainty in the capability and knowledge of the
adversary (depending, for example, on its confidence in the
information it attained on the patrolling robots). In this paper
we address these two different aspects, model the behavior of
the system in each case and describe polynomial-time opti-
mal theoretical solutions to the patrol algorithm of the robots
that correspond to each scenario.

A first attempt to deal with perception uncertainties in ad-
versarial patrol was given ift], which altered the model of
multi-robot open fencgpolyline) patrol to deal with cases
in which the robots will detect penetration in their current
location only with some probability; < 1. In this pa-
per we expand this result in several manners. First, we de-
scribe a solution for this case perimeter(closed polyline)
patrol. Second, we consider the case in which the robots can
sense beyond their current physical location. We find an opti-
mal patrol algorithm for cases where the sensorial capabilities
changes as a function of distance from the robot.

Previous work in adversarial patrol has shown that the
optimality of patrol algorithm depends on the adversarial

The problem of multi-robot patrol has gained growing inter-model, specifically the knowledge obtained by the adversary
est in the past years (e.§7; 4; 2). In this problem, robots on the patrolling robots. Theoretical optimality results were
are required to repeatedly visit a target area while monitoringroven for a zero-knowledge adversary, in which the adver-
itin order to detect some change in the area’s state. Most resary choose as its penetration spot at random with uniform
searches have concentrated on assuring some point-visit fristribution, and for a full knowledge adversary, that is as-
quency criteria by the patrol algorithm. Agmon et al. pre-sumed to choose the weakest point of the patrol as its pen-
sented a new approach for multi-robot patrol[#, where  etration spot. In the latter case the penetration spot is well
they addressed the problem of multi-robot patrol in adversardefined. However, since the calculation of probability of pen-
ial environments, in which the robots’ goal is to patrol in a etration detection throughout the perimeter is not trivial, it
way that maximizes their chances of detecting an adversany likely that the adversary will choose to penetrate through
trying to penetrate through the patrol path. They have showgne of the weakest spots, and not through the exact optimal
that this problem is inherently different from the frequency spot. On the other hand, the adversary might choose to pen-
driven patrol problem, and discussed optimality of patrol al-etrate through some physical proximity to the weakest spot.
gorithms in different adversarial environments. In this paper we analyze both cases and provide optimal pa-
Generally, when dealing with a system of robots, it is nec+rol algorithms that deal with both options of uncertainty in
essary to consider deviation from the expected behavior of thgenetration spots.
robots in order to adapt the system to real world constraints
settings (e.g[11; 19). One of the aspects of interest is un-
certainty in the robots’ sensirid1]. In reality, it is rarely the
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Systems of multiple robots, working together in order to pa-
trol in some target area, have been studied in various contexts,
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on patrol in adversarial environmeri; 3; 4, which is the  vided into N segments, where the travel time of each robot
focus of this paper. through a segment is uniform, i.e., all robots travel through
Agmon et al. [2; 3] introduced the multi-roboadversar- ~ one segment per time cycle . Hence the segments’ length is
ial perimeter patrol along with the robotic model we baseuniform in time, but not necessarily in distance.
our work upon. In their work, they consider three adver- The robots have directionality associated with their move-
sarial models, which differ in the amount of knowledge thement, i.e, if they go backwards they have to physically turn
adversary obtained on the patrol algorithm: full knowledge,around. We model the cost of turning around in time, and
zero knowledge and patrial knowledge. They provide opti-denote time it takes the robots to turn around and stabilize in
mal patrol algorithms for the first two cases, and consider dheir new direction byr.
heuristic algorithm for the last. In this paper we continue The system of perimeter patrol is linear, meaning that at
the research on the patrial-knowledge adversarial model, arngach time step the robots have one of two options: go straight
provide a theoretical discussion and approaches towards der turn around. Therefore the robot’s patrol algorithm is char-
termining an optimal patrol algorithm in this scenario. acterized by a probability, i.e., at each time step go straight
Agmon et al. suggest a solution to the adversarial patroforward with probabilityp, or turn around with probability
along aropen fencén [1], where they refer also to the imper- ¢ =1 — p.
fect sensorial capabilities of the robots. However, their solu- Motivated by the optimality proofs ih3; 2], we assume
tion is limited only for open fences, and to imperfect sensingthe robots are coordinated in the sense that if they decide to
in one segment the robot currently resides on. Here we exurn around they do it simultaneously. Moreover, we assume
tend their results also to perimeter patrol and to handle alsthe robots are placed uniformly along the perimeter, with dis-
extended sensing range with possible different sensing cap&gance ofd = N/k segments between every two consecutive
bilities as the distance from the robot grows. robots along the path. The optimality proof of these require-
Elmaliach et al. [7] studied the problem of frequency- ments (synchronization and uniform distance) is based on the
based fence patrol, where they concentrated on optimizingpct that the probability of penetration detection decreases as
point-visit frequency criteria in realistic multi-robot systems. the distance from the robot increases (see Lerfirma[2]).
They considered in their analysis of the system possible unfherefore it is best to minimize the maximal distance between
certainties in the movement and velocity of the robots. In ouevery two consecutive robots, and it is done by guarantee-
work we also model uncertainties in the system, however ouing that the distance in time between every two consecutive
main goal is different - to optimize probability of detecting robots is equal, and this is maintained by the requirement that
penetrations, rather than optimize frequency criteria, hencthe robots are coordinated.
we also concentrate on sensing uncertainties. In the adversarial models considered here, the adversary
Other closely related work is the work by Paruchuri et al.decides at time) (after possibly an observation period in
[9; 8], which consider the problem of placing security check-which it studies the patrol) through which segment to pene-
points in adversarial environments. They use policy randomtrate, and the time it takes it to penetrate is not instantaneous,
ization for the agents behavior in order to maximize their re-and lastg time units.
wards. In their work, the adversary has full knowledge of The chances of the robots to detect an adversary passing
the agents’ behavior, therefore it can use it in order to minithrough a segmeny; is defined as thprobability of penetra-
mize its probability of being caught in some checkpoint. Theytion detectiorat the segment, and denotedipd, .
again do not consider sensorial scenarios which depend on Finding the optimal patrol algorithm is divided into two
different sensorial models of the robots. Pita et{aD] con-  stages. In the first stage, tipgd is calculated for all seg-
tinue this research to consider the case in which the adversargents, whergpd, is a function ofp. In the second stage,
makes their choice based on their bounded rationality or unthese functions are manipulated in a way that will maximize
certainty, rather than make the optimal game-theoretic choicea property suitable for the current adversarial model. For ex-
They consider three different types of uncertainty over the adample, for an adversary choosing at random its penetration
versary'’s choices, and provide new algorithms that deal wittspot with uniform distribution, in the second stage the goal
these types of uncertainties. In our work we discuss both unwill be to maximize the expectgapbd throughout the perime-
certainty in sensing and uncertainty in adversary’s choice, anter, using as input thepd, functions.
prowdg optlmal polynomial-time solutions for bo@h cases. » Uncertainty in sensing
Amigoni et. al. [4] also used a game-theoretic approach
for determining the optimal strategy for patrolling agents, us-n this section we deal with uncertainty in the robots’ percep-
ing leader-follower games. They consider an environment ifion. Specifically, we consider the case in which the robot
which a robot can move between any two nodes in a graptgould have imperfect sensorial capabilities. We introduce
as opposed to the perimeter model we focus on. Their soluhree models of the robots’ sensing abilities. In the first
tion is suitable for one robot, and since the computation ofmodel,LRange, the robots have sensing abilities that exceed
the optimal strategy is exponential, they described a heuristithe segment they currently reside on. In the second model,
approach for finding a solution. ImpDetect, we present a solution to the case in which the
3  Robot and environment model ro_bots’ sensorial abilities might not _be _perfect, i_.e., a rob(_)t
might not detect an adversary even if it is under its sensorial
We are given a team of homogenous robots, required to range. This is an extension of the results presentdd]ito
patrol around a closed area (perimeter). The perimeter is dinclude also perimeter patrol. This leads us to the last and



general modellmpDetLRange, that combines both models Algorithm 1 FindPPDwShade(d, ¢, loc, L)

and deals with the case that the robots’ sensing abilities €X-1;"Create matrix\/ of size(2d + 2) x (¢ + 1), initialized with 0s.
ceed their current location, yet the reliability of the detection 2: setas[0, loc**] — 1.

is not perfect. In this case we assume that the ability to detect3: Fill all entries inM gradually using the following rules.
penetrations might change along the detection range, specifi4: for » «— 1tot do

cally it might decrease as the distance grows. 5:  for each entryM|[r, s{*] dffu .
4.1 Extending sensing range g; 23"]’\4?1;1%[1 , Lt moa al - Mlr—1,s7°]
In this section we consider theRange model, in which the 8: if i + L > dthen

sensorial range of a robot exceeds the segment it currently re9: SetM|r, saps] «— v {absorbing state

sides in. Denote the number of segments sensed by the robd®:  for each entryM[r, si“] do

beyond the segment currently occupied by ittbgsee Figure — 11: Setv < p- M[r — 1,571 moa al +q- M[r—1,s°]
1). If L > 0, we refer to thesd, segments bghaded seg- 12 SetM[r, si] — v

. : if 1 — L < 0then
ments Note that the location of the shaded segments depen ) SetM{r, sas.] — v {absorbing state

on thge dir_ection of the _robot.shading them, and are always "15: for absorbing State/[r, sus.] do

the dlr_e_ctlon the_: robot is fgcmg._ o 16 SetM{r, sups] — M’[T_ 1, Saps] +p- {M[r —1, 5] +
A trivial solution to dealing with such a situation is to en- M[r —1,s5]}

large the size of the segment, hence enlarge the length of they: Return/[t, s444)

time unit used as base for the system, such that it will enforce

L to be0. However, in this case we lose accuracy of the anal-

ysis of the system, as the length of the time cycle should b&.2 Imperfect detection

as small as possible to suit also the velocity of the robots a”[jJncertainty in the perception of the robots should be taken

the value of. into consideration in practical multi-robot problems. There-
L fore we consider the realistic case in which the robots have

(T el T 1| imperfect sensorial capabilities, i.e., even if the adversary
= passes through the sensorial range of the robot, it still does

Figure 1: An illustration of the L segments shaded by robft not necessarily detect it.

Here, R is facing right, therefore the shaded segments are to its right. We introduce thémpDetect m_odel, In Wh'ch a robo'_c tra_lv- .
els through one segment per time cycle while monitoring it

In [3], the values of that can be handled by the system (i.e., L = 0), and has imperfect sensing. Denote the probabil-
are bounded by its relation b (the distance between every ity that an adversary penetrating through a segmgemthile
two robots along the path). In cade > 0, this changes. itis monitored by some robd® and R will actually detect it
Specifically, if L = 0, then the possible valuesbtonsidered by pg < 1.
are[d/2] + T <t < d - 1[3]. However, ifL > 0, then it Note that in case, < 1, revisiting a segment by a robot
is possible to handle even smaller valuestof.e., even if  could be worthwhile - it could increase the probability of de-
the penetration time of the adversary is short. Formally, théecting the adversary. Therefore the probability of detection
possible values afare given in the following equation. in a segment; (ppd,) is notequivalent to the probability of

[d/2]+7—L<t<d-L first arriving ats; (as seen in2]), but the probability of de-

. . tecting the adversary duringpmeyvisit y to s;, 0 < y < t.
If ¢ is smaller than'd/2] + 7 — L, then an adversary with o e i )
full knowledge will manage to penetrate with probability Denote the probability of thg'th visit of some robot to seg

i.e., there is a segment unreachable withirme units. On ments; b{wi ' Tf;ereforeppdi;s defn;ed as follows.

the other hand, if is greater thanl — L, then a simple de- PPd; = w;pa+w; (1—pa) x{w;pa+w; (1—pa) x{. .. {w]xpa}}}
terministic patrol algorithm will detect all penetrations with B . )
probability 1. We assume that during thetime units the In words, the probability of detecting the penetration is the
robot turns around, it can sense only its current segment.  Probability that it was detected in the first visit{ x pa) plus
Algorithm for finding ppd, with shaded segments: the probability that it wasot detected then, but during later

For each segment, ppd, is determined by the probabil- Stages. hat after i st — 0 for all I
ity that some robot will visit this segmeptusthe probability Note that after time units,w; = 0 for all currently un-

that this segment is shaded by some robot. We use a dynamigigzﬁ;e(‘i segr’r;tentﬁ, and if a robot resides is;, thenw; is
—Pd)"-

= le. simil h ; :
programming inspired rule, similar to the one described in One of the building blocks upon which the optimal patrol

[2], yet we expand it to include also the probability of being : ; . .
shaded by some robot. The main idea is that in each trarftlgorithms are based, is the assumption that the probability of

sition phase, the algorithm checks whether the state shadggtegtio_” decreases or remains the sa_mg as the_distfance_ from
on an absorbing state, i.e., if the robot in its current locatiorf "0P0t Increases, L.e., it is a monotonic decreasing function.

and direction shades the given segment (distance from it &S fact was used ih2] in proving that in order to main-
smaller thanl). See Algorithm 1 for a full description of the tain optlmalppq, then th‘? robo_ts ShO.UId b(_e placed unlforml_y
algorithm for calculatingpd,,,, 1 < loc < d. The time around the perimeter (with uniform time distance), and main-

complexity of the algorithm i9(d¢), which is the time it tain this distance by being_coordinated_. We omit the de_tailed
takes to fill in the entire table. proof due to space constraints. The rational of the proof is that



the probability of detection decreases as the distance from th&lgorithm 2 FindPPDwImpDetect(d, ¢, loc)

location of the robot increases. Consequently, both minimaty:
ppd and averagepd are maximized if the distance between »:
the robots is as small as possible. Since the patrol path is3:
cyclic, this is achieved only if the distance between every two 4:
consecutive robots is uniform, and remains uniform. 5
Theorem 1. For both the full knowledge and zero knowledge 6:

adversarial models, a patrol algorithm in thienpDetect
model is optimal only if it satisfies these two conditions. a. 7:
The robots are placed uniformly around the perimeter. b. The
robots are coordinated in the sense that if they turn around, 8:
they do it simultaneously. By assuring these two conditions, 9

Create matrix\/ of size(2d + 2) x (t+ 1), initialized with0s.
SetM|0,loc®™] « 1.
Fill all entries inM gradually using the following rules.
for r — 1tot¢ do
for ¢ <+ 1tod (all other statesjlo
For each entnyM [r, si*] set value to
p-M[r— L8041 mod d)] +q-M[r—1,s.
For each entnyM [r, s§°] set value to
p- M[T - 178@671 mod d)} +q- M[’/‘ - 1751¢w]'
for s§* andsg® do
SetM|[r, s§*] — fx{p-M[r—1,s{*]+q¢-M[r—1,s§°]}
It

SetM[r, s§°] — fx{p-M[r—1,s5|+q-M[r—1, s§

the robots preserve the uniform distance between them alon%‘if

the execution. : wj,. < polynomial coefficients of ¢ from sum of M [r, s§*]

Algorithm for finding ppd, with imperfect sensorial de-
tection:
We now describe AlgorithnFindPPDwImpDetect that

Mr,sg], forall0 <r <t,1<i<t. ’
Return the result obtained by substituting thg,. values in
Equation 1.

12:

finds the probability of penetration detection in each segment

(ppd,). The algorithm computes the probability of all visits
to a segment during time units. The algorithm, similar to
algorithmFindFunc [2], is dynamic programming inspired.

with the most realistic form of sensorial capabiliti@}: im-
perfect, long range sensing.
The information regarding the sensorial capabilities of the

As stated previously, the main difference between the algosgp s includes two parameters. The first describes the quan-

rithms is that~indFunc considers only the first visit to a seg-
ment, whereFindPPDwImpDetect considersall visits to a

tity of the sensing ability, i.e., the number of segments that
exceeds the current segment the robot resides in, in which

segments and the probability of sensorial detection. Figurgna robot hasomesensing abilities, denoted ky. The sec-
2 describes a representation of transition between segmenigy harameter describes the quality of sensing in all segments

as a Markov chain. This is later translated into construct

ing gradually a table using a dynamic programming-inspire
rules, as described in AlgorithfindPPDwImpDetect. The
time complexity of the algorithm i€©(dt), which is the time

it takes to construct tablg/. Extracting the polynomial co-
efficient is done in time)(1).

CAEIEIEIRA A
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Figure 2: Representation of the system as a Markov chain alon

with state transition. The robots are initially placed at the externalp

segments, heading right. Statge represents the segment currently
occupied by a robot.

Theorem 2. Algorithm FindPPDwImpDetect(d, t,7) com-
putesppd,.

4.3 Extending sensorial range along with
imperfect detection

&De robot can sense. This is given in the form of a vector
s = {vo,v1,...,vL}, wherev; is the probability that the
robot residing insg will detect a penetration that occurs in
segments;. We assume that the valuesifa is monotoni-
cally non-increasing, i.e., asincreasesy; decreases or re-
mains the same.

In the ImpDetLRange model, the probability of penetra-
tion detection is more complex, and has to take into consid-
eration also the possibility of being in the sensorial range of
some robot and the probability of being detected there. De-
note the probability tha¢; is in distancej <= L from some
robot, i.e., within its sensorial range, for th&h time by

w!(e). Denote the probability that the adversarysinwill

not be detected at all bypd,. The probability that the ad-
g1/ersary will be detected is actually the complementary of the
robability that it will not be detected. Therefgped, is de-
fined as follows.

t L
ppd; =1 —ppd; =1 — [T [J{wl(e)- (1 —ve)} (@)
j=le=1
In words, the probability of penetration detection is the
complementary of the probability that the adversarnag
detected at alduring thet time units. This is the probabil-
ity that it is not detected at any possible occurrence in any

In many cases, the actual sensorial capabilities of the robdtossible range (corresponding to a probability of detection)
is composed of the two characteristics described in previouduring those time unit. The overall number of components is,
sections, i.e., the robot can sense beyond its current segmeHierefore,L x t.

however the sensing ability is imperfect. Therefore in thisAlgorithm for finding ppd,; with extended-range imper-

section we introduce thempDetLRange sensorial model,
which is a combination of theRange and thelmpDetect
models. Here the robot can serflssegments beyond its cur-
rent segment, yet thg, in each segment varies and is not

fect detection:

The algorithm for findingopd, in case we allow extended
range { > 0) and imperfect detection with changing prob-
abilities of detection as a function of the distance from the

necessarilyl. We therefore describe an algorithm that dealsrobot is composed by two stages. In the first stage, we need to



find the probability of being shaded with distanicel e < L

from the robot for thej'th time, 1 < 5 < ¢. This provides

FindPPDwIimpDetect and
FindComplexP, as input to theMaxiMin algorithm de-

us with all valuesw? (). We then substitute all the acquired scribed in[2]. This algorithm finds the probabilityin which
values in Equation 2. The full description of the algorithm is the minimalppd, is maximized, and does it by identifying

presented in AlgorithnfrindComplexP below. Note that in
Algorithm FindPPDwImpDetect we had one objecf used

the maximal point in alppd, integral intersections.
A more interesting case is the zero-knowledge adversarial

for identifying the number of the visit to the segment. Here,model, in which the adversary has no knowledge of the patrol
since we have to consider all visits of all possible distanceglgorithm, hence chooses at random with uniform distribution
that are less or equal tb (shaded segments), we uset 1

objects, fy, .. .
O(dt + Lt) - the time to construct the table plus the time

through what segment to penetrate[3h it was proven that

. f. The time complexity of the algorithm is the optimal patrol algorithm in this casethe robots have

perfect sensoris the simple deterministic algorithmp & 1).

to extract all polynomial coefficients (respectively). Since The rationale behind the optimality proof of the deterministic
L < d, this is againO(dt).

algorithm lies in the fact that it is not worthwhile to go back
and revisit segments.

Algorithm 3 FindComplexP(d, ¢, loc, L, Vs _ However, in case the probability of detecting the penetrator
{v0,...v0}) T is imperfect, i.e.ps < 1, this argument does not necessarily
1 Create matrix of size(2d 1 2) x (i + 1), initialized with0s, hold, i.e., revisiting a segment does have added value. In the

2: SetM]0,loc®™] — 1.

following, we show the surprising result that everpif <
1, if the adversary chooses its penetration spot at random, it

3: SetRes <+ 0 . . Lo -

4: Fill all entries inM gradually using the following rules. is still best to patrol deterministically around the perimeter.

5: for r < 1tot do Moreover, we strengthen our result by showing that even if

6: for each entryM|r, s{*] do the robot makes a post analysis of its decision to go straight

7: Setu«—p-Mr—1,8{%1 moaal +a- Mr—1,s:] or turn around, it will also decide to keep on going straight.

g; i Zu+<_L uzxd;:f? Theorem 3.1n thelmpDetect model, the deterministig: algo-
10: Res «— Res + u rithm maximizes the expectpgd throughout th.e perimeter
11: SetM[r, s*] — u for all p; < 1in case the adversary chooses its penetration
12:  for each entryM|r, s¢°] do spot at random with uniform distribution.
iif ﬁ"j‘ﬁ Zﬁ ’O%[ern* 1,831 moa al + ¢~ M[r —1,57]. ~We omit the proof due to space constraints. The idea be-
15 W ux fi hind the_proof Iles_ln the fact '_[h_a_t the gain (in probability of
16: Res — Res +u penetration detec_tl_o_n) from visiting a new segment exceeds
17: SetM([r, 529 — u the gain from revisiting a segment, since by revisiting a seg-
18: w! (e) « polynomial coefficient off? of Res, forall 1 < j < ment we add also the probability of re-reaching it.

19:

t,0 < e < L (while substituting all othe!fg,, e’ # einthe
equation).

Return the result obtained by substituting tbgé(e) values in
Equation 2.

4.4 Applying the sensorial models in different

Until now, we have presented three different algorithms fo

adversarial models

We strengthen this result by showing that it is beneficial
for the robot to keep visiting new segments in case the adver-
sary chooses its penetration spot randomly with uniform dis-
tribution (with probabilityl /d) even if the robot calculates its
benefit post factum, i.e., after visiting a segment. Denote the
probability that the adversary penetrated through a segment
by PN;, and the probability that the robot visiteg without
detecting it byN D,. Therefore, by conditional probability
Jaw, if ND; >0, P(PN; | ND;) =

finding theppd, for each segmeny; in three different sen- PN;\ND; 1/d(1 — pa) 1— pa
sorial models {mpDetect, LRange and ImpDetLRange. }VD L= T T/d r Td =2
This information can be used by the team of robots in order i (d—1)/d+1/d(1 — pa) —Pd

to define their patrol algorithm, based on the adversarial envi- On the other hand, the probability that the adversary

ronment they operate in. We describe here how the differendhooses to penetrate through given that the robot did not
sensorial models influence the patrol algorithm in two suchyetect it in segment; is

environments. The first is ttfall knowledgeadversarial envi-

ronment 2], in which the adversary holds all the information 1-— }i:—;’; 1 1—pg
concerning the patrol algorithm of the robots, hence chooses di—1 d— pa . d—pa

to penetrate through the segment with minirpp. In the
second adversarial model, we assume the adversary has noln other words, the probability of revealing new informa-
knowledge of the patrol algorithn{3]), hence it decides to tion in visiting a new segment is greater than the probability
penetrate through a currently vacant segment at random witbf revealing new information from revisiting a segment that
uniform distribution. was already visited at least once, even after knowing that the
If the adversary has full knowledge of the robots’ pa- adversary was not caught in the revisited segment. The in-
trol algorithm, we can use thepd generated by the tuition is that by visiting a new segment, the probability of
three algorithms described here -FindPPDwShade, penetration detection grows by, where if the robots revisits



a segment, it carries along with it the probability of arriving in [3], where a patrol algorithm proven to be optimal for a
there again, multiplied by,. Since the probability of arriv- random adversary performed substantially better than other
ing again is smaller thah the gain from revisiting a segment algorithms for humans playing the role of an adversary that
is smaller. had no knowledge of the patrolling robots.

Theorem 4. In the LRange model, the deterministic algo- ~ Therefore we tried to use a similar approach here, as we
rithm guarantees maximal expecteod for random-uniform ~ considered the following problem.
adversary ifL < 7. P-Interval problem definition: Letp be the probability char-

The proof of the theorem resembles the proof of Theoren@Ccterizing the perimeter patrol algorithm of a team of robots.
3in [3], and we omit it due to lack of space. Assume the adversary have a bounded mteryal 'of uncertainty,

. . , . i.e., the adversary knows that the real valug @ inside the

5 Uncertainty in the adversary’s perspective interval [p — d,p + ¢]. Therefore it chooses its believed
In this section we turn to examine uncertainties in the adverat random with uniform probability inside this interval. Find
sary’s point of view. Specifically, we try to bound the level the probabilityp characterizing the patrol of the robots such
of uncertainty the adversary has on the patrolling robots, anthat it maximizes the expectgghd throughout the perimeter.
specifically on its optimal choice of penetration spot. Quan- Unfortunately, we prove that this problem is unsolvable un-
tifying the uncertainty of the adversary is important in or-lessé = 0. We prove it by showing that the expectpdd
der to find optimal patrol algorithms that are suitable to thefunction inside the intervdD, 1] is monotonically increasing,
level of uncertainty of the adversary. In other words: Given ai.e., asp grows the expectegpd grows, hence the optimal
bounded region of the adversary’s uncertainty, what is the padoes not converge unlegs= 0.
trol algorithm that maximizes the probability of penetration Denote the number of times a robot switched directions
detection? duringt time units byr, » > 1, and theppd in segmens; by

We suggest two general approaches for bounding the ung after switching its directiom times byppd?(r).
certainty level. In the first approach, we examine the case in . .
which the adversary knows the probabilitycharacterizing -¢mma 5. Consider a sequence @il segments with one
the patrol algorithm with some uncertainty. Unfortunately, rot;gtRo n’(n)the mid segment at time Then
we show that it is impossible to find an optimal patrol algo->_;—1 PPd;(r) < >_5Z; ppd;(r — 1) for everyr > 1.
rithm in this case.

We therefore suggest an alternative approach, in which th cquence ofd seaments into two: the sequence 1o the right
uncertainty is reflected by the choice of penetration spot. e 9 : q 9

this case, we do not necessarily assume that the adversa?{/RO and to thiIEﬁ offRo. Fgr every; numlger of dlrect.|on

calculates the probability, but tries to estimate the weakest SWitches, let_,_ ,;,, ppd; = 6(j), ppd_,.; = &'(j),

spot using two estimation methods - physical proximity, orS~i~{ ppd{ = a(j) andppd;_, = o/(j).

closeness to the minimapd. The sum ofppd’ for » — 1 number of direction switches is

5.1 Uncertainty of the adversary’s knowledge of 0(r—1)+4"(r—1)+a(r—1)+a’(r—1). Forr switches, since
the patrol - negative result the robots spend an extra time cycle for turning around, the

. . . , two extreme segments withpd > 0 are now unreachable,
In this section we bring an attempt to deal with the uncerqaonce in this casé(r — 1) anda/(r — 1) no longer exist.

tainty of the adversary in the choice of the weakest spot Of\low, 3(r) + &'(r) is similar to changing the initial direction

the algorithm. In thi_s case, we try to quantify the information ¢ the ropot (by multiplying byl — p), and obtaining exactly
by the number of time cycles the adversary had to observgé(r 1), henced(r) + &'(r) < (1 — p)a(r — 1). Similarly,

the system before it attempts to penetrate. The result of the , 2d 0
know)lledge obtained by the adversary is its assessment of trgﬁ((THOf (r) < (1=p)o(r—1). Altogether,> ;- ppd, (r) =
probabilityp characterizing the robots’ patrol algorithm. r)+_6 (r)+a(r)+a (7_“) < (1_p)a(r_1)j;(1_p35(r_l)
The problem of deducing the probabiliycan be consid- and sincg1 —p) < 1 thisis smaller thay ;= ppd; (r —1).
ered as observing a Bernoulli trial, where a success is an eveRY the induction assumption, this is smaller thtan
of going straight with probability, and loss is turning around ~ The proof follows directly forr > 1, as the number of
with probability1 — p. We can use the Central Limit Theorem Segments that become unreachable increases ffrimmr for
[5] that gives us bounds to the expected error from the regtach direction switch, while the probability of penetration de-
value ofp after viewing it fort,, trials. Assuming the average tection in other segments is the same. O
of successes after viewirtg trials isp, its value is inside the
boundarie$p — 6, p+ 0] with probabilitypcon ridence, Wheres
is a function oft,, and depends Opton fidence- Therefore this
bounds the uncertainty of the adversary on the real valge of
to an interval aroung, and we will try to use this interval in  Lemma 6. The expectegpd, as a function op, is a mono-
order to optimize the patrol algorithm of the robots. tonically decreasing function in the range, 1], i.e., for all
A common way to ha_ndllng uncertainties of systems is too <p' <p<U, Eppd(p/) < Eppd(p)
assume that when having no knowledge, a random choice,
with uniform probability, is made. In this domain, this ap- Proof. p represents the probability of going straight (and not
proach was proven to be useful in an empirical evaluatiorswitching directions) at each time unit. Denote the expected

groof. We first prove the lemma for = 1. We divide the

Denote the expectqupd for probabilityp (probability that
the robots will continue straight in each time unit during the
patrol),0 < p < 1by Eppd(p).



number of direction switches of rob@t during ¢ time units In both cases, the two extremities of uncertainties—full
using probabilityp of going straight byE.;;.cn(p). There-  knowledge adversary (no uncertainty) and zero knowledge
fore Eswiten(p) = t(1 —p) andEg,iucn(p’) = t(1—p') ,and  adversary (complete uncertainty)—match the results obtained
sincep’ < p it follows that Esyitcn (p) < Eswiten(P)- by [2] and[3], respectively. Ifv = 1, i.e., there is no uncer-

It remains to show that if a robad® is expected to switch tainty in the choice of the weakest spot, then the algorithms
its direction more times duringtime units, then the expected are required to return exactly the valpesuch that the min-
ppd is smaller. Formally, fob < p’ < p < 1, Eguiten(p) < imal ppd is maximized, similar to théMaxiMin algorithm
Eowiten(p') = Eppd(p’) < Eppd(p). presented ih2]. On the other hand, if = d and the proba-

The expectechpd along the perimeter with direction brility dlistriblrj]tion is L_mi_forgw,hthen the ﬁgri;hms vr\]/ill ret#rn

. P _ Nk k - the valuep that maximized the expect throughout the
switches ISEppd = 1/N3izy 225-1Ppd; (7). During perimeter (=averagppd). As proven in[3], the optimal al-

t < d time units the robot can influence only thpd along  gorithm in this case ip = 1, i.e., the deterministic algorithm.

at most2d, therefore the sum of each robot is not over/Zll Note that the algorithms for finding optimal patrol uses the
segments, but only the neighboridgegments from each of ppd, functions. Hence this can be combined with any senso-
its sides. Therefore, following Lemma Bpd < EFSF_JE rial model presented in the previous section.

Therefore if Esuwiten(p) < Eswiten(p') then Enng(p') < Algorithm 4 ComputeMinV(v, V, {ppd, .. .., ppd,})

Eppd ()- U "1 setBufP — {0,1}.
2: for every paimppd;, ppd;, 1 < 4,5 <d, i # jdo
3:  Intersect;; < all intersection points betweegppd, and

Theorem 7. P-Interval is unsolvable unless = 0.

Proof. Assume, towards contradiction that> 0, yet there opd
exists px that maximizes the expectggpd throughout the "

perimeter. By the definition dP-Interval, the adversary de- ¢’ ¢ oﬁ%ﬂ ? pi niiﬁf nLc{i r{gf;jsgr‘ti’f

duces an interval aroung in which it chooses its believed - for j « 1to|BufP|do

atrandom inside the intervgd«—d, px+4]. By Lemma 6, the © Findv minimal function within[Buf P(5), BufP(j + 1)],
expectedpd function is monotonically increasing, therefore Fivs Fins s Fin

Noakr

the maximal expectedpd inside this interval is obtained in  §: avg — Sou_y Vi X fj,
p * +0. This contradicts the assumption that maximizes 9:  m <« faug(px) such thatvp € [BufP(j), BufP(j +
the expectegpd, unlessy = 0. O D], flogp*) = fave(p)
. . . . 10:  if m > Resy then
5.2 Uncertainty in the actual choice of penetration  11. Ress —m
spot 12: Resp — px*

When trying to bound the uncertainty of the adversary to its13: ReturnRes;
knowledge of the patrol, another option is to try and quantify o o
the uncertainty in its choice gfenetration spotFor several Max!m|zmg expectedppd of v m|n|m_al segments
reasons, the adversary, even if knowing the patrol algorithnYVe first present AlgorithnComputeMinV that computes the
of the robots (specifically the probabilip, might not choose ~ valuep such that the minimal ppd’s are maximized, given a
to penetrate through thexactweakest spot. We present Probability distributionV” = {v;, vy, ..., v, }, where; is the
herein two possible deviations from the weakest spots, anaro?ablllty that the adversary will choose to penetrate through
hence two possible corresponding optimal ways of choosind€'th weakest spoty; = 1"v; = 1. The algorithm works
the value ofp in such cases. as follow_s. First, it identifies all mterseqﬂqn pomt; be'gween
The adversary, after studying the robots’ patrol for a perioc€Very pair ofppd;, ppd; functions ( < 4,5 < d, i # j).
of time, could result in several reasonable segments which thEhen it divides the rang, 1] to sections according to all in-
ppd values, as it calculates, are small enough. In this castersection points. For each sectipn, ps], the algorithm then
it will choose at random, with a given probability distribu- identifies the minimab curves betweefp,, p;}, and finds the
tion (for example uniform), the penetration spot between thedverage curvef,,, of these three curves between the points
v possible weakest segments. Hence the robots should chodge P+]. Since the adversary chooses to penetrate through one
p such that the expectgapd along thev segments with min-  of thev segments with lowesipd at random with the given
imal ppd is maximal. distributionV, theweighted averagégiven weightv; to the
The second case is that the adversary might not choose t¢h minimal curve) of thev curves represent thexpected
penetrate through the Segment with the minip‘aﬂ, but ei- ppd in that section. Las’ComputeMinV calculates the max-
ther through that segment, or through one of its neighboringmal value off,.4(a, b) in the sectiorip,, ps], and reports the
segments at random. Hence in this case the robots shouRPint p,,: that is maximal among all minimal points of the
choosep such that the expect@bd a|ongv neighboring with average functions. Figure 3 illustrates this algorithm.
minimal ppd is maximized. The time complexity of AlgorithmComputeMinV is
Note the difference between the two cases - in the first wé?(d* + d*log d*), compared to time complexity af of the
are looking for the valué < p < 1 such that the minimat original MaxiMin algorithm for full knowledge adversary.
ppd’s are maximized, and in the second case we are lookin$laximizing minimal ppd of v neighboring segments
for p such that the weighted average of minimal possible As stated previously, the adversary might attempt to penetrate
neighboring segments is maximized. not only through the weakest segment, but through one of its




Uncertainty in the robots’ perception of their own capabili-
ties (originated in imperfect sensing), and uncertainty of the
adversary in its own choices (originated in the adversary’s im-
perfect ability to asses the best penetration spot). In the first
part of the paper, we presented three types of sensorial mod-
els of the robots, and shown how there models change the
probability of penetration detection along the perimeter. In
the second part of the paper, we analyzed the optimal patrol
algorithm of the robots in case the adversary is uncertain of
its optimal penetration spot.

In our future work we consider the following points. First,

e would like to further examine possible sensing models and

Figure 3: An illustration of Algorithm ComputeMinV for d =

8,t = 6,v = 3 with v; = 1/3. The small stars mark the in-
tersection points and the bold curve is the average curves df the
minimal curves at each section where the curves correspond to th\ﬁ

gpdi func,\t/'l(.)n\?' The arrow marks the maximal point returned by o possible errors in the robotic system, originated for ex-

omputeMinV. . . ample in faulty movement (rather than faulty sensing). We
neighboring segments. Therefore the information can be usngum also like to further investigate uncertainties of the ad-
in order to find ap valuable more suitable for the situation. ersary As first step in this direction, we are interested in em-
Algorithm ComputeNeighborV computes the weighted av- pirically evaluating the possible optimal algorithms we have

erage ofv neighboring segments (according to a distributionyregented here, and examine their performance in different
V' = {v1,...v,}), then finds the maximin point of the new 4y ersarial models.

d curves. Note that if the robot c_:u'rrently residgs inside th‘?eferences

v-neighborhood of the segment, it is excluded, i.e., we aver- ) )
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