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Abstract

Naturally occurring collective motion is a fascinating phenomenon in which swarming indi-

viduals aggregate and coordinate their motion. Many theoretical models of swarming

assume idealized, perfect perceptual capabilities, and ignore the underlying perception pro-

cesses, particularly for agents relying on visual perception. Specifically, biological vision in

many swarming animals, such as locusts, utilizes monocular non-stereoscopic vision, which

prevents perfect acquisition of distances and velocities. Moreover, swarming peers can

visually occlude each other, further introducing estimation errors. In this study, we explore

necessary conditions for the emergence of ordered collective motion under restricted condi-

tions, using non-stereoscopic, monocular vision. We present a model of vision-based collec-

tive motion for locust-like agents: elongated shape, omni-directional visual sensor parallel to

the horizontal plane, and lacking stereoscopic depth perception. The model addresses (i)

the non-stereoscopic estimation of distance and velocity, (ii) the presence of occlusions in

the visual field. We consider and compare three strategies that an agent may use to interpret

partially-occluded visual information at the cost of the computational complexity required for

the visual perception processes. Computer-simulated experiments conducted in various

geometrical environments (toroidal, corridor, and ring-shaped arenas) demonstrate that the

models can result in an ordered or near-ordered state. At the same time, they differ in the

rate at which order is achieved. Moreover, the results are sensitive to the elongation of the

agents. Experiments in geometrically constrained environments reveal differences between

the models and elucidate possible tradeoffs in using them to control swarming agents.

These suggest avenues for further study in biology and robotics.

Author summary

Swarm collective motion is a wide-ranging phenomenon in nature, with applications in

multi-agent, multi-robot systems. In most natural swarming species, individuals rely on

monocular, non-stereoscopic vision as the key sensory modality for their interactions. For

example, the desert locust (Schistocerca gregaria) displays large swarms of individuals,

moving in alignment and relying solely on non-stereoscopic visual perception. Inspired

by these locust swarms, we have developed a monocular, non-stereoscopic vision-based
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model that achieves synchronized motion in a swarm of two-dimensional agents, even

with inaccurate estimates of distances and velocities, particularly in the presence of occlu-

sions. We explore three general strategies for handling occlusions, which differ in the

requirements they place on the complexity of the visual perception process. We show that

strategies may reach a highly ordered motion state but differ in their rate of convergence

to this ordered state.

1 Introduction

Swarms composed of large groups of individuals can engage in coordinated collective motion,

without centralized or group-wide control, global perception, or global communications. This

coordinated collective motion (which we henceforth term flocking, but is also known as school-
ing, or swarming) describes the emergence of a common heading for the motion of agents in

the swarm. Flocking can arise from disordered initial conditions, where initial headings and

positions are arbitrary, despite the restricted locality of the perception and action of any indi-

vidual agent in the swarm.

In nature, flocking is ubiquitous in birds [1, 2], fish [3, 4], insects [5, 6], bacteria [7], and

human crowds [8–12]. It is a phenomenon that has been of interest to the scientific commu-

nity for decades, inspiring modeling efforts (e.g., [13, 14]) and bio-mimetic technologies in

graphics [13, 15]), simulations (e.g., [16, 17]), and robotics (see [18] for a recent survey).

The leading paradigm underlying models of collective motion is that it results from

repeated local (myopic) interactions among individual swarm members (see, e.g., [19, 20]).

The control procedure of each single agent translates its perception of the local physical and

social (nearby conspecifics) environments into a decision regarding its next action. The indi-

vidual decisions made by each agent, based on their interactions with others, lead to the group

eventually forming an ordered state. In this state, all agents move in a common direction,

which can dynamically change. Commonly, flocking agents are modeled as self-propelled parti-
cles (SPP) that are continuously subjected to the mutual steering forces caused by their neigh-

bors [21]. These mutual force interactions feed into the agents’ decision-making, changing

their motion [14, 22, 23]. Under appropriate conditions, this generates flocking [24–26].

Traditional models of flocking abstract away from the real limitations of perceptual pro-

cesses. They rely on idealized perceptual capabilities that allow agents to determine their

neighbors’ distances, headings, and velocities (see, for instance, [13, 14, 19, 20, 27]). This

ignores the sensory and computational limitations inherent to physical agents in nature or in a

robotics laboratory: limited effective sensing regions (width and range of the sensory field of

view), systematic perceptual ambiguities, computational resources required for sensor infor-

mation processing, and sensitivity to occlusions of some neighbors by others (common in

flocking) [28].

In those that use vision as a primary sensory modality, the underlying sensory structure

and processing abilities of the agent places multi-faceted constraints on the possible visual per-

ception processes that may be employed. The position of the eyes/visual sensors, and the angu-

lar and range limitations on their fields of view, constrain the perception strategies that can be

used to provide the information needed for flocking. These strategies vary in accuracy, failure

modes, and computational/cognitive complexity they demand of the individual brain [29–31].

For example, when an agent has two or more sensors that have intersecting fields of view,

stereopsis (stereoscopic vision) can be used to estimate distance accurately, but the intersecting

field of view is relatively narrow, and its effective range is short [32]. In contrast, when one or
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more eyes generate monocular (non-stereoscopic) images, distances may be inferred by

matching conspecific visual templates, by integrating images over time to compute optical

flow, or by other strategies [33–40], all of which vary in computational requirements and accu-

racy. The tradeoffs involved, their biological plausibility, their potential computational costs,

and the opportunities they offer for robots are currently not well understood.

Marching locust nymphs [41–43] offer an inspiring example to challenge our understand-

ing of vision-based collective motion. The individual locust nymph lacks binocular depth per-

ception, though its two eyes offer an almost-perfect omni-directional visual field. Both field

and laboratory studies indicate that the robust locust collective motion emerges from the inter-

actions between individuals [26, 44–46]. It is largely accepted that non-stereoscopic vision is

the key sensory modality underlying these local interactions. With limited processing power,

and having no depth perception, the individual locust makes motion decisions based on visual

information that lacks precision in measurement of its neighbors’ proximity, headings, or

velocities. Despite these limitations, locusts display impressive flocking, involving large num-

bers of individual agents. Models that ignore the visual perception processes lack the explana-

tory power to capture how this is achieved.

Recent studies of monocular vision-based flocking have investigated some relevant related

mechanisms. Studies of natural swarms (often in vertebrates) [3, 28, 47–50] and robot swarms

[51–53] have suggested strategies for forming dynamic sensory networks, by which agents

remain connected to each other while attending to only a subset of their neighbors at any

given time. These are useful both in cases of a limited field of view, and in handling the occlu-

sions that limit the ability to recognize and track neighbors that are only partly visible. Other

studies have focused on the mechanisms used by the individual for visual processing, given a

specific morphology of agents [54–59]. The different studies all reveal important insights but

often make assumptions (e.g., that agents are circular, or that they can sense the orientation of

visible neighbors), that may not be relevant to the locust body morphology or its perception

capabilities (we discuss these investigations in more depth in Section 5).

Inspired and challenged by the marching locust phenomenon, we have developed a reduc-
tionistmodel of monocular, non-stereoscopic, vision-based collective motion in locust-like
agents (Section 2). The model builds on the geometrical characteristics of locust body mor-

phology and visual perception (elongated shape, wide field of view, monocular images), but

reduces the visual inputs to the bare minimum perceivable in two dimensions (i.e., no height

information is used; objects are perceived only along the horizontal sensory plane). We present

a control algorithm that employs only the information accessible via the agent’s visual field

(Section 2.1). We then propose several general strategies that the agent might employ when

assessing partially obstructed neighbors (Section 2.2). From these restricted capabilities, the

control algorithm synthesizes flocking under various environment conditions and occlusion-

handling strategies.

Experiments performed via computer simulation (Section 3) explored the emergence of

ordered (flocking) movement under various conditions: varying group sizes, range of the

visual field, body lengths, and strategies for handling occlusions. The experiments were per-

formed in various simulated arenas, that differed in their border periodicity constraints and

area.

Our goal was to elucidate strategies that organisms—and robot builders—can use to trade

computation or cognitive complexity for reliable ordered collective motion. The results (Sec-

tion 4) reveal that in many cases, the swarm’s order parameter, which characterizes the level of

alignment between the agents in the swarm, reaches high values regardless of occlusion-han-

dling strategy or environment constraints. However, in highly constrained arenas, different

strategies for handling occlusions differ in the rate and degree of emerging order.
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Furthermore, the body morphology (specifically, body elongation) impacts the rate in which

order is achieved, when using the different strategies. Section 5 presents an in-depth discussion

of the results, their relation to previous models, and their implications for future research

efforts.

2 A reductionist, non-stereoscopic model of visual perception for

collective motion

We present a reductionist model of non-stereoscopic vision-based collective motion, from the

perspective of a locust-like agent. First, in Section 2.1, we present the restricted visual percep-

tion mechanisms, and the vision-based algorithm governing the agents’ movement. Next, in

Section 2.2, we discuss the potentially harmful effects of occlusions on perception. We then

present three alternative strategies allowing the algorithm to interpret and deal with partially

occluded visual information.

2.1 The principal monocular vision-based flocking model

We begin with the basic geometry of the agent. We consider a group of N identical rectangular

agents with width w and length l, moving in a two-dimensional environment at velocity vi,
parallel to their length axis. The elongation of the agents is measured by the ratio of length to

width (l/w), such that the ratio is� 1, i.e., a square is the shortest agent.

The position coordinates xi of agent i are updated at discrete time steps according to the

motion equation,

xiðt þ DtÞ ¼ xiðtÞ þ viðtÞ � Dt; ð1Þ

with velocity vi(t) updated at each time step, causing the agent to steer towards a desired veloc-

ity with steering-parameter factor η,

viðt þ DtÞ ¼ viðtÞ � ð1 � ZÞ þ vdesiredðtÞ � Z ð2Þ

vdesired is calculated based on the decision algorithm of the Vicsek Model [14]. Assuming agent

i has a set of neighbors Ji, its desired velocity averages the velocities of the neighbors j 2 Ji at

each time t:

vdesired tð Þ ¼
1

jJij

X

j2Ji

~v j tð Þ; ð3Þ

where ~v j is the estimated velocity of a neighbor j. The question, of course, is how the velocities

of neighbors are estimated based on visual information. To explore this in-depth, we first dis-

cuss the geometry of locust-like visual perception.

The Geometry of Locust-Like Vision. We model each agent’s visual field of view by an

idealized omnidirectional sensor covering 360 degrees around the observing agent (hereafter,

the focal agent). This wide field of view is consistent with the nearly omni-directional field of

view of locust nymphs [60, 61]. The range of the sensing, i.e., the maximum distance at which

it can detect other agents, is denoted R, a parameter of the model (which we examine in the

experiments).

Fig 1a presents the basic geometry and notation for a focal agent o heading “up”, with veloc-

ity vector vo. The focal agent has a single neighbor jmoving with velocity vj and located at a

distance rj< Rmeasured between the focal agent and the neighbor j along the line of sight

(LOS) connecting the center-of-mass (COM) of the neighbor (COMj) and the COM of the

focal agent (COMo). We denote the displacement vector of neighbor j equals rj = COMj −
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COMo, while the scalar distance to j is rj = krjk. The velocity vj is composed of the tangential

velocity vj,t and radial velocity vj,r components, relating to the line of sight (LOS). The angular

position of the neighbor j relative to the heading direction is denoted as (bearing; βj), and the

angle subtended on o’s visual sensor is denoted as αj. This angle is calculated as an angle

between the edge rays from the focal agent to the observed corners of the neighbor [62]. The

edge rays mark the maximally-distant observable pair of the neighbor’s corners. The line seg-

ment connecting these two corners is called the effective edge. Fig 1b illustrates the edge rays

for three neighbors observed by the focal agent.

Taking a reductionist approach, we only assume the single omni-directional sensor can

measure subtended angles and—over multiple frames taken in successive time—angular dis-

placements of tracked objects (Fig 2a and 2b). It does not measure the orientation or heading

of the observed neighbor, since identifying orientation requires depth perception ability. As a

result, inferring inter-agent distances from the angular projection of a neighbor is generally

impossible, as different distances can produce equal projections (Fig 2b). This also raises a

challenge for estimating the velocity vector vj for neighbor j, as different actual velocity vectors

can be projected to identical observed angular displacements (Fig 2c; see also [35]). The elon-

gated morphology of the agents is a crucial factor in the accuracy of this process: when agents

are circular, the projected subtended angle allows for accurate estimation of the distance, and

thus to the precise knowledge of displacements and velocity (see Fig 2d, and an extended dis-

cussion in Section 5).

Estimating neighbors radial and tangential velocities. We start the estimation of neigh-

bor’s j velocity vj by separately estimating its two components vj,r (radial velocity) and vj,t

Fig 1. (a) A schematic depiction of a neighbor’s observed geometrical features and notation used. The bearing angle βj
defines the angle between the heading of the focal agent (vo) and the line of sight (LOS, as defined in the text). The

circle represents the idealized sensor of the focal agent. The subtended angle αj is defined as the angle between the edge

rays directed towards the extremities of the neighbor. The distance from the focal agent to the center of neighbor j is

denoted rj. The neighbor’s velocity vj, is composed of two orthogonal components: the radial component vj,r is parallel

to LOS, and the tangential component vj,t is perpendicular to LOS. The unit vectors û j;r; û j;t are equal to vj,r, vj,t but

with magnitude fixed to 1; they are not shown in the figure. (b) Geometry of finding the subtended angle αj. Edge rays

are denoted with green lines. Edge rays pass at two corners of the neighboring agent, and the segment between those

points we define as the ‘effective edge’ d (here, dA for neighbor A, dB for neighbor B, etc.). Depending on the relative

orientation of the neighbor with respect to the focal agent, the effective edge may be either the neighbor’s diagonal (see

neighbor A), its shorter side (neighbor B), or its longer side (neighbor C).

https://doi.org/10.1371/journal.pcbi.1011796.g001
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(tangential velocity) (illustrated in Fig 1a). Both components are estimated on the basis of the

instantaneous vectorial distance rj. We make two assumptions in computing this estimate,

with respect to the orientation and size of the observed neighbor, as discussed below.

First, since the orientation of the neighbor is unknown to the observer, we use a simplifying

assumption that the neighbor’s effective edge (d, in Fig 1b) is perpendicular to the LOS. Com-

monly, this effective edge would be the diagonal of the observed rectangle (neighbor A in Fig

1b), as observing the rectangle edges occurs only in rare cases of perfectly parallel or head-on

Fig 2. Sensing pointing angles and angular displacements. The blue circle represents an idealized 360-degree visual

sensor of the focal agent. Positions at time t are marked by x(t). The elongated shape of the neighbor agent leads to

ambiguity in computing its kinematic parameters when using solely angular data. In contrast, for circular agent

morphology, the angular data are sufficient to extract complete and exact kinematic data of the neighbor. (a) Angular

velocity _bj is computed from Δβj, i.e., from the change of the LOS direction. (b) Distance rj to the neighbor j is

estimated from the angle αj subtended by the neighbor, using Eq 5. Different distances to the neighbor (green and

purple lines) can have the same subtended angle αj due to the different orientations of the neighbor with respect to the

LOS. (c) A related source of ambiguity lies in the impossibility of computing the components of the neighbor’s velocity

accurately when using only angular information from a single visual sensor. As shown: many different endpoints

produce equal Δβ. (d) In contrast: when agents are circular, the angular information αj and Δβj suffices for an exact

computation of distance and velocity, because the distance rj is uniquely obtained from αj alone.

https://doi.org/10.1371/journal.pcbi.1011796.g002
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motion. The triangle comprised of the focal agent’s COMo and the two vertices of the effective

edge d (see Fig 1a) is then taken to be equilateral (see Fig A in S1 Text). Under this assumption,

the LOS constitutes both median and altitude to the effective edge, and a bisector of the sub-

tended angle αj, and therefore, the scalar distance rj is given by

rj ¼
1

2
kdk cot

aj

2
ð4Þ

and the vectorial distance rj is given by

rj ¼ rjû j;r ð5Þ

where û j;r is the unit vector pointing toward the neighbor j along the LOS to it (see Fig 1a, and

Fig B in S1 Text).

The distance estimation is based on a second assumption, as also made by other researchers

[63–65] that animals can possess knowledge of the typical size of its conspecifics, especially in

homogeneous swarms. In our case, this translates into an assumption that the effective edge

kdk used in Eq 4 is a known constant for the agents. Combining this constant d with the angle

(αj), one can estimate the distance vector (Eq (5)). This estimate has been used in earlier stud-

ies in the context of loom calculations [61, 63, 64, 66].

We emphasized that rj, as given by Eq 4 is an inaccurate estimate of the actual distance to

the neighbor j, because it is based on the assumption that the effective edge d is always perpen-

dicular to the LOS, which is not true in general, and is of given constant length (typical of con-

specifics). In reality, the effective edge depends on the specific instantaneous orientation of the

observed neighbor, as shown in 1b, and on its actual size.

Relying on the two assumptions above, the radial velocity is computed by differentiating Eq

(5) with respect to time t,

vj;r ¼
@

@t
rj

� �

û j;r ¼ �
1

4

d _aj

sin2
aj

2

� � û j;r ð6Þ

where _a denotes the time derivative of the subtended angle. Expressing d ¼ 2rj tan
aj
2

� �
from

Eq (4) and substituting into Eq (6) results in the radial velocity vj,r, (the derivation is detailed

in S1 Text):

vj;r ¼ �
_aj

sin aj
rj ð7Þ

The negative sign means that when the subtended angle increases, the velocity of the neighbor

is towards the focal agent, and vice versa; see Fig 1a for the intuition.

While the radial velocity is estimated only from the projected subtended angle and its rate

of change, the tangential velocity requires additional components: the bearing angle β (which

is generally known), and its derivative over time _bj (also known as the instantaneous angular

velocity):

_bj ¼
kvj;tk
rj

ð8Þ

from which we can deduce

vj;t ¼ _bj rjû j;t; ð9Þ
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where û j;t is the unit vector of the tangential direction, i.e., perpendicular to the radial unit vec-

tor û j;r.
Combining the two components, we obtain the full velocity vector of neighbor j, vj = vj,r+

vj,t. This process is repeated for all the neighbors, and the mean vj, (vdesired of the focal agent) is

computed by the formula in Eq 3.

We emphasize that this is a baseline model. It assumes that all the neighbors are fully visible

and does not account for possible obstructions of sight. In other words, the agents are pre-

sumed to be transparent, in the sense that they do not occlude more distant neighbors. Because

this assumption clearly ignores fundamental limitations of visual perception in nature or in

robots, we explore general strategies to address it in the next section.

2.2 Addressing occlusions: Three approaches

Occlusions present an inherent challenge to the use of visual modality in both natural and syn-

thetic agents. Flocking swarms, whether natural or artificial, are often dense [67]. Conspecifics

located closer to the observing animal are inevitably blocking, partially or entirely, the animals

standing behind them (Fig 3).

Complete and partial occlusion of neighbors not only reduces the information available to

the focal agent but can also introduce large estimation errors. Neighbors that are completely

occluded are not taken into account in the collective motion model. Partially-occluded neigh-

bors introduce errors, as the projected area of their subtended angle, used as a proxy for dis-

tance, is smaller than it should be. For example, suppose a neighbor is partially occluded, such

that only a small portion of it is observed, and thus it is initially perceived to be distant: if the

occluding animal moves to uncover it, its full length will now be revealed, and within a very

short time it will be seen as being close, implying high radial velocity towards the observer and

a potential collision. The accumulation of such frequent errors may disturb the stability of the

swarm.

We posit there are three general strategies that may be applied (illustrated in Fig 4). Suppose

the focal agent may be able to recognize peers and thus differentiate between entirely-visible

Fig 3. A schematic illustration of the visual social environment from the perspective of the individual locust in a

swarm.

https://doi.org/10.1371/journal.pcbi.1011796.g003
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individuals and parts (partially-occluded individuals that are not recognized as conspecifics).

This allows it to ignore partially-visible neighbors (Fig 4a). It may also be able to cognitively

extrapolate parts to a whole, inferring the position and orientation of the partially-occluded

peer from its visible parts (Fig 4b). Alternatively, without being able to recognize peers, the

focal agent may still be able to perceive any visible part of a neighbor as a distinct whole indi-

vidual. These different strategies place very different requirements on the cognitive-computa-

tional processes of visual perception in the focal agent, as discussed in detail below.

Approach 1: Omission of the Occluded (OMID). The first approach disregards any

visual information originating in partially occluded agents (see Fig 4a). This requires the ani-

mal to possess a dedicated peer recognitionmechanism, i.e., to be able to recognize fully-

imaged conspecifics (and ignore anything else). Mechanisms of selective attention in visual

perception are known to exist in humans and are achieved in the human brain in multiple

stages of perception [68, 69]. Neurobiological studies have shown the existence of selective

attention mechanisms also in insects’ visual processes [70, 71].

However, it is not known whether locust visual perception mechanisms are able to recog-

nize peers. Experiments reported by Bleichman et al. [36] have shown that an individual locust

responds by walking when exposed to visual images composed of randomly-moving dots that

are projected via computer screens to both eyes. As the dots are positioned randomly and do

not mimic the shape or the colors of locust nymphs, these results seem to indicate that the

motion is triggered in the individual devoid of any dedicated peer recognition mechanism.

Nevertheless, such visual processing may, in principle, be applied during collective motion and

constitute a plausible approach that exists in nature.

Approach 2: Completion of the Occluded (COMPLID). In the second approach, par-

tially occluded agents are “completed” as if they are fully visible to the observer. In other

words, a neighbor that presents even the smallest visible segment from the focal agent’s per-

spective would be treated as if no occlusion is present when processing its visually extractable

information. COMPLID utilizes peer recognition as in OMID, while also requiring that the

agents will be able to assess the obscured part of a neighbor (if needed) based on its visible

part. This completion assumes an agent’s visual extrapolation that reconstructs neighbors’ out-

lines using their visible features.

Completing partially visible targets obscured by other objects is a long-studied process in

visual perception. The filling-in of details and image regions partially obscured by interceding

objects [72, 73] is an established neurophysiological process that gives the organism an ability

to identify a complete form based upon observed parts of the contour and is described by the

term “visual completion” [74]. This mechanism produces an internal representation called

“illusory contour”, which extrapolates the physical stimulus to the full geometrical shape of the

Fig 4. (a) OMID—partially occluded neighbor (orange) is omitted from the field of view. (b) COMPLID—orange

neighbor is completed from the seen segment. (c) PARTID—partially seen segment is regarded as a neighbor.

https://doi.org/10.1371/journal.pcbi.1011796.g004
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object [29, 75, 76]. Visual completion of occluded objects has been shown in varied and phylo-

genetically distant species: birds, fishes, cephalopods, bees, etc., and is accepted as one of the

fundamental components of vision in nature [75, 77, 78].

Approach 3: Every Part is a Full Agent (PARTID). The third approach treats all visual

stimuli related to a neighbor as if they represent a full-body conspecific. Contrary to OMID

and COMPLID, this approach makes no assumption of peer recognition capabilities. Rather,

the visual field is divided into segments, with each segment containing the same optical flow

vectors. The agent assumes that each segment represents a different neighbor. In other words,

any visual information is taken completely at face value without any additional interpretation.

Hence, other than the ability to accurately extract optical flow vectors, no further advanced

visual perception mechanisms are required. Since the optical flow is essentially the vectorial

difference between two consecutive frames and does not consist in any form of object recogni-

tion by itself, PARTID would be the least computationally demanding approach if imple-

mented in real life.

However, in this approach, the potential error in the assessment of the environment is the

largest, in comparison to OMID and COMPLID, since partially occluded agents occupy less

area on the visual field, which translates to a significantly larger distance estimation. The same

applies to velocity estimations, which are tightly dependent on the distance. Although in this

approach, an agent does not possess with object recognition abilities, it is assumed that the

observable parameters ða; _a; b; _b Þ are still fully available and extractable. As noted, this

approach requires relatively limited visual processing and is easier to implement in robotic

systems.

PARTID takes its inspiration from biological mechanisms, in which an organism performs

an action based on visual stimuli originating from an object that is not recognized. For exam-

ple, locusts possess a pair of visually-sensitive neurons that encode looming stimuli and cause

the locust to produce escape behaviors [61]. The visual stimuli affect the behavior of the indi-

vidual directly and without passing through object recognition mechanisms [36].

2.3 Summary

We summarize the different mechanisms introduced in this section. First, we derived esti-

mates for the velocities of visible neighbors, such that these velocity vectors can be aggregated

in a Viscek flocking mechanism for determining individual velocity at any given moment.

These estimates rely on assumptions with respect to the background knowledge available to

the individual (the typical size of conspecifics), as well as on the orientation of the observed

agents (parallel to the line of sight). We refer to this base reductionist model as the principal
model.

We then discuss strategies for addressing occlusions, which can further degrade the accu-

racy of estimated velocities. All three strategies ignore completely occluded agents (unlike the

principal model) but differ in how they treat partially occluded neighbors. They are summa-

rized in Table 1 below.

3 Methods

In order to evaluate swarm behavior using different occlusion-handling approaches, we devel-

oped a two-dimensional (2D) collective motion simulator based on a basic simulation engine

[79] (see Fig 5). The agents’ movement in two dimensions is simulated by updating their coor-

dinates at each iteration in accordance with their current velocities and the position update

control laws presented in Section 2.1. The location and orientation of each rectangular agent

are computed from the coordinates of its COM. It is assumed in our model that velocity
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heading is always along the long axis of the body. The velocity magnitude can vary between 0

and a fixed maximal speed value vmax, i.e., the agents can accelerate up to a maximal speed.

Together with the steering parameter η, this reduces the sharpness of turns and accelerations

in the agents’ motions.

The agent’s motion decisions are based on the neighbors’ velocities. These velocities, in

turn, are derived from the angular measurements of each perceived neighbor: their subtended

angle and the angular velocity. These inputs serve as the agent’s subjective perception.

3.1 Simulating perception

We compare the emergent collective motion resulting from the different occlusion-handling

approaches. The perception of each agent is simulated. The exact values stored in the simula-

tion, are used as the basis for emulated perceptual processes, and the effects of occlusions.

Each simulated focal agent is given the information it would have perceived in the 2D environ-

ment, in the principal model, and in the three occlusion-handling strategies.

Simulating the Principal Model. The α angle is calculated using the neighbor’s vertices of the

edge that subtends the largest angle on the agent, regardless of occlusion. The angle between

the two vectors pointing from the focal agent’s COM to the respective vertices equals α. The

β angle is simply the angle between the focal agent’s velocity vector and the neighbor’s

Table 1. A summary of the differences and similarities between the different reductionist models. Rows present different occlusion conditions with respect to the

neighbor in question. Columns contrast the various models in how they respond to these conditions. See also Fig 4.

Neighbor visible? Principal OMID COMPLID PARTID

Completely occluded Fully visible Ignored Ignored Ignored

Not occluded Fully visible Fully visible Fully visible Fully visible

Partially-occluded Fully visible Ignored Fully visible Part is neighbor

https://doi.org/10.1371/journal.pcbi.1011796.t001

Fig 5. (a) Toroidal arena snapshot at t = 10[frames]. Agents are initialized at random positions and random velocities.

The purple-colored agent is an arbitrarily marked focal agent with its respective neighbors colored green. (b) Toroidal

arena snapshot at t = 2000[frames]. An apparent flocking behavior is displayed, with all agents moving roughly in a

single direction.

https://doi.org/10.1371/journal.pcbi.1011796.g005
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COM, again regardless of occlusions. The focal agent receives visual parameters of all the

neighbors, including those that are completely occluded by others.

Simulating OMID. All completely occluded or partially occluded neighbors are ignored. The

effective α and β for each completely-visible neighbor are taken from the subtended angle

as before, and only those are used in computing vdesired.

Simulating COMPLID. We simulate this capacity by means of calculation, taking the same

measurements as in the principal model. We then remove from consideration all neighbors

fully occluded by others.

Simulating PARTID. We iterate over the neighbors, from the closest to the furthest. Each

neighbor’s effective edge is calculated and then checked against an array of edges. If a partial

overlap occurs with the current edge and one or two of the already checked edges, the effec-

tive α is calculated using only the non-overlapping segment: that is, the subtended angle

from any visible part of a neighbor is taken to be a neighbor, and its center of mass is taken

to be the angular midpoint.

3.2 Controlled (independent) simulation variables

The simulator enabled control of the many variables. The population size N controls the num-

ber of agents in the simulated swarm. The body length-to-width ratio determines the elonga-

tion of the agent, and thus is assumed-constant effective edge size d. The effective range of the

sensor, R is measured in body lengths ([BL] units), and determines the range within which the

agent is able to perceive neighbors, without occlusions. The steering parameter η sets the

weight of vdesired relative to the current velocity (vi) of an agent. vmax, which caps the maximal

speed attainable by agents and was arbitrarily set to 1[BL]/frame.

We utilized different areas (arenas) in the simulation experiments: a square arena with peri-

odic boundaries, an infinite corridor where only one axis has periodic boundaries and a circu-

lar arena (with no periodic boundaries). Where a period boundary occurs, once an agent’s

COM passes the maximal/minimal coordinates or the X/Y axes, it reappears on the other side,

respectively. Where a non-periodic bound is reached by an agent, it is repelled with varying

repelling force, depending on the size of the radial velocity component (relative to the arena

center), i.e., an agent traveling to the external circular boundary will be repelled from it with a

force proportional to the size of the agent’s radial velocity component.

Our choice to incorporate both ring and corridor arenas in our simulations draws inspira-

tion from laboratory studies of collective motion, which often use bounded environments for

practical reasons. These settings are advantageous for aligning simulation results with experi-

mental data. In nature, although environments may appear open, they are often restricted by

various topographical features such as valleys, crests, and boulders, as well as diverse vegeta-

tion, all of which significantly influence the movement patterns of swarms [80].

In our study, the corridor arena represents an approximation of such a naturally restricted

environment, akin to an endless path with one direction of movement. The ring arena, with its

curved boundaries, serves as a variation of this concept, emulating a continuous corridor but

with a circular layout. These designs are intended to reflect the adaptive behavior of locusts in

avoiding collisions with boundaries, as observed in natural settings. In contrast, the torus

arena, while useful for simulating unbounded environments, does not accurately represent the

boundary-limited conditions typically found in natural settings. Both the ring and corridor

arenas are illustrated in Fig 6, providing visual representations of these simulation

environments.
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3.3 Measured (dependent) simulation outcome: Flocking order

The ideal flocking is a situation in which all agents are synchronously moving in the same

direction. Over the years, various measures of order have been proposed and utilized in differ-

ent settings. As we essentially extend the Vicsek-based collective motion model to account for

visual perception, we chose the polarizationmeasure of order, denoted ϕ and used in other

investigations of Vicsek-based collective motion [14, 20, 81–83]. It is defined by

� ¼
1

N

�
�
�
�
�

X

i2N

vi
kvik

�
�
�
�
�

ð10Þ

where N is the population size, and vi, kvik correspond to the velocity and speed (resp.) of

agent i. ϕmeasures the degree of global alignment by averaging the normalized velocities of

the agents (i.e., headings). It is a scalar value representing at any given time the degree of global

order in the system. For a random disordered group state, ϕ is approximately 0, while for a

fully ordered flock, with all agents moving with an identical heading, it approaches a value of

1.

4 Results

Two sets of experiments were conducted to evaluate the presented approaches. The first set,

presented in Section 4.1, uses the principal model to set baseline parameter ranges for various

controlled settings. The second set of experiments, presented in Section 4.2, then uses the

established parameters to contrast the performance of the three occlusion strategies alongside

the principal model in different arenas, whose geometry and bound periodicity are varied.

Unless otherwise stated, the experiments comprised 50 independent trials, each with its

own randomized initial conditions (individual velocities, including headings), such that the

swarm was unordered (ϕ close to 0). The figures present the mean over the trials, with error

Fig 6. (a) Snapshot of corridor arena. The vertical boundaries are repelling, while the horizontal ones are periodic. (b)

Ring arena snapshot.

https://doi.org/10.1371/journal.pcbi.1011796.g006
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bars (or shaded envelopes around the solid lines) showing margins defined by the standard

error. This enables the distinction of significant differences between different models.

The primary measure in our flocking system analysis is the polarization order ϕ, ranging

from close to 0 (no order) to 1 (high order). We study both the time evolution of ϕ and its

steady state value for large t: one tracing ϕ over simulation frames t = 1 to 3000, and another

showing ϕ at frame t = 3000. The former assesses whether ϕ stabilizes or varies, indicating the

swarm’s convergence dynamics, while the latter provides a quick view of the swarm’s order at

the simulation’s end.

4.1 Flocking using the principal model: Baselines

We begin by testing the principal model in a toroidal arena, with independent simulation vari-

ables chosen in accordance with observed locust characteristics. The goal is to establish base-

line responses to various settings, such as the visual range R, the steering parameter η, etc. As

simulation measurements are artificial, we use a standard length unit, [BL], which is the agent’s

default body length, with a length-to-width ratio of 3. For the experiments reported in this sec-

tion, we used an arena of size 20 × 20 [BL2].

4.1.1 Determination of steering parameter η. The first experiment sought to determine

an appropriate steering parameter, η empirically. Initial settings were based on observations of

locust marching bands: a population size N = 120 within the arena resembles reported march-

ing locust density in nature [67] (see below for other values of N). Similarly, the sensing radius

R = 3 body lengths ([BL]) was set according to empirical observations of locust nymphs not

reacting to visual stimuli located farther than 2–3 [BL] [26]. The agent elongation (body length

ratio) was set to 3 (i.e., agent length is three times its width; see Section 4.1.3 for discussion).

We experimented with different values of the steering parameter η. Fig 7a shows the mean

order measure ϕ as it changes over time, measured in simulation frames (t = 1. . .3000), for

four values of η. It can be seen that smaller values of η cause the swarm to converge towards a

higher order, while larger values do not.

Fig 7b examines a more extensive set of η values in terms of the order measurement at time

t = 3000. It can be seen that a value of η = 0.01 yields the maximal value of the order parameter,

approaching 1. This is where the swarm is nearly fully aligned. Notably, no convergence occurs

for smaller values, meaning that the agents are apathetic to the environment and retain their

original heading directions. In contrast, a significant drop can be seen in the order parameter

magnitude for large η values, i.e., the agents’ convergence fails due to over-sensitivity to the

external steering parameter. Further analysis of these large η values is provided in Fig 7c. It

shows that agents aggregate in small and tight clusters and constantly change their headings,

unable to reach either a local or a global uniform moving direction. Based on these findings,

we fixed the steering-parameter factor parameter as η = 0.01 for the rest of the experiments

reported in this study.

4.1.2 Influence of vision radius R. A second series of experiments examined the role of

the visual sensory range (distance-wise). Initial settings, based on empirical observations of

locusts, have set the range R at 3[BL]. In this subsection, we examine other values.

Fig 8a and 8b, present the evolution of order ϕ over time, and its long-term values, for dif-

ferent visual ranges 0.67� R� 3.67 [BL] for a swarm of size N = 100. Fig 8a shows the order

developing over time for different values. Fig 8b shows long-term mean values of ϕ at the end

of the simulation (t = 3000). As expected, for R smaller than 1[BL], the progress toward the

ordered group state is weak and very slow. The reason for that is for such short range of visibil-

ity, most neighbors are unobserved. Thus, vision does not provide sufficient information

about the neighbors to the focal agent. For larger values of R, the long-term ϕ slightly increases
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Fig 7. Steering parameter sensitivity analysis, over 10 independent runs. (a) Mean order (ϕ) for different η,

t = 1. . .3000. The solid line shows the mean order parameter of the swarm for each t, with standard error margins

shown in the envelope. (b) Long-term (t = 3000) mean order (ϕ) for varying η values. (c) Cluster pattern of agents

moving under high η values.

https://doi.org/10.1371/journal.pcbi.1011796.g007

Fig 8. (a) Time-dependent and (b) long term sensitivity analysis for visual range R, measured in body lengths [BL], in

the Torus arena. Means and standard errors shown for 50 trials.

https://doi.org/10.1371/journal.pcbi.1011796.g008
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with larger radii. Interestingly, lab experiments and observations of locusts have estimated

their visual range to be 2–3[BL]. For the remainder of the experiments, we set R = 2.67[BL].

4.1.3 Other influences on flocking order. Interconnections clearly exist between the dif-

ferent parameters. For instance, it is possible that for visual ranges that dramatically differ

from those we used in our experiments, different values of η will yield different results. Simi-

larly, varying the type of environment used can influence the rate of convergence or even its

existence. As we sought to explore the model as inspired by nature (in particular, locust), we

set out to experiment with settings in ranges that approximate locust swarms and used the

toroidal arena and principal model, as we believe these to be the least constraining, and least

sensitive to parameters that are external to the model itself.

The population size N is a clear factor regarding the emergence of order, as varying N while

maintaining a fixed arena area (or inversely, varying the arena size while maintaining a fixed

value of N) impacts the swarm density. This in turn influences the likelihood of occlusions, the

ability—given limits on R—to observe neighbors, etc. In the different arenas we set values of N
that we had experimentally determined to be informative, in that they reveal differences

between the different strategies. Fig C in S1 Text, shows how this procedure was carried out

for the torus arena. We took similar steps to determine N in the other arenas.

We now turn to discussing the body length ratio, which measures the elongation of the

agent. We used a length-to-width ratio of 3 [BL] unless otherwise noted, as this approximates

the observed dimensions of typical locust nymphs in our laboratory, which inspired this

research. This is a critical issue, as some existing models of vision-based flocking use non-elon-

gated (circular) agents. While locusts, and many other swarming species, are clearly elongated,

it is important to establish whether the elongation (as measured by the body length ratio) influ-

ences the results. Otherwise, non-elongated agents—circular or squares—could equally serve

as a model for locusts or other elongated agents.

Fig D in S1 Text provides an empirical exploration of the influence of the length-to-width

ratio on convergence, in various environments, and in all flocking models (principal, OMID,

COMPLID, PARTID). Briefly, the results show that convergence to an ordered state is highly

sensitive to the length-to-width ratio, and thus setting its value to model locust body dimen-

sions is critical. As these results complement the main results for the occlusion-handling strat-

egies that we report below, we advise the reader to examine them after the main body of results

is presented. We also address this issue in the Discussion (Section 5).

4.2 Comparison of the three occlusion strategies and the principal model

Having established the baseline parameter and experiment settings, we now turn to investigate

the emerging order ϕ of swarms, utilizing different strategies. The three occlusion-handling

strategies are evaluated in comparison with the principalmodel (which does not account for

occlusions). A summary of the commonalities and differences between the models is provided

in Table 1.

4.2.1 Experiments in the Torus arena. We begin with the experiments in the Torus
arena, which we had utilized (above) for establishing the baseline parameter values. Fig 9

shows the evolution of the order ϕ over time for all four strategies. The graphs show the mean

order parameter for each point in time. Three population sizes of N = 60, 120, 180 are shown;

in all experiments R = 3[BL], η = 0.01, and length-to-width ratio is 3.

At higher densities (shown in Fig 9c) the rate of convergence of all three perceptive

approaches lags behind the principal model. At higher densities, rates of convergence become

steeper. At the same time, the long-term order parameter remains very close for all the meth-

ods, and even different densities. Finally, the ranking of the rates of convergence at N = 180
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indicates that COMPLID converges faster than OMID. Completing parts of neighbors, rather

than omitting them, leads to an effectively larger number of neighbors, which leads to stronger

alignment.

Fig 10 complements Fig 9 above. It shows the long-term mean order at the end of the simu-

lation t = 3000. It is evident that all three occlusion approaches, alongside the original model,

reach similar long-term order-parameter values (ϕ* 0.9), indicating they are reaching similar

degrees of ordered flocking. That said, when we consider the result of PARTID at N = 180, and

also examine its behavior in Fig 9b and 9c, we see that PARTID has a slower rate of conver-

gence, and slightly lower long-term order (note the separation defined by the standard error

bars for PARTID when N = 180, in Fig 10). This can be interpreted as additional evidence that

PARTID may generate excessively noisy perception.

4.2.2 Experiments in bounded arenas. The torus arena is fully periodic: agents moving

towards an edge are not repelled by it nor blocked. Rather, they move through it to appear on

Fig 9. ϕ evolving over time t = 1 . . . 3000, for different strategies, in the torus arena. Plots show the mean order

parameter of the swarm at each simulation frame, with standard error margin for different population sizes–(a), (b), (c)

60, 120, 180 agents respectively–over 50 independent trials. LargerN generally leads to a slightly steeper transition to a

flocked state.

https://doi.org/10.1371/journal.pcbi.1011796.g009

Fig 10. Long-term order of the four strategies: Principal, OMID, COMPLID, PARTID. The plots shows the mean

(and standard error) long-term order ϕ for t = 3000, for differentN values (50 independent trials). Long-term ϕ values

are practically indistinguishable.

https://doi.org/10.1371/journal.pcbi.1011796.g010
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the opposite side of the arena. Likewise, agents close to one edge can visually sense neighbors

that are on the “other side of the edge”, i.e., on the opposite side of the arena. While this is a

common arena model in theoretical studies of swarms, its abstract nature distances it from the

geometrical constraints of realistic environments, which have bounds and obstacles that

impose limits on the movement of the agents.

We therefore switched to experiments in the infinite corridor (periodic on one side, but not

the other) and the ring (non-periodic) arenas, described in Section 3. Three versions of each

arena type were tested: wide, intermediate, and narrow. The geometry of the arenas is charac-

terized by the arena width to single agent body-length, i.e., arena width in in [BL] units. For

the infinite corridor, the distance between the periodical boundaries (length) was 20 [BL] for

all the experiments. The widths were: 10, 20, 30 [BL] respectively. For the ring arena the radius

of the inner circle was 1.66 [BL] and the outer circle radii tested were: 5, 8.33, 11.66 [BL]. In

the experiments below, N = 100 (empirically selected; see Fig C in S1 Text).

Figs 11 and 12 combine to show that narrow bounded environments (i.e., higher densities,

and perturbations caused by bounds pushing the agents back into the arena) cause distinguish-

able differences in the convergence rate (and success) of the different flocking, when utilizing

different strategies for handling occlusions. In particular, while all strategies show a rise in the

ordering parameter, the behavior under each strategy is distinct. A potential reason for this is

the fact that in narrow arenas, interactions with the boundaries are much more frequent. In

the corridor, the principal model and the COMPLID strategy converge significantly faster and

to a higher long-term value than OMID and PARTID. In the ring, all four strategies are clearly

distinguished.

A commonality to both arenas, in all settings, is that the PARTID strategy is generally

slower than the others (with the possible exception of wide corridor and intermediate ring).

Fig 11. Mean and standard error of the order measure ϕ, as it changes over time t = 1. . .3000, in 50 trials. (a),(b),

(c) Infinite corridor arena. Wide / Intermediate / Narrow arena dimensions are 20 × 30 / 20 / 10 [BL]). (d),(e),(f) Ring

arena. Wide / Intermediate / Narrow ring external border radii are 11.66 / 8.33 / 5, respectively. The internal ring

border is constant for all three types and equals 2.5.

https://doi.org/10.1371/journal.pcbi.1011796.g011
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We believe that given that PARTID is a-priori more likely to suffer from noise in the observa-

tions, the geometrical bounds, which repel or push agents into the arena (sudden orientation

changes) are particularly detrimental to convergence when PARTID is used as a strategy.

5 Discussion

The reductionist approach we have taken in this study is intended to shed light on the neces-
sary (minimal) mechanisms that can generate an ordered collective motion based on visual

processing. This goal stands in contrast to the clear variety of sufficientmechanisms that can

be used at a computational (cognitive complexity) cost and/or mechanical-physiological

requirements. Even when disregarding energy- and computation-hungry sensors and pro-

cesses used in robots (e.g., LIDAR sensors and associated processing [84]), distance estimates

could still be generated from visual information in a number of ways, albeit demanding more

capabilities from the agent, compared to the approach we have taken here. For example, ste-

reoscopic vision is a well-understood mechanism for reliable distance estimation [32] in both

natural and artificial systems. However, the requirement for overlapping fields of view of each

eye (camera) narrows the perceived angle. While multi-lateral distance estimation is required

for most traditional models of flocking, quite literally, carrying out the stereoscopic vision in a

backward direction would require an additional pair of eyes at the back of the agent’s head

[55].

We introduced a non-stereoscopic (monocular) vision-based flocking model for elongated

agents whose motion and perception are situated in two-dimensional flat worlds. The goal was

to explore the generation of ordered collective motion with the bare minimum of information

that may be perceived through a monocular vision. The models utilize geometrical aspects of

vision, such as subtended visual angle, observable angular velocity, and other derived parame-

ters, but does not otherwise rely on complex visual processes.

The model departs from previous theoretical models [13, 14, 81] that ignore the inherent

limitations of the visual sensing modality (and rely on direct measurement of inter-agent dis-

tances or velocities). Rather, the model estimates distances and velocities from observed angles

and their rates of change, measures which are biologically plausible in non-stereoscopic vision.

Also, we avoid the assumption of circular agent shapes which is made in some previous inves-

tigations of vision-based flocking, and specifically allow for elongated agents. Finally, we also

depart from most studies of vision-based flocking by explicitly considering different perceptual

strategies for handling occlusions, and their effect on the resulting movement.

Fig 12. Mean and standard error of the long-term order measure ϕ, at t = 3000, in 50 trials. In both (a),(b), the

horizontal axis marks the width of the arena (wide/intermediate/narrow, as above). (a) shows the results for the infinite

corridor. (b) shows the results for the ring arena.

https://doi.org/10.1371/journal.pcbi.1011796.g012
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Below, we highlight specific issues and explore the questions raised by the results, in partic-

ular also with respect to previous investigations of collective motion.

5.1 The plausibility of different strategies for handling occlusions

We tested and compared three different general strategies for addressing occlusions in differ-

ent arenas:

• The first strategy (COMPLID) completes the outline of a partially hidden neighbor. Such

abilities are present in various species, and there is some evidence that these include insects

[75, 78]. However, this approach is the most complex of the three (cognition and computa-

tion-wise) as it requires the recognition of conspecifics combined with extrapolation

capabilities.

• The second strategy (OMID) entirely ignores any partial information. This requires differen-

tiating between fully vs. partially observed neighbors, which implies using recognition of

conspecifics. However, it is somewhat simpler than COMPLID since it only filters out erro-

neous visual stimuli rather than computing the correct stimuli.

• The last strategy (PARTID) treats each segment of a neighbor as if it represents a full-length

body. Hence, it is the simplest of the three since it requires minimal cognitive processing

from the individual. It does not rely on dedicated conspecific recognition mechanism but

instead clusters distinguishable visual features and regards each cluster as a neighbor, a rela-

tively simple process.

However, the same simplicity also results in PARTID providing the most erroneous percep-

tion of the surrounding agent, as parts of neighbors’ segments change in their degree of visi-

bility due to closer neighbors revealing or occluding them, which in turn is perceived as

neighbors moving–quickly—away from or towards the focal agent (i.e., large absolute mag-

nitude of the vj,r component).

The difference in the required computational power under the different approaches is very

significant, as in nature, organisms demonstrating collective motion are very often limited in

this respect (small brains, simple neuronal substrates). Hence, finding the least computation-

ally demanding algorithm that is still capable of reaching flocking can potentially explain the

actual mechanisms involved in the flocking of these relatively simple species. From this per-

spective, PARTID has the least requirements for visual information processing, while COM-

PLID has the most requirements.

In the torus arena, all three perception approaches of occlusions have successfully demon-

strated the flocking transition from a disordered initial state to an ordered collective state.

However, a detailed analysis reveals slight differences in convergence rates, where PARTID

consistently appears to be slower to converge than the other strategies. This deficiency of PAR-

TID is more pronounced at a higher density of neighbors, where occlusions are more frequent,

and thus PARTID makes more errors.

It is important to emphasize that there is no intrinsic algorithmic advantage to faster con-

vergence in collective motion models. However, there may very well be a functional advantage,

in the sense that faster or slower convergence is advantageous to the swarm, and thus in this

sense, an algorithm displaying faster convergence may be considered better. In the context of

natural swarms such as locusts, there could be a potential advantage for faster convergence.

Observations from biological studies (e.g., [6, 21]) indicate that locust swarms exhibit daily

activity patterns transitioning from a state of disorder to organized movement. In their natural

behavior, locusts spend early hours inactive on vegetation, gradually moving to ground-level
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activities, and then, as temperatures and activity levels rise, they shift towards collective

motion. This daily cycle, sometimes repeating within a day due to temperature variations,

emphasizes the ecological benefit of a rapid transition from disorganized to coordinated move-

ment. A higher convergence rate of the swarm’s alignment implies a quicker formation of an

ordered swarm, facilitating efficient resumption of marching and migration, crucial for the

survival and functioning of the swarm.

When we evaluated the models in constrained environments (non-periodic bounds; corri-

dor and ring), the general following conclusion emerges: at best, PARTID converges as quickly

as others;most often, its rate of convergence to an ordered state is consistently less rapid com-
pared to other strategies, and has lower long-term order parameter values. Note that such con-

strained environments are common in nature. The topography of natural terrain has creeks,

valleys, ridges, and other lateral constraints resulting in effectively constrained geometry. As is

well established (see [44, 80] and references within), marching locust bands successfully main-

tain flock formation despite such constraints.

This presents an intriguing challenge for our understanding of collective motion. On the

one hand, an occlusion-handling method (PARTID) that is computationally cheap, and

employs mechanisms whose existence in insects is generally accepted. However, it is brittle

and generally inferior to others exactly in the type of settings in which natural swarms, and in

particular locust swarms, excel. On the other hand, in terms of order evolution over time, as

well as order value at the end of the simulation, COMPLID appears to be superior to the others
in most cases in its convergence rate and long-term value and inferior to none. However, COM-

PLID implies complex capabilities for recognizing conspecifics and for being able to extrapo-

late complete neighbor outlines from partial visual clues. While there is some limited evidence

that insects are able to carry out such tasks (e.g., to extrapolating environment contours [75,

78]), recent laboratory studies of locust nymphs have demonstrated that they move in response

to simulated movement of random visual patterns, which do not necessarily need to be recog-

nized as other locust [36].

Considering our results from constrained arenas, it is tempting to declare that PARTID is

an oversimplification of the perceptive mechanisms in locust vision, and that advanced

computational capabilities are required for coping with partially-occluded neighbors, as

assumed by the proposed OMID or COMPLID approaches. However, examining related

investigations offers other possibilities, as we discuss below.

5.2 Reliable distance estimation, revisited

The critical weakness of all the models under the restricted perceptual capabilities we allow, is

in the estimation of distance to neighbors. The geometry of the visual image denotes a single

subtended angle α, parallel to the horizontal plane of motion (the plane on which the agent is

moving) as the basis of distance estimation. As detailed in Section 2.1, we assume no informa-

tion is given to the agent about the neigbor’s orientation. Lacking this information, the model

assumes it is heading in a direction perpendicular to the LOS. Violations of this assumption

insert errors into the distance estimations. Without occlusions, their effects on the emerging

flocking order is clear, but not dominant to the degree it prohibits flocking (consider the

results in low-density arenas, for instance).

In the presence of partial occlusions, the errors caused by the assumptions of the model

may gravely affect the result. COMPLID relies on (assumed) complex capabilities of the agent

to extrapolate the true dimensions of partially-occluded neighbors from visible parts. As a

result, its distance estimates with respect to partially-occluded neighbors are the same as with

fully-visible neighbors; it is therefore relatively robust to occlusions, in the sense that its
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performance should not change much as they become more frequent. In contrast, PARTID,

which considers every visible part as an agent by itself, is gravely affected by partial occlusions.

A small visible part of an occluded agent would be considered a distant neighbor. If the part

grows—more of the occluded agent becomes visible, e.g., because the occluding agent in

between is moving—then that same perceived distance agent now captures a much wider sub-

tended angle, and would suddenly be perceived as close.

In other words, methods for reliable distance measurement in monocular images (other

than those implied by COMPLID and OMID) can help avoid the failures of PARTID. The

complexity and biological plausibility of such methods should be considered vis-a-vis the pro-

cesses assumed by strategies we already discuss above: neighbor contour extrapolation (COM-

PLID) and conspecifics recognition (COMPLID and OMID).

Several studies touch on the critical relationship between the agent morphology and dis-

tance estimation. Ignoring occlusions, visual perception of circular agents avoids the errors

introduced by incorrect interpretation of α, as discussed in Section 2.1 and in S1 Text. Indeed,

Moshtag et al. [58] and Berlinger et al. [85] demonstrated vision-based collective motion in

physical robots, treating them as circles. Still, partial occlusions may cause rapid changes to α,

and would make distance estimation unreliable under such conditions.

Bastien et al. [56] (and later Qi et al. [57]) demonstrated that under the assumption of circu-

lar agents, a completely different control approach can be taken, which avoids identifying indi-

vidual neighbors or estimating the distance and heading of neighboring agents altogether.

Rather, the agents only mark the projected blocking of the visual field by neighbors, without

tracking them individually; angular segments in the field of view, blocked by neighbors, are

marked as such, without a measurement of distance or identification of the neighbor. As a

result, this approach is not sensitive to the occlusions in the same manner as the models intro-

duced here.

While robots may be built to be circular in shape, natural swarming animals are most often

elongated—with locusts being an example. As we were initially motivated by the behavior of

natural swarms, the experiments above were tested using elongated simulated agents. None-

theless, the reduction in errors offered by assuming a circular shape raises the question of the

importance of the agent’s morphology to the presented models. To address this question, we

experimented with different length-to-width ratios. The analysis (Fig D in S1 Text) reveals that

the performance of the different models varied widelywhen the body length ratio was changed,

both in the rate by which order increases, as well as in long-term order values. Moreover, the

qualitative relationships between models varied as well. In other words, the elongation of the

agent has a dramatic effect on the emergence of ordered collective motion.

The models presented in this study exhibit a dependency on several parameters, notably the

body length ratio, visual range R, and steering parameter η. This dependency may limit their

applicability across different scenarios. Future research could benefit from integrating our

findings with the methodologies employed by Bastien et al. [56] and Qi et al. [57], which could

lead to the development of more robust models for collective motion. Such integration has the

potential to enhance the accuracy of distance estimation in swarms of elongated agents, partic-

ularly in overcoming the challenges posed by occlusions.

There are additional strategies that may be applicable. Because the agent’s shape is a given

property in nature, how else might an agent overcome the errors introduced into its distance

estimates by the variance in α (esp. with partial occlusions)?

First, we may infer the orientation of the agent, to improve the distance estimate. This

method can be applied by monitoring the position of each individual over a potentially brief

period. This allows for the inference of their orientation based on their movement trajectory.

This necessitates persistent labeling the individuals over the interval, despite occlusions, and
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their relatively uniform appearance. Such tracking is considered to be very challenging from a

computational perspective, even more so when the observer itself is moving [86–89]. Another

approach is to infer orientation from enriched visual information. For instance, this may be

done by matching distortions of known visual features to compute the orientation. Fig 13 illus-

trates a hypothetical example of how this might work with locust nymphs. Note that this type

of process is still possible with flat 2D sensing (no height), as the distortions are revealed as dis-

tance changes between visual features of the known template.

Second, independently, we may remove the artificial restriction on perception of a flat

world, and consider the more realistic view that the agent views three-dimensional objects.

Visible neighbors would then be characterized by two subtended angles, one measuring the

horizontal dimension of the neighbor (the familiar α subtended angle), and one measuring its

vertical dimension, i.e., its height (let us call it γ). Note that for elongated agents moving on the

horizontal plane, α depends heavily on the orientation of the observed agent, but γ does not.

For example, in Fig 13a, note how the subtended angle of the neighbor α changes with its head-

ing, much more than its height γ. Integrating this information enables much more robust dis-

tance estimations, and as both natural agents and robots move in three-dimensional worlds, it

is commonly applicable [54, 85]. The use of γ can alleviate the errors caused by partial occlu-

sions considerably when neighbors’ height is visible while their horizontal dimension is par-

tially hidden.

Third, we may attempt to generate depth information from monocular images taken over

time. In computer science, this is called structure from motion (SfM), a complex process that

generates depth information (and thus, estimated distance) from multiple images taken by a

single moving camera, at different (close) times [90, 91]. While this is typically carried out in a

static environment (i.e., the agent is localized with respect to static objects), it is theoretically

possible, in principle, to apply this also to moving neighbors. However, it is considered very

challenging, and in many ways an open problem for computer vision (see above for a brief dis-

cussion of the challenges involved in tracking, which would be a subset of the challenges for

SfM). Below, we also discuss the analogous (simpler) case for optical flow generation.

None of the approaches discussed above for distance estimation from monocular images,

completely solves the problem raised by partial occlusions. However, independently or in com-

bination, they may alleviate it to an extent that enables computationally-simpler mechanisms

to perform as well as those requiring complex processes. Indeed, more generally, allowing for

rich visual projected information allows more robust measurements, based on many visual fea-

tures, including shading, 3D shapes, color and spectral data, texture, etc. [31]. Even relatively

simple combinations of visual features can be very useful. For example, Wang et al. [59]

Fig 13. Hypothetical example of how recognized template distortions may be used to infer orientation of visible

and partially-visible neighboring locust nymphs based on its black patterning alone (i.e., not fully-detailed

conspecific recognition). (a) Template distortions due to different headings. (b) Template distortions due to partial

occlusion.

https://doi.org/10.1371/journal.pcbi.1011796.g013

PLOS COMPUTATIONAL BIOLOGY Vision-based collective motion: A locust-inspired reductionist model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011796 January 29, 2024 23 / 30



demonstrated implicit cooperation between robotic swarm members using visual inputs. Uti-

lizing specific schemes for positioning poles holding specifically-placed sets of LED lights, the

robots were able to estimate the relative positioning, velocity, state, and other features of their

neighbors. Royer et al. [39] and Dong et al. [34] survey the progress in this direction in robot-

ics. There has also been great interest recently in applying machine learning approaches to the

challenge of estimating depth from monocular images, utilizing data containing rich visual

information [37, 92]. These studies, rooted in robotics and engineering, may inspire investiga-

tions into biologically-plausible counterparts.

For real-world robot swarms, it is crucial to consider the available computational resources

against the requirements of the reductionist algorithmic models discussed above, which serve

as baselines. In realistic settings, there are additional mechanisms competing for computa-

tional resources on one hand (e.g., manipulation and basic processing of panoramic images,

processing of additional sensor modalities, etc.), but also offering opportunities for greater

accuracy and robustness, on the other—as discussed above. Thus although the algorithms are

designed to minimize computational load, their practical application in swarm robotics needs

to be considered alongside the opportunities and challenges offered by physical robot compu-

tational and perceptual resources.

5.3 Reliable velocity estimates

A common attractive component in all the models we presented is their reliance on optical

flow as a key step in measuring _a and _b. Optical flow is a widely recognized technique

employed by numerous species in nature, such as insects [33, 38], and is also an important

method utilized in robotics for navigation and perception tasks [35, 93, 94].

One of the most difficult challenges to the use of optical flow in crowded environments,

even ignoring the issue of occlusions, is that it is difficult to compute when the agent’s social

environment is moving independently of its own movement. In other words, distinguishing

the optical flow of observed agents that are moving in the vicinity of the observer, while the

observer itself is moving, is computationally difficult, prone to errors, and sometimes impossi-

ble (this challenge also arises for SfM processes, discussed above) [35, 94–97].

As we conducted simulation experiments in which estimations were produced by a simu-

lated process, we could ignore this complexity. Employing the reductionist model in robots—

or investigating its potential use in nature—would require tackling this computation; neither

animals nor robots can side-step this issue.

We note that computing optical flow when either the observer is moving (and others are

standing still), or when the observer halts (and others are moving) is relatively easy [35, 96].

However, for the purposes of employing the model we present here, neither simplified variant

would appear sufficient, as agents move while observing. In this context, it is important to note

that previous work has established that the Pause-and-Go motion scheme plays a role in the

repeated decision-making of locusts in a swarm [21, 26, 98], i.e., a representation of the local

environment, utilized for deciding whether and in what direction to move, is constructed by

the locusts when standing.

Assuming that locusts utilize optical flow for decision-making in collective motion, it is

plausible they adopt a two-stage approach to manage the computational challenge posed by

calculating optical flow while in motion. This hypothesis suggests that locusts first pause to

accurately compute the optical flow of their social environment, focusing on estimating the

motion of neighbors. Then, in the movement phase, they estimate their own velocity vector,

simplifying the task by treating the environment as static. This pause-and-go pattern poten-

tially reduces the computational load involved in processing optical flow during active
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movement, a task known for its complexity. This aspect of locust behavior and its application

in robotic models merits further exploration, particularly regarding the efficiency of optical

flow computation in dynamic settings.

The research presented above has studied different aspects of vision-based collective

motion in swarms. The biological inspiration was to study visual, non-stereoscopic inputs,

without direct distance measurements and while accounting for occlusions. Our primary

quantitative “lens” for this investigation is the polarization measure of order (defined in Eq

10), which is commonly and frequently used in studies of collective motion research [14, 20,

81–83]. Using this order measure, we have shown that the reductionist model is sufficient in

many cases to achieve ordered collective behavior in a swarm. It is possible that perhaps some

other types of measures of order could reveal additional information about these different

cases.

This study illuminates how a swarm’s behavior can leverage simple monocular visual cues

to facilitate robust collective movement, influenced significantly by the agents’ physical form

and field of view, as well as by the specific strategies employed to manage occlusions. The

implications of this research extend beyond visual perception, potentially affecting other sen-

sory systems and their role in coordinated group behaviors. Ultimately, our findings aim to

deepen the understanding of the intricate connections between an agent’s shape, the algo-

rithms governing collective motion, and sensory processing. Ultimately, our findings strive to

enrich the comprehension of how an agent’s physical configuration interacts with collective

motion algorithms and sensory perception, setting the stage for future research to unravel

these complex dynamics and their applications in both natural and artificial swarming

systems.
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1 Measurement of Distance to Neighbors in Monoc-
ular, Non-stereoscopic Vision

In Fig A, the computation of distance from the subtended angle is shown for
idealized circular-shaped agents. It can be seen that for circles, there exists a
one-to-one relationship, given by r = d

2 sin 0.5α between the subtended angle and
the distance. There is no ambiguity; hence the distance calculation is exact in
the circular case.

1



𝑑

2

𝜶

𝟐

Figure A: Exact distance r computation from subtended angle α for
circular morphology. Assumption of a circular (or spherical in 3D) shape
of the agents, enables precise computation of distance r to a neighbor while
employing the non-stereoscopic visual parameter of subtended angle α. The
small circle on the lower left depicts the focal agent’s visual sensor and the large
circle on the right depicts a circular neighboring agent. Green lines represent
the extreme rays toward the neighbor, as seen by the focal agent. The angle
between the radius and the tangent extreme ray is always 90° by geometrical
definition. Therefore, as shown r = d

2 sin 0.5α where d is the circle’s diameter and
α the subtended angle measured.

𝑑

2r

𝑟 =
𝑑

2 tan(0.5 𝛼)

𝟎. 𝟓 𝜶

Figure B: Approximate distance r computation from subtended angle
α for elongated rectangles. Assumption of rectangular shape for neighboring
agents, enables only an approximate computation of distance r to the neighbor,
using non-stereoscopic visual parameter of the subtended angle α. The small
circle on the lower left depicts the visual sensor of the focal agent, and the large
circle on the right depicts a circular neighboring agent. Green lines are the edge
rays towards the neighbor, as seen from the focal agent. The angle between the
edge rays is the observed subtended angle α. Therefore as shown in the figure
r = 0.5 d

tan (0.5α)
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2 Derivation of Equation (7)

We know, from Eq. (4), that

rj =
1

2
∥d∥ cot (αj

2
) =

1

2
d cot (

αj

2
)

by differentiating Eq. (4) with respect to time t, we see (Eq. (6)) that

vj,r = (
∂

∂t
rj) ûj,r = −1

4

d α̇j

sin2(
αj

2 )
ûj,r

where α̇ denotes the time derivative of the subtended angle.
Expressing d = 2rj tan (

αj

2 ) from Eq. (4) and substituting d into Eq. (6)
results in the following derivation of the radial velocity vj,r,

vj,r = −1

4

α̇j d

sin2(
αj

2 )
ûj,r

= −1

4

α̇j 2rj
sin(

αj
2 )

cos(
αj
2 )

sin2(
αj

2 )
ûj,r

= − α̇j

2 sin
αj

2 cos
αj

2

rjûj,r

= − α̇j

sinαj
rj

which is what appears in Eq. (7).

3



3 Population Size N in the torus environment

We experimentally set the value of N in different arenas, to values that proved
informative in the sense that they highlighted and clarified the differences be-
tween different strategies or other parameters. Below, we highlight the proce-
dure and results used to set the values of N used in the torus arena. For other
arenas, a similar experimental analysis was carried out.

We begin with the values that have already been set for the rest of the
parameters: R = 3[BL], η = 0.01, length-to-width ratio set at 3. We then
vary N . Figs Ca–Cb, show the results of 50 independent trials. For small
N sizes, convergence to an ordered state is slow (at best) and probably non-
existent. In the context of range-limited vision (R = 3[BL]), the sparse density
undoubtedly inhibits overall convergence to ordered flocking. Increasing N leads
to a higher long-term order parameter (Fig Cb), though clearly the rate of
convergence differs (Fig Ca). Based on these results, we typically use population
sizes N = 60, 120, 180 in the experiments in the torus arena.

Continuing from the aforementioned analysis, the choice of N = 100 for our
principal experiments is further justified by the observed trends in Figs S3(a)
and S3(b). These figures underscore a saturation effect in the order parameter
beyond N = 100, where increasing the population size yields negligible improve-
ments in collective behavior fidelity. This plateau suggests that N = 100 is a
representative value for dense swarm simulations, providing a realistic portrayal
of swarming dynamics without incurring disproportionate computational costs.
Therefore, N = 100 was selected as it aligns with our dual objectives of accu-
rately capturing the emergent properties of swarming behavior and maintaining
computational feasibility within our simulation framework.

(a)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0

N=20
N=60
N=100
N=140
N=180

(b)

50 100 150 200
N

0.0

0.2

0.4

0.6

0.8

1.0

Figure C: (a) Time-dependent and (b) long-term sensitivity analysis for visual
range N , in the torus arena. Means and standard errors are shown for 50 trials.
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4 Influence of the Length-to-Width Ratio

We examine the influence of elongation on the emergence of order in flocking. In
nature, nymph lengths vary as they grow to adulthood. A question also arises
(when discussing the visual perception of the locust) regarding the inclusion of
out-stretching legs in the perceived image. Based on our own measurements of
the locust in our laboratory, we have chosen a body length-to-width ratio of 3
(i.e., length is three times the body width) as a baseline, which was used in the
experiments reported above.

In addition, we sought to examine whether these settings influence the re-
sults. In particular, different models exist for vision-based flocking, for the case
where agents are circular [51, 56, 58]. If the models introduced in this study are
insensitive to the length-to-width ratio, then perhaps these other models could
be just as useful in informing our understanding of how vision-based flocking
may work in locusts (or other species that are elongated).

We, therefore, experimented with other ratios: a ratio of 1:1 (agents are
perfect square), a 3:1 ratio, and a ratio of 6:1. Figs D and E report on the results
from these experiments, in all environments (with the other parameters set as
before N = 100, R = 3, η = 0.01, etc.). In all, we tested the principal model,
as well as all three occlusion-handling strategies. As before, we conducted 50
independent trials in each setting and presented the means and standard errors.

Fig D shows the order parameter evolving over time in various settings. The
subfigures are arranged by columns (different ratios) and rows (different arenas).
The left column of the figures (Figs (a), (d), (g)) shows the results for ratio 1:1,
the middle column (Figs (b), (e), (h)) show the results for the baseline ratio 3:1
used in the main group of experiments as reported above, and the rightmost
column of figures (Figs (c), (f), (i)) show the results for ratio 6:1. The top row
shows the results from the toroidal arena, the middle row shows results for the
narrow corridor arena, and the bottom row shows the results for the narrow
ring arena.

The figures show that the evolution of order, over time, is greatly influenced
by the body length-to-width ratio. This is generally true for all the models; thus,
we conclude that the body length ratio is an important factor in the convergence
rate. Qualitatively, we note that higher ratios (elongated morphology) improve
the rate of order increase in both the torus and corridor arenas. We believe
these less-constrained arenas are closer to natural environments than the small
ring-shaped arena (where greater elongation reduces—-possibly eliminates–the
rate of order increases over time.

Fig E displays the long-term order parameter (ϕ at t = 3000) across different
arenas and length-to-width ratios, offering a snapshot of Fig D at t = 3000. The
torus arena shows more consistent model performance across various ratios,
unlike other arenas. Notably, the COMPLID model generally excels in different
settings, though this requires further study. As with Fig D, these findings
underscore the importance of considering the length-to-width ratio in model
evaluations for specific species.

5



(a)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0

Principal
OMID
COMPLID
PARTID

(b)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0

Principal
OMID
COMPLID
PARTID

(c)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0

Principal
OMID
COMPLID
PARTID

(d)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0
Principal
OMID
COMPLID
PARTID

(e)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0

Principal
OMID
COMPLID
PARTID

(f)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0

Principal
OMID
COMPLID
PARTID

(g)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0
Principal
OMID
COMPLID
PARTID

(h)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0

Principal
OMID
COMPLID
PARTID

(i)

0 500 1000 1500 2000 2500 3000
Time [frames]

0.0

0.2

0.4

0.6

0.8

1.0
Principal
OMID
COMPLID
PARTID

Figure D: Order measure ϕ evolving in time t = 1 . . . 3000, for different body
length-to-width ratios (left to right columns: 1:1, 3:1, 6:1) and arenas (top to
bottom rows: torus, corridor, ring). The results are shown for the principal
model, and the three occlusion-handling strategies. It is evident that the trend
of order parameter evolution, for all models, depends significantly upon the
length-to-width ratio.
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(a) Torus arena.
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(b) Corridor arena.
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(c) Ring arena.
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Figure E: Long term order (ϕ at t = 3000), for different body length-to-width
ratios (horizontal axis in each subfigure), for different arenas (see captions).
The results are shown for the principal model, and the three occlusion-handling
strategies. Mean values and standard errors shown for 50 independent trials.
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