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Abstract
This paper addresses the problem of detecting suspi-
cious behavior from a collection of individuals events,
where no single event is enough to decide whether
his/her behavior is suspicious, but the combination
of multiple events enables reasoning. We establish a
Bayesian framework for evaluating multiple events and
show that the current approaches lack modeling behav-
ior history included in the estimation whether a trace of
events is generated by a suspicious agent. We propose
a heuristic for evaluating events according to the be-
havior of the agent in the past. The proposed approach,
tested on an airport domain, outperforms the current ap-
proaches.

Introduction
Identification of suspicious activities arises in many domains
where an adversary has a motivating goal and exhibits be-
havior that deviates from behavior of normal agents. The
goal is to augment traditional security measures by scruti-
nizing behavior of all subjects in the environment. This can
be applied, for example, to detect a passenger at the airport
that plans to smuggle drugs while keeping contacts with au-
thorities at minimum, to detect a pirate vessel that plans to
capture a transport vessel and therefore avoids security pa-
trols, to identify a user that misuses access to the server, to
catch a reckless driver, a shoplifter, etc. There are two ap-
proaches to detect suspicious behavior: suspicious detection
models which depend on suspicious behavior definitions and
anomaly detection models which measure deviations from
defined normal behavior. The basic unit of such analysis is
behavior trace that provides characterized agent’s actions
over a period of time. However, given increasingly longer
behavior traces it becomes inefficient to encapsulate the en-
tire spectrum of either suspicious or normal behavior.

An important step in such analysis is therefore to utilize
domain knowledge to identify interesting parts characteriz-
ing behavior trace. We denote them as trigger events. Trig-
ger events can be defined with the help of domain experts
and present either positive or negative belief about the moti-
vating goal. In many cases no single action or event is suffi-
cient to reveal adversary intentions, but a collection of events
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enables the observer to infer the underlying intentions. The
main question we are addressing is how to decide whether an
event trace corresponds to behavior of normal or suspicious
agent.

We establish a Bayesian framework for evaluating event
traces and show that evaluation (i.e., whether a trace is pro-
duced by a suspicious agent) does take into account interac-
tions between events. More precisely, evaluation of an event
depends not only on the current time step but also on the
events in prior time steps. We discuss approaches that prob-
abilistically estimate prior history as well as approaches that
relay on other frameworks such as plan recognition. The
main problems that arise are over-simplification of the mod-
els and insufficient modeling of behavior history included in
the estimation.

We propose a heuristic approach that defines a family of
well-behaved scoring functions that interpret an event trace
to produce a score presenting overall suspicion that the trace
corresponds to the behavior of a suspicious agent. The key
component is that the events are evaluated according to the
behavior of the agent in the past. We present a set of scoring
functions that satisfy that conditions.

Experimental evaluation on an airport domain first pro-
poses an approach for detecting trigger events, which is
based on interactive behavior among agents. Next, it com-
pares discussed approaches for evaluating whether an event
trace is generated by normal or suspicious agent against the
heuristic approach. The experiments in a simulated multia-
gent environment show that the proposed approach outper-
forms other discussed solutions.

Motivating Domain
A drastic increase in air travel in recent years has made ev-
ery airport a potential terror target, hence intense security is
a necessary requirement. This global transportation system
is no longer considered as safe but rather as a potential lia-
bility exposed to terrorist attacks and other criminal activi-
ties such as drug and contraband trafficking. Airports require
vast security solutions including identification of suspicious
activities amongst passengers and staff in and surrounding
areas.

To ensure the safety of people at the airport, several
surveillance systems monitor inside the terminals and outer
perimeters. Various systems were introduced to automat-



ically detect some of the threats such as leaving objects
behind (Hongeng and Nevatia 2003), suspicious trajectory
paths (Vaswani, Chowdhury, and Chellappa 2005), suspi-
cious transportations (Arsić, Schuller, and Rigoll 2007),
thefts (Hongeng and Nevatia 2003) and even vandalism acts
and fights (Naylor and Attwood 2003). There is also a com-
mercially available system (Feris et al. 2009) able to detect
events such as running passengers, climbing over fence, etc.
However, these approaches mainly deal with detection of
single incidents or monitor only a part of the premises. An
approach for monitoring behavior of passengers over longer
periods of time relies upon security personnel such as be-
havior detection officers (BDOs) that patrol airport to iden-
tify passengers who display involuntary physical and phys-
iological actions (US Transportation Security Administra-
tion (www.tsa.gov) trained and deployed BDO officers at
161 US airports). In this context we strive to observe pas-
sengers for the whole time they spend at the airport. We are
focused on trigger events in terms of actions, events and in-
cidents that can be potentially suspicious in order to identify
individuals who exhibit behaviors that indicate high levels
of stress, fear or deception.

Detection Objectives
We leverage Bayesian framework for intrusion detection
(Helman, Liepins, and Richards 1992) for problem defini-
tion. Event trace x(k) is a sequence of k events x(k) =
(x1, x2, ..., xk) from a set of tracesD. At each time step t an
event xt is generated by a hidden stochastic process H that
is a mixture of two auxiliary stochastic processes, namely
the normal process N and the suspicious process S. In real-
world there can be many subprocesses contributing to each
of them, i.e., many normal users with different behavior pat-
terns, however, here we assume only a single N and a single
S that capture all variability. Random variable yt = 0 if
xt is generated by N and yt = 1 if xt is generated by S.
The event xt may depend on the current step t as well as
on the pattern of events generated at time steps prior t. This
allows thatN and S are non-stationary, where their distribu-
tion depends both on actual time step t and events previously
generated by both process. The non-stationary nature might
reflect that: (i) agent behavior depends on his/her prior ac-
tions; (ii) behavior changes over time (different population
of agents); (iii) the nature of motivating goals changes over
time; and (iv) the environment changes over time.

We assume a prior probability λ = Pr{S} = Pr{y =
1}. In most cases λ is close to 0, since in real-world appli-
cations suspicious activities are sparse. The stochastic pro-
cesses N and S induce measures n(xt) = Pr{N(t) = xt}
and s(xt) = Pr{S(t) = xt}, respectively. The mixture dis-
tribution of an event xt is

Pr{H(t) = xt, H(t− 1) = xt−1, ...,H(1) = x1} =

λn(xt, xt−1, ..., x1) + (1− λ)s(xt, xt−1, ..., x1). (1)

The objective of suspicious behavior detection is to iden-
tify those traces x(k) = (x1, x2, ..., xk) that are likely to be
suspicious activities, that is traces x for which

Pr{S|H(t) = xt, t = 1, ..., k} > τ, (2)

is above some threshold τ or is large relative to the proba-
bility for other traces.

Detectors
Several approaches have been proposed to tackle the prob-
lem of suspicious behavior detection and the literature is
vast. Much of it is only superficially related, in the sense
that the overall goals may be the same, but the applica-
tion domains and the applied methods differ. For instance,
detecting suspicious behavior from video surveillance cam-
eras pursue the same goal, but the focus is on video analyt-
ics (Visontai 2004). Similarly, we will not address here re-
lated work on suspicious behavior detection from video fea-
tures, e.g., (Arsić, Schuller, and Rigoll 2007; Bak et al. 2009;
Barbará et al. 2008) or anomalous trajectory shapes (Nguyen
et al. 2005; Piciarelli et al. 2008; Sillito and Fisher 2008;
Tung 2010). We focus instead on the observable actions
of agents that reveal their intentions. We thus limit our-
selves to related research within recognition of multiple
events giving a special focus to Hidden Markov Models
(HMMs) (Rabiner 1989) and Utility-based Plan Recognition
(UPR) (Avrahami-Zilberbrand and Kaminka 2007).

In this section we discuss approaches that decide whether
a trace is generated by suspicious process. First, we present
an optimal detector derived from Eq. (2) and show that solv-
ing it is infeasible. Next, we discuss approaches that directly
attack the problem of estimating likelihood that the trace was
generated by suspicious process in terms of the parameters
in which the problem is formulated. They estimate condi-
tional probabilities either by simplifying the assumptions or
by modeling the conditional probabilities with another pro-
cess. Finally, as an alternative, we discuss approaches that
do not explicitly estimate the probability. Instead, they use
heuristics, statistical measures, and plan recognition frame-
work to provide an evaluation that the trace is generated by
suspicious agent.

Bayes-Optimal Detector
Using Bayes theorem we can derive from Eq. (2)

Pr{S|H(t) = xt, t = 1, ..., k} =

=
λ · Pr{H(t) = xt|S}

λ · Pr{H(t) = xt|S}+ (1− λ) · Pr{H(t) = xt|N}

=
λ · s(xk, ..., x1)

λ · s(xk, ..., x1) + (1− λ) · n(xk, ..., x1)
. (3)

To this point, we implicitly assumed that distributions λ, n
and s are reliably estimable. The degree to which this as-
sumption is valid depends on our detection capability.

Suppose we have a dataset Dl of labeled event traces.
Suppose the Dl is sufficiently large, we can estimate prior
probability λ from the Dl using relative frequency present-
ing the number of traces generated by suspicious agent di-
vided by the total number of traces1. Note, that in order to
compute Pr{H(t) = xt, t = 1, ..., k|S} one has to evaluate

s(x1) · s(x2|x1) · ... · (xk|xk−1, ..., x1) (4)
1Since traces can be of different length, the quotient is normal-

ized by traces length.



While some first terms, i.e., s(xt), s(xt|xt−1) can still be
estimated, the latter terms including increasingly more his-
tory become intractable. In real-world applications we have
no direct knowledge of values of the conditional probabili-
ties, that is, we are unable to specify probability of an event
given all possible combinations of history (the same applies
for Pr{H(t) = xt, t = 1, ..., k|N}). For this reason, we
must approximate Bayes optimality in general. In particular,
we will be concerned with estimating Pr{S|H(t) = xt, t =
1, ..., k} using approximate approaches.

Naive Bayes Detector
A naive approach assumes that (i) events are independent
and (ii) processes N̂ and Ŝ are stationary, which means that
the current event depends only on the current time step t
and not on time steps prior t. Evaluation of the Eq. (3) is
simplified using naive assumption:

Pr{S|H(t) = xt, t = 1, ..., n} =

λ ·
∏k
t=1 ŝ(xt)

λ ·
∏k
i=1 ŝ(xt) + (1− λ) ·

∏k
i=1 n̂(xt)

(5)

We have to evaluate probability Pr{H(t) = xt|yt} that
an event is generated by normal stationary process n̂(xt)
and suspicious stationary process ŝ(xt), which is tractable
in terms of evaluation. Approaches for estimating n̂ and ŝ
may include frequentist estimator, Hidden Markov Models,
k-nearest neighbor, neural networks, etc. The paper does not
explicitly address the problem of deciding whether an event
is suspicious or not, however, we show an approach using
Coupled HMM in the section with experiments.

In practice, the assumptions may over-simplify the model;
however, we will use it as a baseline in our experiments.

Hidden Markov Models
Estimation of conditional probabilities including history can
be encoded with Hidden Markov Models (HMMs) (Rabiner
1989). HMM is a temporal probabilistic model with two em-
bedded stochastic processes: an unobservable (hidden) pro-
cess Q, which can be observed only through another (visi-
ble) stochastic process O. Each state in Q has state transi-
tion probabilities (which are visible) and probability distri-
bution over the possible values of O. The key assumption
is that the current hidden state of the agent is affected only
by its previous state. Now suppose we create an HMM to
estimate Pr{H(t) = xt, t = 1, ..., k|S}, more precisely,
it models probability that a trace of events is generated by
a suspicious agent. The hidden states of process G may be
referred to as internal states presenting intentions of the sus-
picious agent. For example, assume only two hidden states,
normal intention and suspicious intention emitting normal
and suspicious events, respectively. Transitions between the
hidden states can be explained as probabilities that the agent
will either follow or change its current intention. Although
the information about the history is now partially encoded in
the transition probabilities (i.e., given the agent’s intention at
time step t is suspicious it is more likely that the intention at
t+1 will be suspicious as well), the model still uses Markov

assumption, that is, the next agent’s intention depends only
on it’s current intention.

We construct two HMM models, normal model N̄ and
suspicious model S̄. We split all labeled traces x ∈ Dl to
traces generated by normal and suspicious agents, and use
them to adjust the parameters of the models N̄ and S̄, re-
spectively. Model parameters can be locally optimized us-
ing iterative procedure such as Baum-Welch method (Ra-
biner 1989). Given a new event trace x(k) = (x1, x2, ..., xk)
we compute probability that the trace was generated by both
models Pr{x1, x2, ..., xk|N̄} and Pr{x1, x2, ..., xk|S̄} us-
ing forward-backward procedure (Rabiner 1989). Given the
prior probability λ̄ we compute an estimate the trace x was
generated by suspicious process S:

Pr{S|H(t) = xt} =
λ̄·Pr{x1,x2,...,xk|S̄}

λ̄·Pr{x1,x2,...,xk|S̄}+(1−λ̄)·Pr{x1,x2,...,xk|N̄}
. (6)

Although widely used, HMMs may became inade-
quate when events have long-term temporal dependen-
cies. Brand et al. (1997) introduced Coupled HMMs as
an extension with multiple hidden interacting chains that
are able to model interactive behavior. Moreover, Layered
HMMs (Oliver, Garg, and Horvitz 2004) and Hierarchical
HMMs (Fine, Singer, and Tishby 1998) can handle activi-
ties that have hierarchical structure, e.g., activity recognition
from trajectories (Nguyen et al. 2005). Dueong et al. (2005)
focused on duration of activities and introduced Switching
Hidden Semi-Markov Models that provide probabilistic con-
straints over the duration of plans as well the ability to de-
tect anomalies. Vaswani et al. (2005) introduced Continu-
ous State HMMs for modeling trajectories in order to detect
anomalous activities.

Utility-based Plan Recognition
Another approach for deciding whether a trace is suspi-
cious or not originates from plan recognition. Avrahami-
Zilberbrand and Kaminka (2007; 2009) presented Utility-
based Plan Recognition (UPR) that introduces utility to the
observer. The main strength of UPR is that it can incorpo-
rate observer’s bias to events with low likelihood, for exam-
ple, a-priori probability for planting a bomb is very low, but
detecting it has high expected utility. The recognition pro-
cess utilizes a plan library, which encodes behaviors of the
observed agents in a form of directed graph. Low-likelihood
behaviors, which may be significantly costly to the observer,
might be overlooked. Hence, the observer can select such
a behaviors by assigning them high utility (or cost in risk-
averse case). Behavior matching is performed with a sym-
bolic plan recognizer (Avrahami-Zilberbrand 2009) that re-
turns a set of behaviors (hypotheses) that the observed agent
might have executed by the time of the last observation with
corresponding posterior probabilities. In the next step, util-
ities are assigned to the transitions in the plan library and
behaviors are then ranked according to their utility to the
observer.

Inspired by the approach for catching a dangerous
driver (Avrahami-Zilberbrand 2009), we propose a single
plan-step encoded in the plan library as showed in Figure 1.



An agent can generate a suspicious event with probability
ŝ(xt) and fixed cost cs < 0 or a normal event with probabil-
ity n̂(xt) and fixed cost cn > 0, followed by the end of the
plan. All other costs are zero.

root!

start!

susp!

norm!

end!

Si!cS! 0!

0!

0!

Ni!
cN!

Figure 1: A single-step plan in UPR plan library.

The accumulated cost of the event trace over time can be
simplified and computed as

UUPR(x(k)) =

k∑
t=1

u(xt), (7)

u(xt) =

{
cnn̂(xt); if |cnn̂(xt)| > |csŝ(xt)|
csŝ(xt); if |cnn̂(xt)| ≤ |csŝ(xt)|

.

If the accumulated cost exceeds a given threshold, the trace
is classified as generated by suspicious agent.

Scoring Functions
All of the previous approaches (except HMMs) share the
property that events are evaluated according to the probabil-
ity of being generated by the suspicious process. However,
neither accounts for information contained in the prior be-
havior of the agent. In this subsection, we define the scoring
function, which is capable of estimating event in a trace ac-
cording to the complete prior history.

The detection system can employ a scoring function f that
interprets events to produce a score characterizing the over-
all suspicion that is to be contributed to the trace. Given a
threshold value τ and a trace x(k) we can classify as gener-
ated by a suspicious process if function value f(x(k)) ≥ τ .

Definition 1. A scoring function f over a trace of events x
is a function

f : D → R
The function f assigns a real value to any trace x(k) of
length k = 1, ...,K.

Definition 2. A class of well-behaved functions consists of
scoring functions for any x(k), xk+1

f(x(k), xk+1) ≥ f(x(k)) if ∆(xk+1) = 1

f(x(k), xk+1) ≤ f(x(k)) if ∆(xk+1) = 0

The conditions imply that: (i) scoring function f ’s evalu-
ation increases when a new suspicious event is added to
the trace and (ii) decreases when a normal event is added
to the trace. The well-behaved scoring functions are moti-
vated by the key observation that a suspicious event xk+1

(∆(xk+1) = 1) is more likely to be generated by a suspi-
cious process S than a normal process N regardless of the

history x(k), i.e.,

s(xk+1|x(k)) ≥ n(xk+1|x(k)) if ∆(xk+1) = 1 and

s(xk+1|x(k)) ≤ n(xk+1|x(k)) if ∆(xk+1) = 0.

Given such assumptions the likelihood that a trace is emitted
by a suspicious process as given by Eq. (3) is a well-behaved
function.

The true likelihood function is difficult to obtain. There-
fore, we defined the following well-behaved heuristic func-
tion to approximate it. Let x(k) = (x1, x2, ..., xk). We define
the number of suspicious events as

ηs(x
(k)) =

k∑
t=1

∆(xt), (8)

where ∆(xt) decides whether an event is suspicious or not

∆(xt) =

{
1; if s̃(xt) ≥ τ̃
0; else

, (9)

s̃(xt) =
λη · ŝ(xt)

λη · ŝ(xt) + (1− λη) · n̂(xt)
. (10)

λη is prior probability for detecting suspicious event (if we
have no prior knowledge, we can assume λη = 0.5), ŝ and
n̂ can be the same procedures as discussed previously, and
τ̃ is a threshold value (if λη = τ̃ = 0.5 the condition in (9)
can be simplified to ŝ(xt) > n̂(xt)). Similarly, ηn(x(k)) =
k − ηs(x

(k)) presents the number of normal events. Sup-
pose we observed a trace x(k) of all suspicious events, i.e.,
s̃(xt) > τ̃ for t = 1, ..., k. Intuitively, terms in Eq. (4) sug-
gest that probability that event xt was indeed generated by
suspicious process should increase exponentially according
to the number terms, i.e., to the number of events. On the
other hand, if events in x were s̃(xt) < τ̃, t = 1, ..., k, the
probability would exponentially decrease as the number of
events increases. We define an exponential scoring function
fe recursively as follows:

fe(xt,x
(t−1)) = at · (fe(x(t−1)) + bt),

fe(x
(0)) = 0,

bt = β · ηs(x(t))α(s̃(xt)−τ̃), (11)

at = e−(δ+η∗n(x(t)))/(γ·ηs(x(t))).

The bt term models the above mentioned observation with an
exponential function using ηs as the base and likelihood that
the event was generated by suspicious agent s̃ as argument.
Parameters α > 0 and β > 0 can be estimated from Dl. Ad-
ditionally, the at term employs a forgetting mechanism, an
exponential time decay function that discounts overall eval-
uation at time t in respect to agent’s behavior prior t. Pa-
rameters γ > 0 and δ ≥ 0 are also estimated from Dl. The
modified η∗n presents the time elapsed since the last event
s̃(xt) > τ̃ , that is, the number of normal events since the last
suspicious event; the higher the number of normal events the
faster the forgetting rate. Finally, we use a threshold value to
decide whether a trace is generated by suspicious agent or



not fe(x) > τfe . The function fe is a well-behaved function
by definition.

Consider the following example. Suppose we have a
trace x(18) = (x1, ..., x18), where events xi > τ̃ , for
t = {1, 6, 12} (most likely suspicious) and xt < τ̃ else-
where (most likely not suspicious). The evaluation of trace
fe(x

(k)) is showed in Figure 2 for each time step, i.e., after
each event. The score is much higher for each subsequent
suspicious event, while it decreases at slower rate.
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Figure 2: Evaluation of a trace fe(x) over time.

Experimental Evaluation
Experimental Setup
We demonstrate and evaluate the proposed approach on the
airport domain. To run proof-of-concept tests we first con-
sider a simulated environment due to several reasons. First,
a simulation is controllable and repeatable in terms of ensur-
ing statistical relevance. Second, obtaining real-world data
with annotated suspicious behavior might present a diffi-
culty in terms of cost and amount of data required to create a
statistically representative dataset. In practice there are tens
of hours of several hundred people with only a few instances
of suspicious behaviors. Third, a simulator enables the con-
trol of the amount of noise that is otherwise introduced by
various vision systems (occlusions, false detections, etc.).
And last, real-world data in security domain present a dif-
ficulty due to privacy issues, confidentiality and national se-
curity concerns.

Tsai et al. (2011) developed ESCAPES, a multi-agent
simulator for airport evacuations with several types of agents
exhibiting behaviors of regular travelers, authorities, and
families, which do not necessarily follow often-assumed
pedestrian behaviors. The agents’ behavior incorporates
emotional, informational and behavioral interactions such as
emotional contagion, spread of knowledge/fear, social com-
parison, etc. Therefore an agent is affected by the behav-
ior of other agents and their emotional states, and faced
with uncertainty as to what happened and where the near-
est exits are. ESCAPES consists of two parts, a 2D environ-
ment based on the open-source project OpenSteer (Open-
Steer 2004), outputting agents’ physical and behavioral in-
formation into files, and a 3D visualization component us-
ing the Massive Software (Regelous 2011). In one scenario,

they modeled the Tom Bradley International Terminal at Los
Angeles International Airport including terminals and shops
as a realistic simulation environment. This served as our
playground for introducing suspicious behaviors prior to an
evacuation occurring.

In cooperation with security officials we defined a basic
scenario where a suspicious passenger goes from point A
to point B while trying to avoid security personnel at the
airport. One may argue that an adversary that plans to do
something malicious would behave normally in a presence
of authorities, which might be true for a highly trained indi-
vidual. An average person exposed to a high level of stress
produces behavior that indicates fear, anxiety, pressure, ten-
sion, deception etc. Hence, it is rational for the suspicious
agent to minimize contacts with the authorities. Implemen-
tation details are explained in Appendix.

A simulation is run with a given airport map, authority
agents, regular passengers and a suspicious agent going from
point A to B, outputting traces with 2D coordinates for all
agents. An example is visualized in Figure 3, where the trace
of the suspicious agent is marked with red (going from left
to right), traces of authorities are green and regular passen-
gers are blue and grey. We initialized the simulator with 100
agents including 10 authorities and a suspicious person with
randomly chosen initial and final points. We ran 20 simu-
lations, each consisting of 1500 − 3000 time steps. In total
there was 2000 traces and 4316 interactions between author-
ities and passengers.

Figure 3: Traces of all agents at the end of a simulation:
authorities (green), suspicious (red) and usual passengers
(grey, blue).

For evaluation we use precision, recall and F-measure.
Precision is defined as a number of true positives (all sus-
picious cases correctly classified as suspicious) divided by
the number of all cases marked as suspicious (true and false
positives): pr = TP/(TP + FP ). A perfect score 1 means
that all cases marked as suspicious were indeed suspicious.
Hence score 1−pr presents the amount of false alarms. Re-
call is defined as a number of true positives divided by the
number of all suspicious cases: re = TP/(TP + FN). A
perfect score 1 means that all suspicious cases were detected



(but says nothing about falsely marked normal cases). Since
the objectives of this measures are contradictory, we use F-
measure, which is harmonic mean of precision and recall, to
compare methods: fm = 2 · pr · re/(pr + re).

Detection Based on Complete Behavior Trace
The first baseline approach evaluates the whole behavior
trace consisting of actions. We used HMMs, since they are
considered as a baseline for modeling a sequence of actions.
Not, that it is not based on trigger events but rather takes
the whole trace of 2D coordinates presented as actions. The
goal is to differentiate between a sequence of actions pro-
duced by a suspicious and a regular passenger. We expect
this approach to not perform well, since it too general and
unable to precisely model interactive behavior.

We consider three transformations of 2D traces to actions.
The first one is based on work by Avrahami-Zilberbrand and
Kaminka (2009) where the airport map is divided with a
square-based grid with numbered squares. Each trace with
Cartesian coordinates is transformed into a sequence of
squares. We denote this as fixed presentation. The second
presentation transforms 2D traces to actions taken in each
time step. The action are defined as moving North, South,
East, West and their combinations. In total there are nine
actions (including staying at the same spot). Compared to
the fixed presentation, this presentation can also describe the
shape of a trajectory but discards the location information
(which can lead to better generalization). We call this a rel-
ative presentation. The last presentation denoted as relative
position and orientation defines actions as moving Forward,
Backward, Left, Right and their combinations. Compared
to the previous presentation it also discards the information
about orientation.

Suspicious behavior detector consists of two ergodic
HMMs; Š trained on suspicious and Ň trained on regular
traces. A new trace is first transformed in one of the pre-
sentations and then matched against both HMMs. Each one
returns likelihood that it produced the given trace x. If the
likelihood

λ̌P r{x|Š}
(λ̌P r{x|Š}+ (1− λ̌)Pr{x|Ň})

> τ̌,

the sequence is classified as suspicious.
Table 1 shows recall, precision and F-measure for tra-

jectories presented with absolute position (column 2), rel-
ative position (column 3), and relative position and orien-
tation (column 4). The second row shows results with ac-
ceptable discovery rate (recall), but extremely low precision
around 10% in the third row. This means that only 1 out of
10 passengers marked as suspicious was indeed suspicious.
States presented with relative position outperform presenta-
tions with absolute position, which was expected. Absolute
position requires a large data set to cover the complete state
space, and second, it is prone to over-fitting. The presenta-
tions with relative position and orientation achieved lower
recall than other presentations and slightly better precision.
The reason can be in over-generalization. However, states
represented with relative position were used in further ex-

Table 1: Evaluation results for HMMs applied to the whole
sequence of 2D coordinates presented as actions.

[%] Abs. pos. Rel. pos. Rel. pos.&ori.
Recall 62.63 66.23 40.86

Precision 7.04 10.42 11.54
F-measure 13.24 18.01 18.00

periments. The overall performance was consistent with our
expectations.

Detection Based on Trigger Events
The next approaches are based on a two-level architecture.
The first level is focused on detection of trigger events, while
the second level takes a trace of events and decides whether
it was generated by suspicious agent. We first present the de-
tection of trigger events based on Coupled HMMs and tra-
jectory curvature, and then we the discussed approaches at
the second level.

Trigger Events Trigger events can be of any kind of par-
tial observations we are able to extract from the domain.
In the airport domain one can focus on leaving bags unat-
tended, access to restricted area, walking with increased
speed, inappropriate clothing for the weather, etc. Limited
with our simulator capabilities and focused on the scenario
where a suspicious person tries to access some point, we fo-
cus on a rather novel descriptor we were unable to find in
the literature on suspicious behavior detection at the airport.
We are observing interactions between agents at the airport,
more precisely, we are interesting how a passenger behaves
in a presence of an authority figure. This results in a set of
partial observations describing interactive behavior of a pas-
senger. The recognition process first extracts all interactions
between passengers and authority figures inside a given ra-
dius, producing a set of trajectory pairs that are transformed
to relative presentation.

To estimate the probability that an interaction was gener-
ated by suspiciousness passenger we approached with Cou-
pled HMMs. CHMM architecture comprises two HMMs
chains where hidden states from one chain directly impact
the hidden states from the other chain. The current state QAt
of agent A is affected by both its previous state QAt−1 and
previous state QBt−1 of agent B (similar QBt is affected by
QBt−1 andQAt−1). Each stateQi also impacts the correspond-
ing observation state Yi. We create and train two CHMMs,
N̂I modeling interactions produced by regular passengers
and ŜI modeling interactions produced by suspicious pas-
sengers. An event (interaction) x is then classified with both
models yielding n̂I(x) and ŝI(x), respectively. We also ex-
perimented with more complex CHMM structures including
other features such as relative speed and distance, but the
results were comparable or even worse.

As a trigger event we also extract all turns in absence of
authority when the trajectory curvature exceeds a threshold
value. Probabilities that a turn event was generated by sus-
picious n̂T (x) or regular passenger ŝT (x) is acquired with



Table 2: Evaluation results for all approaches comparing re-
call, precision and F-measure.

Trace Relative presentation
Actions Events Recall Precision F-measure

HMMs 66.23 10.42 18.01

CHMM

If ∃k 70.00 43.75 53.85
Naive 90.00 40.91 56.25

HMMs 80.00 53.33 64.00
UPR 80.00 66.67 72.73

Scoring fe 90.00 90.00 90.00

frequentist estimator from the learning set Dl.

Detectors The input to the detectors is an event trace pro-
duced by the previous level. We instantiated Naive Bayes,
HMMs, UPR, and Scoring function detectors. Additionally,
we consider another baseline detector using a simple rule
saying that if a trace x contains more than k events most
likely generated by a suspicious passenger, then classify it
a suspicious. The Naive Bayes detector used probabilities ŝ
and n̂ as returned by previous level. For HMMs we consid-
ered two ergodic HMMs, one modeling intentions of regular
passenger and other modeling intentions of suspicious pas-
senger. We used two observations, normal and suspicious
event, and varied the number of hidden states. The best
results were achieved with three hidden states. Note, that
HMMs applied atop of CHMMs basically present the Lay-
ered HMMs structure (Oliver, Garg, and Horvitz 2004). For
all models (including UPR and Scoring function detectors)
we estimated the parameters on a part of learning data.

The results were obtained with 10-fold-cross validation.
Table 2 summarizes the results. The first two columns show
the combination of approaches applied to on the first level
(the whole trace of actions) and the second level (trace of
trigger events). The third, fourth and fifth columns show re-
call, precision and f-measure, respectively. The second row
shows the best results for HMMs applied in a single layer
(the best result from Table 1). We assume that the reason for
poor performance lies in inability to model interactive be-
havior. The third row shows a simple rule saying if there are
k events in the trace most likely generated by a suspicious
agent, then mark this agent as suspicious. Performance of
Naive Bayes detector is showed in the fourth row, outper-
forming rule baseline. Fifth row shows results for HMMs
detector: recall is lower compared to the Naive Bayes base-
line but precision is better. According to F-measure HMMs
detector performs better. The performance of UPR detector
is showed in the sixth row. High recall is accompanied with
high precision, outperforming all previous approaches. The
last row shows results for proposed Scorning function detec-
tor fe achieving the highest recall and precision. F-measure
indicates that it performs better any other approach.

Summary
We have modeled a trace of multiple trigger events as a mix-
ture of two stochastic processes, normal and suspicious. We
have defined detection of suspicious behavior as identify-
ing those traces generated by the suspicious process. We
have shown that optimal detection must take into account
the complete history in the trace, which present a chal-
lenge in real-world applications. We discuss approaches that
simplify detection by estimating conditional probabilities as
well as approaches that relay on other frameworks such as
plan recognition. We proposed a heuristic approach based
on a family of well-behaved scoring functions that interpret
event to produce a score presenting overall suspicion that the
trace corresponds to behavior of the suspicious agent using
the complete behavior of the agent in the past. The approach
was compared on the airport domain against both trajectory-
based detection using HMMs and event-based detection us-
ing CHMM for detecting events and Naive Bayes, HMMs,
UPR, and rule baseline for evaluating event traces. All of
them were outperformed by the proposed approach.
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Appendix: Generating Suspicious Behavior
To simulate behavior of a suspicious passenger, which tries
to get from point A to point B unnoticed, within the ES-
CAPES simulator we defined a new agent type as follows.
A state of the suspicious agent s contains the current posi-
tion Qs(x, y). At each time step the agent s computes the
probability for being seen by any authority figure a ∈ S,
where S is a set of authorities in a certain range. Similarly, a
state of an authority agent a is defined by position Qa(x, y)

and direction ~da. Probability that the authority agents a sees
another agent at distance r with an offset angle θ from the
current direction ~da is defined as a bivariate normal distribu-
tion Na(r, θ).

Points A and B are randomly chosen for each indepen-
dent simulation. When the agent s reaches the point B the
simulation ends. The behavior of the suspicious agent fol-
lows a few simple rules:

1. Compute p as a sum of probabilities for being seen by
any authority figure a ∈ A in the current positionQs (and
nearby ±ε region)

p =
∑
a∈A

∫∫ Qs+ε

Qs−ε
Na(r, θ) (12)

2. If p exceeds a threshold value then compute eight random
points ci ∈ C in radius r, else restore the original final
point B and go to step 4.

3. Select a point with the lowest price such that the sum of
probabilities among the current pointQs and the end point
ci is the smallest

arg min
ci∈C

∑
a∈A

∫ ci

Qs

Na(r, θ)

and define it as a new final point B′.
4. Move towards the final point. If the distance d(Qs, B) < ε

end, else go to step 1.
The resulting behavior is quite convincing and complex;

ability to take into account several authorities and find the
best solution in the given situation results in avoiding au-
thorities in a half circle, making u-turns and continuing in
the opposite direction, and even hiding in nearby stores.


