
Towards Dynamic Tracking of Multi-Agents Teams: An Initial Report

Dorit Avrahami-Zilberbrand and Gal A. Kaminka
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel

{avrahad1,galk}@cs.biu.ac.il

Abstract

This paper takes first steps to address the challenge of plan
recognition for dynamic multi-agents teams, in the context
of suspicious behavior recognition. Plan recognition is the
process of inferring other agents’ plans and goals based on
their observable actions. Team plan recognition poses the
challenge of such inference, of a team’s joint goals and plans.
Most previous work have focused on recognizing specific
(and limited) coordinated behaviors and do not deal with the
problem of identifying interactions between groups of agents,
and with identifying suspicious behavior from this informa-
tion. In contrast, this paper utilizes the information from
group of agents, to identify the interactions between groups of
agents, using a Dynamic Hierarchical Group Model (DHGM)
that tracks the dynamic grouping and ungrouping of agents.
We show how such information can be used to identify po-
tential suspicious behavior. These suspicious behaviors can
be captured only when tracking individuals with respect to
the group and not as individuals. For example, identifying
passenger in the airport that behaves differently from other
passengers in the same group. While reasoning about indi-
vidual agents in a multi-agents framework is expensive, we
reduce this complexity by utilizing the DHGM that encapsu-
late shared data of agents in the same group.

Introduction
Plan recognition (Charniak & Goldman 1993; Duong et al.
2005; Geib 2004) focuses on mechanisms for recognizing
the unobservable state of an agent, given observations of
its interaction with its environment. Most approaches to
plan recognition utilize a plan library, which encodes the
behavioral repertoire of observed agents. Observations are
matched against this plan library in sequence.

Although multiple frameworks have been developed for
single-agent plan recognition, there has been less work on
extending these frameworks to multi-agent scenarios. Plan
recognition with multi-agents can be performed, in princi-
ple, by treating agents as independent, and recognizing the
plan of each agent separately. However, there are number
of problems with this method in complex multi-agents sce-
narios. First, some scenarios require agents to participate in
dynamic teams where team membership changes over time.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Tracking individual agents independently fails to recognize
a team joint goal and activities (Tambe 1997); it will thus fail
to capture recognizing the behavior of agents with respect to
their group.

Previous work has shown that given a model of hierar-
chical relationship between agents, one can recognize team
plans, involving multiple agents (Intille & Bobick 1999;
Kaminka, Pynadath, & Tambe 2002; Kaminka & Bowling
2002). However, these previous work focused specific so-
cial structures, where agents form teams based on a-priori
agreements as to specific plans. In order to recognize team
plans in these previous methods, the monitoring agent must
first know which plans are ideally to be agreed upon. In
contrast, in our work we do not have static social structure
that is given in advanced, but instead use the plan library
to identify dynamically changing structure of the groups.
For example, a group of passengers in the airport may seem
like one group when standing in the security check line, and
afterward when splitting to two groups, the organizational
structure need to be modified.

We propose a method for tracking the dynamically
changed structures of groups of agents. This information can
be used in several ways. First, identifying an agent that be-
have differently from other agents in the same group (which
can serve as a basis for recognizing suspicious behavior).
Second, we can understand better the agent actions by sav-
ing the history of its group.

For example consider the queue-cutting problem, where
two friends are standing in specific position in the security
line. One of them goes to the restrooms. When she returns,
she joins her friend in the security line, rather than the end
of the line. If we would not save the history of her group,
we may consider this person to be a suspect of cutting the
line. However, when knowing the history of the group, we
can understand better its actions.

This paper proposes initial steps towards a method for
tracking groups and changes in these groups (merging and
splitting) by saving information on the common plan that
each group executes. To do this, we would use a Dynamic
Hierarchical Group Model (DHGM) that indicates the con-
nection between agents. This will allow us to know the agent
group history, and to reduce complexity by saving for each
sub group the same plan library. We provide an analysis and
suggest directions for future work.

Related Work and Motivation
There has been considerable research into plan recognition
algorithms. Here we only address those efforts that are
closely related.

YOYO (Kaminka & Bowling 2002) is a symbolic ap-
proach for detecting disagreements among team members.
This work exploits knowledge on the social structures of the
team (called team hierarchy) to efficiently recognize splits
in teams, where an agent is executing a different plan than
the rest of its team. In order to detect disagreements, the
monitoring agent must first know which plans are ideally to
be agreed upon. In contrast, in our work we do not have
static social structure that is given in advanced, but dynami-
cally track structure of groups which changes over the time.
However, while we track splits in the team, we cannot cate-
gorically determine that a split is an anomaly.

RESCteam (Tambe 1996) is a symbolic multi-agent plan
recognition scheme which represents only one coherent hy-
pothesis. RESCteam can reason about the assignment of
agents to sub-teams, meaning that it does not require a static
team hierarchy as YOYO. However, it still uses information
about the plans expected to be agreed-upon.

Intille and Bobick (Intille & Bobick 1999) rely on coordi-
nation constraints among football players to recognize team-
tactics. They thus similarly focus on the interactions be-
tween agents, rather than each agent as an individual. How-
ever, they do not address dynamic grouping and ungrouping:
the recognized interactions are used to recognize the multi-
agent plans that contain them.

(Hongeng & Nevatia 2001) recognizing multi agent
events observed by static camera. Multi agent event is repre-
sented by number of action threads, where each thread exe-
cuted by single actor. These action threads related by tempo-
ral constraints generating a multi-agents event graph. They
thus similarly track dynamic interactions between agents,
but they are restricted to specific constrains between agents
that are defined in the network. Moreover, they can not de-
tect dynamic splitting and merging of groups.

STABR (Sukthankar & Sycara 2006) is a Team Assign-
ment and Behavior Recognition model , recovering agent-to-
team assignments where the mapping of agents into teams,
changes over time. This paper thus also addresses the prob-
lem of behavior recognition for teams with dynamic team
composition. However, this approach is based on matching
agent positions to pre-specified geometric formation tem-
plates. In contrast, in our work we do not have static infor-
mation about groups, but detect dynamic splitting and merg-
ing of groups.

Detecting Multi Agents Dynamic Groups
This section introduces Dynamic Hierarchy Group Model
(DHGM), a dynamically-maintained structure for tracking
groups and sub-groups when the groups split into sub-
groups and/or merge with other groups. We use a plan
recognizer with each agent. For this purpose, we use here a
highly efficient symbolic plan recognizer (SBR) (Avrahami-
Zilberbrand & Kaminka 2005) that is used to filter through
hypotheses, maintaining only those that are consistent with

root

securityentrance board

position

coffee

X-ray

shop

position

without
bag

position X-ray position coffee gate

with
bag

without
bag

With
bag

2

1

3

1

1 1 2

2

2

222

2 31 1

toilet

Figure 1: An example of plan library.

the observations. Note, however, that any plan recognizer
can be used. Then, we introduce DHGM and provide its
complexity analysis.

Efficient Symbolic Plan Recognition (SBR) : The
Basics
We exploit SBR, a highly-efficient symbolic plan recog-
nizer, briefly described below. The reader is referred to
(Avrahami-Zilberbrand & Kaminka 2005) for details.

SBR’s plan library is a single-root directed graph, where
vertices denote plan steps, and edges can be of two types:
Decomposition edges decompose plan steps into sub-steps,
and sequential edges specify the temporal order of execu-
tion. The graph is acyclic along decomposition transitions.

Each plan has an associated set of conditions on observ-
able features of the agent and its actions. When these con-
ditions hold, the observations are said to match the plan. At
any given time, the observed agent is assumed to be execut-
ing a plan decomposition path, root-to-leaf through decom-
position edges. An observed agent is assumed to change its
internal state in two ways. First, it may follow a sequential
edge to the next plan step. Second, it may reactively inter-
rupt plan execution at any time, and select a new (first) plan.
Figure 1 shows an example portion of a plan library.

The recognizer operates as follow: First, it matches obser-
vations to specific plan steps in the library according to the
plan step’s conditions. Then, after matching plan steps are
found, they are tagged by the time-stamp of the observation.
These tags are then propagated up the plan library, so that
complete plan-paths (root to leaf) are tagged to indicate they
constitute hypotheses as to the internal state of the observed
agent when the observations were made. The propagation
process tags paths along decomposition edges. However,
the propagation process is not a simple matter of following
from child to parent. A plan may match the current obser-
vation, yet be temporally inconsistent, when a history of ob-
servations is considered. SBR is able to quickly determine
the temporal consistency of a hypothesized recognized plan
(Avrahami-Zilberbrand & Kaminka 2005).

A plan is temporally consistent in time stamp t if one of

three cases holds: (a) the node in question was tagged at time
t − 1 (i.e., it is continuing in a self-cycle); or (b) the node
follows a sequential edge from a plan that was successfully
tagged at time t − 1; or (c) the node is a first child (there
is no sequential edge leading into it). A first child may be
selected at any time (e.g., if another plan was interrupted). If
neither of these cases is applicable, then the node is not part
of a temporally-consistent hypothesis, and its tag should be
deleted, along with all tags that it has generated in climbing
up the graph. The tags made on the plan-library are used to
save information from one run to the next.

Figure 1 shows the process in action (the circled num-
bers in the figure denote the time-stamps). Assume that
the matching algorithm matches at time t = 1 the multi-
ple instances of the position plan. At time t = 1, Prop-
agate begins with the four position instances. It immedi-
ately fails to tag the instance that follows coffee and shop,
since these were not tagged at t = 0. The position instance
under board is initially tagged, but in propagating the tag
up, the parent board fails, because it follows security, and
security is not tagged t = 0. Therefore, all tags t = 1 will
be removed from board and its child position. The two re-
maining instances successfully tag up and down, and result
in possible hypotheses root → entrance → position and
root → security → position.

At the end of the SBR process we are left with a set of
current-state hypotheses, i.e., a set of paths through the hi-
erarchy, that the observed agent may have executed at the
time of the last observation. The overall worst-case run-time
complexity of this process is O(lD) (Avrahami-Zilberbrand
& Kaminka 2005). Here, l is the number of plan-steps that
directly match the observations; D is depth of a degener-
ate plan-library (i.e., a linked list). Extensions to this model
address interleaved plans and limits on durations (Avrahami-
Zilberbrand, Kaminka, & Zarosim 2005).

Dynamic Hierarchy Group Model
After getting all current state hypotheses from the symbolic
recognizer, the next step is to determine the agent’s group.
This is done by using the Dynamic Hierarchy Group Model
(DHGM), described in this section.

The DHGM is a dynamically-maintained structure that re-
flects the current groups of the agents, and the history of
these groups. This structure is built dynamically with every
observation. Each node in the DHGM represents a group
with one or more agents that are executing the same behav-
ior (i.e,. the plan recognizer identified the same plan-steps
in the plan library for this group). Each node in the DHGM
points to leaves in the plan library that the agent is assumed
to be executing. Each node also holds a time-stamp counter
that counts the number of consecutive time-stamps that the
agent the group were in this branch. From each node there
are branches to sub-groups, meaning that the group had been
split and executing now different plan-steps in the plan li-
brary. When the agent returns to its group, or join other
sub-group, the branches are merged.

Figure 2 shows portion of a DHGM (noted with G), that
points to plan library P . On top there is an array of agents
A, that points to their place in the Group Hierarchy. In this

54321A

PG

Figure 2: Example Dynamic Hierarchy Group Model noted
with G.

figure, agents 1,2 and 4 belong to one sub-group and agents
3,5 belongs to a second sub-group.

The DHGM maintenance process is described in Algo-
rithms 1–2. The GROUPDETECTION algorithm (Algorithm
1) initializes the DHGM with single root node that all agents
belongs to this node, and it points to the given plan library.
With each new observation it calls UpdateGroup algorithm
(Algorithm 2).

The UPDATEGROUP algorithm (Algorithm 2), traverses
the DHGM bottom up. For each leaf node it executes the
SBR algorithm on the current observation for all agents that
belong to this leaf (Algorithm 2 line 7), with the appropri-
ate plan library and time-stamp tag. The SBR algorithm re-
turns a set of paths through the hierarchy, that the observed
agent may have executed according to the observation. The
Algorithm then updates the temporaryAgentArray that
holds all SBR results for the current time-stamp (Algorithm
2 line 8). Then, it updates the DHGM according to the
temporaryAgentArray: it creates a new branch for agents
that have the same SBR result and does not have an appro-
priate branch yet (Algorithm 2 line 9). The algorithm also
update the time-stamp counter of the group, to know how
long the group exists. If new branches were created, then the
time-stamp counter is initialized to 1. If the branches are the
same we add one to the counter (Algorithm 2 lines 10–13).
Finally, it merges all leaves that have the same results (points
to same leaves in the plan library), meaning that after we up-
dated them they have the same results as other branches in
the same level.

Algorithm 1 GroupDetection(Plan Library p)
1: Create Group Hierarchy G with a single node
2: Initialize G with all agents belongs to its single node
3: Initialize G with pointer to root of plan library p
4: while Observations 6= Empty do
5: t ← t + 1
6: UpdateGroup(root(G), t, Observations)

An example: We will demonstrate the process in action
with a simple example shown in Figure 3 and the plan library

Algorithm 2 UpdateGroup(Group Hierarchy Node groupNode,
Time-stamp t, Observation obsrvArr)
1: for all child c that is not a leaf of groupNode do
2: UpdateGroup(c, t, obsrvArr)
3: for all child c that is a leaf of groupNode do
4: create empty temporaryAgentArray
5: for all agent a∈ groupNode do
6: p ← plan library that groupNode points on
7: ExecuteSBR(t, obsrvArr[a], p)
8: update temporaryAgentArray[a] to point on new plan-

steps
9: create branches according to the temporaryAgentArray

10: if if no branches were created then
11: increase time-stamp counter of this leaf
12: else
13: initialize time-stamp counter of this leaf
14: for all child c that is a leafofgroupNode do
15: merge nodes if points to same plan steps
16: initialize time-stamp counter of this leaf

in 1. Assume that there are 100 agents in the airport that
execute the position plan-step in time-stamp t = 1. The
DHGM here has one root node with 100 agents and points
to all position instances in the plan library (note that for
presentation clarity, Figure 3 points to the plan-step name
and not to all instances in the plan library).

Now, in time-stamp t = 2 there are 50 agents that con-
tinue executing the position and 50 other agents execute
the X-Ray plan-step, 20 without bags and 30 with bags. The
DHGM will have the following structure a root node with 3
leaves: one for position, one for x-Ray with bag and one for
X-Ray without bag. Now assume that in time stamp t = 3
the 50 agents that were in the security with or without bags,
now execute the gate plan-step, and the 50 agents moved
from the position to execute the X-Ray with or without bag
(25 in each group). Now the DHGM will have under root
two nodes, one that points to the gate instances in the plan
library and one that splits into 2 nodes: X-ray with bag and
X-Ray without bag. In time stamp t = 4 all agents in the
X-Ray without bag execute the gate plan-step, and under X-
Ray with bag 24 agents execute the gate and one agent exe-
cute position. The DHGM will have under root two nodes,
one that points to the gate instances in the plan library and
one that splits into 2 nodes, one node with 25 agents that
execute the gate plan-step and another node that splits to
two nodes: one with 24 agents that execute gate and 1 agent
that executes position. Note that time-stamps counters were
omitted, for presentation clarity.

Note that the Dynamic Hierarchy Group Model can either
hold multiple instances of the plan library (for each group),
or one plan library with different time-stamp tags for each
group. See also time and space complexity in the next sec-
tion.

Complexity Analysis
Using the Dynamic Hierarchy Group Model for plan recog-
nition in multi agents scenarios is less expensive in space
terms, than operating individual plan recognition method for
each agent. We do not need to hold a plan library for each

100

Position

Position

50 20

t=1

30

With
Bag

Without
Bag

t=2

50 50

With
Bag

Without
Bag

t=3

gate
25 25

50 50

t=4

2525

124

100

100 100

gate

gate

gate Position

Figure 3: Example of the process of creating Dynamic Hierar-
chy Group Model. The Number on the node denotes number
of agents belong to this group.

agent, but to use the same plan library with different no-
tations for each group. Therefore the space complexity is
O(Lg), where L is the plan library size and g is the maxi-
mum number of groups. This should be compared to O(Ln),
where n is the number of agents.

The run-time complexity is larger than running individual
plan recognition, since we not only run the SBR algorithm,
but also check the connections between agents. we go over
the group hierarchy O(g) bottom up, where g is the num-
ber of groups. For each node: we execute SBR (Algorithm
2 line 7): O(LD), where L is the plan library size, and D
is the depth of the plan library. This is done for all agents
in this node O(LDn) (Algorithm 2 line 5), where n is the
number of agents in the group. Then, compare all agents
results O(nlogn) with sort (Algorithm 2 line 9). Therefore,
O(gnLD + gnlogn). The gn (number of groups multiply
the size of the group) is actually the total number of agents
N. Therefore, it is O(NLD + Nlogn), this is for one ob-
servation. It will be O(TNLD + TNlogn), where T is the
number of observations.

Detecting Suspicious Behavior
This section presents a method for detecting suspicious be-
havior using DHGM. There are suspicious behaviors that
can be captured only when tracking agents with respect to
their group and not only as individuals. For this purpose, we
utilize the Dynamic Hierarchy Group Model that was intro-
duced in the previous section to detect suspicious behavior.

We differentiate between two types of suspicious behav-
ior recognition models: (i) explicit recognition; and (ii) im-
plicit recognition. In the explicit recognition model, the
plan library represents suspicious behavior; any activity that
matches the model will be assumed to be suspicious. This
is the model used in (Geib & Goldman 2001). It can be
challenging to learn plan libraries for explicit recognition,
in domains where we have fewer recordings of suspicious
behavior. Indeed, in many domains, we normally have more

recordings of normal behavior (for instance, in vision-based
surveillance in public places). Here, we can utilize implicit
recognition, where the plan library represents normal be-
havior; any activity which is not recognized is abnormal.
For example, the normal activity model may include usual
movements of people in the airport.

A symbolic plan-recognition algorithm, such as SBR, is
useful in implicit recognition of abnormal patterns, such
as walking in the wrong direction, taking more then usual
amount of time to get to the security check, etc. How-
ever, without a way to rank hypotheses (e.g., probabilisti-
cally (Geib 2004), or based on expected costs (Avrahami-
Zilberbrand & Kaminka 2007)), it may be less useful for
explicit recognition.

Recognizing the plans of multiple agents can help in de-
tecting suspicious behavior. There are suspicious behaviors
that can be captured only when tracking agents with respect
to their group and not only as individuals. We propose a
number of heuristics for detecting suspicious behavior, us-
ing the information from the DHGM showed in the previous
section.

The first heuristic we propose is that agents that behave
differently from other agents in the same group will be con-
sidered suspicious. For example, passengers that behave dif-
ferently from other passengers in the airport (not standing
with all other passengers in the line).

We consider an agent or group of agents as behaving dif-
ferently from other agents in the same group, and there-
fore suspicious, if the following conditions hold: (a) The
agent did not return to his group k consecutive time-stamps
(where k is a constant that is application-dependent); (b) The
rest of the group is m times bigger from the group of sus-
pects (where m is a constant that is application-dependent).
These conditions can be extended as needed for specific
application and conditions. The process of checking for
these conditions given a DHGM is described in Algorithm
CheckSuspiciousBehavior (algorithm 3).

Using the DHGM we can identify agents that behave dif-
ferently from other agents in the same group. For example,
lets use the DHGM in the example in 3, we can see from the
information on the DHGM that there is only one agent out
of 24 that executes the position plan-step, and did not get
to the gate like other agents. We would like to keep an open
eye on this agent, since she might be dangerous.

Algorithm 3 CheckSuspiciousBehavior(Group Hierarchy Node
groupNode)
1: for all child c1 that is a leaf of groupNode do
2: for all child c2 that is a leaf of groupNode do
3: if |number of agents in c1|< m×|number of agents in c2|

then
4: if number of time-stamps counter in c1> k then
5: c1 group is suspicious

Previous work has shown that given a model of hierarchi-
cal relationship between agents, one can identify deviations
from the model (Kaminka & Bowling 2002) (which indi-
cate anomalies), and may increase efficiency of recognition
(Kaminka, Pynadath, & Tambe 2002). However, this previ-

ous work is limited to very specific social structures, where
agents form teams based on agreements as to specific plans.
In order to detect disagreements, the monitoring agent must
first know which plans are ideally to be agreed upon. In
contrast, in our work we do not have static social structure
that is given in advanced, but observations on dynamically
changing structure of groups. For example group of passen-
gers in the airport may seem like one group when standing
in the security check line, and afterward when splitting to
two groups, the structure need to be modified.

The second heuristic we propose is to explicitly clear
an agent, if it behaves normally with respect to its group’s
history. For example consider the queue-cutting problem,
where two friends are standing in specific position in the
security line, when one goes out to the restrooms, and re-
turns to join her friend. If we would not save the history of
the group, we may consider this person to be a suspect of
cutting in line. However, when knowing the history of the
group, we can explicitly clear her.

The queue-cutting problem can be solved using the
DHGM. In this case the SBR algorithm will return that there
are no results for this agent according to the plan library.
This will happen since the propagation phase has failed,
therefore we can check whether the matching phase has re-
sulted with matching plan-steps and compare them to the
agent’s history group. If the agent is executing the same
plan-step that some of its group members, then we consider
it as a legal behavior, and not consider her a suspect as the
single agent SBR would do.

Summary and Future Work
This paper presents initial steps towards efficient dynamic
tracking of the organization of multi-agent teams. Us-
ing a combination of single-agent plan recognizer, and the
DHGM data-structure, we maintain book-keeping informa-
tion which allows us to dynamically track and hypothesize
as to the organizational structure of a group of agents. We
also discuss two heuristics that use this information to recog-
nize suspicious behavior.

Much remains for future work, of course. We have only
begun to address issues of uncertainty, for instance. We
would also like to more tightly integrate SBR and DHGM,
and more formally define the recognition queries answer-
able by multi-agent plan recognizers in general, and DHGM
in particular.
Acknowledgments. This research was supported in part by
ISF grant #1211/04. Special thanks to Nadav Zilberbrand
and K.Ushi.

References
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2005. Fast
and complete symbolic plan recognition. In IJCAI-05.
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2007.
Incorporating observer biases in keyhole plan recognition
(efficiently!). In Proceedings of Twenty-Second National
Conference on Artificial Intelligence (AAAI-07).
Avrahami-Zilberbrand, D.; Kaminka, G. A.; and Zarosim,
H. 2005. Fast and complete plan recognition: Allowing for

duration, interleaved execution, and lossy observations. In
Proceedings of the MOO-05 Workshop.
Charniak, E., and Goldman, R. P. 1993. A Bayesian model
of plan recognition. AIJ 64(1):53–79.
Duong, T. V.; Bui, H. H.; Phung, D. Q.; and Venkatesh, S.
2005. Activity recognition and abnormality detection with
the switching hidden semi-markov model. In CVPR (1),
838–845.
Geib, C. W., and Goldman, R. P. 2001. Plan recognition
in intrusion detection systems. In In DARPA Information
Survivability Conference and Exposition (DISCEX).
Geib, C. W. 2004. Assessing the complexity of plan recog-
nition. In AAAI-04.
Hongeng, S., and Nevatia, R. 2001. Multi-agent event
recognition. In ICCV, 84–93.
Intille, S. S., and Bobick, A. F. 1999. A framework for
recognizing multi-agent action from visual evidence. In
AAAI-99, 518–525.
Kaminka, G. A., and Bowling, M. 2002. Towards robust
teams with many agents. In AAMAS-02.
Kaminka, G. A.; Pynadath, D. V.; and Tambe, M. 2002.
Monitoring teams by overhearing: A multi-agent plan
recognition approach. Journal of Artificial Intelligence Re-
search 17.
Sukthankar, G., and Sycara, K. 2006. Simultaneous team
assignment and behavior recognition from spatio-temporal
agent traces. In Proceedings of Twenty-First National Con-
ference on Artificial Intelligence (AAAI-06).
Tambe, M. 1996. Tracking dynamic team activity. In
AAAI-96.
Tambe, M. 1997. Towards flexible teamwork. JAIR 7:83–
124.

