
Multi-Robot Patrolling and
Other Multi-Robot
Cooperative Tasks:

An Algorithmic Approach

Noa Agmon
Computer Science Department

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University
Ramat Gan, Israel

February 2009

This work was carried out under the supervision of Prof. Sarit Kraus and
Prof. Gal A. Kaminka, Computer Science Department, Bar-Ilan University.

Acknowledgments

This thesis summarizes my research that was carried out over the past four
years, during which time I had the opportunity to stumble along many sensi-
ble, insightful, kind and helpful people who have inspired and supported me
throughout my journey.

First and foremost, I would like to thank my advisors Professor Sarit
Kraus and Professor Gal Kaminka. Working with them, together and apart,
has been an inspiring experience. It is not often in life, and especially in
the academic world, that one can find two sharp minds that work together
in such a perfect cohesion, yet still leave room for other ideas to blossom.
Their total support and tremendous encouragement (both professionally and
personally) have made this journey fruitful and enjoyable. I could not have
asked for better mentors.

I would also like to thank my team members—from both MAVERICK and
the MAS groups—for creating a friendly, productive environment. Special
thanks to Yehuda Elmaliach for introducing the patrolling world to me, Efrat
Manisterski, for her help in untying a difficult knot in the patrolling work,
to Noam Hazon and Asaf Shiloni for the pleasure of working with them and
producing nice papers on coverage and ants (respectively), and to Vova Sadov
for his effort in the execution of the patrolling game.

To my parents, who have been the best and most enthusiastic advocators
of the academic life and thus, along with their total support and encourage-
ment, made the choice of continuing my studies the most trivial decision I
had to make. To my sisters, Idit and Tammy, whom I could always count
on for their support (and on their perfect hosting, when traveling to con-
ferences overseas), and to my in laws, Edna and Zvika, whom without their
help with babysitting services and a lot more, many deadlines would have
been impossible to meet.

Finally, and most importantly, I would like to thank my husband Doron,
whose love, patience and encouragement have made it possible for me to
complete this work. Also to my sons Ailon and Dothan, for their positive,
innocent and smart view of life which have helped open my mind to new
ideas, and most importantly - made my life considerably more challenging,
satisfying and complete.

This research was supported in part by ISF grant #1357/07 and #1685/07.

i

Abstract

The subject of cooperative multi robot systems has been thoroughly inves-
tigated over the past decade. These systems have immediate applicability
in a wide variety of tasks, such as military operations and space missions.
Building algorithms for multi-robot systems is a complex challenge, for which
solutions and methods are brought from many different disciplines. There is
significant interest in multi-robot systems also in the discipline of theoretical
computer science, mainly by using distributed systems analysis. However,
researchers who have worked on multi-robot systems from a distributed al-
gorithms perspective have tended to make unrealistic assumptions about the
robots’ capabilities, resulting in algorithms impractical for realistic systems.
In our work, we were motivated by methods from the theoretical computer
science discipline, yet we incorporated realistic assumptions on the robots’
capabilities.

In the first and the main part of the work we consider the task of multi-
robot patrol in adversarial environments. In this task, a team of robots is
required to continuously visit some target area in order to detect an adversary
trying to pass through the patrol path undetected. The challenge is to max-
imize the robots’ chances of detecting the adversary. We model the robots
and the environment, and find a family of optimal patrol algorithms for the
robots. The algorithms address different adversarial models, characterized by
the knowledge obtained by the adversary on the patrolling robots. Further-
more, we consider various robotic models, based on possible movement and
sensing models of the robots, and different environmental models—patrolling
around a perimeter (closed polygon) and fence (open polyline).

In the second part of the work, we discuss two additional canonical tasks
in multi-robot systems. First, we address the problem of task reallocation in
multi-robot formation, in which a subgroup of the robots should be extracted
from the formation in order to perform some new task. We therefore propose

ii

a new model of the system that is based on the interaction between the team
members, which helps in finding an efficient solution to the problem. Second,
we consider the problem of multi-robot coverage, in which a team of robots is
required to jointly visit a target area once. We propose a heuristic algorithm
that is shown to significantly improve the time to complete the coverage task.

iii

Contents

1 Introduction 1
1.1 Multi-Robot Patrol in Adversarial Environments 3
1.2 Task Reallocation in Multi-Robot Formation 6
1.3 Improving Efficiency in Multi-Robot Area Coverage 8
1.4 Thesis Overview . 10
1.5 Publications . 12

2 Related Work 14
2.1 Multi-Robot Patrol . 14
2.2 Task Reallocation and Multi-Robot Formations 16
2.3 Multi-Robot Coverage . 18

I Multi-Robot Patrol in Adversarial Environments 22

3 The Model - Environment, Robots and Adversary 24
3.1 Robot and environment model 24

3.1.1 Robotic computational model 24
3.1.2 Robotic movement model 26
3.1.3 Adversarial model . 26

3.2 Problem definition . 28
3.3 Algorithm framework . 28

4 Determining the Probability of Penetration Detection 34
4.1 Basic algorithm for determining ppdi in perimeter patrol . . . 35
4.2 Perimeter patrol with imperfect detection 37
4.3 Fence patrol . 40

4.3.1 Patrolling along a closed polyline vs. an open polyline 40

iv

CONTENTS

4.3.2 Determining ppdi in an open polyline 42
4.3.3 Fence patrol with imperfect detection 43

4.4 Improving sensing capabilities in perimeter patrol 45
4.4.1 Extending sensing range 46
4.4.2 Extending the sensorial range along with imperfect de-

tection . 48

5 Patrol in Different Adversarial Models 51
5.1 Handling a full-knowledge adversary 51

5.1.1 Finding the maximin point 52
5.2 Handling a zero-knowledge adversary 55

5.2.1 Perimeter patrol . 55
5.2.2 Perimeter patrol with imperfect sensing 58
5.2.3 Fence patrol . 60

5.3 Handling an adversary with some knowledge in Perimeter Patrol 61
5.3.1 A heuristic approach - algorithm Combine 61
5.3.2 A heuristic approach - algorithm MidAvg 64

5.4 Theoretical results about adversarial uncertainty 64
5.4.1 Estimating p - negative result 65
5.4.2 Uncertainty in the choice of the penetration spot . . . 67

6 Empirical Evaluation 74
6.1 The PenDet-Game . 74
6.2 Experiment - Phase 1 . 75

6.2.1 Experimental results 78
6.3 Experiment - Phase 2 . 83

6.3.1 Experimental results and discussion 86

II Additional Challenges in Multi-Robot Tasks 91

7 Team Member Reallocation in Multi-Robot Formation 92
7.1 Problem definition . 93
7.2 Team member reallocation focused on minimizing the cost of

the remaining OIT . 96
7.2.1 Team member reallocation with one possible leader . . 96
7.2.2 Team member reallocation with multiple possible leaders100

v

CONTENTS

7.2.3 An algorithm variation, in which not all vertices can
be extracted . 102

7.3 Multiple components in the utility function 103
7.3.1 Prioritized components 103
7.3.2 Weighted components 106

7.4 Empirical Evaluation . 108
7.5 Applicability in additional domains 112

8 Improving Efficiency in Multi-Robot Area Coverage 114
8.1 Motivation for building new spanning trees 115

8.1.1 Importance of the spanning tree structure 115
8.2 Tree construction algorithm 119

8.2.1 Using different distance measures 122
8.3 Evaluation . 124

8.3.1 Determining α . 124
8.3.2 Experimental results, α = 2 125

9 Future Directions and Final Remarks 129
9.1 Summary of Key Contributions 129
9.2 Future Directions . 131

References 132

vi

List of Figures

1.1 Thesis Structure. 11

3.1 An example for creating discrete segments from a circular path
with the property that the robots travel through one segment per
cycle. 25

3.2 Illustration of p’s characterization of the three models of movement. 29

4.1 Conversion of the initial segments and robot locations for the
three possible robotic models: DNCP, DCP and BMP into a
graphical model. 36

4.2 Representation of the system as a Markov chain along with state
transition. The robots are initially placed at the external seg-
ments, heading right. State s0 represents the segment currently
occupied by a robot. 40

4.3 Illustration of the difference between patrolling along a line and
patrolling along a circle, for different polylines 41

4.4 Description of the system as a Markov chain, as base for the
FindFencePPD algorithm. 43

4.5 An illustration of L segments shaded by robot R. In this case R
is facing right, therefore the shaded segments are to its right. . . 46

5.1 An illustration of two possible maximin points. On the left, the
point is created by the intersection of two curves, and on in the
right it is the local maxima of the lowest curve. 53

5.2 Illustration of the proof of Lemma 12. 57
5.3 An illustration of a case in which the maximal expected ppd is

obtained by a non deterministic algorithm. Each arrow represents
a movement in one time cycle. 60

vii

LIST OF FIGURES

5.4 An illustration of the tradeoff between the probability of penetra-
tion detection in all segments (d = 12, t = 9) when preparing for
a full knowledge vs. a zero knowledge adversary (p returned by
algorithm MaxiMin and the deterministic algorithm, respectively) 62

5.5 An illustration of the ComputeMinV algorithm for d = 8, t =
6, v = 3. The small stars mark the intersection points, and the
bold curve is the average of the 3 minimal curves at each section.
The arrow marks the maximal point computed by ComputeMinV. 69

5.6 An illustration of the ComputeNeighborV algorithm for d = 8, t =
6, v = 3. The curves are not the original ppdi functions, but the
average of the v−neighborhood of each segment. The arrow
points to the maximin point of the new curves. 71

5.7 An illustration of proof of Theorem 21, in which the v−neighborhood
and v− minimal coincide (d = 9, t = 5 and v = 3). The bold line
represents the average of v− minimal / v− neighboring segments. 73

6.1 The PenDet-Game screen. 75
6.2 A summary of the results, divided into three stages: no informa-

tion (S1), short-term revelation of information (S2), and long
term revelation of information (S3) for the three patrol algo-
rithms. Each line represents the maximal, minimal and average
penetration detection. The best performing algorithm in each
stage is depicted by a surrounding dotted rectangle. 79

6.3 Choices of penetration positions in stage 1 for different values of
d: d = 8, 12, 16. The x axes represents the segment, and the y
axes the percentage of subjects that chose to penetrate through
that segment. 80

6.4 Performance of the three different algorithms in stage 1 (adversary
with nearly zero knowledge). 81

6.5 Performance of the three different algorithms in stage 2 (adversary
with little knowledge) . 82

6.6 Performance of the two different algorithms in stage 3 (adver-
sary with full knowledge) along the entire 3 minutes, and when
omitting the first 30 seconds. 84

6.7 Results of the experiment for d = 8, t = 6 (on the left) and for
d = 16, t = 9 (on the right), both for unknown p. The bars
represent the expected penetration detection ratio of the robots
given the choices of the players. 87

viii

LIST OF FIGURES

6.8 Results of the experiment for d = 8, t = 6 (on the left) and for
d = 16, t = 9 (on the right), both when the patrol algorithm is
presented to the player. The bars represent the expected pen-
etration detection ratio of the robots given the choices of the
players. 89

7.1 An example of a case in which the triangle inequality exists in
OIT(G), yet it does not exist in G. 94

7.2 An example of a case where Constraint A is not fulfilled. 95
7.3 An example of 7-bundling of a tree. 98
7.4 An example of the search tree of all possibilities of extracting

k = 5 vertices from the graph where the leader can be elected as
well in each step. 101

7.5 An example of a path/edge intersection. 105
7.6 An example of a contradiction between the two utility compo-

nents: the remaining group’s OIT cost and the extracted group’s
OIT cost. Here N = 8, k = 4 and the optimal choice of nodes for
removal is colored in gray, while the remaining nodes are colored
in black. 107

7.7 Three different formations tested in our Player/Stage simulation.
The arcs represent the edges of the minimal sensing tree from all
robots to the leader (robot 1). 109

7.8 Execution of the Tree Pruning algorithm on formation A (left)
and C (right). The snapshot was taken approximately 15 seconds
after the extraction. 110

7.9 Execution of the Tree Pruning (left) and the Prioritized Pruning
(right) algorithms on formation B. The extracted robots are de-
noted by a surrounding square. 111

8.1 An illustration depicting how different trees can influence cover-
age time. 117

8.2 An example of a case in which the improvement factor is almost
k if the tree is appropriately constructed. 118

8.3 An example of a case in which there is no spanning tree that
has maximal distance of dN

k
e = d16

2
e = 8 between consecutive

robots along the spanning tree path. The numbers in parenthesis
describe the distance between two robots along the spanning tree
path. 119

ix

LIST OF FIGURES

8.4 An illustration of the Hilling procedure. 120
8.5 An illustration of the trees created using different distance mea-

sures by Procedure Create Tree: a. Manhattan distance and b.
Shortest paths. 123

8.6 Comparing α = 2 to α = 3 for 1 to 30 robots, when 13% of the
area contains obstacles (without disconnecting the area). 124

8.7 Results from comparing coverage time when using random trees
vs. trees generated using the Create Tree algorithm. 126

8.8 Comparison of the improvement ratio in coverage time obtained
by algorithm NB MSTC (left) and Opt MSTC (right) after gen-
erating trees randomly vs. using the Create Tree algorithm with
different densities of obstacles in the terrain. 128

x

List of Algorithms

1 Algorithm FindFunc(d, t) . 37
2 FindPPDwImpDetect(d, t, loc) 41
3 Procedure FindFencePPD(d, t) 44
4 Procedure ComputeProbPPD(d, t) 45
5 FindPPDwShade(d, t, loc, L) . 47
6 FindComplexP(d, t, loc, L, VS = {v0, . . . vL}) 50
7 Algorithm FindP(d, t) . 54
8 Procedure MaximinFence(d, t) 55
9 Combine(d, t, w) . 63
10 MidAvg(d, t, w) . 64
11 ComputeMinV(v, V, {ppd1, . . . , ppdd}) 70
12 ComputeNeighborV(v, V, {ppd1, . . . , ppdd}) 71
13 Algorithm Teamk = Tree Pruning(G = (V, E), k) 99
14 Algorithm Teamk = Prioritized Pruning(G = (V, E), k, tG) . . . 105
15 Algorithm Teamk = Weighted Pruning(G = (V, E), k, w1, w2) . . 107
16 Procedure Create Tree . 121

xi

Chapter 1

Introduction

The subject of multi robot systems has been thoroughly investigated over
the past decade (e.g., [12, 43, 50, 61, 80, 81]). These systems have immediate
applicability in a wide variety of tasks, such as military operations and space
missions. Multi-robot systems are of interest for a number of reasons. For
one, it may be possible to use a multiple robot system in order to accomplish
tasks that a single robot cannot achieve. Other advantages of multiple robot
systems have to do with the decreased cost due to the use of simpler and
cheaper individual robots, and to the ability to overcome failures in the
system (robustness).

Building algorithms for multi-robot systems is a complex task, for which
solutions and methods are brought from many different disciplines. Prob-
abilistic methods and control theory have been used to address sensor and
action uncertainty (e.g. [34, 37]). Behavior-based and BDI methods have
been used to address the high dynamic nature of the unstructured environ-
ment (e.g. [12, 83]). Ad-hoc networks and P2P methods have been used to
address communication difficulties (e.g. [65, 79]). While all of these provide
important infrastructures for solving problems in multi-robot systems, they
usually do not formally provide proven guarantees for the performance of the
proposed algorithms.

There is significant interest in multi-robot systems also in the discipline
of theoretical computer science, mainly by using distributed systems anal-
ysis. The great advantage in using these methods is the ability to provide
guaranteed characteristics in solutions to problems in the systems, for exam-
ple guaranteed correctness, guaranteed performance or robustness to robot
failure. An example can be found in the problem of multi-robot formation, in

1

which Suzuki and Yamashita [81] analyze the ability (or inability) of a team
of robots to stabilize in some formation. Flocchini et al. [36] continued this
line of research to examine these guarantees under different synchronization
models of the robots, and Agmon and Peleg [6] analyze the problem of robot
gathering under several models of robotic failures.

However, in work on multi-robot systems from a distributed algorithms
perspective, researchers tend to make unrealistic assumptions about the
robots’ capabilities, thus their models are impractical for realistic systems.
For example, robots are sometimes assumed to have unlimited visibility
[6, 19], or limited radius of visibility but across 360◦ [11], where in practice
this is usually not the case. On the other hand, robots are sometimes as-
sumed to be extremely weak, specifically have unrealistically limited memory
or computational power [78,87].

In our work, we were motivated by methods from theoretical computer
science, yet we incorporated realistic assumptions on the robots’ capabili-
ties. We chose to investigate all groups of problems using the same general
method. When considering a general problem, we first extracted a basic,
generic problem and modeled it in a way that can later be generalized to
more sets of problems. Then, we placed theoretical foundations, for example
a basic algorithm, for any possible solution based on the model. Thereafter,
we used these foundations to solve more problems in the group. By applying
this method we were able to guarantee system performance (e.g. probability
of penetration detection in multi-robot patrol), time complexity (polynomial
in multi-robot patrol and reduced time complexity, yet exponential, in task
reallocation), and robustness (in multi-robot coverage).

In the first and the main part of the work we consider the problem of
multi-robot patrol in adversarial environments. In this problem, a team of
robots is required to continuously visit some target area in order to detect
an adversary trying to pass through the patrol path undetected. We pro-
vide a model of the environment and the robots, and use this model in order
to find optimal patrol strategies for the robots, such that their chances of
detecting the adversary are maximized. In order to model the system and
find the optimal solutions, we use theoretical tools such as Markov chains
and dynamic programming. We further adapt the system to more realistic
capabilities of the robots, specifically various sensing capabilities. In addi-
tion, we examine the impact of the adversarial knowledge on the choice of
optimal patrol algorithms, and provide theoretical solutions for adversaries
obtaining no knowledge and full knowledge on the patrol. In reality, since

2

1.1 Multi-Robot Patrol in Adversarial Environments

the adversary’s knowledge lies somewhere on the knowledge continuum —
between full and zero knowledge — we broadly discuss this case as well ,
providing both theoretical and empirical evaluation of possible solutions.

In the second part of the work, we discuss two additional problems in
multi-robot systems. First, we address the problem of task reallocation in
multi-robot formation. In this problem, given the formation and the cost of
sensing each robot by its peers, we wish to reallocate k robots for a new task
while optimizing some utility function of the team. We focus on extracting
the k team members while minimizing the sensorial cost of the remaining for-
mation. We then generalize the basic problem while taking more details into
consideration, for example, adding more components to the utility function.
Second, we consider the problem of multi-robot coverage. In this problem,
the team of robots is required to jointly visit a target once. In our work, we
focus on creating more efficient robust paths for the robots, such that it will
dramatically improve the coverage time. We provide a heuristic algorithm
for constructing the paths for the robots, and via simulations we show that
this heuristic significantly improves the coverage time compared to previously
used algorithms.

Below we discuss the contributions of the dissertation in more detail.
In Section 1.1 we describe our contributions to the problem of multi-robot
patrol in adversarial environments. In Section 1.2 we introduce our work on
task reallocation in multi-robot formation, and in Section 1.3 we summarize
our contributions in improving efficiency in the problem of multi-robot area
coverage.

1.1 Multi-Robot Patrol in Adversarial Envi-

ronments

The problem of multi-robot patrol has gained interest in recent years [8, 10,
16,30,63], mainly due to its applicability in various security applications. In
this problem, robots are required to repeatedly visit a target area, in order to
monitor it. Many researchers (e.g. [16,30]) have focused on a frequency-based
approach, guaranteeing that some point-visit frequency criteria are met by
the patrol algorithm.

In this work, we advocate an adversarial approach in which the robots
patrol in an adversarial environment, where their goal is to patrol in a way

3

1.1 Multi-Robot Patrol in Adversarial Environments

that maximizes their chances of detecting an adversary trying to penetrate
through the patrol path.

As opposed to frequency-driven approaches, in adversarial settings the
frequency criteria becomes less relevant. Consider the following scenario. We
are given a cyclic fence of a length of 100 meters and 4 robots must patrol
around the fence while moving at a velocity of 1m/sec. Clearly, the optimal
possible frequency of visits at each point around the fence is 1/25, i.e., each
location is visited once every 25 seconds. This is achieved if the robots move
deterministically. Assume that it takes an adversary 20 seconds to penetrate
the area through the fence. If the robots move in a deterministic path, then
the adversary can guarantee penetration if it simply enters through a position
that was currently visited by the patrolling robot. On the other hand, if the
robots move non-deterministically, then the choice of penetration position
becomes less trivial.

We follow our main approach of adapting theoretical computer science
tools by first representing the system using a general model (in our case
basically a Markovian model). We then solve the problem using tools such as
a dynamic programming inspired algorithm, and finally we adapt our model
and solution to various movement and sensing capabilities of the robots, while
working with different environmental and adversarial models.

In this work we focus on the problem of multi-robot patrolling along a
linear path - around a closed polygon (perimeter) or an open polyline (fence).
We consider several possible robotic models, based on the robots’ movement
characteristics and on their sensing abilities. Specifically, the robots can have
directionality associated with their movement (and turning around could cost
the system time), or they can be omnidirectional. Their sensing abilities can
be perfect or imperfect.

We then focus our research on finding optimal patrol algorithms for the
robots in different adversarial models. The adversarial model is characterized
by the knowledge obtained by the adversary on the patrolling robots.

We examine the case in which the adversary has full knowledge of the
environment, and uses this information in order to maximize its chances of
penetrating without being detected. It is therefore assumed that the ad-
versary will penetrate through the weakest spot of the path, hence the goal
of the robots is to maximize the probability of penetration detection in the
weakest spot. We provide a polynomial time algorithm to find the optimal
patrol for the robots in this strong adversarial environment. We show that
a non-deterministic patrol algorithm is advantageous, and guarantees some

4

1.1 Multi-Robot Patrol in Adversarial Environments

lower bound criteria on the performance of the robots, i.e., on their ability
to block the adversary.

On the other hand, if the adversary has no knowledge of the patrol
scheme, then the patrol scheme might be different. In this case, we assume
the adversary chooses its penetration spot at random with a uniform prob-
ability. The robots, in contrast, wish to maximize the expected probability
of penetration detection along the entire patrol path. We show the surpris-
ing result that as opposed to the sophisticated algorithms used when the
adversary has full knowledge of the patrol scheme, in perimeter patrol, the
optimal algorithm for the robots is the simple deterministic patrol in which
the robots simply follow their patrol path without ever turning around. We
show that this result does not hold for fence patrolling.

Realistically, most adversaries would have neither perfect knowledge nor
zero knowledge, but partial knowledge. Unfortunately, optimal algorithms for
either extreme case fail in partial-knowledge cases. Therefore we also discuss
the case of an adversary that lies somewhere on the knowledge continuum,
between full and zero knowledge, i.e., having some knowledge. In this case
our focus is twofold. First, we provide heuristic algorithms to handle such
adversaries. Second, we discuss this case theoretically, and focus on the
influence of the adversary’s partial knowledge on its uncertainty of its choice
of action, and the impact of this uncertainty on the robots’ optimal patrol
algorithm.

In order to evaluate the behavior of people in this scenario with dif-
ferent amounts of information, we created the Penetration Detection Game
(PenDet-Game game). In this game, simulated robots execute different patrol
schemes while patrolling around a perimeter, trying to detect penetrations.
The player plays the role of the adversary, hence she is required to choose
a point through which, to her understanding, she will most likely penetrate
without being detected by the robots. We performed two phases of the exper-
iment. In the first phase, we focused on comparing between the performance
of algorithms meant for full and zero knowledge adversaries, as well as one
heuristic algorithm for adversary with some knowledge. In the second phase
we focused only on adversary with some knowledge, and compared between
the performance of several possible patrol algorithms meant for this case. In
this work we present a detailed description of the game, its settings and the
experimental results.

5

1.2 Task Reallocation in Multi-Robot Formation

1.2 Task Reallocation in Multi-Robot Forma-

tion

This part of our work involves a team of N robots engaged in a cooperative
task. Specifically, we consider the problem of choosing k team members in
order to reassign them to a new task. We assume that all members are
capable of participating in the execution of the new task, and the cost of the
new task does not depend on the identity of the robots chosen to perform it.
Therefore this work concentrates on the problem of choosing k robots such
that the performance of the existing task, performed by the remaining group
members, will be as efficient as possible.

The general problem of choosing k out of N team members in order
to perform a new task such that some mutual group-objective function is
optimized is an important problem. However, it was proven to be NP-hard
as a special case of the Set Partitioning Problem [41].

The measure we propose in our work, according to which the reallocation
is done,is based on the interaction between team members. Our approach,
which concentrates on the minimization of the cost of interaction between
the entities, reduces the number of possibilities for optimal assignment, thus
lessens the search domain from, theoretically, order Nk to order 2k and makes
it feasible to solve the problem both optimally and more efficiently (especially
for relatively small k’s).

Also in this work, we adapt our general method of first representing the
system using a general model (a directed graph in this case), and then pre-
senting a basic algorithm for solving the problem over this basic model. We
also propose other adaptations of the algorithm for different scenarios, for
example taking more factors into consideration in the task reallocation prob-
lem, and different domains aside from multi-robot formation.

In the model we propose, the set of team members and the interaction
between them is represented by a weighted directed graph, where the vertices
represent the members, the directed edges represent the interaction (interac-
tion of a vertex a to vertex b could be different from interaction of b to a, thus
the edges are directed) and edge weights represent the cost of the interaction
between them. We assume the team has a leader, which can correspond to a
formation leader in the example accompanying us throughout the work. In
the general case, this leader is a team member that has only incoming edges
and no outgoing edges, i.e., it does not depend on other team member’s input

6

1.2 Task Reallocation in Multi-Robot Formation

in its interaction with them.
The problem used to illustrate methods is the fundamental problem of

maintaining a formation by a team of robots; this problem has received
considerable attention in the literature (e.g. [12, 51]). In order to maintain
the formation, a robot has to monitor one or more robots in the formation.
Several common methods for choosing the identity of the robot(s) to be
monitored are known [12]. We choose to focus on the method proposed
in [51], in which the identity is driven by minimization of the monitoring cost
of the robots. Therefore the graph is the monitoring graph which represents
the sensorial capabilities of the robots, i.e., which robot can sense the other
and at what cost. The problem thus involves extracting k robots in order to
perform a new task (for example acquire a new target) while minimizing the
monitoring cost of the remaining group.

In particular, in this work we make the following contributions.

1. We introduce a new method in which the problem of choosing k out
of N team members is modeled by a graph, and the decision is taken
while emphasizing the cost of interaction between the members.

2. We describe a deterministic algorithm for choosing k team members
while minimizing the cost of interaction between the members of the
remaining group assuming that the group has one possible leader. The
algorithm is exponential in k, hence polynomial if we assume that k =
O(log N).

3. We later generalize the algorithm for the case in which the group has
more than one member which can potentially act as the leader. These
cases are significantly more complex, as they require that we check
possible leader replacements; yet we show that they can still be done
optimally by applying an algorithm that works in reduced time (expo-
nential in k, hence polynomial for k = O(log N)). We also show that
the basic algorithm can be used as a base for cases in which not all
team members can be chosen for the new task. We show that in some
cases the basic algorithm can still be used under these circumstances.

4. We show examples for cases in which the basic algorithm can be used
with a utility function that has more than one component. In partic-
ular, we consider weighted components and prioritized components of
the utility function.

7

1.3 Improving Efficiency in Multi-Robot Area Coverage

5. We show that the method we use, and the basic algorithm within it, is
a general method that can be used in several other domains.

We then present an empirical evaluation of the algorithm, using the
Player/Stage simulated environment [44]. This implementation illustrates
the use of three different task reallocation algorithms—the basic algorithm,
and two algorithms that take other considerations into account (weighted
and prioritized components)—in different formations.

1.3 Improving Efficiency in Multi-Robot Area

Coverage

The general problem of covering an area by single or multi robot systems
is a fundamental problem in robotics. This problem has applications in
various domains, from humanitarian missions such as search and rescue
and de-mining, to agriculture applications such as seeding or harvesting,
to, recently, household cleaning. The problem has been extensively investi-
gated in both single-robot domains (e.g. [20,48,49]) and multi-robot systems
(e.g. [46,67,68,88]). The major advantages of using multi-robot systems are
twofold: increasing efficiency, in our problem decreasing the coverage time,
and robustness, in the sense that the system remains operative even when
some robots fail. In this paper we address both advantages of the multi-robot
systems in the coverage task.

This work discusses the problem of building efficient coverage paths for a
team of robots. In this problem, a team of robots, each equipped with some
tool, for example a sensor, are required to jointly sweep the entire given
terrain while minimizing the total coverage time. In our work, we assume
that the area is divided into cells, and the robots travel through all cells of
the terrain. Following the taxonomy presented in [18], the division of the
area is an approximate cellular decomposition, and we handle both online
and offline coverage. In offline coverage, upon which we focus, the map of
the area is given in advance, therefore the coverage paths of the robots can
be determined prior to execution of the coverage algorithm.

In this work we follow our general theoretical computer science inspired
method (described in the general section of the Introduction), however we
base our work upon a common model of representation of the system (us-
ing graphs drawn over the approximate cell decomposition of the area), in

8

1.3 Improving Efficiency in Multi-Robot Area Coverage

contrast to creating a new model as presented in the previous sections. We
propose a basic algorithm for improving efficiency of the coverage task in this
model, and examine several different measures using the basic algorithm.

Often, previous work has pointed out that one advantage of using multiple
robots for coverage is the potential for more efficient coverage [18]. Another
potential advantage of using multiple robots is that they may offer greater
robustness : Even if one robot fails catastrophically, others may take over
its coverage subtask. In other words, as long as there one non-faulty robot
exists, the coverage mission will be completed successfully. Unfortunately,
this important capability has been neglected in most existing work on on-line
algorithms.

Several methods can be found in the literature on coverage by single
and multi-robot systems. One basic method, which received considerable
attention, is the technique presented by Gabriely and Rimon [39], where
the authors describe a polynomial time Spanning Tree Coverage algorithm,
better known as the STC algorithm. In their work, Gabriely and Rimon offer
a method for finding a Hamiltonian cycle covering a terrain that satisfies
some assumptions. In particular, it is assumed that the robot is equipped
with a square shaped tool of size D, hence the area is divided into N cells
of size D placed on a grid. The grid is then made coarse such that each new
cell is of size 2D X 2D, and a spanning tree is built according to this new
grid. After such a tree is built, the robot follows the tree around, creating
a Hamiltonian cycle and visiting all cells of the original grid. The idea was
first generalized for a multi-robot system in [46], with the family of MSTC
algorithms. A different variation of this idea was introduced in [88].

When building the tree in a single robot system, the influence of the
structure of the tree is theoretically irrelevant to the coverage time. Clearly,
one might want to construct spanning trees with special characterizations,
for example minimizing the number of turns of choosing some preferred direc-
tionality. Nonetheless, the coverage time guaranteed by the STC algorithms
is linear in the size of the grid, since each cell, except for the boundary cells,
is covered once, hence the total coverage time is N .

On the other hand, in multi-robot systems, the structure of the tree can
have a crucial impact on the coverage time of the terrain. The choice of the
spanning tree can change the robots’ initial positions with respect to each
other, from being concentrated, i.e., placed as a bundle, to being scattered
along the spanning tree path — all without actually changing the physical
initial position of the robots. The structure of the tree itself can therefore

9

1.4 Thesis Overview

substantially reduce the coverage time required by algorithms based upon
it. Hence we concentrate on building appropriate coverage spanning trees.
The general method we follow when building such trees, is to gradually grow
subtrees from the initial position of the robots.

Hence, we deal with constructing spanning trees for offline coverage that
reduces the total coverage time of algorithms using them as a base for cov-
erage. The coverage time of a terrain is determined by the robot traveling
through the terrain longest period of time. In a system with homogenous
robots, this time corresponds to the longest distance traversed by a single
robot. We try to minimize this distance by creating trees where the robots
are placed as uniformly as possible around it. Therefore, when constructing
the trees we try to minimize the maximal distance between every two con-
secutive robots along the spanning tree path. If such a tree is obtained, we
show that all versions of the MSTC algorithm that ran on these trees achieve
substantially better coverage time compared to their coverage time on other
randomly generated trees. Note that these trees, along with decreasing the
coverage time of the algorithms which use them as a base for coverage, also
enjoy the benefits of the algorithms themselves. Specifically, if used as a base
for the family of MSTC algorithms, it guarantees robustness. The tree con-
struction algorithm we propose herein was tested both in a “clean” terrain,
i.e., without obstacles, and also terrains with obstacles, where the obstacles
are assumed to occupy a full cell (or cells) of the coarse grid. The algorithm
we propose has a polynomial time complexity in the number of cells to be
covered. This results in the surprising conclusion that as we add obstacles to
the terrain, the complexity of the tree construction algorithm lessens, since
the number of covered cells diminishes.

1.4 Thesis Overview

This dissertation comprises 9 chapters, organized into two main parts (see
Figure 1.1). This chapter constitutes the introduction to this thesis. The
next chapter surveys the related work. Chapters 3−−6 constitute Part 1 of
the dissertation, which deals with multi-robot patrol in adversarial environ-
ments. Part 2 of the dissertation includes other problems in the multi-robot
field, where Chapter 7 addresses the problem of team member reallocation in
multi-robot formation and Chapter 8 deals with the problem of multi-robot
coverage. In Chapter 10 we provide our conclusions and discuss future work.

10

1.4 Thesis Overview

Chapter 9:Future Directions and Final Remarks

Part 2: Additional Challenges in Multi−Robot Tasks

Part 1: Multi−Robot Patrol in Adversarial Environments

Chapter 7: Team Member Reallocation in Multi−Robot Formation

Chapter 8: Improving Efficiency in Multi−Robot Area Coverage

Chapter 3: The Model − Environment, Robots and Adversary

Chapter 4: Determining the Probability of Penetration Detection

Chapter 5: Patrol in Different Adversarial Models

Chapter 6: Empirical Evaluation

Chapter 1:Introduction

Chapter 2:Related Work

Figure 1.1: Thesis Structure.

11

1.5 Publications

1.5 Publications

Results that appear in this dissertation have been published in the proceed-
ings of the following refereed journals, conferences, books and workshops:

• Noa Agmon, Noam Hazon and Gal A. Kaminka. The Giving Tree:
Constructing Trees for Efficient Offline and Online Multi-Robot Cov-
erage. In a special issue of the Annals of Math and Artificial Intelligence
(AMAI) Journal on Multi-Robot Coverage, Search, and Exploration,
2009, in press. [58]

• Noa Agmon, Sarit Kraus and Gal A. Kaminka. Multi-Robot Fence
Patrol in Adversarial Domains. In Proc. of the 10th Conference on
Intelligent Autonomous Systems (IAS-10). IOS Press, July 2008. [4]

• Noa Agmon, Sarit Kraus and Gal A. Kaminka. Multi-Robot Perime-
ter Patrol in Adversarial Settings. In Proc. of IEEE International
Conference on Robotics and Automation (ICRA 08). May 2008. [5]

• Noa Agmon, Vladimir Sadov, Sarit Kraus and Gal A. Kaminka. The
Impact of Adversarial Knowledge on Adversarial Planning in Perime-
ter Patrol. In Proc. of the Seventh International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-2008). May
2008. [7]

• Noa Agmon, Noam Hazon and Gal A Kaminka . Constructing Span-
ning Trees for Efficient Multi-Robot Coverage. In Proc. of IEEE In-
ternational Conference on Robotics and Automation (ICRA 06). May
2006. [2]

• Noa Agmon, Gal A Kaminka and Sarit Kraus. Team Member-
Reallocation via Tree Pruning. In Proc. of the National Conference on
Artificial Intelligence (AAAI), pages 35-40, July 2005. [3]

In addition, the following papers were both influenced by and reflected in
this work. are discussed in the related work section, though their results are
not part of this thesis.

• Yehuda Elmaliach, Noa Agmon and Gal A. Kaminka, Multi-Robot
Area Patrol under Frequency Constraints, Annals of Math and Ar-
tificial Intelligence, 2009, in press. [32]

12

1.5 Publications

• Yehuda Elmaliach, Noa Agmon, and Gal A. Kaminka. Multi-Robot
Area Patrol under Frequency Constraints. In Proceedings of IEEE In-
ternational Conference on Robotics and Automation (ICRA-07), 2007
[30].

13

Chapter 2

Related Work

2.1 Multi-Robot Patrol

Systems comprising multiple robots or agents cooperating in order to patrol
in some designated area have been studied based on various approaches and
in different contexts. Theoretical and empirical solutions have been proposed
in order to assure quality patrol. The definition of quality depends on the
context. Most studies concentrate on the frequency of visits throughout the
designated area. Efficient patrol, in this case, is a patrol guaranteeing a
high frequency of visits in each part of the area. If the robots work in an
adversarial environment, then efficient patrol is one that deals efficiently with
intruders.

Note that many of these related papers were published after our initial
work, which was presented in [5, 7].

The first theoretical analysis of the multi-robot patrol problem was pre-
sented by Chevaleyre [16]. He introduces the notion of idleness, which is
the duration each point in the patrolled area is not visited. In his work, he
analyzes two types of multi-robot patrol schemes with respect to the idleness
criteria: partitioning the area into subsections, where each section is visited
continuously by one robot; and the cyclic scheme in which a patrol path
is provided along the entire area and all robots visit all parts of the area,
consecutively. He proves that in the latter approach, the frequency of visit-
ing points in the area is considerably higher. Another survey by Almeida et
al. [9] offers an empirical comparison between different approaches towards
patrolling with regards to the idleness criteria, and shows great advantage of

14

2.1 Multi-Robot Patrol

the cycle based approach.
Elmaliach et al. [30,31] offer new frequency optimization criteria for eval-

uating patrol algorithms. They provide an algorithm for multi-robot patrol
that is proven to have optimal frequency as well as uniform frequency, i.e.,
each point in the area is visited with the same highest-possible frequency.
Their work is based on creating one patrol cycle that visits all points in the
area in minimal time, and the robots simply travel equidistantly along this
patrol path.

Sak et al. [69] considered the case of multi-agent patrol in adversarial
environments in general graphs (rather than perimeters, as in our work).
They concentrated on an empirical evaluation (using a simulation, with no
human subjects involved) of several non-deterministic patrol algorithms that
can be roughly divided into two: Those that divide the graph between the
patrolling agents, and those that allow all agents to visit all parts of the
graph. They considered three types of adversaries: random adversary, an
adversary that always chooses to penetrate through a recently-visited node
and an adversary that uses statistical methods to predict the chances that
a node will be visited soon. They concluded that there is no patrol metric
that outperformed the others in all the domains they have checked, but the
optimality depends on the environment. In contrast to this investigation,
we provide empirical results from tests with human subjects, and theoretic
proofs of optimality for different settings.

Other closely related work is the work by Paruchuri et al. [63], which
considered the problem of placing security checkpoints in adversarial envi-
ronments. Similar to our assumptions, they assume that their agents work
in an adversarial environment in which the adversary can exploit any pre-
dictable behavior of the agents. They use policy randomization in the agents’
behavior in order to maximize their rewards. They assume the adversary
has full knowledge of the patrolling agents. Paruchuri et al. further study
([62]) this problem in cases where the adversarial model is unknown to the
agents, although the adversary still has full knowledge of the patrol scheme.
They again provide heuristic algorithms for optimal strategy selection by the
agents. In our work, we discuss different adversarial models determined by
the extent of information revealed to the adversary. Also, we assume the
robots have partial information about the adversary (specifically, they know
the time it takes the adversary to penetrate).

Pita et al. [64] continued this research to consider the case in which the
adversaries make their choices based on their bounded rationality or uncer-

15

2.2 Task Reallocation and Multi-Robot Formations

tainty, rather than make the optimal game-theoretic choice. They considered
three different types of uncertainty over the adversary’s choices, and provide
new algorithms that deal with these types of uncertainties. In our work we
discuss other aspects of uncertainty in an adversary’s choice, and provide
optimal polynomial-time solutions.

Amigoni et al. [10] also used a game-theoretic approach for determining
the optimal strategy for patrolling agents, using leader-follower games. They
consider an environment in which a robot can move between any two nodes
in a graph, as opposed to the perimeter model we use. Their solution is
suitable for one robot, and since the computation of the optimal strategy is
exponential, they described a heuristic approach for finding a solution.

Theoretical work based on stochastic processes that is related to our work
is the cat and mouse problem [21], also known as the predator-prey [45] or
pursuit evasion problem [85]. In this problem, a cat attempts to catch a
mouse in a graph where both are mobile. The cat has no knowledge about the
mouse’s movement, therefore as far as the cat is concerned, the mouse travels
similarly to a simple random walk on the graph. We, on the other hand,
have worst case assumptions about the adversary. We consider a robotic
model, in which the movement is correlated to the movement of a robot, with
possible directionality of movement and possible cost of changing directions.
Moreover, in our model the robots travel around a perimeter, rather than in
a graph or an area.

Other theoretical work by Shieh and Calvert [77], based on computational
geometry solutions, attempts to find optimal viewpoints for patrolling robots.
They try to maximize the view of the robots in the area, show that the
problem is NP-Hard, and find approximation algorithms for the problem.

2.2 Task Reallocation and Multi-Robot For-

mations

The class of pattern-formation problems of multi robot systems is discussed
in [12,38,59,81]. Balch and Arkin [12] describe three possible basic techniques
a robot can use in order to maintain its position in a formation: leader
referenced, neighbor referenced and unit-center referenced. Further studies
by Desai [25], Lemay et al. [56] and Kaminka et al. [51] examine different
aspects of the neighbor referenced technique. In our work, we consider the

16

2.2 Task Reallocation and Multi-Robot Formations

situation in which the formation, built according to the method proposed by
Kaminka et al. [51], already exists, and we need to extract k team members
from the formation. Our problem does not resemble the problem where
agents fail to operate [55], since we are able to choose the k members, which
results in maximization of the actions of the remaining team members.

Our problem belongs to the multi robot task allocation (MRTA) do-
main. Following the taxonomy for MRTA systems given by [43], our work
deals with instantaneous assignments of single-task robots performing multi-
robot tasks.

Studies that discuss the problem of choosing k out of N agents in order
to perform a new task mostly concentrate on maximizing the profit gained
by the optimal performance of the new task. For example in [42] Gerkey and
Matarić used the publish/subscribe messaging paradigm to assign robots to
a given task. We, on the other hand, concentrate on maximizing the benefit
(minimizing the cost) gained by the optimal execution of the original task.
The problem can be considered equivalent, if it is perceived as choosing
N − k team members to perform the original task. Nevertheless, we aim to
find the exact optimal solution where in other studies the problem is handled
heuristically.

Other studies discuss allocation of agents to several given tasks. These
studies mostly provide heuristic algorithms for efficient allocation of agents
to tasks. In [70], Sander et al. describe task allocation heuristic algorithms
for settings in which the agents and tasks are geographically dispersed in the
plane. Work presented in [27, 28] discusses task allocations between robots
using auctions. Finding the optimal assignment using combinatorial auc-
tions, where bidders can bid on combinations of items, has been proven to
be NP-hard [71].

The problem of designing and forming groups of agents while maximizing
some mutual objective is usually referred to as coalition formation. The
work of Shehory and Kraus [76] is close to the scenario discussed in this
paper. They suggest algorithms for coalition formation among agents, where
an agent can be either a member of only one coalition (similar to our case),
or coalitions may overlap. They provide heuristic algorithms, rather than an
exact optimal solution. In [73], Sandholm and Lesser also dealt with coalition
formation, but with self interested agents. Our problem can be perceived as
a private case of the general coalition formation studies, for example two
tasks - new and old or two coalitions. In [84], Tosic and Agha describe a
distributed algorithm for generating coalitions based on the current physical

17

2.3 Multi-Robot Coverage

configuration of the agents, using maximal cliques. They show that the
agents convert to the same coalitions, but their work does not refer to any
kind of group utility, as opposed to our work, which maximizes the joint
utility of the agents performing the original task.

Another subject in coalition formation which is closely related to the
problem discussed here is the problem of coalition structure generation [24,
72, 74]. In this problem, which has been shown to be NP-hard, a division
of the agents into coalitions is searched such that the group utility (payoff)
is maximized. In [24, 72], the authors provide algorithms with a guaranteed
lower bound from the optimal. In [74], Sen and Dutta describe a stochastic
search approach for searching for optimal coalitions. As opposed to our
scenario, whereby an optimal solution is guaranteed, in these studies a sub
optimal solution is given.

2.3 Multi-Robot Coverage

The challenge of covering a terrain by a team of mobile robots has received
considerable attention in the literature. The growing interest in this area is
first and foremost due to the fact that the coverage task is implementable in
various domains. Moreover, the concentration in multi-robot systems comes
from two key features made possible by using multiple robots: (i) robustness
in the face of single-robot catastrophic failures, and (ii) enhanced produc-
tivity, thanks to the parallelization of sub-tasks. Many approaches can be
found in the literature for multi-robot coverage.

Choset [18] provides a survey of coverage algorithms, which distinguishes
between offline algorithms, in which a map of the work-area is given to the
robots in advance, and online algorithms, in which no map is given. The sur-
vey further distinguishes between approximate cellular decomposition, where
the free space is approximately covered by a grid of equally-shaped cells, and
exact decomposition, where the free space is decomposed to a set of regions,
whose union fills the entire area exactly. Following Choset’s terminology, in
this paper we focus on both online and offline coverage, based on approximate
cell decomposition of the area.

We focus on spanning tree based coverage, first proposed by Gabriely and
Rimon in [39]. They proposed the basic method of dividing the terrain into
2D X 2D cells, and described the polynomial time spanning tree coverage
algorithm (STC) for complete offline and online coverage of the terrain by a

18

2.3 Multi-Robot Coverage

single robot. In [40], they suggest two different algorithms for building an
on-line tree, but the motivation comes from the desire to create a spanning
tree with a specific scanning direction.

The generalization of the single-robot STC algorithm to offline multi-
robot systems was first introduced by Hazon and Kaminka in [46]. They
presented several offline algorithms for multi-robot coverage of a terrain
by the MSTC algorithm, which guarantees robust, time-efficient and com-
plete coverage. They describe two versions of the MSTC algorithm: non-
backtracking MSTC, and backtracking MSTC, herein referred to as NB MSTC
and B MSTC, respectively. In the NB MSTC algorithm the robots simply
move in a counterclockwise direction along the spanning tree path until they
reach the initial position of the following robot if no faults occur, or otherwise
take over the coverage path of the consecutive robot. In the B MSTC the
robots can backtrack over parts of their coverage path, i.e., they can go both
clockwise and counterclockwise. They have shown that if the robots back-
track, the worst case performs up to twice as fast as the non-backtracking
case, despite the redundancy. Other results by Hazon and Kaminka, de-
scribed in [47], provide an optimal polynomial time coverage algorithm,
herein referred to as Opt MSTC. Opt MSTC is similar to the B MSTC al-
gorithm with modifications that assure optimal coverage time given the ini-
tial locations of the robots and an initial spanning tree. The optimality is
guaranteed only for the backtracking method, i.e., if the robots go back and
forth along the given spanning tree. Hence they promise to make the most
(optimal) out of the given tree and initial locations of the robots if the robots
do not deviate from the path dictated by the structure of the tree. In our
work we focus on generating good trees for such algorithms.

Work by Zheng et al. [88] proposed an additional offline multi-robot cov-
erage algorithm. Their solution is based on dividing the given spanning tree
into k subtrees, where a path overlapping between robots might exist. Their
algorithm performs better compared to both NB MSTC and B MSTC algo-
rithms, however their solution is not robust. In addition, they note that
different choices of trees may result in different coverage time, but they did
not expand on this issue.

There have been additional investigations of online multi-robot coverage,
for example in the world of ant robotics. Wagner at. al. [86] propose a se-
ries of theoretical multi-robot ant-based algorithms which use approximate
cellular decomposition. The algorithms involve little or no direct communi-
cations. Instead they use simulated pheromones for communication or traces

19

2.3 Multi-Robot Coverage

of robots. Some of these algorithms solve only the discrete coverage problem
and some offer complete robust coverage, but not necessarily efficient. Recent
work by Osherovich et al. [60] offers a robust coverage algorithm for ants in
continuous domains. Svennebring and Koenig [82] offer a feasibility study for
ant coverage. They perform experiments with real ant-robots in large-scale
simulations. They show robustness, but provide no analytic guarantees for
completeness or efficiency.

Acar and Choset [1] present a robust on-line single robot coverage algo-
rithm while their robustness quality is the ability to filter bad sensor readings.

Rekleitis et al. [66] use two robots in online settings, with a visibility
graph-like decomposition (more or less an exact cellular decomposition). The
algorithm uses the robots as beacons to eliminate odometry errors, but does
not address catastrophic failures (i.e., when a robot dies). In a more recent
article, Rekleitis et al. [68] extend the Boustrophedon approach [18] to a
multi-robot version. Their algorithm also operates under the restriction that
communication between two robots is available only when they are within
line of sight of each other. Their solution, though, is not robust to failures,
i.e., it could stop functioning if one of the key robots fails. In [53], Kong et
al. provide an improved algorithm for multi-robot coverage with unbounded
communication, where the algorithm is demonstrated to be robust to failures
(yet this property is not theoretically proven to be complete).

Butler et al. [15] propose a sensor-based multi-robot coverage, in a rec-
tilinear environment, based on the exact cellular decomposition. They do
not prove their robustness, and the robots could cover the same area many
times.

The recent Brick & Mortar algorithm suggested by Ferranti et al. [35]
is an online coverage algorithm that assumes the robots communicate using
miniature storage devices that are placed along the entire area, such that
one device is placed in each cell. The use of these devices is their solution
to the extensive communication assumption, made by other online coverage
algorithm, which is partially made in our work as well. Their work does
not refer to the robustness of the coverage. In addition, their solution might
result in redundancy of coverage.

Other approaches, other than the ones based on cellular decomposition of
the terrain, can be found in literature on multi-robot coverage. For example,
in [13], Batalin and Sukhatme offer two coverage algorithms for a multi-
robot system in which the robots spread out in the terrain, and move away
from each other while covering the area and minimizing their interaction. In

20

2.3 Multi-Robot Coverage

their work, they aim to achieve optimal coverage area, and do not prove any
formal statement regarding the optimality of coverage time. Yet, similar to
their work, our tree construction algorithm uses the “spreading out” principle
in order to build the coverage tree.

21

Part I

Multi-Robot Patrol in
Adversarial Environments

22

In this part we consider the problem of multi-robot patrol with the ex-
istence of an adversary attempting to penetrate through the patrol path
without being detected. We develop a non-deterministic patrol framework
for the robots, such that their movement is characterized by a probability p.
We model different environments—patrol around a closed polygon, perime-
ter, and patrol along an open polyline, fence. We use this framework to
also handle different robotic models, specifically robots with different move-
ment characteristics (directed or undirected movement) and different sensing
capabilities (perfect or imperfect, local or extended).

We then examine the impact of the knowledge obtained by the adversary
on the choice of patrol algorithm. This work explores this question in depth
and provides theoretical results, supported by extensive experiments concern-
ing the compatibility of algorithms to the extent of information possessed by
the subjects. First, we analytically examine the case of a full-knowledge ad-
versary, and offer an optimal polynomial-time algorithm in order to find the
optimal patrol algorithm such that the minimal probability of penetration
detection throughout the perimeter is maximized. We then address a zero-
knowledge opponent—a different extreme—and show that surprisingly, this
seemingly best-case scenario (from the point of view of defending robots) is
optimally addressed by a deterministic, non-randomizing patrol for perimeter
patrol. Nonetheless, this result does not hold for fence patrol. We provide a
discussion of the case in which the adversary has some knowledge (between
full and zero knowledge), and provide both heuristic algorithms and optimal
algorithms that depend on the level of uncertainty in the adversary’s choice.
Finally, we present results from extensive experiments using human subjects
playing the role of the adversary that work opposite simulated robots, and
thoroughly discuss the experimental results.

This part is organized as follows. In Chapter 3 we describe the general
model - environment, robot and adversarial model, and the patrol algorithm
framework. In Chapter 4 we provide algorithms for determining the proba-
bility of penetration detection in both perimeter and fence patrol, and also
describe the results concerning various sensing abilities of the robots. In
Chapter 5 we discuss and present optimal patrol algorithms concerning the
influence of knowledge obtained by the adversary on the choice of patrol al-
gorithm, focusing on full knowledge, zero knowledge and patrial knowledge.
In Chapter 6 we comprehensively describe the experiment we conducted and
analyze the results we obtained.

23

Chapter 3

The Model - Environment,
Robots and Adversary

In this chapter we provide basic definitions concerning the assumptions on
the robots’ behavior and coordination and the influence of these attributes
on the patrol mission.

3.1 Robot and environment model

3.1.1 Robotic computational model

We consider a system consisting of k homogenous mobile robots, that are
required to patrol around a closed polygon or an open polyline P . The
robots operate in cycles, where each cycle consists of two stages.

1. Compute: Execute the given algorithm, resulting in goal point pG.

2. Move: Move towards point pG.

This model is synchronous, i.e. all robots execute each cycle simultane-
ously. We consider a patrol in a circular or open path, which is similar to a
one dimensional (linear) graph.

The description herein refers to patrolling around a closed polygon P . A
detailed description of patrolling along an open polyline is given in Section
4.3.

The path around P is divided into segments of a length of l, where l
corresponds to the distance one robot travels and monitors the area in one

24

3.1 Robot and environment model

cycle. Hence each robot travels through one segment per cycle while covering
it (its velocity is 1 segment per one time cycle). This division into segments
makes it possible to consider patrols in heterogeneous terrains. In such areas,
the difficulty of passing through terrains varies from one terrain to another,
for example driving in muddy tracks vs. driving on a road. In addition, riding
around corners requires a vehicle to slow down. Figure 3.1 demonstrates a
transition from a given area to a discrete cycle.

Denote the total number of segments around the perimeter by N . Note
that the distance between the robots is calculated with respect to the number
of segments between them, i.e., the distance is in travel time. For example, if
we say that the distance between R1 and R2 is 7, then there are 7 segments
between them, and if R1 had remained still, then it would have taken R2 7
time cycles to reach R1.

Each cycle a robot that resides in segment si can have three options
of where to go - segment si−1, segment si+1 or remain in segment si. We
assume the robots are coordinated, i.e., all robots decide simultaneously to
move in the same direction. We also require that the robots are initially
placed uniformly around P with a distance of d = N/k between every two
consecutive robots. The motivation for these assumptions is shown in Section
3.3.

equivalent

Figure 3.1: An example for creating discrete segments from a circular path with
the property that the robots travel through one segment per cycle.

Definition: Let si be a discrete segment of a perimeter P which is patrolled
by one robot or more. Then the Probability of Penetration Detection in si,
ppdi, is the probability that a penetrator going through si during t time units
will be detected by some robot going through that segment during that period
of time. In other words, ppd is the probability that a patrol path of some
robot will pass through segment si during the time that a penetrator will go
through that segment. We use the general acronym ppd when referring to
the general term of probability of penetration detection (without reference

25

3.1 Robot and environment model

to a certain segment).

3.1.2 Robotic movement model

The execution of the patrol differs from one model to the other in the Com-
pute step. As mentioned previously, we consider three different patrol mod-
els, based on the robots’ movement abilities.

1. Bidirectional Movement Patrol (BMP)

2. Directional Zero-Cost Patrol (DNCP)

3. Directional Costly-Turn Patrol (DCP)

The BMP patrol is intended for robots with a movement pattern similar
to movement on train tracks or a camera going back and forth along a fixed
course (omnidirectional robots). In this model, the robots have no move-
ment directionality in the sense that switching directions—right to left and
vice versa—does not require physically changing the direction of the robot
(turning around).

In the other two models the robots’ movement is directed, and turning
around is a special operation that might have an attached cost in time. The
DNCP patrol is used for robots which have directionality of movement, but
turning around does not consume extra time. The DCP patrol model is a
more general and a more realistic version of the DNCP model, where if the
robot turns around, it remains in its current position for τ > 1 time units,
i.e., switching direction costs the system extra time. An example of this kind
of robot is the differential drive robot commonly used in research labs.

3.1.3 Adversarial model

Our basic assumption is that the system works with the existence of an
adversary that tries to penetrate through the patrolling robots without being
detected. The adversary decides, in time 0, which segment to penetrate. We
assume the adversary tries to penetrate once some segment and the robots
try to detect it. Its penetration time is not instantaneous, and lasts t time
units.

Recall that the time distance between every two consecutive robots
around the perimeter is d = N/k. Therefore we consider t values between the

26

3.1 Robot and environment model

boundaries bd
2
c + τ ≤ t < d. The reason for this is that if t < bd

2
c + τ , then

there is at least one segment si with ppdi = 0, therefore a strong adversary
will always manage to successfully penetrate regardless of the actions taken
by the patrolling robots. On the other hand, if t ≥ d then all segments si

can have ppdi = 1 simply by using a deterministic algorithm.
We consider several adversarial models. These models vary in the amount

of information the adversary gained on the patrolling.
The weakest adversarial model is the model in which the adversary has

zero knowledge on the patrol algorithm. The only knowledge it has is the cur-
rent location of the robots. We assume that in this case the adversary chooses
its penetration spot at random from all currently unoccupied segments, with
uniform distribution

The other adversarial model is at the other extreme end of the knowledge
scale, in which we assume the adversary has full knowledge of the patrolling
robots. We define the patrol scheme of the robots as the

1. Number of robots, the distance between them and their current posi-
tion.

2. The movement model of the robots and any characterization of their
movement.

Therefore the full knowledge adversary knows the patrol scheme, and
will take advantage of this knowledge in order to choose its penetration spot
as the weakest spot of the patrol, i.e., the segment with minimal ppd. The
adversary can learn the patrol scheme by observing the behavior of the robots
for a sufficient amount of time. Note that in security applications, such strong
adversaries exist. In other applications, the adversary models the behavior
of the system in the “worst case scenario” from the patrolling robots point
of view.

We also consider the case in which the adversary’s knowledge lies some-
where on the knowledge continuum, between full and zero knowledge (see a
full discussion in Section 5.3.

Note that we assume that the adversary will try to penetrate once through
some segment. Also, the robots are responsible only for detecting penetra-
tions and not handling the penetration (which requires task-allocation meth-
ods). Therefore the case in which the adversary issues multiple penetrations
is similar to handling a single penetration, as the robots detect, report and
continue to monitor the rest of the path, according to their algorithm.

27

3.2 Problem definition

3.2 Problem definition

The general definition of the problem is as follows.

Penetration detection (PD) problem: Given a circular fence (perime-
ter) of a length of l divided into N segments, k robots uniformly distributed
around this perimeter with a distance of d = N/k (in time) between every
two consecutive robots, and the movement model of the robots, assume that
it takes t time units for the adversary to penetrate, and the adversarial model
is known. Find the optimal patrol algorithm for the robots such that it will
maximize their probability of detecting the adversary.

The optimal patrol algorithm depends on the adversarial model. For
example, when facing a full knowledge adversary that knows the weakest spot
of the algorithm, the optimal patrol algorithm is the one that strengthens the
weakest spot as much as possible, i.e., maximizes the segment with minimal
ppd. On the other hand, if the adversary has zero knowledge, then the
optimal algorithm is the one that maximizes the expected ppd throughout
the perimeter.

3.3 Algorithm framework

Assume a robot is currently located in segment si. In the BMP model, it
moves one step to the right (segment i + 1) with a probability of p and one
step to the left (segment i− 1) with a probability of q = 1− p. This model
is similar to a random walk. See Figure 3.2a for an illustration. In both the
DNCP and DCP models, we assume directionality of movement, hence the
robot continues its movement in its current direction with a probability of p,
and turns around (rewinds) with a probability of q = 1− p. Therefore in the
DNCP model, if the robot is facing segment i + 1, then with a probability of
p it will go straight to it and with a probability of 1− p it will turn around
and reach cell i − 1. Similarly, if it is facing segment i − 1, then with a
probability of p it will reach i−1 and with a probability of 1−p it will reach
segment i + 1. The DCP model is similar, though if the robot turns around
it will remain in segment i. See Figures 3.2b. and 3.2c. for illustrations of
the DNCP and DCP models, respectively.

Since the different patrol algorithms we consider vary in the probability
p of the next step, we assert that the probability p characterizes the patrol
algorithm.

28

3.3 Algorithm framework

1−p

time ttime t+1time t

−1 0 1

−1 0 1

time t+1time t

10−1

−1 0 1

−1 0 1

10−1

a. no directionality

p

1−p

c. directionality, turning with costb. directionality, no cost of turn

−1 0 1

0 1

p

1−p
−1−1 0 1

p

time t+1

Figure 3.2: Illustration of p’s characterization of the three models of movement.

Note that the probability of penetration detection in each segment si,
1 ≤ i ≤ d, is determined by probability p characterizing the patrol algorithm.
By the definition of ppdi, we need to find the probability that si will be visited
during t time units. Assuming perfect detection capabilities of the robots,
ppdi is determined only by the first visit to si, since once the intruder is
detected the detection mission is successful. Therefore ppdi is actually the
probability that a segment will be visited at least once during t time units.
Denote the probability of detecting a penetrator by robot Ra in segment
sj after t time units by ppda

j . Note that ppdi is the sum of probabilities
that R1, . . . , Rk will visit that segment during this time unit, i.e., ppdi =∑k

j=1 ppdj
i . Also, the value of ppd is calculated regardless of the actions of

the adversary (algorithms for calculating ppdi are described in Chapter 4).
As stated previously, we assume the robots are uniformly distributed

along the perimeter with a distance of d = N/k between every two con-
secutive robots, and that they are coordinated in the sense that if they are
supposed to turn around, they do so simultaneously. In the following lem-
mas we prove optimality of these assumptions in both full knowledge and
zero knowledge adversarial models.

Lemma 1. For a given p, the function ppda
i : N ⇒ [0, 1] for constant t and

Ra residing in segment s0 is a monotonic decreasing function, i.e., as the

29

3.3 Algorithm framework

distance between a robot and a segment increases, the probability of reaching
it during t time units decreases.

Proof. We need to show that for all i, i ∈ N, ppda
i ≥ ppda

i+1. The movement
of the robots is coherent, i.e., in order to move from segment i to segment
i + 2, it has to move through segment i + 1. Therefore the probability of
arriving at segment i given that it has arrived at segment i + 1 is 1, i.e.,
ppda

i|i+1 = 1. By the conditional probability law, if ppda
i+1 > 0 then

ppda
i|i+1 =

ppda
i+1∩i · ppda

i

ppda
i+1

= 1

⇒ ppda
i+1 = ppda

i+1∩i · ppda
i ≤ ppda

i

If ppda
i+1 = 0, then since ppd’s value can not be lower than 0, then inevitably

ppda
i ≥ ppda

i+1.

Lemma 2. As the distance between two consecutive robots along a cyclic
patrol path is smaller, the ppd in each segment is higher and vice versa.

Proof. Consider a sequence S1 of segments s1, . . . , sw between two adjacent
robots, Ra and Rb, where s1 is adjacent to the current location of Ra and sw

is adjacent to the current location of Rb. Let S2 be a similar sequence, but
with w − 1 segments, i.e., the distance between Ra and Rb decreases by one
segment. Assume that other robots are at a distance greater than or equal to
w − 1 from Ra and Rb, and that w − 1 < t. Since a robot may influence the
ppd in segments that are up to a distance t from it (as it has a probability
of 0 of arriving at any segment at a greater distance within t time units),
the probability of penetration detection, ppd, in these sequences is influenced
only by the possible visits of Ra and Rb.

Denote the probability of penetration detection in segment si ∈ Sj by
ppdi(j), 1 ≤ i ≤ w, j ∈ {1, 2}, and the probability that the penetrator will
be detected by robot Rl by ppdl

i(j). Therefore, for any segment si ∈ Sj,
ppdi(j) = ppda

i (j) + ppdb
i(j). Note that either ppda

i (j), ppdb
i(j) or both can

be equal to 0. We need to show that ppdi(2) ≥ ppdi(1), for all 1 ≤ i ≤ w,
and for at least one segment sm, ppdm(2) > ppdm(1).

First, for sw, ppdw(2) = 1 as Rj is presently in segment sw of S2. Therefore
ppdw(2) = 1 ≥ ppdw(1).

For every other segment si, ppda
i (j) remains the same (there is no change

in its relative location), hence we need to examine the change in ppdb
i(j).

30

3.3 Algorithm framework

From Lemma 1 we know that ppdb
i(j) is a monotonic decreasing function.

Therefore for each i, ppdb
i(2) ≥ ppdb

i(1). We need to show that for at least
one segment ppdb

i(2) > ppdb
i(1). A robot may influence the ppd on both of

his sides - segments located to the left and to the right of its current position.
Denote the number of influenced segments to its right by s (s may be equal
to 0). If s > 0, then ppdb

w−s+1(2) > ppdb
w−s(1). In other words, Rb has a

probability of 0 of reaching the segment with a distance of s + 1 from it in
S1, but in S2 it is s segments away from it, therefore Rb has a probability
greater than 0 to reach it. If s = 0, then ppd(

w2) = 1 > ppdw(1), as Rb lies
exactly in segment sw of S2, and ppdb

k(1) = 0.

Theorem 3. A team of k mobile robots engaged in a patrol mission max-
imizes minimal ppd if the following conditions are satisfied. a. The time
distance between every two consecutive robots is equal b. The robots are
coordinated in the sense that they constantly move together in the same di-
rection.

Note that condition b means that all robots move together in the same
direction, i.e., if they change direction, then all k robots change their direction
simultaneously.

Proof. Following Lemma 2, it is sufficient to show that the combination of
conditions a and b yield the minimal distance between two consecutive robots
along the cyclic path. Since we have N segments and k robots, there are

(
N
k

)
possibilities of initial placement of robots along the cycle (robots are homoge-
nous, so this is regardless of their order). If the robots are placed uniformly
along the cycle, then the time distance between each pair of consecutive
robots is N/k. This is the minimal value that can be reached. Therefore,
clearly, condition a guarantees this minimality.

If the robots are not coordinated, then it is possible that two consecutive
robots along the cycle, Ri and Ri+1, will move in opposite directions. There-
fore the distance between them will increase from N

k
to N

k
+2, and by Lemma

2 the ppd in the segments between them will be smaller. If Ri and Ri+1 move
towards one another, then the distance between them will be N

k
− 2 and the

ppd in the segments between them will become higher. On the other hand,
some pair Rj and Rj+1 exists such that the distance between them increases,
as the total sum of distances between consecutive robots remains N , hence
the minimal ppd around the cycle will become smaller.

31

3.3 Algorithm framework

Therefore the only way of achieving the minimal distance (maximal ppd)
is by assuring that condition a is satisfied, and maintaining it is achieved by
satisfying condition b.

Corollary 4. In the full-knowledge adversarial model, an optimal patrol algo-
rithm must guarantee that the robots are placed uniformly along the perimeter
throughout the execution of the patrol.

In the zero-knowledge adversarial model, the requirement remains. In
this model, the optimal patrol algorithm should maximize the expected ppd
throughout the perimeter. Since we assume the penetration spot is chosen at
random with uniform distribution, the expected ppd is the average ppd in all
segments. Recall that the probability that a penetrator will be detected in
segment si by robot Rj during t time units is ppdj

i , hence ppdi =
∑k

j=1 ppdj
i .

The expected ppd is, then, E(ppd) =
∑N

i=1

∑k
j=1 ppdk

i . However,
∑k

j=1 ppdk
i

might be greater than 1, therefore the overall expected ppd is E(ppd) =∑N
i=1 min{1,∑k

j=1 ppdk
i }. If

∑k
j=1 ppdk

i < 1 is always true, then the location
of the robots is irrelevant to the value of E(ppd).

However, this is not the case - consider for example the case in which
the robots are located in adjacent segments. We have shown in Lemma 5
that as the distance between a robot Ri and a segment sj increases, the
probability of reaching it during t time units decreases, i.e., ppdi

j decreases.
In order to maximize the expected ppd, it is necessary to place the robots
such that ∀si, 1 ≤ i ≤ N ,

∑k
j=1 ppdk

i ≤ 1. Since the patrol path is circular,
decreasing the distance between two robots Ra and Rb, necessarily increases
the distance between two robots Rx and Ry. Therefore the optimal placement
of the robots is with uniform distance between them, i.e., d = N/k. To
guarantee that this optimality measure is maintained, the robots must be
kept synchronized, i.e., if they choose to switch directions they should do it
simultaneously.

Following this chapter, we focus in this work on perimeter patrol in the
DCP movement model, where the robots’ patrol algorithm has the following
characteristics.

32

3.3 Algorithm framework

• The robots are placed uniformly around the perimeter with d segments
between every two consecutive robots.

• The robots are coordinated in the sense that if they decide to turn
around, then they do it simultaneously.

• At each time step, the robots continue straight with a probability of
p or turn around with a probability of 1 − p, and if they turn around
they stay in the same segment for τ time units.

Note that under the above assumptions (i.e. the algorithm framework for
homogenous robots), the division of the perimeter into sections of d segments
creates an equivalent symmetric environment in the sense that in order to
calculate the optimal patrol algorithm it is sufficient to consider only one
section of d segments, and not the entire perimeter of N segments. This is
due to the fact that each section is completely equivalent to the other, and
remains so throughout the execution.

We divide the goal of finding the optimal patrol algorithm into two stages.

1. Calculating the d ppdi functions for each 1 ≤ i ≤ d. This is determined
according to the robotic movement model, environment model (perime-
ter/fence) and sensorial model (perfect/imperfect, local/extended).

2. Optimizing an objective function according to the adversarial model,
based on the given ppdi functions. For example, given a strong adver-
sary that will penetrate through the segment with minimal ppd, the
objective function would be to maximize the ppd in the segment with
minimal ppd.

The first stage is described in Chapter 4, and the second stage is described
in Chapter 5.

33

Chapter 4

Determining the Probability of
Penetration Detection

In order to find the optimal patrol algorithm, it is necessary to first determine
the probability of penetration detection at each segment si (ppdi), which is a
function of p (the probability characterizing the patrol algorithm, as shown
in Chapter 3). In this chapter we present various algorithms in order to
determine this probability, based on the movement model, the environment
model and the sensorial abilities of the robots. Specifically, in Section 4.1
we describe the basic algorithm for determining ppdi in the perimeter patrol
problem, with the various movement models of the robots. We assume that
the robots have perfect sensing abilities, i.e., if the adversary lies inside their
sensorial range, the robots will surely detect it. Section 4.2 handles the case
in which the robots have imperfect sensing abilities, where they will detect
the adversary only with some probability pd ≤ 1. Section 4.3 considers the
case of fence patrol. It first describes how it is different from the perimeter
patrol problem, and then it describes an algorithm for determining ppdi for
both perfect and imperfect sensing abilities of the robots. Last, in Section
4.4 we discuss further enhancements to the sensing abilities of the robots in
perimeter patrol.

34

4.1 Basic algorithm for determining ppdi in perimeter patrol

4.1 Basic algorithm for determining ppdi in

perimeter patrol

In this section we present a polynomial time algorithm for determining ppdi

∀1 ≤ i ≤ d for the basic case of perimeter patrol in which robots have perfect
sensing, i.e., a robot will detect the adversary if it is under its sensorial range
with a probability of 1.

As stated previously, we need to consider only one section of d segments
that lie between two consecutive robots, without loss of generality, R1 and R2.
We use a Markov chain in order to model the possible states of the system.
In this section we describe modeling under the DCP movement model (the
cases of BMP and DNCP are similar, and are both described briefly later
and illustrated in Figure 4.1).

In order to calculate the probability of detection in each segment along t
time cycles, we use the graphic model G illustrated in Figure 4.1. For each
segment si in the original path, 1 ≤ i ≤ d − 1, we create two states in G:
One for moving in a clockwise direction (scw

i), and the other for moving in a
counterclockwise direction (scc

i). As mentioned previously, if R1 or R2 reach
one of the si segments within t time units, then the intruder is discovered,
i.e., it does not matter if the segment is visited more than once during these
t time units. Therefore we consider only the probability of the first visit to
each segment, and this is done by defining the states s0 and s′0 as absorbing
states. The edges of G are as follows. One outgoing edge from scw

i to scc
i

exists with a probability of q = 1 − p for turning around, and one outgoing
edge to scw

i−1 exists with a probability of p for continuing straightforward.
Similarly, one outgoing edge from scc

i to scw
i exists with a probability q for

turning around, and one outgoing edge to scc
i+1 exists with a probability of p

for continuing straightforward.
If we use the DNCP model, the chain is similar to the one above, however

edges will exist from scw
i to scc

i+1 and from scc
i to scw

i−1 with a probability of
q. When we use the BMP model, the chain is simple: edges exist from si to
si+1 with a probability of p and from si to si−1 with a probability of q (with
no related direction). See Figure 4.1 for an illustration of DNCP and BMP

as a Markov chain.
The straightforward way of finding the probability of arriving at an ab-

sorbing vertex is to use a stochastic matrix M , which represents the probabil-
ity of transition between states. In order to find the probability of absorption

35

4.1 Basic algorithm for determining ppdi in perimeter patrol

p

pp p

S0’

R2R1

S0’S3 S4

p

S0’

p

S0

p

S0’

S0p

S0

q

qqq q

q

S0 S1 S2

qqq

p
ppp

q

pp p

ppp

qq

p

q

p

SSSS

S S S S

SSSS

S S S S

SSSS

BMP

DZCP

DCP

4

4

4 3

3 2

2 1

1

1234

cwcwcwcw

cccccccc

cccccccc

cwcwcwcw

1

1

2

2

3

34

Figure 4.1: Conversion of the initial segments and robot locations for the three
possible robotic models: DNCP, DCP and BMP into a graphical model.

after t cycles starting from each state si, 1 ≤ i ≤ d− 1, M t should be com-
puted. However, as t reaches d = N

k
, it leads to a computational complexity

exponential in the input size.
One might consider using the convergence theorem of stochastic matrixes,

which states that some t0 exists such that ∀t′ > t0, M t′ converges to some
matrix M̃ . However, the t values we consider are smaller than t0 in this
theorem, therefore it is irrelevant.

Consequently we use the following dynamic-programming inspired rule in
order to find the optimal solution, yet in polynomial time. We determine the
probability of reaching a certain state in time r by the sum of probabilities of
reaching si from any other state sj multiplied by the probability of being in
state sj at time r− 1. Hence in order to compute the probability of reaching
absorption state in t time cycles starting from state sinit, we initialize sinit

with the value 1 at r = 0, compute the values for r = 1, . . . , t, and extract
the probability at the absorption state, sabs. See Algorithm FindFunc for a
detailed description of the method.

The time complexity of Algorithm FindFunc is d · (2d + 2) · (t + 1). Since
t is bounded by d− 1 and d = N/k, then the complexity is O((N

k
)3).

36

4.2 Perimeter patrol with imperfect detection

Algorithm 1 Algorithm FindFunc(d, t)

1: for each sinit = si ∈ {s1, . . . , sd−1} do
2: Create matrix M of size (2d + 2)× (t + 1), initialized with 0s
3: Set M0(sinit) ← 1
4: Complete M gradually using the following rules.
5: for each entry Mr(s

cw
i) do

6: Set value to p ·Mr−1(s
cw
i+1) + q ·Mr−1(s

cc
i)

7: for each entry Mr(s
cc
i) do

8: set value to p ·Mr−1(s
cc
i−1) + q ·Mr−1(s

cw
i)

9: for absorbing states do
10: Set entry Mr(sabs) = Mr−1(sabs) + p · [Mr−1(s

cw
1) + Mr−1(s

cc
d)]

11: Report row t of M

4.2 Perimeter patrol with imperfect detec-

tion

Uncertainty in the perception of the robots should be taken into consideration
in practical multi-robot problems. Therefore we consider the realistic case in
which the robots have imperfect sensorial capabilities. In other words, even
if the adversary passes through the sensorial range of the robot, it still does
not necessarily detect it.

We introduce the ImpDetect model, in which a robot travels through one
segment per time cycle along the perimeter while monitoring it, and has
imperfect sensing. Denote the probability that an adversary penetrating
through a segment si while it is monitored by some robot R and R will
actually detect it by pd ≤ 1.

Note that if pd < 1, revisiting a segment by a robot could be worthwhile
- it could increase the probability of detecting the adversary. Therefore the
probability of detection in a segment si (ppdi) is not equivalent to the proba-
bility of first arriving at si (as illustrated in Section 4.1), but the probability
of detecting the adversary during some visit y to si, 0 ≤ y ≤ t. Denote the
probability of the y’th visit of some robot to segment si by wy

i . Therefore
ppdi is defined as follows.

ppdi = w1
i pd + w1

i (1− pd)× {w2
i pd + w2

i (1− pd)× {. . . {wt
i × pd}}} (4.1)

In other words, the probability of detecting the penetration is the proba-

37

4.2 Perimeter patrol with imperfect detection

bility that it will be detected in the first visit (w1
i × pd) plus the probability

that it will not be detected then, but during later stages. This again is the
probability that it will be detected during the second visit (w2

i × pd) or at
later stages, and so on.

Note that after t time units, wt
i = 0 for all currently unoccupied segments

si, and if a robot resides in si, then wt
i is precisely (1− pd)

t.
One of the building blocks upon which the optimal patrol algorithms

are based, is the assumption that the probability of detection decreases or
remains the same as the distance from a robot increases, i.e., it is a monotonic
decreasing function. This fact was used in Chapter 3 in proving that in order
to maintain an optimal ppd, the robots must be placed uniformly around the
perimeter (with a uniform time distance), and maintain this distance by
being coordinated. In order to show this here as well, we first prove that the
probability of detection monotonically decreases with the distance from the
location of the robot.

Lemma 5. Let S = {s−t+τ , . . . , s−1, s0, s1, . . . , st} be a sequence of 2t seg-
ments, where robot Ra resides in s0 at time 0. Then ∀i ≥ 0, ppdi ≥ ppdi+1,
and ∀i ≤ 0, ppdi ≥ ppdi−1.

Proof. First, assume that i > 0 (positive indexes). By Equation 4.1, we need
to compare between w1

i pd +w1
i (1−pd)×{w2

i pd +w2
i (1−pd)×{. . . {wt

i×pd}}}
and w1

i+1pd + w1
i+1(1− pd)× {w2

i+1pd + w2
i+1(1− pd)× {. . . {wt

i+1 × pd}}}. It
is therefore sufficient to show that wm

i ≥ wm
i+1, for all 1 ≤ m ≤ t. We prove

this by induction on m. As the base case, consider m = 1, i.e., we need to
show that w1

i ≥ w1
i+1. This is accurately proven in Lemma 1, based on the

fact that the movement of the robots is continuous, therefore in order to get
to a segment you must visit the segments in between (the formal proof also
uses the conditional probability law).

We now assume correctness for m′ < m, and prove that wm
i ≥ wm

i+1.
Denote the probability that a robot placed at segment si will return to si

within r time units by xi(r). In our symmetric environment, for every i and j,
xi(r) = xj(r). Moreover, ∀r, xi(r) ≥ xi(r−1). Therefore wm

i can be described
as

∑
r+u≤t w

m−1
i (u)× xi(r), and similarly wm

i+1 =
∑

r+u≤t w
m−1
i+1 (u)× xi+1(r).

By the induction assumption, wm−1
i ≥ wm−1

i+1 , and since xi(r) = xi+1(r), it
follows that wm

i ≥ wm
i+1, proving the lemma for positive indexes.

The negative indexes are a reflective image of the positive indexes, but
with t − τ time units. Since the induction was proven for all t values, the
proof for the negative indexes directly follows.

38

4.2 Perimeter patrol with imperfect detection

The following Theorem follows directly from Lemma 5. The idea behind
this is that since the probability of penetration detection decreases as the
distance from the robots grow, both minimal ppd and average ppd are max-
imized if the distance between the robots is as small as possible. Since the
patrol path is cyclic, this is achieved only if the distance between every two
consecutive robots is uniform, and remains uniform.

Theorem 6. For both the full knowledge and zero knowledge adversarial
models, a patrol algorithm in the ImpDetect model is optimal only if it satisfies
two conditions: a. The robots are placed uniformly around the perimeter. b.
The robots are coordinated in the sense that if they turn around, they do
it simultaneously. By assuring these two conditions, the robots preserve a
uniform distance between themselves throughout the execution.

Algorithm for finding ppdi with imperfect sensorial detection:
We now describe Algorithm FindPPDwImpDetect that finds the probabil-

ity of penetration detection in each segment (ppdi). The algorithm computes
the probability of all visits to a segment during t time units. This algorithm,
similar to Algorithm FindFunc, is inspired by dynamic programming. As
stated previously, the main difference between the algorithms is that FindFunc
considers only the first visit to a segment, whereas FindPPDwImpDetect con-
siders all visits to a segment and the probability of sensorial detection.
Figure 4.2 describes a representation of transition between segments as a
Markov chain. This is later translated into gradually constructing a ta-
ble using a dynamic programming-inspired rules, as described in Algorithm
FindPPDwImpDetect. The time complexity of the algorithm is O(dt), which is
the time it takes to construct table M . Extracting the polynomial coefficient
is done in O(1) time.

Theorem 7. Algorithm FindPPDwImpDetect(d, t, i) computes ppdi.

Proof. In order to prove the theorem, we show that the algorithm correctly
computes the probability of the m’th arrival to si, for every 1 ≤ m ≤ t,
i.e., the coefficient of fm is precisely wm

i . Since each path is multiplied by
f each time it passes through si, then inevitably if the path goes through si

m times, it is a coefficient of fm. By adding all arrivals to scw
0 and scc

0 , we
take into consideration all visits to si, hence all paths going through si are
taken into consideration, and by using Equation 4.1, we accurately generate
ppdi.

39

4.3 Fence patrol

S1 S4S3S2

p

p

pp p

p

q

pp

qqq q

p

p

R2R1

S

SS S S S

SSSS

4
cw

cccc cc
0

cw cw
0

cw

cc cc

1

12

23

34

cw

Figure 4.2: Representation of the system as a Markov chain along with state
transition. The robots are initially placed at the external segments, heading right.
State s0 represents the segment currently occupied by a robot.

4.3 Fence patrol

In our general work, and specifically in previous sections, we assumed the
robots travel around a closed, circular, area. In this section we discuss pa-
trolling along an open polyline, also known as fence patrol. First, we will
discuss how this patrol is different from perimeter patrol. We will then de-
scribe an algorithm for determining ppdi in fence patrol assuming the robots
have perfect sensing capabilities, and finally we will provide an algorithm for
robots with imperfect sensing.

4.3.1 Patrolling along a closed polyline vs. an open
polyline

In the following, we describe why patrolling along an open polyline is more
challenging than patrolling in cyclic environments (closed polyline).

The first reason lies in the fact that the robots are required to go back and
forth along a part (or parts) of the open polyline. As a result, the elapsed
time between two visits of a robot at each point along this line can be almost
twice as long as the elapsed time in a circular setting. In Figure 4.3, we are
given two environments: a closed polyline (circle) (a) and an open polyline
(b). Note that open polylines b. and c. are equivalent in the sense that each
robot travels through one segment per time step, regardless of the shape of
the section. Both lines a. and b. are of the same total length l and with
the same number of robots (4). In the circular environment, if it takes an

40

4.3 Fence patrol

Algorithm 2 FindPPDwImpDetect(d, t, loc)

1: Create matrix M of size (2d + 2)× (t + 1), initialized with 0s.
2: Set M [0, loccw] ← 1.
3: Fill all entries in M gradually using the following rules.
4: for r ← 1 to t do
5: for i ← 1 to d (all other states) do
6: For each entry M [r, scw

i] set value to
p ·M [r − 1, scw

(i+1 mod d)] + q ·M [r − 1, scc
i].

7: For each entry M [r, scc
i] set value to

p ·M [r − 1, scc
(i−1 mod d)] + q ·M [r − 1, scw

i].
8: for scw

0 and scc
0 do

9: Set M [r, scw
0] ← f × {p ·M [r − 1, scw

1] + q ·M [r − 1, scc
0]}

10: Set M [r, scc
0] ← f × {p ·M [r − 1, scc

d] + q ·M [r − 1, scw
0]}

11: wi
loc ← polynomial coefficients of f i from sum of M [r, scw

0]+M [r, scc
0], for

all 0 ≤ r ≤ t, 1 ≤ i ≤ t.
12: Return the result obtained by substituting the wi

loc values in Equation
4.1.

adversary more than l/4 time units to penetrate - it will never be able to
penetrate even if the robots simply continuously travel with uniform distance
between them. However, if the robots travel along an open polyline (b), the
maximal time duration between two visits of the robot—even in the best
case, is 2l/4 − 2 [33]. Therefore a weaker adversary that has a penetration
time which is almost twice as long as in the circular fence might still be able
to penetrate.

b. c.a.

Figure 4.3: Illustration of the difference between patrolling along a line and
patrolling along a circle, for different polylines

Another reason for the added complication in analyzing the probability of
penetration detection in open polyline environments lies in the asymmetric
nature of traveling in the segments along time. In a circular environment, if

41

4.3 Fence patrol

the robots are coordinated and switch directions in unison, then the place-
ment of the robots is symmetric in each time unit. Therefore all segments in
the same distance from some robot (with respect to its direction) have the
same probability of penetration detection. Hence in order to calculate the
optimal way of movement (in our case the probability p of turning around),
it is sufficient to consider only one section of d segments, and the resulted p is
equivalent throughout the execution. In an open polyline environment this is
not the case. The probability of penetration detection differs with respect to
the current location and direction of the robot. Therefore the algorithm that
finds the ppd for each segment, needs to calculate the ppd as a function of p
for each segment si for each possible initial location of the robot inside the
section. Therefore this results in a matrix of size d× d of the ppd functions
(as opposed to a vector of d functions in the circular fence).

4.3.2 Determining ppdi in an open polyline

The best patrol algorithm for a team of robots in an adversarial environment
requires to find an algorithm that will maximize some function of the prob-
ability of penetration detection (ppd). Therefore in this section we describe
Algorithm FindFencePPD that finds the ppd in the segments.

The ppd in a segment si is determined by the probability of the first
arrival to si during t time units. This is due to the fact that we assume, at
this stage, that if the robot arrives at a segment that is currently occupied by
the adversary, it will detect it. Consequently, whether the segment is visited
more than once during t time units is irrelevant. For simplicity, we discuss
the case in which τ = 1.

Similar to the fence patrol case (Section 4.1), we describe the system
as a Markov chain (see Figure 4.4). Since the robots have directionality
associated with their movement, we create two states for each segment: the
first for traveling in a segment in the clockwise direction, and the second
for traveling in the counterclockwise direction. The probability of turning
around at the end of each section is 1, otherwise the robot will continue
straight with a probability of p, and will turn around with a probability of
q = 1− p.

The algorithm is inspired by dynamic programming, and uses the state
transition rules described in Figure 4.4 in order to gradually fill in a matrix
M , until it reaches the state of the system after t time units (last line). The
algorithm runs as follows. In order to extract the first visit to a segment,

42

4.3 Fence patrol

each segment si is associated with a “phantom” variable fi. Whenever an
element goes through si’s location in the matrix, it is multiplied by fi. At
the end, all visits to the segment are added, and all phantom variables are
substituted with 1 except for fi. Therefore the polynomial coefficient of f t

i

is the probability of the t’th visit to si, the coefficient of f t−1
i represents

the probability of the t − 1 visit, and so on. Hence ppdi in this case is the
polynomial visit of f 1

i , i.e., the probability of the first visit to si.
Recall that d = N/k. The returned value from Procedure FindFencePPD

is a matrix of size d× d, where each row i contains d functions representing
the ppd in each segment, given that the robot is currently in segment si.

d

S5S4S3S2S1

cw cw cw cw cw

cccccccccc

q q q q 1q1

pppp

pppp

S5S4S3S2S1

Figure 4.4: Description of the system as a Markov chain, as base for the
FindFencePPD algorithm.

Time complexity: The time complexity of Procedure FindFencePPD is
O(d2t), since we fill in the matrix M d times, where each time it takes d · t
time to fill it. Hence the total time complexity is O(d · d · t) = O(d2t).

4.3.3 Fence patrol with imperfect detection

Considering that patrolling robots’ imperfect sensing is essential to adapt
the system to realistic robotic environments, a solution for imperfect sensing
in perimeter patrol was presented in Section 4.2. In this section we provide
a solution for handling these sensing abilities in fence patrol.

As previously mentioned the probability that the adversary will be de-
tected by a robot currently visiting the segment in which it resides is denoted

43

4.3 Fence patrol

Algorithm 3 Procedure FindFencePPD(d, t)

1: for loc ← 1 to d do
2: Create the matrix Res of size d× d, initialized with 0s.
3: Create the matrix M of size 2d× (t + 1) initialized with 0s.
4: Set M [1, scw

loc] ← floc

5: Fill all entries in M gradually using the following rules.
6: for r ← 2 to t do
7: Set M [r, scw

1] ← f1 ×M [r − 1, scc
1]

8: Set M [r, scc
d] ← f1 ×M [r − 1, scw

d]
9: for all other entries in row r do

10: Set M [r, scw
i] ← vi × {p ·M [r − 1, scw

i+1] + q ·M [r − 1, scc
i]}.

11: Set M [r, scc
i] ← vi × {p ·M [r − 1, scc

i−1] + q ·M [r − 1, scw
i]}.

12: Create the vector V of size d
13: for j ← 1 to d do
14: V [j] ← ∑t

i=1 M [i, scw
j] + M [i, scc

j]
15: For each entry i in V , substitute all fk, k 6= j with 1.
16: Set Res[loc, j] ← polynomial coefficient of fj in V [j].
17: Set Resk ← V M .
18: Return Res.

44

4.4 Improving sensing capabilities in perimeter patrol

pd ≤ 1. Therefore the probability of detection in a segment si (ppdi) is not
equivalent to the probability of first arriving at si, but the probability of
detecting the adversary during some visit m to si, assuming it was not pre-
viously detected. The probability of the y’th visit of some robot to segment
si is denoted wy

i . Therefore ppdi is defined as in Equation 4.1. Note that
the difference of determining ppdi in the fence patrol model compared to the
ImpDetect model (which considers the perimeter patrol) is in determining wy

i ,
as described in Algorithm ComputeProbPPD.

Algorithm 4 Procedure ComputeProbPPD(d, t)

1: Run Procedure FindFencePPD(d, t) while returning the entire polynomial,
i.e., skipping line 16 of the procedure.

2: for j ← 1 to d do
3: for i ← 1 to d do
4: wy

i ← polynomial coefficient of f y
i .

5: PRes[j, i] ← substitution of wy
i ,∀y in Equation 4.1.

Theorem 8. For each segment si, Procedure FindFencePPD computes ppdi.

Proof. In order to prove the theorem, we need to show that the algorithm
correctly computes the probability of the m’th arrival to si, for every 1 ≤
m ≤ t, i.e., the coefficient of fm is exactly wm

i . Since each path is multiplied
by f each time it passes through si, then essentially if the path went through
si m times, it is a coefficient of fm. By adding all arrivals to scw

0 and scc
0 , we

take into consideration all visits to si, hence all paths going through si are
taken into consideration, and by using Equation 4.1, we accurately generate
ppdi.

As in FindFencePPD, the returned value is a matrix of size d × d, where
each row i contains d functions representing the ppd in each segment, given
that the robot is currently in segment i.

4.4 Improving sensing capabilities in perime-

ter patrol

In this section we present further enhancements by considering various sens-
ing capabilities of the robots. Specifically, we first consider the case in which

45

4.4 Improving sensing capabilities in perimeter patrol

a robot can sense beyond its currently visited segment. We then offer a so-
lution to the case in which the robot can sense beyond its current position,
yet its sensing capabilities are not perfect, and change as a function of the
distance from its current position.

4.4.1 Extending sensing range

In this section we consider the LRange model, in which the sensorial range
of a robot exceeds the section in which it currently resides. Use L to denote
the number of segments the robot senses beyond the segment it currently
occupies (see Figure 4.5). If L > 0, we refer to the L segments as shaded
segments. Note that the location of the shaded segments depends on the
direction of the robot shading them, and they are always in the direction the
robot is facing.

A trivial solution to dealing with such a situation is to enlarge the size
of the segment, and thus enlarge the length of the time unit used as base for
the system, such that it will force L to be 0. However, in this case we lose
accuracy of the analysis of the system, as the length of the time cycle should
be as small as possible to also suit the velocity of the robots and the value
of t.

L

R

Figure 4.5: An illustration of L segments shaded by robot R. In this case R is
facing right, therefore the shaded segments are to its right.

In general, the values of t that can be handled by the system are bounded
by its relation to d (the distance between every two robots along the path) -
see Chapter 3. If L > 0, this changes. Specifically, if L = 0, then the possible
values of t considered are dd/2e + τ ≤ t ≤ d − 1. However, if L > 0, then
it is possible to handle even smaller values of t, i.e., even if the penetration
time of the adversary is short. Formally, the possible values of t are given in
the following equation.

dd/2e+ τ − L ≤ t ≤ d− L

46

4.4 Improving sensing capabilities in perimeter patrol

If t is smaller than dd/2e+ τ −L, then an adversary with full knowledge
will manage to penetrate with a probability of 1, i.e., there is a segment which
is unreachable within t time units. On the other hand, if t is greater than
d−L, then a simple deterministic patrol algorithm will detect all penetrations
with a probability of 1. We assume that during the τ time units the robot
turns around, it can sense only its current segment.

Algorithm for finding ppdi with shaded segments:
For each segment si, ppdi is determined by the probability that some robot

will visit this segment plus the probability that this segment will be shaded
by some robot. We use a dynamic-programming inspired rule, similar to the
one described in Section 4.1, yet we expand it to also include the probability
that it will be shaded by some robot. The main idea is that in each transition
phase, the algorithm checks whether the state shades on an absorbing state,
i.e., whether the robot in its current location and direction shades the given
segment (the distance from it is smaller than L). See Algorithm 5 for a full
description of the algorithm. The time complexity of the algorithm is O(dt),
which is the time it takes to fill in the entire table.

Algorithm 5 FindPPDwShade(d, t, loc, L)

1: Create matrix M of size (2d + 2)× (t + 1), initialized with 0s.
2: Set M [0, loccw] ← 1.
3: Fill all entries in M gradually using the following rules.
4: for r ← 1 to t do
5: for each entry M [r, scw

i] do
6: Set v ← p ·M [r − 1, scw

i+1 mod d] + q ·M [r − 1, scc
i]

7: Set M [r, scw
i] ← v

8: if i + L ≥ d then
9: Set M [r, sabs] ← v

10: for each entry M [r, scc
i] do

11: Set v ← p ·M [r − 1, scw
i+1 mod d] + q ·M [r − 1, scc

i].
12: Set M [r, scc

i] ← v
13: if i− L ≤ 0 then
14: Set M [r, sabs] ← v
15: for absorbing state Mr(sabs) do
16: Set M [r, sabs] ← Mr−1(sabs) + p · [Mr−1(s

cw
1) + Mr−1(s

cc
d)]

17: Return M [t, sabs]

47

4.4 Improving sensing capabilities in perimeter patrol

4.4.2 Extending the sensorial range along with imper-
fect detection

In many cases, the actual sensorial capabilities of the robot are composed of
the two characteristics described in the previous sections, i.e., the robot can
sense beyond its current segment, however the sensing ability is imperfect.
Therefore in this section we introduce the ImpDetLRange sensorial model,
which is a combination of the LRange and the ImpDetect models. Here the
robot can sense L segments beyond its current segment, yet the pd in each
segment varies and is not necessarily 1. We therefore describe an algorithm
that deals with the most realistic form of sensorial capabilities [29]: imperfect,
long range sensing.

The information regarding the sensorial capabilities of the robots includes
two parameters. The first describes the quantity of the sensing ability, i.e.,
the number of segments that exceeds the current segment in which robot
resides, for which it has some sensing abilities, denoted by L. The second
parameter describes the quality of sensing in all segments the robot can sense.
This is given in the form of a vector VS = {v0, v1, . . . , vL}, where vi is the
probability that the robot residing in s0 will detect a penetration that occurs
in segment si. We assume that the values in VS decrease monotonically, i.e.,
as i increases, vi decreases or remains the same.

In the ImpDetLRange model, the probability of penetration detection is
more complex, and also has to take into consideration the possibility of being
in the sensorial range of some robot and the probability of being detected
there. Denote the probability that si is at a distance of j <= L from some
robot, i.e., within its sensorial range, for the j’th time by wj

i (e). Denote the
probability that the adversary in si will not be detected at all by ppdi. The
probability that the adversary will be detected is actually the complementary
of the probability that it will not be detected. Therefore ppdi is defined as
follows.

ppdi = 1− ppdi = 1−
t∏

j=1

L∏
e=1

{wj
i (e) · (1− ve)} (4.2)

In other words, the probability of penetration detection is the comple-
mentary of the probability that the adversary will not be detected at all
during the t time units. This is the probability that it is not detected at any
possible occurrence in any possible range (corresponding to a probability of

48

4.4 Improving sensing capabilities in perimeter patrol

detection) during those time units. The overall number of components is,
therefore, L× t.

Algorithm for finding ppdi with an extended-range and imperfect
detection:

The algorithm used to find ppdi if we allow an extended range (L > 0)
and imperfect detection with changing probabilities of detection as a function
of the distance from the robot is composed of two stages. In the first stage,
we need to find the probability of being shaded with a distance of 1 ≤ e ≤ L
from the robot for the j’th time, 1 ≤ j ≤ t. This provides us with all wj

i (e)
values. We then substitute all the acquired values in Equation 4.2. The full
description of the algorithm is presented in Algorithm FindComplexP below.
Note that in Algorithm FindPPDwImpDetect we had one object f used to
identify the number of visits to the segment. In this case, since we have to
consider all visits of all possible distances that are less or equal to L (shaded
segments), we use L + 1 objects, f0, . . . , fL. The time complexity of the
algorithm is O(dt + Lt) - the time to construct the M table plus the time to
extract all polynomial coefficients (respectively). Since L < d, this is again
O(dt).

49

4.4 Improving sensing capabilities in perimeter patrol

Algorithm 6 FindComplexP(d, t, loc, L, VS = {v0, . . . vL})
1: Create matrix M of size (2d + 2)× (t + 1), initialized with 0s.
2: Set M [0, loccw] ← 1.
3: Set Res ← 0
4: Fill all entries in M gradually using the following rules.
5: for r ← 1 to t do
6: for each entry M [r, scw

i] do
7: Set u ← p ·M [r − 1, scw

i+1 mod d] + q ·M [r − 1, scc
i]

8: if i + L ≥ d then
9: u ← u× fd−i

10: Res ← Res + u
11: Set M [r, scw

i] ← u
12: for each entry M [r, scc

i] do
13: Set u ← p ·M [r − 1, scw

i+1 mod d] + q ·M [r − 1, scc
i].

14: if i− L ≤ 0 then
15: u ← u× fi

16: Res ← Res + u
17: Set M [r, scc

i] ← u
18: wj

i (e) ← polynomial coefficient of f j
e of Res, for all 1 ≤ j ≤ t, 0 ≤ e ≤ L

(while substituting all other f j
e′ , e′ 6= e in the equation).

19: Return the result obtained by substituting the wj
i (e) values in Equation

4.2.

50

Chapter 5

Patrol in Different Adversarial
Models

Finding the optimal patrol algorithm depends heavily on the adversarial
model the system works under. Specifically, the optimality depends on the
knowledge obtained by the adversary on the patrolling robots—the patrol
algorithm (characterized by the probability p) and the robots’ location.

If the adversary has full knowledge of the patrol scheme, then it will
use this information in order to choose a penetration spot such that it will
less likely be detected by the patrolling robots. On the other hand, if the
adversary has not obtained any knowledge on the patrol scheme, it is assumed
that it will choose its penetration spot at random with uniform distribution
between the currently unoccupied segments. In Sections 5.1 and 5.2 we
provide theoretical results for these two extreme adversarial models—full
and zero knowledge adversaries (respectively), showing the optimal patrol
algorithm in both cases. Then in Section 5.3 we discuss the case in which the
adversary’s knowledge is somewhere along the scale of knowledge - between
zero and full. We provide two heuristic algorithms for this case, and discuss
possible theoretical implications of partial knowledge of the adversary on the
choice of the optimal patrol algorithm.

5.1 Handling a full-knowledge adversary

In cases in which the robots face a strong adversary, that has full knowledge
of the patrol algorithm, it is assumed that the adversary will take advantage

51

5.1 Handling a full-knowledge adversary

of this knowledge to find the weakest spot of the patrol, i.e., the segment
with minimal probability of penetration detection. Therefore the optimal
patrol algorithm to handle such an adversary is the one that maximizes the
minimal ppd throughout the perimeter. Hence we need to find the optimal
p, popt, such that the minimal ppd throughout the perimeter is maximized.
Formally,

popt = argmax
0≤p≤1

{ min
1≤i≤d−1

fi(p)}

Since our environment is symmetric, we do not need to consider the entire
patrol path, but only a section of d segments between two consecutive robots.
The input in this procedure is the set of d ppdi functions that were calculated
in the previous chapter (Chapter 4). It therefore works in all sensorial models
of the robots.

We describe our solution for the perimeter patrol case and then provide
a generalization for fence patrol.

5.1.1 Finding the maximin point

After establishing d equations representing the probability of detection in
each segment, we must find the p value that maximizes the minimal possible
value in each segment, where p ∈ [0, 1]. Denote these equations by fi(p),
1 ≤ i ≤ d − 1. The maximal minimal value is the maximal value that lies
inside the intersection of all integrals of fi.

Observing the problem geometrically, consider a vertical sweep line that
sweeps the section [0, 1] and intersects with all d curves. It seeks the point
p in which the minimal intersection point between the sweep line and the
curves, f ∗(p), is maximal. This p is the maximin point. Since the segment
[0, 1] and the functions f1, . . . , fd−1 are continuous, this sweep line solution
cannot be implemented. We observe that a maximin point is actually the
maximal point that lies inside the integral of all curves. We prove in the
following lemma that this point is either an intersection point of two curves,
or a local maxima of one curve (see Figure 5.1). See Figure 7 for the formal
description of Algorithm FindP.

In the following, we prove that Algorithm FindP finds point p such that
the maximin property is satisfied.

Lemma 9. A point p yields a maximin value f ∗(p) if the following two
properties are satisfied.

52

5.1 Handling a full-knowledge adversary

Figure 5.1: An illustration of two possible maximin points. On the left, the point
is created by the intersection of two curves, and on in the right it is the local
maxima of the lowest curve.

a. f ∗(p) ≤ fi(p) ∀1 ≤ i ≤ d− 1.
b. One of the two following conditions holds: f ∗(p) is an intersection of two
curves (or more), fi(p) and fj(p) or a local maxima of curve fk(p).

Proof. Property a. is derived from the definition of a maximin point. There-
fore we are looking for the maximal point that satisfies property a. We must
still show that this point, f ∗(p), is obtained by either an intersection of two
or more curves or is a local maxima. Clearly, a maximal point of an integral
is found on the border of the integral (the curve itself). The area which is in
the intersections of all curves lies beneath parts of curves, fi1 , . . . , fim , such
that fij is the minimal curve in the section [lj, rj] and

⋃m
j=1[l

j, rj] = [0, 1].

By finding the maximal point in each section f j
max = max{f(x), x ∈ [lj, rj]},

and choosing the maximal between them, i.e., max{f j
max, 1 ≤ j ≤ m}, we

obtain f ∗(p). In each section [lj, rj] the maximal point can be either inside
the section or on the borders of the section. The former case is precisely a
local maxima of fij . The latter is the intersection point of two curves fij−1

, fij

or fij , fij+1
.

Lemma 10. A point p exists yielding a maximin value f ∗(p) > 0.

Proof. In order to prove the lemma, we need to show that the intersection of
all integrals f1, . . . , fd−1 in the x section [0, 1], and the y section (0, 1] is not
empty. It suffices to show that for every fi, fi(x) > 0, 0 < x < 1.

Each function fi, 1 ≤ i ≤ d−1 represents the ppd in a segment si between
two robots. From our requirement that t ≥ bd

2
c, it follows that in all models

we consider, for 0 < p < 1 the ppd 6= 0. Note that if p = 0 or p = 1, then ppd

53

5.1 Handling a full-knowledge adversary

is either 0 or 1, but this does not contradict the fact that we have a point
guaranteeing f ∗(p) > 0.

Algorithm FindP finds this point by scanning all possible points satisfying
the conditions given in Lemma 9, and reporting the x-value (corresponding
to the p value) with a y-value dominated by all fi. The input to the algorithm
is a vector of functions fi, 1 ≤ i ≤ d−1 and the value t. The time complexity
of Algorithm FindP is the complexity of Algorithm FindFunc, O((N

k
)3) plus

O(d3) = O((N
k
)3) (the algorithm itself), i.e., jointly O((N

k
)3).

Algorithm 7 Algorithm FindP(d, t)

1: F ← Algorithm FindFunc(d, t).
2: Set popt ← 0.
3: for Fpivot ← F1,...,d−1 do
4: Compute local maxima (pmax, Fpivot(pmax)) of Fpivot in the range (0, 1).
5: for each Fi, 1 ≤ i ≤ d− 1 do
6: Compute intersection point pi of Fi and Fpivot in the range (0, 1).
7: if Fpivot(pi) > Fpivot(pmax) and Fpivot(pi) ≤ Fk(pi)∀k then
8: popt ← pi.
9: if Fpivot(pmax) > Fpivot(pi) and Fpivot(pi) ≤ Fk(pi)∀k then

10: popt ← pmax.
11: Return (pmax, Fpivot(pmax)).

Theorem 11. Algorithm FindP(F, t) finds point p yielding the maximin value
of ppd.

Proof. Algorithm FindP checks all intersection points between the pair of
curves, and the points of local maxima of the curves. It then checks the
dominance of these points, i.e., whether in the location these points have a
lower value compared to all other curves, and picks the maximal of them.
Therefore, if such a point is found, by Lemma 9, this point is precisely the
maximin point. Moreover, by Lemma 10 this point exists.

A note on full-knowledge adversary in fence patrol:
In the case of fence patrolling, the ppd value depends on the current

location of the robot. Consequently, the optimal p value characterizing the
patrol of the robots is different for each segment si, where 1 ≤ i ≤ d. Note

54

5.2 Handling a zero-knowledge adversary

that there could be different optimal p values with respect to both location
and orientation of the robot (2d values). However, it is sufficient to calculate
the ppd values only d times - only for one direction, as the other direction is
a reflective image of the first.

In order to find the maximin point for the fence patrolling case, we use
algorithm MaximinFence, which finds the value p such that the minimal ppd
is maximized, using Algorithm FindP that computes this point by finding the
maximal point in the integral intersection of all curves (ppdi). The complete
description of the algorithm is shown in Algorithm 8.

Algorithm 8 Procedure MaximinFence(d, t)

1: M ← FindFencePPD(d, t)
2: for i ← 1 to d do
3: OpP [i] ← FindP(d, t) with additional given input M [i] as a vector of

ppd functions.
4: Return OpP

5.2 Handling a zero-knowledge adversary

In this section we consider the case in which the robots face a weak adversary,
that has no knowledge of the robots’ patrol algorithm. The only information
it has, and upon which it decides where to penetrate, is the current loca-
tion of the robots. We assume that in this case, the adversary will choose
its penetration spot at random with a uniform distribution of the currently
unoccupied segments. The patrol algorithm should, therefore, maximize the
expected ppd along the perimeter, i.e., the average ppd. We show the sur-
prising result that in perimeter patrol, the simple deterministic algorithm is
optimal. However in fence patrol, this is not true.

5.2.1 Perimeter patrol

Next, we show that surprisingly, the optimal patrol scheme for handling
a zero-knowledge adversary around a perimeter is the deterministic patrol
algorithm (p = 1), for all τ ≥ 1.

Denote the ppd in segment sj by robot R0 after switching its direction r
times by ppd0

j(r).

55

5.2 Handling a zero-knowledge adversary

Lemma 12. Consider a sequence of 2d segments with one robot R0 in the
mid segment at time 0. If the robots switch directions r ≥ 1 times during t
cycles of execution, then

∑2d
j=1 ppd0

j(r) < t for every τ ≥ 1.

Proof. We prove, by induction on r, that for every r ≥ 1,
∑2d

j=1 ppd0
j(r) <∑2d

j=1 ppd0
j(r − 1). Note that the sum of ppd for p = 1 (r = 0) is exactly t,

hence by proving the induction we prove the lemma.
As the base case, consider r = 1 and τ = 1. Note that since r > 1

then inevitably p < 1. During t cycles, R0 can visit and monitor at most t
segments. Therefore we should consider t − 1 segments from both sides of
R0 (one cycle is “wasted” on turning around). We are interested only in the
probability of first visit at a segment in order to determine the ppd in that
segment. Without loss of generality, we assume R0 heads towards the right.

In order to prove the lemma, it is enough to show that the sum of the
expected ppd if p < 1 is less than the sum of ppd if p = 1, which is t. Thus
we check the addition of ppd to the segments to the left of R0 if p < 1, and
compare this addition to the reduction of ppd to the segments to the right
of R0 (from 1 in each segment if p = 1). Denote the segment in which R0

initially resides by s0, the segments to its right in ascending order (s1, . . . , st)
and the segments to its left by descending order (s−1, s−2, . . . , s−t+1). Firstly,
the biggest decrease factor is to segment st, from 1 to 0. Next, the ppd in
each segment si, 1 ≤ i ≤ t − 1, to the right of R0 decreases from 1 to pi.
Therefore the sum of reduction is 1 + (1− p) + (1− p2) + . . . + (1− pt−1) =
t −∑t−1

i=1 pi. On the other hand, the addition of ppd to the segments to the
left of R0 is as follows. The ppd in segment s−1 is (1 − p)p + p(1 − p)pp +
pp(1 − p)pppp + . . . + pt/2−1(1 − p)pt/2. Similarly, the ppd in segment s−2 is
(1−p)pp+p(1−p)ppp+. . .+pt/2−3(1−p)pt/2+2. Generally, the sum of all ppd in
the segments to the left of R0 is (1−p)p+(1−p)p2+2(1−p)p3+. . .+ t

2
(1−p)pt−1

= (1− p)[p + p2 + 2p3 + 2p4 + 3p5 + 3p6 + . . . + t/2pt−2 + t/2pt−1. For every
t ≥ 2, t−∑t−1

i=1 pi is greater than the above expression (for t = 1, r = 1, this
is straightforward, as the ppd in all segments except s0 is 0).

In order to prove the lemma for a general r, we divide the sequence
into two: the sequence to the right of R0 and to the left of R0. For every
1 < j ≤ r, let

∑−1
i=−t+j+1 ppd0

i = δ(j), ppd0
−t+j = δ′(j),

∑t−j
i=1 ppd0

i = α(j)

and ppd0
t−j = α′(j) (see Figure 5.2).

We now assume correctness for r′ < r, i.e., if R0 switches directions r′ < r
times during the execution then

∑2d
l=1 ppdl(R0) < t, and prove that this holds

also for r′ = r. We prove this for τ = 1.

56

5.2 Handling a zero-knowledge adversary

The sum of ppd0
i for r − 1 number of direction switches is δ(r − 1) +

δ′(r − 1) + α(r − 1) + α′(r − 1). For r switches, since the robots spend an
extra time cycle to turn around, the two extreme segments with ppd > 0 are
now unreachable, hence in this case δ′(r − 1) and α′(r − 1) no longer exist.
Now, δ(r) + δ′(r) is similar to changing the initial direction of the robot (by
multiplying by 1− p), and precisely obtaining α(r− 1), hence δ(r) + δ′(r) <
(1 − p)α(r − 1). Similarly, α(r) + α′(r) < (1 − p)δ(r − 1). Altogether,∑2d

l=1 ppd0
l (r) = δ(r)+ δ′(r)+α(r)+α′(r) < (1− p)α(r− 1)+ (1− p)δ(r− 1)

and since (1−p) < 1 this is smaller than
∑2d

l=1 ppd0
l (r−1). By the induction

assumption, this is smaller than t.
The proof follows directly for τ > 1, as the number of segments that

become unreachable increase from 1 to τ for each direction switch, while
the probability of penetration detection in other segments remains the same.
Therefore essentially the sum of ppd after r ≥ 1 direction switches with cost
τ is now considerably smaller than the sum of ppd after r that costs only one
extra time cycle, which is less than t, hence with cost τ for each switch this
also holds.

α

αδ‘ R0 ‘

δ

Figure 5.2: Illustration of the proof of Lemma 12.

Corollary 13. Assume the adversary chooses its penetration segment at ran-
dom with uniform distribution. Also, assume the robots switch their direction
r > 0 times during the execution where each direction switch takes τ time
units. Therefore the expected ppd throughout the perimeter is less than t/d.

This is because the expected ppd throughout the perimeter is
1/N

∑k
j=i

∑N
i=1 ppdi(Rj) < 1/N

∑k
j=i t = kt/N = t/d.

Theorem 14. The expected ppd throughout the perimeter assuming uniform
adversary is maximal if the value p characterizing the patrol of the robots
equals 1, i.e., the patrol is deterministic for every τ ≥ 1.

Proof. If p = 1, then each robot Rj, 1 ≤ j ≤ k, assures ppd(Rj) = 1
in exactly t segments, hence the expected ppd throughout the perimeter is

57

5.2 Handling a zero-knowledge adversary

1/N
∑

j = 1kt = kt/N = t/d. Following Corollary 13, every patrol scheme
that causes the robots to switch direction once or more, i.e., p < 1 has an
expected ppd less than t/d. Therefore the deterministic patrol guarantees
the maximal expected ppd.

5.2.2 Perimeter patrol with imperfect sensing

The main idea in the optimality proof of the deterministic algorithm when
handling a zero-knowledge adversary, is that it is more beneficial to the robots
to visit more segments, since doing so will increase the total ppd. One might
draw the conclusion that if the robots have imperfect sensorial capabilities,
this argument will not hold since revisiting a segment does have added value.
However, we prove the surprising result that even if pd < 1, it is still best
to patrol deterministically around the perimeter if the adversary chooses its
penetration spot at random. Moreover, we strengthen our result by showing
that even if the robot makes a post analysis of its decision to go straight or
turn around, it will still decide to keep going straight

Lemma 15. Assume the adversary picks its penetration spot at random with
a uniform distribution between the d unoccupied segments between two robots.
Therefore the gain to the robots’ probability of penetration detection from
revisiting a segment is smaller than the gain from initially visiting a new
segment, for every pd > 0.

Proof. The gain from revisiting a segment, denoted by Gr is the probability
that the robot will not detect the adversary during its first visit multiplied
by the probability that the adversary indeed will penetrate through that
segment. Formally, Gr = 1

d
× (1−pd)×pd. On the other hand, the gain from

initially visiting a new segment, denoted by Gi is 1
d
× pd. Since 1 − pd < 1,

it follows that Gr < Gi.

Theorem 16. In the ImpDetect model, the deterministic algorithm maxi-
mizes the expected ppd throughout the perimeter for all pd ≤ 1 if the ad-
versary chooses its penetration spot at random with a uniform distribution.

Proof. Theorem 14 shows that the expected probability of penetration de-
tection is maximal if the robot travels deterministically for pd = 1. The ppdi

in that case was the probability of the first visit to a segment si. Moreover,

58

5.2 Handling a zero-knowledge adversary

by Lemma 15, a robot adds more to the probability of penetration detection
by visiting a new segment, rather than revisiting a segment that was already
visited once or more. Therefore by adding these two results it follows that the
expected ppd is maximized, also when considering as many visits as possible
to a segment, when the patrol algorithm is deterministic.

We strengthen this result by showing that it is beneficial for the robot
to keep visiting new segments if the adversary chooses its penetration spot
randomly with a uniform distribution (with a probability of 1/d) even if
the robot calculates its benefit post factum, i.e., after visiting a segment.
Denote the probability that the adversary will penetrate through segment si

by PNi, and the probability that the robot will visit si without detecting the
adversary by NDi. Therefore, by the conditional probability law, if NDi > 0,
P (PNi | NDi) =

PNi

⋂
NDi

NODECi

=
1/d(1− pd)

(d− 1)/d + 1/d(1− pd)
=

1− pd

d− pd

On the other hand, the probability that the adversary will choose to
penetrate through si+1 knowing that the robot did not detect it in segment
si is

1− 1−pd

d−pd

d− 1
=

1

d− pd

>
1− pd

d− pd

In other words, the probability of revealing new information in visiting
a new segment is greater than the probability of revealing new information
from revisiting a segment that was already visited at least once, even after
knowing that the adversary was not caught in the revisited segment. The
intuition is that by visiting a new segment, the probability of penetration
detection grows by pd, where if a robot revisits a segment, it carries along
with it the probability of arriving there again, multiplied by pd. Since the
probability of arriving again is smaller than 1, the gain from revisiting a
segment is smaller.

Another interesting result in this adversarial model is seen in the LRange
model, where the optimality of the deterministic algorithm is no longer ab-
solute. The logic behind this statement is that if the cost of turning around
(in number of cycles) is smaller than the profit of what the robots gain (num-
ber of new visible segments), then it might be worthwhile to turn around.
Therefore it is possible to prove optimality of the deterministic algorithm for
maximizing the expected ppd only if L ≤ τ .

59

5.2 Handling a zero-knowledge adversary

Aa an example to demonstrate the fact that the deterministic algorithm
is no longer optimal if L > τ , consider the case in which L = 2, d = 5 and
τ = 1. The maximal expected ppd is 0.85 and it is obtained for p = 0.5,
whereas if p = 1 (deterministic algorithm) the expected ppd is only 0.8.

Theorem 17. In the LRange model, the deterministic algorithm guarantees
the maximal expected ppd for random-uniform adversary if L ≤ τ .

The proof of this theorem resembles the proof of Theorem 14.

5.2.3 Fence patrol

In circular environments, it was proven that under this adversarial model,
the optimal patrol algorithm is the deterministic algorithm. However, if the
robot travels along a line - this is no longer the case. We show this by means
of a counter example. The logic behind this fact is that in some segments, it
is worthwhile to switch the direction of the robot before reaching the end of
the section, and thus cover more segments.

S5

possible

S3 S4

non−deterministic:

deterministic:

S1 S2

Figure 5.3: An illustration of a case in which the maximal expected ppd is
obtained by a non deterministic algorithm. Each arrow represents a movement
in one time cycle.

Consider the case in which d = 5 and t = 5. If the robot is placed in
segment s4, then the ppd values are as follows. ppd1 = (1 − p)p4, ppd2 =
(1 − p)p3, ppd3 = (1 − p)p2 + p5 + (1 − p)3p2, ppd4 = 1 and ppd5 = p +
(1− p)2p, and the expected ppd when taking into consideration all segments
except s4 is maximized for p = 0.418. The logic, as explained previously, is
illustrated in Figure 5.3. The figure demonstrates that the robot can profit
from turning around at s4, since it can reach four segments, where if it travels
deterministically through all segments, i.e., go straight to s5, it will reach only
three segments.

60

5.3 Handling an adversary with some knowledge in Perimeter
Patrol

This strengthens our need to find the actual ppd values in all segments,
since after obtaining these functions, it is possible to calculate the p value
that maximizes the expected ppd throughout the line. This can be done
using a procedure similar to ComputeProbPPD, while replacing the call to
FindP to a function that calculates the p value that maximizes the expected
ppd.

5.3 Handling an adversary with some knowl-

edge in Perimeter Patrol

In the previous sections we have shown sound theoretical results for the opti-
mality of patrol algorithms for an adversary that lies in one of the extremities
of the knowledge scale (extremely strong or extremely weak). However, it
is rarely the case that an adversary will not bear any any knowledge or will
bear full knowledge on the patrolling robots. In most cases, the knowledge
the adversary obtains on the robots lies somewhere on the knowledge contin-
uum. In the following section, we provide a discussion on this case. First, in
Section 5.3.1 we describe two heuristic algorithms to deal with such an ad-
versary. In Section 5.4 we analyze the “some knowledge” adversary from the
point of view of its uncertainty of its choice of action, and show theoretical
optimality results for this case.

5.3.1 A heuristic approach - algorithm Combine

We have shown that the algorithm maximizing the expected ppd is the de-
terministic algorithm (Theorem 14). However, the deterministic algorithm
creates high deviations between the ppd values in the segments: in t segments
the ppd equals 1, and in the other d− t + 1 segments the value is 0. Figure
5.4 illustrates the tradeoff between using the deterministic algorithm (p = 1)
and the MaxiMin algorithm (p < 1) for d = 12, t = 9. On the one hand, by
maximizing the expected ppd, it creates a great deviation between the ppd
values - either 1 or 0. On the other hand, by maximizing the minimal ppd,
the ppd values decrease in many segments from 1 to lower values (compared
to the deterministic algorithm).

In addition, the deterministic algorithm is easy to detect, therefore if the
adversary has even a little time to study the system, it might deduce the

61

5.3 Handling an adversary with some knowledge in Perimeter
Patrol

Figure 5.4: An illustration of the tradeoff between the probability of penetration
detection in all segments (d = 12, t = 9) when preparing for a full knowledge
vs. a zero knowledge adversary (p returned by algorithm MaxiMin and the de-
terministic algorithm, respectively)

62

5.3 Handling an adversary with some knowledge in Perimeter
Patrol

type of algorithm being used and choose to penetrate through a segment
with ppd = 0, resulting in a successful penetration.

Motivated by the two reasons described above, we decided to adopt both
a more “risk averse” approach and a method that will minimize the deviation
between the ppd values throughout the perimeter. Therefore we present the
Combine(d, t, w) algorithm that maximizes the expected ppd for the given d
and t while minimizing the deviation between the ppd along the segments.
This combination is done using the weight w, 0 ≤ w ≤ 1 for maximization
of the expected ppd and the weight 1−w for minimization of the deviation.
A full description of Algorithm Combine is given in Algorithm 9. Note that
this algorithm uses a procedure of Algorithm MaxiMin for finding the ppd in
each segment. This procedure is dynamic-programming inspired, separates
each state into two based on directionality (clockwise and counterclockwise)
and by assigning values in a matrix it determines the ppd in a segment.
An absorbing state is used in order to represent the fact that the ppd is
determined only by the first visit to a segment. Denote the standard devi-
ation between the ppd values of a vector of functions F = {f1, . . . , fd−1} by
stdev(F). Denote each segment i, 1 ≤ i ≤ d− 1 by si.

Algorithm 9 Combine(d, t, w)

1: Calculate F as follows:
2: for each sinit = si ∈ {s1, . . . , sd−1} do
3: Create the matrix M of size (2d + 2) × (t + 1), initialized with 1 in

M0(sinit) and 0s otherwise, using the following rules.
4: for each entry Mt(s

cw
i) do

5: set value to p ·Mt−1(s
cw
i+1) + q ·Mt−1(s

cc
i)

6: for each entry Mt(s
cc
i) do

7: Set value to p ·Mt−1(s
cc
i−1) + q ·Mt−1(s

cw
i)

8: for absorbing states do
9: Set entry Mt(sabs) = Mt−1(sabs) + p · [Mt−1(s

cw
1) + Mt−1(s

cc
d)]

10: F ← row t of M .
11: Q1 ← 1/d

∑
i = 1dFi

12: Q2 ← 1− stdev(F)
13: Q ← wQ1 + (1− w)Q2

14: Return p = max{Q}

63

5.4 Theoretical results about adversarial uncertainty

5.3.2 A heuristic approach - algorithm MidAvg

Another possible heuristic approach to dealing with an adversary with some
knowledge, is to combine the optimal algorithm for the full knowledge adver-
sary and the optimal algorithm for the zero-knowledge adversary. In other
words, Algorithm MidAvg will return a p value that is a weighted combina-
tion of p returned from the MaxiMin algorithm, and p = 1. A full description
of the algorithm is given below.

Algorithm 10 MidAvg(d, t, w)

1: pfull ← FindP(d, t)
2: pzero gets1
3: pweight ← w × pfull + (1− w)× pzero

4: Return pweight

5.4 Theoretical results about adversarial un-

certainty

In most cases, it is realistic to assume that the adversary’s knowledge on the
patrol algorithm lies somewhere along the knowledge continuum, between
full and zero knowledge. Usually, the adversary does not gain enough in-
formation on the patrol algorithm in order to derive the exact algorithm
(i.e., probability p) or the exact weakest spots of the algorithm. Therefore
we theoretically explore two directions for handling partial knowledge of the
adversary. In the first, the adversary might have some estimation of the
probability p characterizing the patrol algorithm. In the second, the adver-
sary might have some estimation of the weakest spot of the algorithm. In
both cases, we wish to use the region of possible beliefs of the adversary in
order to find an optimal patrol algorithm for the patrolling robots.

A common way of handling uncertainties of systems is to assume that
when having no knowledge, a random choice, with uniform probability, is
made. In this domain, this approach was proven to be useful in an empirical
evaluation (see Chapter 6, where a patrol algorithm proven to be optimal for
a random adversary performed substantially better than other algorithms
for humans playing the role of an adversary that had no knowledge of the

64

5.4 Theoretical results about adversarial uncertainty

patrolling robots. We will use a similar approach here, i.e., within the re-
gion of estimation of the adversary—either of the patrol algorithm p or of
the weakest spots—the adversary will be assumed to choose its actions at
random.

We first examine the approach in which the adversary estimates the prob-
ability p characterizing the patrol algorithm with some error. Unfortunately,
we show that it is impossible to find an optimal patrol algorithm in this case.

We then discuss two alternative approaches, in which the uncertainty
is reflected by the choice of the penetration spot. In this case, we do not
necessarily assume that the adversary calculates the probability p, but tries to
estimate the weakest spot using two estimation methods - physical proximity,
or probability proximity to the minimal ppd.

5.4.1 Estimating p - negative result

In this section we discuss the case in which the adversary estimates the
probability p characterizing the patrol algorithm.

The problem of estimating the probability p can be considered as observ-
ing a Bernoulli trial, where a success is an event of going straight with a
probability of p, and a loss is turning around with a probability of 1− p. We
can use the Central Limit Theorem [26] that bounds the expected error from
the real value of p after viewing it for tv trials. The average of successes after
viewing tv trials will be within the boundaries of [p − δ, p + δ] with a prob-
ability of pconf , where δ is a function of tv and depends on pconf . Therefore,
the adversary can estimate the real value of p inside some interval around p,
and we will try to use this interval in order to optimize the patrol algorithm
of the robots. Consider the following problem.

P-Interval problem definition: Let p be the probability characterizing
the perimeter patrol algorithm of a team of robots. Assume the adversary
estimates that the real value of p is inside the interval [p−δ, p+δ]. Therefore
it chooses its believed pb at random with a uniform probability within this
interval. The algorithm needs to find the probability p characterizing the
patrol of the robots such that it maximizes the expected ppd throughout the
perimeter.

Unfortunately, we prove that this problem is unsolvable unless δ = 0. We
prove this by showing that the expected ppd function inside the interval [0, 1]
monotonically increases, i.e., as p grows the expected ppd increases, hence
the optimal p does not converge unless δ = 0 (since maximization of the

65

5.4 Theoretical results about adversarial uncertainty

expected ppd is obtained in the right bound of the interval, which is also the
midpoint of the interval only when δ = 0).

Denote the number of times a robot switches directions during t time
units by r, r ≥ 1, and the addition to the ppd in segment sj by some robot
R0 after switching its direction r times by ppd0

j(r).

Lemma 18. Consider a sequence of 2d segments with one robot R0 in the
mid segment at time 0. Then∑2d

j=1 ppd0
j(r) <

∑2d
j=1 ppd0

j(r − 1).

Proof. We divide the sequence of 2d segments into two: the sequence to
the right of R0 (with positive indexes) and to the left of R0 (with negative
indexes). For every j number of direction switches, let δ(j) =

∑−1
i=−t+j+1 ppd0

i

(sum of R0 contributions to the ppd functions to segments with negative
indexes except for s−t+j), δ′(j) = ppd0

−t+j (R0’s contribution to s−t+j), and

similar definitions for segments with positive indexes, i.e., α(j) =
∑t−j

i=1 ppd0
i

and α′(j) = ppd0
t−j.

The sum of ppd0
i for r − 1 number of direction switches is δ(r − 1) +

δ′(r − 1) + α(r − 1) + α′(r − 1). For r switches, since the robots spend an
extra time cycle to turn around, the two extreme segments with ppd > 0 are
now unreachable, hence in this case δ′(r − 1) and α′(r − 1) no longer exist.
Now, δ(r) + δ′(r) is similar to changing the initial direction of the robot (by
multiplying by 1 − p), and obtaining exactly α(r − 1), hence δ(r) + δ′(r) <
(1 − p)α(r − 1). Similarly, α(r) + α′(r) < (1 − p)δ(r − 1). Altogether,∑2d

l=1 ppd0
l (r) = δ(r)+ δ′(r)+α(r)+α′(r) < (1− p)α(r− 1)+ (1− p)δ(r− 1)

and since (1−p) < 1 this is smaller than
∑2d

l=1 ppd0
l (r−1). By the induction

assumption, this is smaller than t. The proof follows directly for τ > 1, as
the number of segments that become unreachable increases from 1 to τ for
each direction switch, while the probability of penetration detection in other
segments remains the same.

Let Eppd(p) be the expected ppd for probability p ∈ [0, 1] (the probability

that the robots will continue straight in each time unit during the patrol)
0 ≤ p ≤ 1,

Lemma 19. The expected ppd, as a function of p, is a monotonically
increasing function in the range [0, 1], i.e., for all 0 ≤ p′ < p ≤ 1,
Eppd(p′) < Eppd(p)

66

5.4 Theoretical results about adversarial uncertainty

Proof. Denote the expected number of direction switches of robot R dur-
ing t time units using probability p of going straight by Esw(p). Therefore
Esw(p) = t(1 − p) and Esw(p′) = t(1 − p′) , and since p′ < p it follows that
Esw(p) < Esw(p′).

Now we must show that if a robot R is expected to switch its direction
more times during t time units, then the expected ppd will be smaller. For-
mally, we want to show that for 0 ≤ p′ < p ≤ 1, Esw(p) < Esw(p′) ⇒
Eppd(p′) < Eppd(p).

The expected ppd along the perimeter with r direction switches is Er

ppd =

1/N
∑N

i=1

∑k
j=1 ppdk

i (r). During t < d time units the robot can influence
the ppd along the perimeter at most 2d segments, hence the sum of each
robot is not over all N segments, but only the neighboring d segments on
each of its sides. Therefore, following Lemma 18, Er

ppd < Er−1

ppd
. Thus if

Esw(p) < Esw(p′) then Eppd(p′) < Eppd(p).

Theorem 20. P-Interval is unsolvable unless δ = 0.

Proof. Assume, for the purpose of contradiction that δ > 0, yet p∗ that max-
imizes the expected ppd throughout the perimeter exists. By the definition
of P-Interval, the adversary deduces an interval around p∗ whereby it chooses
its believed p at random inside the interval [p ∗ −δ, p ∗ +δ]. By Lemma 19,
the expected ppd function monotonically increases, therefore the maximal
expected ppd inside this interval is obtained in p ∗ +δ. This contradicts the
assumption that p∗ maximizes the expected ppd, unless δ = 0.

5.4.2 Uncertainty in the choice of the penetration spot

In this section we explore the case in which the partial knowledge of the ad-
versary on the patrol algorithm is translated into different possible options of
the penetration spots. For several reasons, the adversary might not choose to
penetrate through the exact weakest spot. In this section we present two de-
viations from the weakest spots, and consequently two possible corresponding
optimal ways of choosing the patrol algorithm in such cases.

The adversary, after studying the robots’ patrol for a period of time,
could determine several reasonable segments in which the ppd values, as it
believes, are small enough. In this case it could choose to penetrate through
one of the v weakest spots at random, with some probability distribution (for
example uniform). Hence the robots should choose p such that the expected

67

5.4 Theoretical results about adversarial uncertainty

ppd along the v segments with minimal ppd is maximal. We refer to this
approach as v-Min.

The second case is that the adversary might not choose to penetrate
through the segment with the minimal ppd, but either through that segment,
or through one of its neighboring segments at random. Hence the robots
should choose p such that the minimal expected ppd along v neighboring
segments is maximized. This approach is referred to as v-Neighbor.

Note the difference between the two cases - in v-Min we are looking for
the value 0 ≤ p ≤ 1 such that the weighted average of the v minimal ppd’s
is maximized, and in the v-Neighbor case we are looking for p such that the
minimal weighted average of v neighboring segments is maximized.

In both cases, the two extremities of uncertainties—full knowledge adver-
sary (no uncertainty) and zero knowledge adversary (complete uncertainty)—
match the results presented in Sections 5.1 and 5.2, respectively. If v = 1,
i.e., there is no uncertainty in the choice of the weakest spot, then the algo-
rithms are required to precisely return the value p such that the minimal ppd
is maximized, similar to the MaxiMin algorithm presented in Section 5.1. On
the other hand, if v = d and the probability distribution is uniform, then the
algorithms will return the value p that maximizes the expected ppd through-
out the perimeter (=average ppd). As proven in Section 5.2, the optimal
algorithm in this case is p = 1, i.e., the deterministic algorithm.

The algorithms used to find an optimal patrol use the ppdi function for
each segment si. The ppdi is a function of p, and it is calculated in polynomial
time using a dynamic-programming algorithm described in Chapter 4.

Optimality of the patrol algorithm using the v-Min approach

In this sectin we present the ComputeMinV algorithm, which finds the optimal
patrol algorithm, corresponding to the probability p of going straight at each
time step in the v-Min scenario. Specifically, the ComputeMinV algorithm
computes the value p such that the minimal v ppd’s are maximized, given
a probability distribution V = {vi, v2, . . . , vv}, where vi is the probability
that the adversary will choose to penetrate through the i’th weakest spot,∑v

i=1 vi = 1. This distribution can be used to further manipulate the impact
of the extent of knowledge of the adversary on its choice of penetration spot.
For example, after the adversary obtains more knowledge v1 may increase to
more than the uniform distribution (1/v).

The algorithm ComputeMinV operates as follows. First, it identifies all

68

5.4 Theoretical results about adversarial uncertainty

intersection points between every pair of ppdi, ppdj functions (1 ≤ i, j ≤ d,
i 6= j). Then it divides the range [0, 1] into sections according to all the
intersection points. For each section [pa, pb], the algorithm identifies the
minimal v curves between [pa, pb], and finds their average curve, favg. Since
the adversary chooses to penetrate through one of the v segments with the
lowest ppd at random with a given distribution V , the weighted average (given
weight vi to the i’th minimal curve) of the v curves represent the expected ppd
in that section. Last, ComputeMinV calculates the maximal value of favg(a, b)
in the section [pa, pb], and reports the point popt that is maximal among all
minimal points of the average functions. An illustration of this algorithm is
shown in Figure 5.5.

Figure 5.5: An illustration of the ComputeMinV algorithm for d = 8, t = 6, v =
3. The small stars mark the intersection points, and the bold curve is the average
of the 3 minimal curves at each section. The arrow marks the maximal point
computed by ComputeMinV.

The time complexity analysis of the ComputeMinV algorithm is as follows.
There are at most d intersection points between every two pairs of curves (all
curves are polynomials of p of order of at most d, hence there are at most d
real roots to the subtraction of both polynomials), therefore altogether there
are at most d3 intersection points. The algorithm sorts all intersection points,
in a time complexity of O(d3 log d3) (using any standard sorting algorithm).
In each section the algorithm invests dv in finding the minimal v curves,
hence (assuming v is a constant), the total complexity of this part is at most
d4. Altogether the total time complexity is O(d4 + d3 log d3), compared to a
time complexity of d3 of the original MaxiMin algorithm for full knowledge

69

5.4 Theoretical results about adversarial uncertainty

Algorithm 11 ComputeMinV(v, V, {ppd1, . . . , ppdd})
1: Set BufP ← {0, 1} {initialize list of all intersection points}
2: for every pair ppdi, ppdj, 1 ≤ i, j ≤ d, i 6= j do
3: Intersecti,j ← intersection points between ppdi and ppdj.
4: BufP ← BufP

⋃
Intersecti,j

5: Sort BufP in ascending order
6: Resf , Resp ← 0 {initialize maximin value and its p }
7: for j ← 1 to |BufP | do
8: Find v functions fj1 , . . . , fjv such that fji

(p′) < fn(p′) ∀p′ ∈
[BufP (j), BufP (j + 1)], 1 ≤ i ≤ v, fn 6= fji

9: favg ←
∑v

i=1 vi × fji

10: m ← favg(p∗) such that ∀p ∈ [BufP (j), BufP (j + 1)], favg(p∗) ≥
favg(p)

11: if m > Resf then
12: Resf ← m ; Resp ← p∗
13: Return Resp

adversary.

Optimality of the patrol algorithm using the v-Neighbor approach

As stated previously, the adversary might attempt to penetrate not only
through the weakest segment, but through one of its neighboring segments.
Therefore this can be used in order to find a patrol algorithm (p value)
more suitable for the situation. Algorithm ComputeNeighborV computes the
weighted average of v neighboring segments according to a distribution V =
{v1, . . . vv}, then finds the maximin point of the new curves. Note that if
the robot currently resides inside the v-neighborhood of a segment si (i.e.,
v − i < 0 or v + i > d), its current location is excluded, i.e., we average less
segments for that case. The probability distribution can be used to express
the fact that the adversary tends, for example, to try to penetrate through
the segments further away from the robot in its current position. Figure 5.6
illustrates the algorithm for d = 8, t = 6 and v = 3.

The time complexity of Algorithm ComputeNeighborV is O(d3), since find-
ing the weighted average of v neighboring ppd functions costs vd, and finding
the MaxiMin of the d functions is O(d3) (see Section 5.1). Consequently the to-
tal time complexity of the ComputeNeighborV algorithm is O(d3 +d) = O(d3)

70

5.4 Theoretical results about adversarial uncertainty

Figure 5.6: An illustration of the ComputeNeighborV algorithm for d = 8, t =
6, v = 3. The curves are not the original ppdi functions, but the average of the
v−neighborhood of each segment. The arrow points to the maximin point of
the new curves.

Algorithm 12 ComputeNeighborV(v, V, {ppd1, . . . , ppdd})
1: Set FuncSet ← ∅
2: for i ← 1 to d do
3: ie = min(d, i + v)
4: FuncSet ← ∑ie

j=i vj−i+1 × ppdj

⋃
FuncSet

5: popt ← MaxiMin(FuncSet, d)
6: Return popt

71

5.4 Theoretical results about adversarial uncertainty

(similar to the complexity of MaxiMin).

Comparing v-Min and v-Neighbor

The two approaches of v-Min and v-Neighbor towards bounding the uncer-
tainty of the adversary in its choice of penetration spot seem to be coherently
different. Consider for example the case in which d = 8, t = 6 and v = 3
(Figures 5.5 and 5.6). The optimal p returned by v-Neighbor is p = 0.7359,
and the optimal p according to v-Min is p = 0.9273. The result returned
by the MaxiMin algorithm (used in cases of a full knowledge adversary, i.e.,
v = 1) is p = 0.7037.

However, in some cases they coincide, as proven in the following Theorem.
Below we discuss such cases, in order to provide a better understanding of
this cohesion. The following Theorem holds for every probability distribution
V , but for simplicity reasons we prove it for vi = 1/v, i.e., using a uniform
distribution inside the bounds of uncertainty.

Theorem 21. The optimal choice of p according to v-Neighbor coincides with
the optimal p according to v-Min if t = bd/2c+ 1.

Proof. The optimal p in the v−neighborhood and in the v− minimal, is the
one which maximizes the minimal ppd of the average of the v− neighborhood
and v− minimal ppdi functions, correspondingly. Therefore it is suffice to
show that along this optimal point po, the v− minimal ppdi functions are also
all neighbors. Formally, we need to show that ppdi1 , . . . , ppdiv are minimal,
where il = j + l for some index 1 ≤ j ≤ d− v.

Consider the section of d segments between two consecutive robots Ra

and Rb. First, assume d is odd. In this case, ppdi for 1 ≤ i ≤ t is influenced
only by Ra, and ppdi for t + 1 ≤ i ≤ d is influenced only by Rb. Moreover,
every ppdi function for 1 ≤ i ≤ t equals 0 if p = 0, and equals 1 if p = 1. On
the other hand, every ppdi function for t + 1 ≤ i ≤ d equals 0 in both cases
where p = 0 and p = 1.

Note that if a robot is headed clockwise, then any ppd function of a
segment si at a distance of i to its right is larger than a ppd function of
a segment which is at the same distance, but to the left. For example,
ppd1 > ppdd, ppd2 > ppdd−1 and so on. The reason lies in the fact that the
probability of reaching a segment of a distance if i in the opposite direction
is equivalent to the probability of reaching a segment at a distance of i in

72

5.4 Theoretical results about adversarial uncertainty

the same direction, but multiplied by (1 − p). Since we assume that p ≤ 1,
this is always true.

Combining all known facts together, from Lemma 1 we see that ppdt+1 ≤
ppdt+2 ≤ . . . ≤ ppdd−1 ≤ ppdd and ppdt ≤ ppdt−1 . . . ≤ ppd1. Also, as shown
herein, ppd1 ≥ ppdd, ppd2 ≥ ppdd−1, . . . , ppdt−1 ≥ ppdt+1. It follows that,
obviously, the minimal function is ppdt+1, the function above it is ppdt and
ppdt−1, followed by ppdt+2 and ppdt−2 and so on (see the example in Figure
5.7). Therefore, inevitably, when considering v− minimal segments, for all
v, we remain in the v− neighborhood of ppdt+1.

If d is even, then the only difference is that function ppdt receives com-
ponents from both Ra and Rb, and thus it is not straightforward that it
is smaller than ppdt−1. Calculating the exact value of ppdt shows us that
ppdt = pt + (1 − p)pt−1 = pt−1. On the other hand, ppdt−1 = pt−1, i.e.,
ppdt−1 = ppdt, and the rest of the proof follows directly as in the case of an
odd d.

Figure 5.7: An illustration of proof of Theorem 21, in which the v−neighborhood
and v− minimal coincide (d = 9, t = 5 and v = 3). The bold line represents
the average of v− minimal / v− neighboring segments.

73

Chapter 6

Empirical Evaluation

In this chapter, we describe an empirical evaluation of the performance of the
different patrol algorithms working against adversaries that obtained different
amounts of knowledge on the patrolling robots. The evaluation is made using
the Penetration Detection game (PenDet-Game) we created. In this game,
the adversary’s role is played by human subjects, working against simulated
robots. In Section 6.1 we describe the PenDet-Game. In section 6.2 we present
the first setting of the game, in which we compared the performance of the
deterministic algorithm, the MaxiMin and Combine against three different
amounts of exposed information. In Section 6.3 we concentrate on evaluating
adversaries with some knowledge, using the MaxiMin, MidAvg and the family
of v-Neighbor and v-Min algorithms.

6.1 The PenDet-Game

In the PenDet-Game, a human player plays the role of the adversary, working
against a team of simulated patrolling robots. Therefore the player is required
to pick a segment through which he thinks he can penetrate without being
detected.

Note that our choice of performing experiments in this simulated envi-
ronment, rather than actual robots is not trivial. The reason for preferring
to conduct such experimental research, is that managing to evade patrolling
robots using current lab-robots is simple—the adversary can simply jump
over them. Moreover, extensive experiments were required. to evaluate per-
formance of the patrol algorithms. This is again impossible to create with real

74

6.2 Experiment - Phase 1

robots. Note that there are empirical results from running experiments with
real robots in systems with adversarial teams, e.g. the Robocup game [52],
however they were conducted between two teams of robots, not humans vs.
robots.

The game consists of four robots patrolling around a treasure pot. On the
game screen, the player can see the circle representing the perimeter and the
patrolling robots (Figure 6.1). The distance between the robots and the time
it takes to penetrate change from one subgame to the other. These values
are presented explicitly to the player throughout the subgame. For simplicity
reasons, we designed the game with τ = 1, i.e., each time the robots switched
directions they stayed in the same segment during that time cycle.

Figure 6.1: The PenDet-Game screen.

6.2 Experiment - Phase 1

The game consisted of three stages, where in each stage the player had more
time to study the system, i.e., more information concerning the patrolling
robots was revealed gradually to the player. We describe the game in detail
in the following paragraphs.

75

6.2 Experiment - Phase 1

In order to simulate different knowledge states, the game had three stages.

1. In the first stage, the player was shown a static picture with the current
location of the robots. The direction of the robots (where they were
facing) could be easily deduced from the picture of the robots. The
player was requested to choose the segment through which he believed
he would be able to penetrate without being detected. This stage
consisted of three sub-games. In each sub-game the distance between
the robots and/or the penetration time t were different.

2. In the second stage, the player was shown five seconds of the patrol.
After these five seconds passed the player was requested to click on the
segment through which he thought he had the best chances of pene-
trating without being detected. No feedback was given to the player
regarding whether he succeeded or failed in his attempt to penetrate.
This stage consisted of six sub-games. In each sub-game the patrol
scheme of the robots, the distance between the robots and/or the pen-
etration time t were different.

3. The third stage of the game was a three minute game, in which the
player could try to penetrate as many times as he wanted (as long as
time permitted) simply by clicking on the section through which he
decided to penetrate. The player could see whether he succeeded or
failed in his attempt. This stage also consisted of six sub-games. In
each sub-game the patrol scheme of the robots, the distance between
the robots and/or the penetration time t were different.

Each game (and all its subgames) was played once by each player, so
that the primacy of the choices taken by the players in the first stages was
maintained.

The PenDet-Game was played by 68 human subjects (29 Female/39 Male).
All subjects were senior undergraduate students in computer science. The
game was set online, and the students were required to play it as part of their
course requirements.

The information regarding the d, t, p values tested, is given in Table 6.1.

Three different patrol algorithms were executed in three stages of the
game. The patrol algorithm was determined by the probability p character-
izing the robots’ movement. The first algorithm corresponded to the zero

76

6.2 Experiment - Phase 1

knowledge adversary, therefore following Theorem 14 this was the determin-
istic patrol algorithm (p = 1). We denote this algorithm by Det. Note that
the player did not completely have no knowledge of the patrol scheme, since
he knew the distance between the robots and the direction it they were fac-
ing. However, this information was minimal and did not reveal anything
concerning the patrol algorithm. The second algorithm was the Combine al-
gorithm. The third algorithm corresponded to the full knowledge adversary.
Note that the player did not have full knowledge, but did receive a long pe-
riod of time to study the system, which brought the player close to a full
knowledge adversary. In this case, the p values represented the probability
yielding the maximal minimal ppd along the perimeter. The values of p were
calculated using the MaxiMin algorithm described in Section 5.1.

Det was executed in the first and second stages of the game, where
MaxiMin and Combine were executed in all three stages of the game. The
reason for omitting Det from the third stage is threefold. First, the combined
algorithm reaches 1 as t gets close to d, and is exactly 1 (deterministic) if
t = d − 1. Therefore checking two cases of deterministic algorithms would
give a clear picture of this behavior. Second, we assumed that in this case
the learning curve of the players would be steep, i.e., they would understand
that this is a deterministic algorithm and succeed in nearly all attempts to
penetrate. Last, we thought that this algorithm might bore the players and
eliminate their motivation to play thoughtfully. This was verified by feedback
we received from subjects in the early developmental stages of the game.

In order to evaluate the performance of the three algorithms, we executed
the algorithms on the input retrieved from the choices of the players’ pen-
etration spots. In the first stage, each player provided 3 input lines, each
compatible to one pair of d and t. For each such input line, we calculated

Table 6.1: The d, t, p values tested in the experiment.
d t p Det p Combine p MaxiMin
16 9 1 0.93 0.87
8 5 1 0.92 0.75
8 6 1 0.96 0.7
12 9 1 0.97 0.77
12 11 1 1 0.82
16 15 1 1 0.85

77

6.2 Experiment - Phase 1

the respective probability of penetration detection (determined by the cho-
sen penetration spot)—according to the three different algorithms, i.e., each
input line produced data for each one of the three algorithms. In the second
stage, each input from each player corresponded to a triplet, d, t, p. By the
choice of the penetration spot, we determined the probability of penetration
detection of the algorithm (characterized by p). In the third stage, we calcu-
lated the probability of penetration detection for each penetration attempt
according to the relative position between the robots at the time the player
made his decision. We then took the average of the probability of penetra-
tion detection over all penetration attempts of the player, thus each player
contributed one input line to the analysis for each subgame in this stage.

6.2.1 Experimental results

In this section, we describe the results of the experiments with the
PenDet-Game. First we describe the bottom line summary of the results,
then we discuss the results of each stage of the game in detail.

Figure 6.2 describes the summary of the results obtained from all three
stages of the game. It presents the maximal, minimal and average penetra-
tion detection ratio obtained by each of the algorithms we tested each stage
of the game. Comparing these values, it is clear that in the first stage the
deterministic algorithm is the best: its average is considerably higher than
the average of the other algorithms, and the minimal penetration detection
is also considerably higher. Note that the maximal value of penetration de-
tection is equal to the maximal value of the Combine algorithm, since this
value results from the Combine algorithm when it offers deterministic behav-
ior. In the second stage, the average value of penetration detection obtained
by all three algorithms is relatively similar, yet the Combine algorithm is
considerably better than the deterministic algorithm in its minimal value,
and substantially better than the MaxiMin algorithm in its maximal value.
In stage 3, MaxiMin significantly outperforms the Combine algorithm in both
average and maximal penetration detection. The minimal penetration de-
tection is similar, due to the fact that when t is small relative to d, MaxiMin
cannot guarantee high ppd values, thus they are similar to the ppd guaranteed
by the Combine algorithm.

The game results are mainly evaluated in terms of actual percentage of
penetration detection from all three algorithms, which corresponds to the
robots’ performance in different scenarios. In some cases, we found that the

78

6.2 Experiment - Phase 1

Figure 6.2: A summary of the results, divided into three stages: no information
(S1), short-term revelation of information (S2), and long term revelation of in-
formation (S3) for the three patrol algorithms. Each line represents the maximal,
minimal and average penetration detection. The best performing algorithm in
each stage is depicted by a surrounding dotted rectangle.

79

6.2 Experiment - Phase 1

choice of the player of the section through which he decided to penetrate
yielded interesting results. This corresponds to the decisions taken by the
adversary after attaining different levels of information.
Stage 1:
In the first stage, nearly no information was given to the player. Therefore
the players could have chosen the penetration spots at random. In Figure 6.3
we see that, however, in most cases the players chose to penetrate through
one of two segments in the middle. This is not surprising, considering that
people are drawn to central positions when instructed to choose between
positions that have no apparent special characteristics [54]. In addition, the
direction of the robot is visible to the player, hence he might take that into
consideration. This is apparent in the case where d = 12 and t = 11, in
which 28% of the players chose to penetrate through the last segment.

d=8

0

0.2

0.4

1 2 3 4 5 6 7 8

segment

%
 c
h
o
se

n

t=5

t=6

d=12

0

0.2

0.4

1 2 3 4 5 6 7 8 9 10 11 12

segment

%
 c
h
o
se

n

t=9

t=11

d=16

0

0.2

0.4

1 3 5 7 9 11 13 15

segment

%
 c
h
o
se

n

t=9

t=15

Figure 6.3: Choices of penetration positions in stage 1 for different values of d:
d = 8, 12, 16. The x axes represents the segment, and the y axes the percentage
of subjects that chose to penetrate through that segment.

As clearly depicted in Figure 6.4, the algorithm that managed to detect
the highest percentage of penetrations is the deterministic algorithm. The
data was examined statistically using a special macro designed by Brunner
et al. [14] for running the Friedman test with repeated measures (the data
we have does not have normal distribution, thus we needed a nonparamet-
ric test). The advantage of using the deterministic algorithm compared to
MaxiMin and Combine algorithm was found to be statistically significant,
with p − value = 0.04 for Combine vs. the deterministic algorithm, and
p−value = 0.003 for MaxiMin vs. the deterministic algorithm. Therefore the
deterministic algorithm is indeed more suitable for detecting penetrations in
case the adversary has nearly no knowledge of the patrol scheme. Moreover,
even if the adversary has some knowledge - in our case the distance between
the robots and the direction they are currently heading - this algorithm still
performs nicely. However, the expected values of ppd (“theoretical expected

80

6.2 Experiment - Phase 1

ppd” in Figure 6.4) are higher than what was obtained in the actual game.
The reason for this outcome is that the algorithm maximizes the expected
ppd if the adversary chooses its penetration spot at random. However, as
we have seen previously, this is not necessarily the case (in other words: it
expects a less sophisticated adversary). On the other hand, the MaxiMin
algorithm expects to be teamed up against a much more sophisticated ad-
versary, therefore the actual penetration detection percentage is higher than
the theoretical values. Note that the Combine algorithm coincides with the
deterministic algorithm for some scenarios (t/d = 11/12, 15/16), therefore
the penetration detection percentages of both are identical in those cases.

Figure 6.4: Performance of the three different algorithms in stage 1 (adversary
with nearly zero knowledge).

Stage 2:
When only a small amount of information was revealed to the player con-
cerning the patrol scheme (5 seconds), then the Combine algorithm performed
better compared to the other algorithms based on the analysis shown in Fig-
ure 6.2. As presented in that figure, the average of ppd obtained the Combine
algorithm is slightly higher than the average ppd obtained by MaxiMin and
Det. Moreover, we note that the minimal ppd of Combine is higher than the
minimal ppd of Det, and the maximal ppd of Combine is higher than the
maximal ppd of MaxiMin. However, as clearly demonstrated in the detailed
results presented in Figure 6.5, all the results are not statistically significant.

81

6.2 Experiment - Phase 1

We can therefore only conclude that the deterministic algorithm is no longer
optimal (as shown in the first stage, with zero-knowledge adversaries), and
that Combine performs better compared to it. The reason for this lies in the
fact that although only a small amount of information was exposed to the
player, in most cases it was enough to determine that if the robots might
turn around, then it is not beneficial to penetrate through the last d − t
segments. However, after 5 seconds of observation a player cannot infer the
patrol algorithm and identify weakest spots or differ between algorithms (in
this case the Combine and MaxiMin algorithms).

Note that the theoretical values of ppd in both Combine and Det are
considerably higher than the actual penetration detection ratio. This is clear,
since the robots expect an adversary with no knowledge about the system,
yet confront an adversary that has gained some information. On the other
hand, the theoretical values of the MaxiMin still pose as a lower bound to the
performance of the robots.

Figure 6.5: Performance of the three different algorithms in stage 2 (adversary
with little knowledge)

Stage 3:
We present the results from stage 3 in two ways: the overall performance
and the performance after omitting the first 30 seconds of the game. We
consider the first 30 seconds to be a learning period, mainly for the Combine
algorithm, when it produces a deterministic schedule.

82

6.3 Experiment - Phase 2

First, the overall probability of penetration detection using the MaxiMin
algorithm is statistically significantly better than the Combine algorithm
even for the general performance over the entire 3 minutes (the difference
is stronger after omitting the first 30 seconds). We used the Friedman test
since the data does not have normal distribution, with p− value < 0.0001.

The following results are obtained when comparing the performance of
the robots after omitting the first 30 seconds. When using the Combine al-
gorithm, then when the algorithm is deterministic the penetration detection
decreases from 30% or more to approximately 20%. Therefore even when the
adversary observed the patrol for only 30 seconds, it managed to substan-
tially increase its chances of successful penetration. In fact, the penetration
detection ratio when using the MaxiMin algorithm is significantly better com-
pared to the case in which the robots execute the Combine algorithm. This
fact is even more interesting since we assumed that when the penetration
time t would be higher, the robots would be more likely to detect the pene-
tration (as clearly seen for the MaxiMin for all d, t pairs and for Combine in
all non-deterministic cases without removing the learning phase). However,
since the deterministic patrol scheme is simple and easily detected, when
used even with high values of t, the adversary takes advantage of this and
manages to penetrate with a higher probability. This fact again strengthens
the motivation to concentrate on the case in which the adversary has some
knowledge, and find suitable patrol schemes for this case. Note that the the-
oretical MaxiMin ppd still guarantees a lower bound to all non deterministic
behaviors tested in this work. On the other hand, the MaxiMin algorithm
performed generally the same along the entire 3 minutes and after omitting
the first 30 seconds. The reason is clear: The players did not manage to
deduce the patrol algorithm after 30 seconds, thus they could not improve
their strategy against the patrolling robots.

6.3 Experiment - Phase 2

In the second phase of the experiment we concentrated on an adversary
having some knowledge. Therefore the game consisted of several subgames,
where in each subgame the player had time to study the system, i.e., in-
formation concerning the patrolling robots was revealed to the player, after
which he had to choose his penetration spot. We describe the game in detail
in the following paragraphs.

83

6.3 Experiment - Phase 2

Figure 6.6: Performance of the two different algorithms in stage 3 (adversary
with full knowledge) along the entire 3 minutes, and when omitting the first 30
seconds.

Each game consisted of several subgames. In each subgame, the player
was given 60 seconds (equal to 60 time steps) of an observation phase. After
the 60 seconds passed, the player was requested to click on the segment
through which he thought he had the best chances of penetrating without
being detected. No feedback was given to the player regarding whether he
succeeded or failed in his attempt to penetrate.

The game was executed in two different versions, where each human sub-
ject played either the first version of the game, or the second version of the
game. Altogether, 149 human subjects participated in this phase of the game.
All subjects were either computer science undergraduate students, graduate
students or alumni. The game was set online, and the student players were
required to play it as part of their course requirements.

In the first version of the game, each game consisted of 6 subgames. In
all subgames the patrol algorithm was unknown to the player, and the only
information presented to him was the distance between the robots and the
time it takes him to penetrate. This version of PenDet-Game was played by
71 human subjects.

The second version of the game was divided into two stages, each con-
sisting of 6 subgames. The first stage included six subgames, similar to the

84

6.3 Experiment - Phase 2

version described previously. After the first stage ended and before beginning
the second stage, the player was informed of the general patrol algorithm.
Specifically, it was told that the patrol algorithm instructs the robots to con-
tinue straight with a probability of p or turn around with a probability of
1−p, and that this value of p remains the same throughout the subgame (yet
changes between subgames). During the subgames themselves, the p value
characterizing the patrol algorithm was presented to the player, during again
60 second observation period. This version of PenDet-Game was played by
78 human subjects (not the same subjects that played the previous version).

In each subgame the patrol scheme of the robots, the distance between
the robots and/or the penetration time t were different. Each game (and all
its subgames) was played once by each player. The players were instructed
not to infer the patrol algorithm from one subgame to the other, as the patrol
algorithms changed from one subgame to the other.

The information regarding the d, t, p sets tested, is given in the Table 6.1.

Table 6.2: The d, t, p values tested in the experiment.
Set number d t p Algorithm

1 8 6 0.7037 MaxiMin
2 8 6 0.7775 v-Min, v = 2
3 8 6 0.9273 v-Min, v = 3
4 8 6 0.85185 MidAvg
5 8 6 0.7604 v-Neighbor, v = 2
6 8 6 0.9095 v-Neighbor, v = 3
7 16 9 0.875 MaxiMin
8 16 9 0.8522 v-Min/v-Neighbor, v = 3
9 16 9 0.8329 v-Min/v-Neighbor, v = 5
10 16 9 0.8694 v-Min/v-Neighbor, v = 7
11 16 9 0.9561 v-Min/v-Neighbor, v = 9
12 16 9 0.9375 MidAvg

The experiment comprised 12 different sets. We considered two pairs of
d, t values: d = 8, t = 6 and d = 16, t = 9, and different patrol algorithms for
each such pair. The patrol algorithms used were determined as follows.

The patrol algorithm was determined by the probability p characterizing
the robots’ movement. Sets 1 and 7 corresponded to the full knowledge

85

6.3 Experiment - Phase 2

adversary. In this case, the p values represented the probability yielding the
maximal minimal ppd along the perimeter. The values of p were calculated
using the MaxiMin algorithm described in Section 5.1. In addition, we checked
the heuristic algorithm MidAvg in both d, t pairs (sets 7 and 12).

In sets 2 and 3 we use the v-Min algorithm to determine the p value, for
v = 2 and 3 (respectively). Note that for v > 3 (in both cases) the deter-
ministic algorithm was optimal, hence we did not examine it here. Similarly,
in sets 5 and 6 used the v-Neighbor algorithm to determine the p value, for
v = 2 and 3 (respectively).

In cases in which d = 16 and t = 9, then following Theorem 21, the
v-Neighbor and v-Min algorithms output coincide. Therefore we sampled
several v values: v = 3, 5, 7, 9 (sets 8, 9, 10, 11, respectively).

In order to evaluate the performance of the algorithms, we referred to
the penetration spots chosen by the players. We then calculated the expected
probability of penetration detection according to the p values chosen by the
algorithms.

Preliminary experiments also included observation periods of 5 and 30
seconds. However, results from these experiments—both from the choices
made by the players and by the feedback given by them after playing the
game—showed that these observation periods were not long enough to en-
able the players to understand of the system. Therefore the choices made
by the subjects were arbitrary. As a result we focused on the experiments
with an observation period of 60 seconds. Note that the first round of exper-
iments, as reported in the Section 6.2.1, also strength this result. Namely, in
the second stage of the game, in which the player had a 5 second observation
period, no significance was strongly seen in respect to the optimality of pa-
trol algorithms. We deduced, both by the choices made by the players and
by their feedback, that the only information gained compared to the zero-
knowledge stage (stage 1), was the possibility that the robots would turn
around. In this experiment we required them to learn (in some manner) the
differences between various nondeterministic algorithms, which apparently
was impossible given the short observation periods of 5 and 30 seconds.

6.3.1 Experimental results and discussion

Analysis for unknown p:
Figure 6.7 describes the expected probability of penetration detection given

86

6.3 Experiment - Phase 2

the players’ choice of penetration locations for d = 8, t = 6 and d = 16, t = 9
for all algorithms described above, given an observation time of 60 seconds,
where the patrol algorithm was unknown to the player. The bars represent
the expected penetration detection ratio given the actual choices of the play-
ers’ penetration spots. In order to compare the performance results obtained
by the different algorithms, we used the Mann-Whitney U-test [57], which
is a non-parametric test, suitable for data with no normal distribution (like
the data in our case).

Figure 6.7: Results of the experiment for d = 8, t = 6 (on the left) and for
d = 16, t = 9 (on the right), both for unknown p. The bars represent the
expected penetration detection ratio of the robots given the choices of the players.

For the first case in which d = 8, t = 6 we can clearly see that the best-
performing algorithm, i.e., the algorithm that achieved the highest expected
probability of penetration detection based on the choices of the players, was
v-Min for v = 3 (denoted by 3−min). Specifically, the results of 3−min
were statistically significantly better than v-Neighbor and v-Min for v = 2
(p−value = 0.001 and p−value = 0.01, respectively), MaxiMin (p−value =
0.003) and MidAvg (p− value < 0.002). However, the results of 3−min were
not significantly better than v-Neighbor for v = 3 (denoted by 3−neighbor).

In order to explain the advantage of using 3−min, we inspected the actual
choices the players made concerning their penetration spots. Approximately
50% of the players decided to penetrate through one of the 3 segments with
minimal ppd, and the expected ppd in these segments is 34%. In contrast,
only approximately 29% of the players detected the weakest spot when exe-
cuting the MaxiMin algorithm (in this case having an expected ppd of 24%).
This means that the 3−min algorithm indeed had better predictions con-

87

6.3 Experiment - Phase 2

cerning the penetration spots.
Another reason for the 3−min’s good performance lies in the fact that

the other 50% of the players who didn’t choose to penetrate through the
weakest spots, had better chances of getting caught by the 3−min algorithm
also in the other segments. The MaxiMin algorithm attempts to strengthen
the weakest spot, and thus it substantially decreases the probability of pen-
etration detection in the other segments. For example, for d = 8, t = 6, the
expected ppd in the non-weakest segments using the MaxiMin algorithm is
49%, whereas with the 3−min algorithm it is 83%. The minimal ppd, though,
decreases from 24% to 11% with the 3−min algorithm.

Since the players did not obtain enough information to identify the ex-
act weakest spots and enter through those spots, the use of the MaxiMin
algorithm was not worthwhile. The 2−min and 2−neighbor algorithms suf-
fer from the same problem, though not as profoundly as the MaxiMin does.
Therefore they did not perform as well as the 3-min or 3-neighbor algorithms.
The 3−min algorithm performed better than the 3−neighbor algorithm, yet
not significantly better, since they both assume similar uncertainty level (3
segments).

Note that it may be worthwhile to enlarge the level of uncertainty, i.e.,
the v value in order to capture more choices of penetration spots. However,
if d = 8, t = 6, for v > 3 the optimal algorithm is deterministic, which is
highly predictable, and as shown in Section 6.2.1, it is easily manipulated by
an adversary with even a small amount of information.

For d = 16, t = 9 we see from the expected ppd values that v-Min /
v-Neighbor for v = 9 (denoted by v − 9) performs considerably better than
algorithms with smaller v’s (tested for v = 3, 5, 7), MaxiMin and MidAvg.
However, we were not able to obtain statistical significance using the Mann-
Whitney U-test. The reason lies in the fact that v − 9 expects the players
to penetrate through one of the 9 weakest segments, and indeed 68% of the
players chose to penetrate through these segments. Therefore the expected
ppd consists of a large range of possible values that are not normally dis-
tributed, therefore even though the v − 9 produced highest levels of ppd, we
could not show significance.

Analysis for known p:
Figure 6.8 describes the expected probability of penetration detection given
the players’ choice of penetration locations for d = 8, t = 6 and d = 16, t = 9
for all algorithms described above, given an observation time of 60 seconds,

88

6.3 Experiment - Phase 2

where the patrol algorithm was disclosed to the player. The bars represent the
expected penetration detection ratio given the actual choices of the players’
penetration spots. In this case as well we used the Mann-Whitney U-test [57]
for determining significance (since the data in our case as well has no normal
distribution).

Figure 6.8: Results of the experiment for d = 8, t = 6 (on the left) and for
d = 16, t = 9 (on the right), both when the patrol algorithm is presented to the
player. The bars represent the expected penetration detection ratio of the robots
given the choices of the players.

For the case in which d = 16, t = 9 the best-performing algorithm, i.e.,
the algorithm that achieved the highest expected probability of penetration
detection based on the choices of the players, was the MaxiMin algorithm.
Specifically, the results of MaxiMin were statistically significantly better than
v-Neighbor v-Min for v = 5, 7 and 9 (p − value = 0.009, p − value = 0.001
and p − value = 0.002, respectively). However, we were not able to obtain
significance results compared to MidAvg and v − 3. We assume that the
reason for not finding significance lies in the fact that in these two cases the
number of players that played these sets was less than 40. Specifically, 36 and
33 players played the MidAvg and v−3 sets, respectively, compared to 40 and
46 players that played the maximin and the v − 9 algorithms, respectively.

For the case in which d = 8, t = 6 we can see that the disclosure of the
information regarding the patrol algorithm did not substantially change the
performance of the different algorithms. Algorithm 3−min still outperforms
the other algorithms, yet now (compared to the case in which the algorithm
is unknown to the player) its performance is not statistically significantly
better than any of the other algorithms (this fact is also clearly seen in
the graph). Therefore the advantage of using the 3−min algorithm is not
maintained here, and the difference between using the different algorithms

89

6.3 Experiment - Phase 2

becomes relatively indistinct.
Another interesting discussion rises from examining the clear statistically

significance results obtained in the first phase of the PenDet-Game (Section
6.2) to the difficulty in reaching statistically significance results in the second
phase of the game. The reason for this lies in the fact that in the first phase,
only three algorithms were compared - MaxiMin, Det and Combine. Each
of these algorithms are substantially different from one another, and is it
relatively easy to know them apart. For example in the first stage of the
initial experiment, the difference in the expected ppd of each segment using
the three different algorithms is tremendous (see Figure 5.4). Moreover, in
the third stage of the initial experiment the probability p characterizing the
patrol algorithm substantially changes between the algorithms. For example,
if d = 8 and t = 6, p = 0.7 when using the MaxiMin algorithm vs. p = 0.96
when using Combine. When only little information was presented to the
player (5 seconds in the second stage), the performance of the algorithms
was not coherent and no significance results were obtained. The inability
to prove significance in this case is originated in the fact that 5 seconds
of observation does not give the player a chance to determine the patrol
algorithm, specifically learn the nondeterministic nature of it. In the second
phase of the experiment we tested 6 different algorithms for each setting,
altogether 12 different algorithms. The difference between the algorithms
(probability p characterizing it) are not always evident. For example, it would
be difficult to differentiate between an algorithm with p = 0.76 (2−min) and
one with p = 0.77 (2−neighbor). This provides an additional motivation
for further examining the case of adversary having some knowledge on the
patrolling robots, using new methods and/or new algorithms (see Chapter
9).

90

Part II

Additional Challenges in
Multi-Robot Tasks

91

Chapter 7

Team Member Reallocation in
Multi-Robot Formation

92

7.1 Problem definition

This chapter considers the task reallocation problem, where k robots are
to be extracted from a coordinated group of N robots in order to perform a
new task. The interaction between the team members and the cost associated
with this interaction are represented by a directed weighted graph. Consider
a group of N robots organized in a formation. The graph is the monitoring
graph which represents the sensorial capabilities of the robots, i.e., which
robot can sense the other and at what cost. The team member reallocation
problem with which we deal is the extraction of k robots from the group in
order to acquire a new target, while minimizing the cost of the interaction of
the remaining group, i.e., the cost of sensing amongst the remaining robots.
In general, the method proposed in our work shifts the utility from the team
member itself to the interaction between the members, and calculates the
reallocation according to this interaction cost. We found that this can be
done optimally by a deterministic polynomial time algorithm under several
constraints. The first constraint is that k = O(log N). We show that other
algorithms can be based upon this algorithm, and describe two of these algo-
rithms that take under consideration more than one component in the utility
function. The first algorithm handles prioritized components and the second
handles weighted components. Lastly, we describe several other non-robotic
domains in which this method is applicable.

7.1 Problem definition

The motivation for the following representation of the problem comes from
the world of multi robot formation maintenance. In this domain, the robots
monitor one another in order to maintain a formation. While in the forma-
tion, k of the robots are required to leave the team in order to acquire a
new target. We wish to extract the robots in such a way that will minimize
the monitoring cost of the original formation. A detailed description of the
multi robot problem follows the general definition of the problem, which is
applicable to other domains (as seen in Section 7.5).

Let G = {P1, . . . , PN} be a group of N homogenous team members. The
interaction between team members can be represented by a cost function.
Note that this cost function can be generalized into an interaction based
utility function. An example of such a generalization is presented in section
7.3. The group has one root - a team member that acts as the leader. The set
of members and the interaction between them can be presented as a directed

93

7.1 Problem definition

weighted graph G = (V,E), where v ∈ V are the team members, and the
edges represent the interactions. Namely, (vi, vj) ∈ E if an interaction exists
between vi and vj with a cost(v1, v2), which is the weight of the edge (vi, vj).
An Optimal Interaction Tree (OIT) is built on this graph by simply running
Dijkstra’s shortest path algorithm between all vertices of the graph and the
leader (similar to [51]). One main constraint is required on this graph as
follows:

Constraint A: If (v1, v2) ∈ E(OIT) and (v2, v3) ∈ E(OIT), then
cost(v1, v2) + cost(v2, v3) < cost(v1, v3).

This means that the triangle inequality exists on the optimal tree of G,
OIT(G) (but not necessarily on G). Intuitively, if a path is chosen to be in
OIT(G), then there is no shorter path between the two edges of the path.
Note that this does not mean that the triangle inequality holds for general
edges of G, as depicted in Figure 7.1. In this example, the triangle inequality
does not hold in G, for example cost(a, c)+cost(c, e) ≤ cost(a, e), thus clearly
the edge (a, e) will not be in OIT(G). The triangle inequality can still exist
between some vertices, for example cost(a, b) + cost(b, c) > cost(a, c).

1

a

c
b

d e

f

152

5

4

5

10

1

7

35

Figure 7.1: An example of a case in which the triangle inequality exists in
OIT(G), yet it does not exist in G.

The motivation behind this constraint is as follows. In order to achieve
a relatively lower time complexity, we would like to restrict the options of
the removal of nodes. Specifically, this constraint allows us to consider only
leaves or subtrees of the tree. The constraint is necessary in order to avoid
cases like the one depicted in Figure 7.2, in which the structure of G does not

94

7.1 Problem definition

follow Constraint A. In this case, illustrated in our robotic domain, the cost
of the sensing robot r1 by r3 is 7, and lower than the cost of sensing r1 by r3

via robot r2 (10+10 = 20). However, the edge (r3, r1) does not appear in the
graph since r2 lies exactly between r3 and r1, thereby blocking the sensing
capabilities of r3. This example conflicts with constraint A since edge (r1, r3)
is not in the tree, whereas cost(r3, r1) < cost(r3, r2)+cost(r2, r1), and indeed
it would have been more profitable to remove r2 and not r3 which is the leaf.

10

7

r1

2

3

r

r

10

Figure 7.2: An example of a case where Constraint A is not fulfilled.

In many cases the leader of the team has unique characteristics that
distinguish it from the other team members. Consequently there is no point
in discussing the removal of the team leader. However, in some cases all
robots are homogenous, including the leader, thus an additional property
can be added to the problem, as given in the following definition.

Definition 1: In a graph G = (V, E), V = {v1, . . . , vN}, a potential leader
group L = {ṽ1, . . . , ṽM}, 1 ≤ M ≤ N is a subset of V containing possible
leaders from the group. We denote the size of the potential leader group by
M .

Having the OIT of the group, k < N vertices should be extracted from
the graph. The extraction should be done while satisfying the following basic
objectives.

1. The cost of the remaining OIT should be minimal.

2. At least one of the vertices from the potential leader group of G should
remain in the graph (this requirement is necessary due to the fact that
we assume the remaining formation must have a leader, and only one
of the potential leader group members can act as a leader).

95

7.2 Team member reallocation focused on minimizing the cost of
the remaining OIT

It is assumed that all N team members can theoretically be extracted,
hence if we are dealing with acquiring a new target or performing a new task,
then all members are compatible for the mission (see an exception to this
assumption in Section 7.2.3). Therefore, potentially, the number of different
possibilities for extracting the k team members from the group is

(
N
k

)
. The

algorithms described later in this chapter, which work in our settings and
under our constraints substantially reduce the complexity to O(2k/2), which
makes the algorithm polynomial if k = O(log N).

Returning to the multi-robot domain, the root of the tree is the formation
leader, the original graph is the monitoring multigraph where each vertex
represents the location of a robot, and the edges represent the monitoring
capabilities and cost of each robot of its peers. As proposed by [51], an
Optimal Monitoring Tree, OMT, which is a special case of the OIT, is built
on the monitoring multigraph. The OMT describes who each entity should
monitor in order to minimize the cost of the sensing path from itself to the
leader. The value of monitoring multigraphs and specifically OMTs, is its
compatibility with real world scenarios, i.e., in the real world robots usually
have limited sensing capabilities and the cost of sensing varies from one sensed
object to another—depending on its distance and angle with respect to the
sensing robot. When extracting k robots, the objective is to minimize the
cost of sensing of the remaining group.

7.2 Team member reallocation focused on

minimizing the cost of the remaining OIT

7.2.1 Team member reallocation with one possible
leader

In this section we describe an algorithm that finds the optimal k vertices
that should be extracted from the graph in order to minimize the cost of the
remaining OIT. The Tree Pruning algorithm described in this section, finds
the optimal k vertices to be extracted, assuming that the leader cannot be
changed.

The following lemma and its corollary provides the motivation behind
the algorithm. The lemma proves that the algorithm should concentrate on
removing the leaves or subtrees from the OIT rather than arbitrary vertices

96

7.2 Team member reallocation focused on minimizing the cost of
the remaining OIT

without all vertices that are in the subtree rooted in that vertex. The reason
lies in the fact that the OIT is built in an optimal manner, hence any removal
of a vertex without all the subtrees rooted in it will force the vertices of
those subtrees to find an alternative path towards the leader. Based on the
optimality of the tree, this alternative either will incur the same cost or will
be more expensive than the original one.

Lemma 22. Consider an OIT(G), satisfying Constraint A. If vertex v that
is not a leaf nor the leader is removed, then the sum of the weights of the
edges of OIT(G \ v) will not decrease.

Proof. In a DAG, every vertex that is not a leaf is an articulation vertex,
meaning, removing it will disconnect the graph. Therefore all vertices con-
nected to v should find another node to connect to, i.e., all ui ∈ V such that
(ui, v) ∈ E and (v, u) ∈ E, should create a new edge (ui, vj) such that the
cost of the DAG is minimized.

If vj = u then the proof is completed, since by Constraint A cost(ui, u) >
cost(ui, v) + cost(v, u). If vj 6= u then by minimality of the OIT it follows
that if cost(ui, vj) < cost(ui, v) then the algorithm would have chosen ui to
point to vj in the first place, contradicting the minimality of the OIT.

Corollary 23. In an OIT(G) satisfying Constraint A, the benefit gained from
removing a leaf is greater than the benefit gained from removing one of its
ancestors.

The following definitions are used throughout the description of the al-
gorithm.

Definition 2:

2.1 A palindromic composition of a number k is a collection of one or more
positive integers whose sum is k. The number of palindromic composi-
tions of a number k is 2

k
2 [17].

2.2 A bundle originating in vertex v is the subtree rooted in vertex v. Vertex
v nests a bundle of size t if the bundle originating in it has t vertices,
including v.

2.3 In a directed tree G = (V, E) where all paths are directed to the root
of the tree, if (v, u) ∈ E then u is called v’s pivot.

97

7.2 Team member reallocation focused on minimizing the cost of
the remaining OIT

From Corollary 23 we can assert that the gain from removing bundles or
leaves from OIT(G) will be greater than the gain from removing arbitrary
vertices from the graph. This fact motivates the algorithm Tree Pruning,
which exhaustively searches all possible combinations of leaves and bundles
and picks the combination which results in the highest reduction in cost to
the remaining OIT(G).

The Tree Pruning algorithm (13) works as follows. First, it creates a table
in which it stores the vertices in levels 1, . . . , k, where each level i, 1 ≤ i ≤ k,
contains vertices that nest a bundle of size i. For each of these elements it
indicates the gain from removing the bundle originating in that vertex. This
gain is simply the sum of all the costs of edges in this subtree, including the
cost of the edge going from the root of the subtree to its pivot. After the table
is created, the algorithm starts checking all palindromic compositions of the
number k. For each composition α1 +α2 + . . .+αt the algorithm first checks
whether it is feasible, i.e., whether there are components of sizes α1, . . . , αk.
If so - for each αi it checks for the element with maximal gain in level αi of
the table. If the algorithm picks up non-disjoint bundles, then it checks the
gain of removing each element of the non-disjoint set alone. Summing up the
gains from removing the composition is compared to the current maximal
gain, and the set resulting in the higher gain is saved. Finally, after all
palindromic compositions of k are examined, the algorithm returns the set
with the highest cost reduction upon its removal.

o
4

l

87
3

214 931210

p

o

a

e

f

g

h i

j

k

p
q

s t

u

m n

j

7

5

6

4

3

2

1

rg

f

e

tl q

r
12

15

2

14

203

20

15
30 11

a b c d h i m n
db c

Figure 7.3: An example of 7-bundling of a tree.

Theorem 24. The Tree Pruning algorithm finds the optimal k vertices to be
removed from the group such that the cost of the remaining OIT is minimized.

98

7.2 Team member reallocation focused on minimizing the cost of
the remaining OIT

Algorithm 13 Algorithm Teamk = Tree Pruning(G = (V, E), k)

1: for each leaf v ∈ V do
2: Start building a k-bundle bottom-up:
3: Cbest ← 0 and Teamk ← ∅.
4: Add each subtree of size 1 ≤ t ≤ k to the table in row t and calculate

its cost.
5: Sort all elements in each row according to their cost.
6: Generate a palindromic composition of the number k and sort each

composition from left to right in decreasing order.
7: for each possible composition Cj of k = α1 + α2 + . . . + αt do
8: Check whether the composition is feasible.
9: for each αi in the composition, i = 1, 2, . . . , t do

10: Pick highest order unmarked element from row ti and mark it.
11: if the elements are not disjoint, then check all possibilities: then
12: Pick element with highest αi, next don’t pick it and pick element

with next highest αi and so on.
13: Calculate the cost of the composition Cj.
14: if cost(Cj) ≥ Cbest then
15: Cbest ← Cj and Teamk ← current composition.
16: Return Teamk

99

7.2 Team member reallocation focused on minimizing the cost of
the remaining OIT

Proof. As seen in Corollary 23, the optimal benefit for the remaining tree is
obtained by removing vertices that are not articulation points in the graph.
Therefore the examination of all removal possibilities of leaves and bundles,
as done by the algorithm, assures that the optimal group of k vertices will
indeed be removed.

Time Complexity: The time complexity of the preliminary work of build-
ing the table is O(N), as each vertex is visited once. The sorting of the rows
will cost additional O(N log N) time. The number of palindromic composi-

tions of a number k is 2
k
2 [17]. The algorithm might check each composition

(the worst case) N times, if the chosen elements are not disjoint. Assuming
that each approach to an element takes O(1) steps (depending on the data
structure used), each composition is calculated in (the worst case) O(N)
steps.

Therefore the total time complexity of the algorithm is N log N + N2
k
2 .

Assuming that k is in order log N , then the time complexity of the algorithm
is O(N log N + N

√
N) = O(N1.5).

7.2.2 Team member reallocation with multiple possi-
ble leaders

Removing the leader vlead can significantly decrease the total cost of the
graph in cases where the weights of edges entering vlead are considerably
higher than the other weights in the graph. Therefore when examining the
vertices, it can be highly profitable to examine removal of both leaves (or
bundles) and the leader. The removal of the leader is possible only in cases
where the potential leader group of the formation is of a size greater than
one. Consider the case in which robots move in a formation. In this case, it
is possible that several robots in the formation can lead the group. This is
obvious in cases in which all robots are homogenous, whereby, theoretically,
the number of robots in the potential leader group is N .

The order of extraction of the leading vertex is important, since changing
the leader might result in a different structure of the OIT. In particular, it
might result in changing the identity of the leaves and bundles. If we wish,
for example, to extract three vertices from the graph, the result may vary if
we pick a leaf, leader and a leaf from the new tree, as opposed to picking,
say, two leaves and then the leader. Note that in some cases removal of a

100

7.2 Team member reallocation focused on minimizing the cost of
the remaining OIT

leaf might result in changing the leader, depending on the leader election
algorithm. However, in our case we assume that this does not happen.

In the extreme case in which M = N , the number of different possibilities
for choosing k vertices - a combination of leaves and leaders, is O(2k). See
Figure 7.4 for an example.

01 = 2
12 = 2
24 = 2
38 = 2

1

lead 1

lead 1

lead

416 = 2

38 = 2

24 = 2

12 = 2

01 = 2

lead 1

3

5

4

p

q
lead

1

without extracting leader
only option

5

5-bundle + new leader

32

4 2

recalculations
leader

number of
to

number of calls

Tree_Pruning q

1

2

3

4

5

p

1
lead

4
lead

lead
lead

12

lead

1
lead

1

2

lead
2

lead
3

1
lead

1

2

lead
2

lead
3

1

2
lead

3

lead
4

1

3
lead

3

lead

2

1
lead

lead

1

1

lead
2 1

lead

1

lead 1 lead 1 lead
1

lead

1

lead
2 1

2

1

lead
2 1

lead

1

lead

Figure 7.4: An example of the search tree of all possibilities of extracting k = 5
vertices from the graph where the leader can be elected as well in each step.

In the first level, l = 1, we can either pick k vertices using the Tree Pruning
algorithm (meaning, we do not change the leader), or change the leader first,
second and so on until the k’th vertex is selected. Each of these options
except the former branches out similarly in the next level (l = 2) where k
decreases by one. If M ≥ k − 1 then the formal time complexity analysis is
as follows.

Assume that a leader is chosen in a round where t vertices remain to be
chosen, 1 ≤ t ≤ k. It is possible to pick p vertices before the leader is replaced
and q afterwards, 0 ≤ p, q ≤ t − 1 and p + q = t − 1. Therefore there are t
different choices of the order in which the leader is extracted, in addition to
the choice where the leader is not replaced. When a leader is replaced, the
calculation of the p vertices chosen prior to it is obtained simply by running
Tree Pruning for p. The remaining q launch an additional level where, again,

101

7.2 Team member reallocation focused on minimizing the cost of
the remaining OIT

they branch into q + 1 new options. In order to calculate the complexity of
finding the best allocation, we need to calculate the number of times each p
appears (the q is calculated in the next level). As demonstrated in the table
below, each number i = 1, . . . , k appears as p, i.e., above the leader line,
2k−i times. Using Tree Pruning, the complexity of each extraction of size i is
N log N +N2

i
2 . Therefore the total complexity is

∑k
i=1 2k−i ·(N log N +2

i
2) =

O(2kN log N) + N
∑k

i=1 2k− i
2 = O(2kN log N) + O(2kN) = O(2kN log N). If

k = O(log N), then the complexity of choosing the members is O(N2 log N).
To this complexity we need to add the cost of recalculating the graph after

a leader is extracted. As shown in [22], the complexity of calculating the OIT
of a graph of size N given the identity of the leader vertex is simply running
Dijkstra’s shortest paths algorithm that takes O(N3). If there are M̃ poten-
tial leaders, then the complexity is O(N3M). Hence here the time complexity
can be bounded from above by the total number of qs, times O(N3M). The
total number of qs, as demonstrated in Figure 7.4, is

∑k−1
i=1 2(k−1)−i, therefore

the total time complexity is N3M
∑k−1

i=1 2(k−1)−i = O(N3M2k). Again, in our
case k = O(log N), hence the final complexity of the algorithm is O(N4M).

7.2.3 An algorithm variation, in which not all vertices
can be extracted

In some cases, it is possible that there is a requirement that some team mem-
bers cannot be extracted from the group. For example, if the robots moving
in the formation are heterogenous, some might be incapable of performing
the new task and thus cannot be chosen to do it. In another example, if
the formation itself defines critical positions that cannot be deserted, it will
dictate the identity of the robots that cannot be extracted. In both cases
- driven by the old or new task requirements - some robots must remain in
the original team. Converting it to our graph problem, if vertices should be
extracted only from a subgroup G1 of G, G1 ⊆ G and |G1| ≥ k, then a small
variation of the basic algorithm can be used in some cases. First, if |G1| is
exactly k, then the only option is that all vertices in G1 be extracted.

Definition 3: In an OIT graph G, a vertex v ∈ V (G) is called a bundle
blocker if it cannot be extracted from the graph and the bundle above it
stops spreading.

In our case, the bundle blockers are all vertices ui such that ui /∈ G1.
If the bundle blockers lie in accumulating levels of depth k or more, then

102

7.3 Multiple components in the utility function

a simple variation of Tree Pruning can be used in order to find the optimal
k vertices to be extracted. In this variation of Tree Pruning, the algorithm
should be run on the OIT graph G, but should stop at bundle blockers or at
depth k, whichever comes first.

7.3 Multiple components in the utility func-

tion

When establishing the nature of the utility function, it is possible that more
than one property will be taken into consideration. For example, one might
want to consider both the cost of the remaining formation and the cost of the
new formation. We consider two manners in which more than one consid-
eration can be incorporated in the utility function: prioritized components
and weighted components. We show examples in which the Tree Pruning
algorithm can be used in both cases.

Note that the ground rule which stands at the base of the use of the
Tree Pruning algorithm is that it is more profitable to remove leaves and
bundles of the OIT. Hence any scenario in which we can incorporate the use
of Tree Pruning must apply to this rule. In the following examples we were
motivated by the stability of the formation, whereby any change in the pivot
of robots might cause instability of the formation. Therefore the following
case suits the requirement that only bundles or leaves be removed, and thus
the Tree Pruning algorithm perfectly suits this problem.

7.3.1 Prioritized components

In prioritized components, the components are presented in a prioritized list,
namely, component one is more important than component two and so on.
Therefore we first maximize the utility according to the first priority. In case
of a tie, we examine the component listed second in the priorities, and if that
results in a tie we move on to the third priority component and so on.

A good example of this would be when we wish to minimize events that
might undermine the remaining group’s formation stability as well as mini-
mize the monitoring cost. For instance, we assume that robots leaving the
formation in order to acquire a new target continue in a straight line from
their current location towards the new target. First, we would like to cause
minimal changes to the current OIT, so that robots will not have to switch

103

7.3 Multiple components in the utility function

pivots and thereby cause temporary instability. Thus only leaves or bundles
should be removed, and the leader should remain intact. Second, we wish
to minimize collisions between the robots leaving for the new target and the
ones remaining in the formation. As seen in Figure 7.5, if v2 moves straight
towards tG and maintains its predefined velocity, it will intersect with v3.
In addition, if v5 moves towards tG then at some point it will block v4’s
view of its pivot, v3. Third, we wish to minimize the monitoring cost of the
remaining formation. Hence the prioritized components list is as follows.

1. Minimize collisions between the robots leaving for the new target and
the ones remaining in the formation

2. Minimize the incidents of robots leaving the formation while, at some
point, crossing an OIT edge, thus hiding the pivot of some robot re-
maining in the formation and potentially causing it to divert from the
group formation.

3. Minimize the remaining group’s monitoring cost.

The Prioritized Pruning algorithm works as follows. First, assuming that
the robots are homogeneous, it is simple to calculate the expected intersec-
tions between paths of robots leaving the formation and the remaining OIT
vertices (robots) and edges. For each robot ri (vertex vi) that leaves towards
goal point pG, the algorithm checks against all robots rj 6= ri, rj 6= rlead

whether the path of ri hides the outgoing edge from robot rj (vertex vj). If
so, it adds tj to the entry of ri in a pre-specified Table under column E (see
for example Figure 7.5). If the robots themselves intersect, then rj is added
to Table under column I. After creating this table, Tree Pruning is run on
the graph where three features are examined in each step: I intersections, E
intersections which are extracted from the Table, and the cost incurred by
the remaining OIT (in this order).

The Prioritized Pruning algorithm is guaranteed to find the k robots that
will minimize the potential disturbance to the formation satisfying the crite-
rions we defined. The time complexity of the algorithm is composed of two
steps. In stage 1, a simple brute force algorithm that finds the intersections
will take O(N2) steps by simply comparing each pair of robots. Stage 2 is
similar to the Tree Pruning algorithm with an addition of maximum O(k)
comparisons at each step, hence the complexity is O(N1.5 log N) (assuming
that k = O(log N)), and altogether the complexity is O(N2).

104

7.3 Multiple components in the utility function

5vv4

3v 2

direction of movement

Table:
I intersectionE intersection

v O

v4

O

5v

v4

3v
2v

G
t

1v

6v

v4 5v 6v O

O

O

O

3vO

Figure 7.5: An example of a path/edge intersection.

Algorithm 14 Algorithm Teamk = Prioritized Pruning(G = (V,E), k, tG)

1: for each vertex vi ∈ V such that vi is not the leader do
2: Go over all vertices of the graph except for vertices in the bundle

originating in vi.
3: if the outgoing edge of vertex vj intersects the path of vi on its course

towards tG then
4: Add vj to Table(vi, E).
5: if vi on its course towards tG intersects vj then
6: Add vj to Table(vi, I).
7: Run procedure Tree Pruning(G, k) with the following modifications.
8: Set Ebest ←∞, Ibest ←∞ and Teamk ← ∅.
9: Check the number of E and I intersections between members of the

current chosen elements and the remaining ones and store them in Ecur

and Icur, respectively.
10: if Icur < Ibest then
11: Ibest ← Icur and

Teamk ← current composition.
12: if Icur = Ibest and Ecur < Ebest then
13: Ibest ← Icur and Teamk ← current composition.
14: if Icur = Ibest and Ecur = Ebest then
15: Check the difference between the cost of the composition and save the

best of two choices, as done in Tree Pruning .
16: Return Teamk.

105

7.3 Multiple components in the utility function

7.3.2 Weighted components

Formally, weighted components allow us to assign an accumulating per-
centage for each component, and choose the option resulting in the maxi-
mized utility value U . Each of these utility values is composed of l different
components {u1, . . . , ul}, and wt is the weight of the utility component ut,
where

∑l
t=1 wt = 1. Therefore the weighted utility value U is calculated as:

U =
∑l

t=1 wi
tu

i
t

In the following example we assume that robots leaving the formation
remain in their current location, i.e., they will change their relative position
to other robots. Our objective is to minimize both the remaining group’s
monitoring cost and the monitoring cost of the robots leaving the formation,
according to their location at the moment they leave the formation. This
is applicable in cases where a subgroup of robots is required to leave the
formation and create a formation of its own with minimal sensorial cost of
the new formation. Our original assumption is that we wish to minimize
disruptions of the original formation, thus we will examine the removal of
only leaves and bundles, and leave the leader intact. This property will allow
us to use the Tree Pruning algorithm in this case. Note that if we consider
only the monitoring cost of the leaving robots, we might have needed to
remove vertices that are not necessarily leaves or bundles. For example, if
k = N − 2, then the optimal choice of removal would be the removal of the
minimal edge in the OIT, regardless of its location if only the monitoring
cost of the extracted group is considered. Therefore, as we have shown in
the previous subsection, the initial assumption that we remove only leaves
and bundles is crucial for the use of the Tree Pruning algorithm and ensures
its complexity.

Minimizing the remaining group’s sensorial cost (first component) con-
tradicts, in most cases, the minimization of the extracted group’s sensorial
cost. This contradiction is exemplified in Figure 7.6, and results straight-
forward from the fact that the first minimization requirement would cause
the removal of the most expensive edges, while the second component would
require the removal of the least expensive edges from the graph.

Use w1 to denote the weight of the utility component of the remaining
formation’s monitoring cost , and w2 to denote the weight of the utility com-
ponent of the extracted formation’s monitoring cost. The Weighted Pruning
algorithm, then, works as follows. For each possible choice of k robots, the
algorithm calculates the cost of the remaining OIT multiplied by w1, the cost

106

7.3 Multiple components in the utility function

10

2

10

24

60

200
80

k = 4N = 8

Extracted group monitoring cost: 17

Remaining group monitoring cost:300

Extracted group monitoring cost: 262

Remaining group monitoring cost:94

3

4040 80
200

60

4

Figure 7.6: An example of a contradiction between the two utility components:
the remaining group’s OIT cost and the extracted group’s OIT cost. Here N =
8, k = 4 and the optimal choice of nodes for removal is colored in gray, while the
remaining nodes are colored in black.

of the extracted OIT multiplied by w2, and it sums the two values. If the
resulting value is lower than the lowest value obtained so far, this is saved as
the potential optimal choice. After all choices have been checked, the choice
with the optimal utility is reported.

Algorithm 15 Algorithm Teamk = Weighted Pruning(G = (V,E), k, w1, w2)

1: Run procedure Tree Pruning(G, k) with the following modifications.
2: Set Ebest ←∞, Ibest ←∞ and Teamk ← ∅.
3: Cj ← current composition.
4: CR ← cost of OIT(G \ Cj), and CE ← cost of OIT(Cj)
5: Ccur ← w1 × CR + w2 × CE.
6: if Ccur < Cbest then
7: Cbest ← Ccur and Teamk ← Cj.
8: Return Teamk.

Algorithm Weighted Pruning is guaranteed to find the k robots that will
minimize the total utility according to the weights we received from the user.
The time complexity of the algorithm is identical to the time complexity of
the Tree Pruning algorithm, since we go over the entire graph only once for
each possible composition,, which leaves us with a time complexity of N2

k
2

needed to check all compositions.

107

7.4 Empirical Evaluation

7.4 Empirical Evaluation

We implemented the three algorithms described herein, Tree Pruning,
Prioritized Pruning and Weighted Pruning, in order to perform an empiri-
cal evaluation of the algorithms. The implementation was done using the
Player/Stage simulation package [44], a practical and popular development
tool for both simulated and real robots.

We simulated 16 robots, traveling in one of three formations commonly
tested in general multi-robot formation problems (e.g. [51]) - see Figure 7.7:

A. Diamond

B. Triangle

C. Arrowhead

The edges between the robots in each formation were given weights ac-
cording to the cost of sensing, similar to the weights given in [51]. In the
first step, the robots built a spanning tree, instructing each robot which
other robot to monitor in order to minimize the cost of sensing inside the
formation. The Spanning trees are indicated by bold arcs in Figure 7.7.

Following the first phase of constructing the minimal spanning tree,
we executed the three algorithms on the formation: Tree Pruning,
Prioritized Pruning and Weighted Pruning. We were interested in revealing
which robots were extracted as the output of each algorithm, or more specif-
ically what different outputs would be returned by each algorithm for the
same formation. We wanted to test whether the Prioritized Pruning algorithm
would indeed answer possible problems raised by the use of Tree Pruning in
the multi-robot formation domain.

We continue with a description of the results of the algorithms’ perfor-
mance on the chosen formations.

First, the robots executed Tree Pruning in order to reallocate 4 out of
the 16 team members to a new task. The extracted robots were instructed
to remain in their position while the remaining formation continued their
movement in their initial direction. We obtained the following results. In
formation A, robots 11, 13, 15 and 16 were extracted from the team (Figure
7.8). In formation C, robots 13, 14, 15 and 16 were extracted (Figure 7.8).
The more interesting results were obtained in formation B, where robots
8, 9, 12 and 14 were extracted. Since the extracted robots remained in place

108

7.4 Empirical Evaluation

Figure 7.7: Three different formations tested in our Player/Stage simulation.
The arcs represent the edges of the minimal sensing tree from all robots to the
leader (robot 1).

109

7.4 Empirical Evaluation

Figure 7.8: Execution of the Tree Pruning algorithm on formation A (left) and C
(right). The snapshot was taken approximately 15 seconds after the extraction.

110

7.4 Empirical Evaluation

and the remaining formation continued straight, robot 8 collided with robot
16 (see Figure 7.9).

The choice of robots to be extracted in formation B using Tree Pruning
strengthens the motivation to use the Prioritized Pruning algorithm. Indeed,
when executing the Prioritized Pruning algorithm for formation B, the ex-
tracted set of robots was 9, 11, 14 and 15. In this case, the target point of
the robots was behind the formation, simulating a similar behavior given to
algorithm Tree Pruning, and thus emphasizing how the Prioritized Pruning al-
gorithm is able to solve the problem evolving from the use of the Tree Pruning
algorithm (see Figure 7.9).

Figure 7.9: Execution of the Tree Pruning (left) and the Prioritized Pruning
(right) algorithms on formation B. The extracted robots are denoted by a sur-
rounding square.

When we used the Weighted Pruning algorithm with w = 0.5, the ex-
tracted robots were 11, 13, 15 and 16 in formation A, which is the same set
that was extracted by Tree Pruning. However, in formations B and C when
adding the consideration of the weight of the extracted team of robots, the set
of extracted robots was different. In formation B the set of extracted robots
was 4, 7, 11, 12, and in formation C the set was 10, 12, 14 and 16. We checked
the output also given other weights (w = 0.2 and w = 0.8), however in both

111

7.5 Applicability in additional domains

formations the resulted chosen team was similar. This can be explained by
the fact that the weight of edges between the robots that cannot sense one
another is ∞. Consequently any choice of a set of robots that would be ex-
tracted such that even one robot would remain disconnected from the other
team members would receive a weight of ∞, and therefore that set would not
chosen.

7.5 Applicability in additional domains

The general representation of the problem as team member reallocation,
makes it applicable in other domains, in addition to the Multi-Robot Task
Allocation (MRTA) domain, which motivated the current study.

One example is a variation of the dependency tree [75]. A dependency
tree G = (V,E) describes a group of N tasks (vertices) with prerequisite
relation, i.e., an edge (u, v) ∈ E exists if u has to be executed before v, and
cost(u, v) is the cost of executing v after u. The root of the tree is, then, the
task that has to be executed last. In our case, we use a slight variation of
the dependency tree. Here, we are given one task that should be conducted
last and the interaction between all other tasks. If two tasks v1 and v2 are
independent, then if v1 is executed before or after v2 their cost will be the
same. If v1 and v2 are dependent, then without loss of generality, v1 can rely
on the fact that v2 will perform a part of its task, thus cost(v1, v2) in this
case will be smaller than the cost in the independent case. The OIT describes
the optimal tree of execution of the tasks. The requirement is to remove k
tasks from the group such that the cost of the remaining execution tree is
minimized.

The warehouse assembling problem presents an additional example
in which the OIT is applicable. In the warehouse assembling problem we
are given a set of N warehouses located in N distinct positions, and all the
trucks are heading towards one main warehouse. The vertices of the graph
represent the warehouses, and the edges represent the distances between two
warehouses (note that triangle inequality does not apply). The objective
is for any number of trucks to visit all warehouses in minimal time. The
OIT represents the optimal tree of paths from all warehouses to the main
warehouse. The number of trucks t is, then, the number of leaves in the OIT.
The requirement is to close k warehouses in order to cut back expenses while
not increasing the value t, and thus remain with the assembling tree with

112

7.5 Applicability in additional domains

the lowest cost.
The last problem is the network broadcast problem, in which we are

given a network with one source vertex that should constantly broadcast
messages to the rest of the network. The edges represent the cost of the link
between every two vertices, and the OIT is the optimal broadcast tree. Once
again in this case we are required to remove k vertices in order to cut back
expenses and remain with a broadcast tree with the lowest cost.

113

Chapter 8

Improving Efficiency in
Multi-Robot Area Coverage

114

8.1 Motivation for building new spanning trees

In this chapter, we discuss the problem of building efficient coverage paths
for a team of robots. An efficient multi-robot coverage algorithm should re-
sult in a coverage path for every robot, such that the union of all paths
generates a full coverage of the terrain and the total coverage time is mini-
mized. A method underlying several coverage algorithms, suggests the use of
spanning trees as a base for creating coverage paths. However, overall perfor-
mance of the coverage is heavily dependent on the given spanning tree. This
work focuses on the challenge of constructing a coverage spanning tree for
offline coverage that minimizes the time needed to complete coverage. Our
general approach involves building a spanning tree by growing sub-trees from
the initial location of the robots. We first provide a sound discussion and re-
sults concerning the construction of the tree as a crucial base for any efficient
coverage algorithm. We then describe a polynomial time tree-construction
algorithm for coverage. With extensive simulations we show that the use of
this algorithm significantly improves the coverage time of the terrain even
when used as a basis for a simple, inefficient, coverage algorithm. In addition,
the solutions we propose in this work guarantee robustness to failing robots:
the trees are used as a base for robust multi-robot coverage algorithms.

8.1 Motivation for building new spanning

trees

In this section we describe the motivation behind our construction scheme
of the trees. First, we show that the structure of the spanning tree has a
crucial role in the coverage time obtained by algorithms that use the tree as
a base for coverage. We prove that any coverage algorithm, even an optimal
one, cannot achieve as low coverage time as can be achieved by using a
different tree. Second, we show that a spanning tree, which by itself obtains
the optimal coverage time, does not necessarily exist, hence the theoretical
optimal coverage time might remain unreachable in some cases. Finally, we
describe our definition of optimal spanning trees and explain the rationale
behind this definition.

8.1.1 Importance of the spanning tree structure

An optimal time coverage algorithm for a system with k robots will (theoret-
ically) result in total coverage time of dN

k
e. Even the most basic multi-robot

115

8.1 Motivation for building new spanning trees

coverage algorithm will result in such a coverage time if the robots are uni-
formly placed along the spanning tree path, i.e., within distance of at most
dN

k
e from one another.
We argue that the choice of the spanning tree has crucial consequences on

the coverage time obtained by algorithms using the spanning tree as a base for
coverage. This is more evidently seen in algorithms that do not diverge from
the spanning tree path, such as the MSTC algorithms. Consider, for example,
the Opt MSTC algorithm. These algorithms create optimal paths along the
spanning tree for k robots, not allowing (nonfaulty) robots to bypass one
another during the execution of the coverage algorithm. In this case, even
in the worst initial distribution case in which all robots are bundled in their
initial position, the best possible improvement will result in an improvement
factor of approximately 2 : from N − k + 1 to N−k

2
+ 1. On the other hand,

the improvement by spreading the robots along the spanning tree can reach
nearly a factor of k: from N − k + 1 to N

k
.

An illustration of the importance of the right choice of the spanning tree
is given in Figure 8.1. The figure presents an example of a terrain in which
N = 36, k = 3 and two different trees are suggested as a base for coverage.
The spanning tree is described by the bold lines, and we use the different
kinds of dashed lines to describe the spanning tree path, whereby each dashed
line represents the distance between two adjacent robots along the path. In
order to clarify the example, the section between each two adjacent robots
is given a different background as well. Note that in both grids the robots
are initially located in the same positions. The tree in Figure 8.1a places
the robots uniformly along the tree path, thus a coverage time of dN

k
e is

easily obtained if the robots simply follow the tree path in a counterclockwise
direction. However, in Figure 8.1b. the robots are placed arbitrarily along the
tree path, thus any multi-robot coverage algorithm, based on the spanning
tree, will find it hard to meet such coverage time.

A formal statement regarding the possible improvement in coverage time
obtained by algorithms vs. improvement obtained by changing the tree is
given in Theorem 25. First, let us introduce the following definition. Note
that we distinguish between a procedure that is executed on the input to
generate the tree, and an algorithm which is the coverage algorithm executed
given the input tree.

Definition: Given the initial positions of k robots on a terrain with N cells,
let M be the coverage time of the terrain obtained by the basic NB MSTC

116

8.1 Motivation for building new spanning trees

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

�
�
�
�

��
��
����������

��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

Dist. between R2 and R3:

Dist. between R3 and R1:

28 spanning tree path cells

4 spanning tree path cells

Dist. between R1 and R2:

12 spanning tree path cells

Dist. between R3 and R1:

12 spanning tree path cells

Dist. between R2 and R3:

12 spanning tree path cells

Dist. between R1 and R2:

4 spanning tree path cells

a. b.

R1

R2 R3 R2 R3

R1

����

����

����

��

��

��

Figure 8.1: An illustration depicting how different trees can influence coverage
time.

algorithm. A procedure P or an algorithm A are said to ensure an improve-
ment factor t, if the coverage time obtained by NB MSTC after applying P

to the input, or the coverage time obtained by A for the same input is M
t
.

Theorem 25. Any multi-robot coverage algorithm for homogenous robots
based on a spanning tree which does not divert from the spanning tree path
will result in a maximal improvement factor of at most 2.

Proof. Denote the distance between the initial location of robot Ri and Ri+1

on the spanning tree path by Di (also known as the segment Di), and let
Dmax = max1≤i≤N{Di}. Clearly, the coverage time obtained by NB MSTC
is exactly Dmax. Also, Dmax determines the coverage time of any coverage
algorithm A that does not divert from the spanning tree path. As the robots
are homogenous and cannot bypass one another (assuming they are non-
faulty), an improvement in the coverage algorithm can reduce from Dmax to
dDmax

2
e if robots on the extremity of Dmax would simply walk towards one

another while covering the terrain. If there is some other segment Dj which
requires coverage time of some t′ > dDmax

2
e, then the new coverage time is

t′. Note that t′ can be smaller than the distance Dj if an algorithm allowing
backtracking is permitted. In other words, the improvement factor is

Dmax

max{dDmax

2
e, t′} ≤ 2

While the change of the coverage algorithm can result in an improvement
factor of at most 2, the example described in Figure 8.2 leads us to the

117

8.1 Motivation for building new spanning trees

conjecture that an improvement factor due to a change in the tree can reach
almost the value of k. As seen in Figure 8.2b, the coverage time obtained
by NB MSTC is N − k = 56 − 3 = 53, while the coverage time obtained
by the same algorithm on a spanning tree constructed in a way that places
the robots in an equally scattered manner along the tree (Figure 8.2a.) is
dN−k

k
e = 19, hence the improvement factor obtained by changing the tree is

53
19
≈ 2.8, which is almost k.

a.

��

��

��

��

��
53 cells

1 cell

2 cells

18 cells

19 cells

19 cells

Length: Length:

b.

��

Figure 8.2: An example of a case in which the improvement factor is almost k
if the tree is appropriately constructed.

We have established the fact that the choice of a spanning tree can have
far reaching consequences on the coverage time of the terrain, possibly more
than the choice of the coverage algorithm. Moreover, a spanning tree that
places all robots within a distance of at most dN

k
e will, by itself, result in

the optimal coverage time. Unfortunately, such a tree does not necessarily
exist. For example, in Figure 8.3, N = 16, k = 2 and all possible spanning
trees are described. The minimal maximal distance between two consecutive
robots over all possible spanning trees is 10 cells, where dN

k
e = d16

2
e = 8.

In our tree construction scheme we will try to approximate this optimal
dispersion of robots along the spanning tree. We will do so by trying to
satisfy the following objective, as much as possible. First, let G̃ be a grid
with N/4 cells, possibly containing obstacles (the obstacles are not counted
as cells). Let G be G̃’s fine grid after dividing each cell into four cells of size
D.

Objective: Given the initial locations of k robots in cells of G, find a
spanning tree of G̃ that minimizes the maximal distance between every two
consecutive robots along the spanning tree path.

The idea behind this objective is that it spreads the robots as uniformly

118

8.2 Tree construction algorithm

(14,2) (14,2)

(14,2)(10,6)

Figure 8.3: An example of a case in which there is no spanning tree that has
maximal distance of dN

k
e = d16

2
e = 8 between consecutive robots along the

spanning tree path. The numbers in parenthesis describe the distance between
two robots along the spanning tree path.

as possible along the spanning tree path. The construction of an optimal
tree, that will achieve accurately the objective, is believed to be NP-hard [88].
Hence our tree construction algorithm can be considered a heuristic algorithm
for the problem of finding the optimal tree for the coverage task.

8.2 Tree construction algorithm

In this section we describe a spanning tree construction algorithm,
Create Tree. This algorithm creates spanning trees while considering the
initial location of all robots in the team and the objective described above,
i.e., it tries to minimize the maximal distance between any two adjacent
robots on the tree.

The general algorithm, described in Algorithm 16, is composed of two
stages. In the first stage, a subtree is created gradually for each robot starting
from the initial position of the robot, such that in each cycle either one or
two cells are added to each subtree. Denote the subtree originated in Ri by
TRi

. The cells are chosen in such a way that maximizes the distance from the
current expansion of all other trees. The algorithm tries to find the longest
possible path for the tree. When it fails to continue, it tries to perform

119

8.2 Tree construction algorithm

perform hilling in these cells

occupied cell

cell from current subtree

unoccupied cell

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
����
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

Figure 8.4: An illustration of the Hilling procedure.

Hilling, whereby it looks for ways to “stretch” the path as follows. It searches
for two joint unoccupied cells adjacent to the path. If it finds such cells, it
adds them to the path as demonstrated in Figure 8.4. If the algorithm fails
to find more hills, then it expands the tree, from both sides of the path, in a
BFS (breadth-first-search) manner. It first attempts to add one cell near the
origin of the tree (initial position of the robot), then it checks for a possible
free adjacent cell of its sons, and so on, until the entire grid is covered by all
k disjoint subtrees.

In the second stage of the algorithm, after the k subtrees have already
been generated they only have to be connected(second stage). Denote an
edge connecting two different trees TRi

and TRj
by br(TRi

, TRj
). As we are

given k subtrees that need to be connected to one tree covering the entire
grid, we need to find k − 1 bridges. These bridges should be chosen in such
a way that the resulting tree does not contain cycles or, equivalently, cover
the entire grid. For example, if k = 4 then a possible valid choice of bridges
are
{br(TR1 , TR2), br(TR1 , TR3), br(TR3 , TR4)}, where
{br(TR1 , TR2), br(TR2 , TR3), br(TR1 , TR3)} is invalid, as TR4 remains discon-
nected. Create Tree randomly picks a valid choice of k − 1 bridges, and
calculates the maximal distance between two adjacent robots on the tree ac-
cording to the fine grid. It repeats the process kα times, and reports the best
tree it observed, according to the above criterion. The value of α is chosen
empirically.

Clearly, the algorithm provides complete coverage of the terrain, as the
first stage of constructing subtrees does not end before every cell is occupied
by some subtree. The first stage terminates, since in each cycle at least one
cell is added to at least one subtree, and given a finite terrain the algorithm

120

8.2 Tree construction algorithm

halts. A formal proof of the completeness of Create Tree is given in Lemma
26.

Algorithm 16 Procedure Create Tree
1: Build k subtrees as follows.
2: for every robot Ri, 1 ≤ i ≤ k do
3: for each possible next cell (up, down, right, left) do
4: Compute the Manhattan distance from the current location of all

other robots.
5: if more than one possible next move exists then
6: pick the one whose minimal distance to any other robot is maxi-

mized.
7: if there is no next possible move then
8: perform Procedure Hilling from the last main branch.
9: if failed to find an unoccupied cell in Hilling then

10: Branch-out in a BFS manner from the main branch
11: Find all possible bridges between the k trees.
12: for i = 0 to max{kα, N} do
13: At random, find a valid set of bridges Bi between trees such that they

create one tree with all N vertices.
14: Compute the set Si of distances between every two consecutive robots

on the tree.
15: Best Result is initialized with S0.
16: if the maximal value in Si is lower than the maximal value in

Best Result then
17: Best Result ← Si.
18: Return the tree associated with Best Result.

Lemma 26. Procedure Create Tree generates a tree that spans the entire
graph G.

Proof. Assume, for contradiction, that one cell C that is not covered by
any subtree Ti, 1 ≤ i ≤ k exists. Since the map is finite, then some cell C‘
adjacent to C that is connected to a sub-tree originating in the initial location
of some robot Ra exists. If C was not covered by the algorithm, then Ta must
have finished all its phases - initial phase, i.e. Hilling and branching out. But
if, while branching out, C ′ was traversed and C was empty, then it would
have added C to Ta, leading to a contradiction. If both C and C ′ are empty,

121

8.2 Tree construction algorithm

then some C ′′ ∈ Tb, exists such that C is adjacent to C ′′. Similarly, either we
have a contradiction, or C ′′ also is not in Tb. This continues until we find that
all cells are not in any tree, or all cells are in the tree (by contradiction). The
former case is impossible, as at least the initial location of a robot belongs
to its subtree, hence we are done.

Theorem 27. The time complexity of the Create Tree algorithm is O(N2 +
kαN).

Proof. In the stage where k subtrees are created, in the worst case when
adding one cell to a subtree the algorithm runs over all current cells in the
subtree (during Hilling or while branching out), hence the complexity is at
most O(N2). In the second stage, where the trees are connected, kα different
choices of trees are examined, each time the entire tree is traversed, thus
the complexity of this stage is O(kαN). Hence the entire complexity of the
algorithm is O(N2 + kαN). If the distance measure is the shortest paths,
then calculating all-pairs shortest paths is O(N3) ([23]).

8.2.1 Using different distance measures

The Create Tree Procedure first creates k subtrees, and then connects them.
The process of constructing the k subtrees is done while spreading each tree
away from the other trees. The distance measure used to determine how
distant the trees are was initially simply the Manhattan distance ([2]). In
this work, we used three different distance measures: Manhattan distance,
Euclidean distance and Shortest paths (following Floyd’s all-pairs shortest
paths algorithm [23]). Note that the time complexity of the shortest paths
algorithm is O(N3), where the other distance measures are calculated in O(1).

The theoretical advantage of using the shortest paths is enormous: As
shown in Figure 8.5, using the shortest paths measure can decrease the cov-
erage time from N to N/2. The tree in Figure 8.5a was generated using the
shortest paths measure, and the tree in Figure 8.5b was generated using the
Manhattan distance measure. Initially, there are twice as many cells below
the horizontal corridor compared to the number of cells above this corridor.
Note that when generating the subtrees using the shortest paths measure
(Figure 8.5a) there are two possible bridges between the trees - one near
the initial positions of the robots and one at the endpoint of the subtree.
The latter bridge will be chosen with a high probability. In the second tree
there is only one possible bridge connecting between the two subtrees. The

122

8.2 Tree construction algorithm

distance between the two robots along the first spanning tree path (Figure
8.5a) is N/2. The distance between the two robots along the second spanning
tree (Figure 8.5b, generated using Manhattan distance) is 8 fine grid cells.
Therefore the distance changed from 8 to N/2 just by using the shortest
paths distance measure.

Yet, in the average case using this measure did not make a difference—
the results of running MSTC algorithms on the trees generated using the
three distance measures converge. The reason, in our opinion, is that it
requires a very specific structure of the terrain in order for the shortest paths
measure to make a significant change. One terrain that will gain from using
this measure is the one with many corridors (see the example depicted in
Figure 8.5). In such a terrain, the difference between the Manhattan distance
and the shortest path is significant. Hence we conclude that Create Tree is
adaptable in the sense that the distance measure can be changed in order to
fit the terrain.

a.

T2 T2

b.

subtree by R2

tour along the tree

possible bridge

subtree by R1

T1

chosen bridge

2

R1

T

R

1R

2 R

1

Figure 8.5: An illustration of the trees created using different distance measures
by Procedure Create Tree: a. Manhattan distance and b. Shortest paths.

123

8.3 Evaluation

8.3 Evaluation

We evaluated the effect of the tree construction algorithm Create Tree on
the coverage time obtained by NB MSTC, B MSTC and Opt MSTC. First,
we determine the α used by the algorithm. Then we describe extensive
simulations of Create Tree with our chosen α.

8.3.1 Determining α

When connecting k subtrees, the Create Tree procedure randomly chooses a
set of bridges yielding a tree
max{kα, N} times and the best option between them. We chose the value
α empirically to be 2. We noticed that if α = 2, then the coverage time
obtained by the MSTC family of algorithms decreases substantially. A further
improvement can be seen when α = 3, but the intensity of the improvement
diminishes, more evidently with the results of the Opt MSTC algorithm (see
Figure 8.6).

Note that the time complexity is substantially higher if α = 3 and rises
from Nk2 to Nk3, i.e., an addition of Nk2(k − 1) operations. This becomes
critical for large N ’s and k’s.

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

NB_MSTC using alpha =1
NB_MSTC using alpha =2
NB_MSTC using alpha =3
Opt_MSTC using alpha =1
Opt_MSTC using alpha =2
Opt_MSTC using alpha =3

Figure 8.6: Comparing α = 2 to α = 3 for 1 to 30 robots, when 13% of the
area contains obstacles (without disconnecting the area).

124

8.3 Evaluation

8.3.2 Experimental results, α = 2

The evaluation of Create Tree on the coverage time obtained by the family
of MSTC algorithms was done while taking two other parameters under con-
sideration. First, the number of robots - from 3 to 30 robots was considered.
The second parameter considered was the density of obstacles in the terrain,
i.e, the ratio between the number of obstacles and the size of the area.

The coverage time obtained by the above algorithms on the trees con-
structed by all three variants of Create Tree was compared with the coverage
time obtained by the algorithms running on randomly generated spanning
trees. The terrain over which the experiment was run was a 20X30 coarse
grid (600 coarse cells, or 2400 fine cells). We first performed the experiment
on a grid with no obstacles (“clean” grid), then added at random 40 (6.6%),
80 (13.3%), 100 (16.7%) and 160 (26.7%) obstacles to the coarse grid.

Each trial was run for every number of robots (from 3 to 30) and for every
density of obstacles in the terrain. First, we created 300 input lines using each
tree construction method: randomly generated trees and Create Tree gener-
ated trees, where each input line represents a random initial distribution of
the robots. These input lines were later given to the NB MSTC, B MSTC and
Opt MSTC algorithms and the coverage times obtained by these algorithms
were compared.

The average coverage times obtained by the algorithms NB MSTC and
Opt MSTC are presented in Figure 8.7. The results show clearly that the aver-
age coverage time obtained by running algorithms NB MSTC and Opt MSTC
on trees constructed by algorithm Create Tree are statistically significantly
better (using paired two-tailed t-test, the p-value was always less than 10−12)
than the average coverage time obtained by the algorithms when run on ran-
domly generated trees. Moreover, the coverage time obtained by running
the simplest non-backtracking MSTC algorithm on the trees generated by
Create Tree was, in most cases, even lower than the optimal MSTC algo-
rithm run on randomly generated trees. These results were repeated for
both dimensions of the experiment: the number of robots and the density of
obstacles. The results from running the experiment on B MSTC are omitted
for reasons of clarity of the display, but are compatible with all the other
results.

An interesting result was revealed from comparing the improvement in
coverage time obtained by the algorithms after performing Create Tree with
different densities of obstacles in the terrain. While the improvement in the

125

8.3 Evaluation

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with no obstacles

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with obstacle density 6.7%

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with obstacle density 13.3%

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with obstacle density 16.7%

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30

C
ov

er
ag

e
T

im
e

Number of Robots

Coverage time with obstacle density 26.7%

NB_MSTC on random trees
NB_MSTC on heuristic trees
Opt_MSTC on random trees

Opt_MSTC on heuristic trees
theoretical best case

Figure 8.7: Results from comparing coverage time when using random trees vs.
trees generated using the Create Tree algorithm.

126

8.3 Evaluation

coverage time obtained by the algorithms after running Create Tree remains
statistically significant compared to randomly generated trees, as the obsta-
cles become more dense the improvement lessens. For instance, the improve-
ment ratio for 30 robots with no obstacles for the NB MSTC and Opt MSTC
algorithms are 58% and 38%, respectively. When the density of obstacles is
26% the improvement ratio decreases to 48% and 28% (respectively).

Figure 8.8 presents an example of the improvement ratio in coverage time
between Create Tree generated trees vs. randomly generated trees followed
by the execution of the NB MSTC algorithm. Note that the repetitiveness of
the phenomenon is not absolute over all number of robots, but the trend is
clear. Our initial explanation for the reason of this phenomenon was that the
Manhattan distance does not capture the real distance between the robots
when more and more obstacles are added to the terrain. However, as stated
previously, even when changing the distance measure to the shortest paths
the results were not improved. We then deduce that as more and more
robots are added and as more obstacles are added to the terrain, there is less
freedom in constructing the k spanning trees, i.e., the possibility to spread
the subtrees away from each other is limited.

An additional interesting result evolved from a comparison of of the ratio
of improvement of the results obtained by the Opt MSTC and the NB MSTC
algorithms (Figure 8.8). In both cases the improvement ratio from using
the Create Tree generated trees is relatively high, although the NB MSTC
coverage algorithm results in a much higher improvement ratio. This change
stems from the fact that if the simple NB MSTC algorithm is used the change
in coverage time is much more evident. The Opt MSTC algorithm in itself
performs with some improvement in coverage time, so there is less to improve
from that point.

127

8.3 Evaluation

 0.4

 0.45

 0.5

 0.55

 0.6

 5 10 15 20 25 30

Im
pr

ov
em

en
t:

R
an

do
m

 v
s.

 S
m

ar
t

Number of Robots

No holes
6.7% obstacle density

13.3% obstacle density
16.7% obstacle density
26.7% obstacle density 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30

Im
pr

ov
em

en
t:

R
an

do
m

 v
s.

 C
re

at
e T

re
e

Number of Robots

No holes
6.7% obstacle density

13.3% obstacle density
16.7% obstacle density
26.7% obstacle density

Figure 8.8: Comparison of the improvement ratio in coverage time obtained by
algorithm NB MSTC (left) and Opt MSTC (right) after generating trees ran-
domly vs. using the Create Tree algorithm with different densities of obstacles
in the terrain.

128

Chapter 9

Future Directions and Final
Remarks

We summarize the key contributions of this thesis in Section 9.1. We discuss
future directions for this research in Section 9.2.

9.1 Summary of Key Contributions

In the first and main part of this dissertation we focus on multi-robot patrol
in adversarial environments. In this scenario the robots are motivated by the
challenge of determining their movement in a way that will maximize their
chances of detecting an adversary trying to penetrate through the patrol
path. Our contribution in this part of the work is as follows.

• We provide an initial discussion on the problem of multi-robot patrol
in adversarial environments, shifting the focus from maximizing fre-
quency criteria (as in previous works) to maximizing the probability of
detecting the adversary.

• We provide a polynomial-time algorithm that finds the probability of
penetration detection along all points of the patrol, concentrating on
perimeter patrol and fence patrol.

• We discuss the implications of the amount of knowledge obtained by
the adversary on the patrolling robots on the optimal patrol algorithm
chosen by the robots. We describe a polynomial-time algorithm that

129

9.1 Summary of Key Contributions

finds the optimal patrol for the robots assuming both a full-knowledge
adversary and a zero-knowledge adversary.

• We examine the case in which the amount of knowledge the adversary
has on the patrol lies somewhere along the knowledge continuum —
between full and zero knowledge. We provide both heuristic algorithms
for handling this case, and theoretical results that provide the optimal
patrol algorithm given the level of uncertainty of the adversarial choice
of action.

• We performed an extensive empirical evaluation of the patrol algo-
rithms we developed, where the adversary’s role was played by human
subjects working against simulated patrolling robots. We examined
the different patrol algorithms (heuristic and proven optimal) where
the adversary had different amounts of exposed information, represent-
ing different adversarial models. The results strengthens the theoretical
results, and show that indeed the theoretical optimal patrol algorithms
for the zero and full knowledge adversarial environments are optimal
also in practice. Moreover, the heuristic algorithms we presented out-
performed the algorithm for the full knowledge adversary when only
partial knowledge was presented to the player, thus it shows that the
common assumption of preparing for the worst-case scenario (here a
full knowledge adversary) is not always beneficial.

In the second part of the dissertation, we considered two problems in the
multi-robot domain. In the first problem, we considered the task reallocation
problem in multi-robot formation. In this problem, a team of N robots move
in a formation, and k of them need to be extracted from the group. The
extraction is done considering the interaction cost between the team members
— in our case the cost of sensing inside the formation — where the goal is
to minimize the interaction cost between the remaining team members (and
thus maximizing the utility function of the remaining group). A summary of
our contribution in this chapter is as follows:

• We introduce a new method in which the problem of reallocating k
out of N team members to a new task is modeled by a graph, and
the utility function is based on the interaction cost between the team
members.

130

9.2 Future Directions

• We describe a deterministic algorithm for the reallocation problem
which reduces the time complexity of the solution from O(Nk) to O(2k).
This result is shown for both cases in which the formation can have ei-
ther one or more possible leaders.

• We generalize the use of the basic reallocation algorithm for cases in
which the utility function has more than one component. In particular,
we consider weighted components and prioritized components of the
utility function.

• We describe an empirical evaluation of the algorithm and its variations
using the Player/Stage simulated environment.

• We show that the method we propose that focuses on the interaction
between team members, and the basic algorithm within it, is a general
method that can be used in several other domains different from the
multi-robot formation domain.

In the last chapter of this dissertation, we consider the problem of im-
proving efficiency of multi-robot coverage. In this problem, a team of robots
are required to jointly visit a target area once, and their goal is to minimize
the time required to complete the coverage. The paths given to the robots
are based on a spanning tree which visits all nodes of the graph that spreads
over the target area. The contribution of this part is summarized as follows.

• We initially discuss the impact of the chosen spanning tree on the
coverage time of the algorithm.

• We propose a new heuristic algorithm which is based on building effi-
cient spanning trees for coverage.

• We describe an evaluation of this algorithm that demonstrates that
when using our heuristic algorithm the resulted coverage time signif-
icantly decreases compared to the time required when using random
trees (as done in previous work).

9.2 Future Directions

We concentrate on future directions for the first part of this dissertation.
Several points have been left open for future work:

131

9.2 Future Directions

The partial-knowledge adversarial model should be further examined.
In most realistic cases the adversary has neither full knowledge nor zero
knowledge on the patrolling robots. We addressed this case in our work
by suggesting heuristic algorithms and concentrating on the uncertainty of
the adversary’s choice of its penetration spot and the reflecting optimal al-
gorithms for the robots. This problem warrants further investigation using
other possible tools (for example game theoretic tools), and further empiri-
cal evaluation in order to identify other possible proficient approaches to this
problem.
Heterogenous robots should be considered. Until know, both in previous
work and in our work, the robots have been assumed to be homogenous.
New challenges will arise when considering robots that cooperate in the same
system but differ in their movement capabilities (movement model or velocity
constraints) or sensing capabilities.
Heterogeneous environments from the adversary’s point of view should
be investigated. In our work we assumed that the penetration time for each
segment along the path is identical. Changing penetration times could arise
an interesting implications on both the complexity of the calculation (mod-
eling only a small portion of the path does not hold any more) and the
algorithm framework (with different weights on different possible actions).
It would be interesting to consider other sensorial abilities of the robots.
In the extensions of the basic model considered in our work, we addressed
only the problem of sensing ahead along the patrol path. An intriguing point
to consider is the ability to sense either outside or inside the area, and the
impact of characteristics of the environment on this ability (for example in
some parts of the area a robot could sense along a certain radius, where in
other parts of the area its view might be blocked).

132

Bibliography

[1] E. U. Acar and H. Choset. Robust sensor-based coverage of unstructured
environments. In International Conference on Intelligent Robots and
Systems, pages 61–68, Maui, Hawaii, USA, 2001.

[2] N. Agmon, N. Hazon, and G. A. Kaminka. Constructing spanning trees
for efficient multi-robot coverage. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2006.

[3] N. Agmon, G. A. Kaminka, and S. Kraus. Team member-reallocation
via tree pruning. In Proceedings of the Twentieth National Conference
on Artificial Intelligence (AAAI), pages 35–40, 2005.

[4] N. Agmon, G. A. Kaminka, and S. Kraus. Multi-robot fence patrol in
adversarial domains. In Proceedings of the Tenth Conference on Intelli-
gent Autonomous Systems (IAS-10), pages 193–201. IOS Press, 2008.

[5] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter pa-
trol in adversarial settings. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2008.

[6] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for au-
tonomous mobile robots. SIAM Journal of Computing, 36(1):56–82,
2006.

[7] N. Agmon, V. Sadov, S. Kraus, and G. A. Kaminka. The impact of ad-
versarial knowledge on adversarial planning in perimeter patrol. In Pro-
ceedings of the Seventh International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-08), 2008.

133

BIBLIOGRAPHY

[8] M. Ahmadi and P. Stone. A multi-robot system for continuous area
sweeping tasks. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2006.

[9] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Cor-
ruble, and Y. Chevaleyr. Recent advances on multi-agent patrolling.
Lecture Notes in Computer Science, 3171:474–483, 2004.

[10] F. Amigoni, N. Gatti, and A. Ippedico. Multiagent technology solutions
for planning in ambient intelligence. In Proceedings of Agent Intelligent
Technologies (IAT-08), 2008.

[11] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A distributed memory-
less point convergence algorithm for mobile robots with limited visibility.
IEEE Transactions on Robotics and Automation, 15:818–828, 1999.

[12] T. Balch and R. Arkin. Behavior based formation control for mutlirobot
systems. IEEE Transactions on Robotics and Automation, 14(12):926 –
939, 1998.

[13] M. Batalin and G. Sukhatme. Spreading out, a local approach to multi-
robot coverage. In Proceedings of the 6th International Symposium on
Distributed Autonomous Robotic Systems, pages 373–382, 2002.

[14] E. Brunner, S. Domhof, and F. Langer. Nonparametric analysis of lon-
gitudinal data in factorial experiments. Journal of Optimization Theory
and Application staff,, 114(1):243–244, 2002.

[15] Z. Butler, A. Rizzi, and R. L. Hollis. Complete distributed coverage of
rectilinear environments. In Proceedings of the Workshop on the Algo-
rithmic Foundations of Robotics, March 2000.

[16] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling prob-
lem. In Proceedings of Agent Intelligent Technologies (IAT-04), 2004.

[17] P. Chinn, R. Grimaldi, and S. Heubach. The frequency of summands of
a particular size in palindromic compositions. Ars Comb., 69, 2003.

[18] H. Choset. Coverage for robotics - a survey of recent results. Annals of
Mathematics and Artificial Intelligence, 31:113–126, 2001.

134

BIBLIOGRAPHY

[19] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving
the robots gathering problem. Lecture Notes in Computer Science,
2719:1181 – 1196, 2003.

[20] J. Colegrave and A. Branch. A case study of autonomous household
vacuum cleaner. In AIAA/NASA CIRFFSS, 1994.

[21] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks
on weighted graphs and applications to on-line algorithms. Journal of
the ACM, 40(3), 1993.

[22] T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[23] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

[24] V. D. Dang and N. R. Jenings. Generating coalition structures with
finite bound from the optimal guarantees. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-02), pages 564–571, 2004.

[25] J. P. Desai. A graph theoretic approach for modeling mobile robot team
formation. Journal of Robotic Systems, 19(11):511–525, 2001.

[26] J. L. Devore. Probability and Statistics for Engineering and the Sciences.
Brooks/Cole Publishing Company, 1991.

[27] M. B. Dias and A. Stentz. A free market architecture for distributed
control of a multirobot system. In Proceedings of the Sixth Conference
on Intelligent Autonomous Systems (IAS-6), pages 115–122, 2000.

[28] M. B. Dias, R. Zlot, M. Zinck, J. P. Gonzalez, and A. Stentz. A versatile
implementation of the traderbots approach for multirobot coordination.
In Proceedings of the Eighth Conference on Intelligent Autonomous Sys-
tems (IAS-8), 2004.

[29] M. F. Duarte and Y. H. Hu. Distance-based decision fusion in a dis-
tributed wireless sensor network. Telecommunication Systems, 26(2-
4):339–350, 2004.

135

BIBLIOGRAPHY

[30] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol
under frequency constraints. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2007.

[31] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol
under frequency constraints. Annals of Math and Artificial Intelligence,
to appear, 2009.

[32] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol
under frequency constraints. Annals of Math and Artificial Intelligence
journal (AMAI), 2009, to Appear.

[33] Y. Elmaliach, A. Shiloni, and G. A. Kaminka. A realistic model of
frequency-based multi-robot fence patrolling. In Proceedings of the Sev-
enth International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS-08), 2008.

[34] J. Feddema, C. Lewis, and D. Schoenwald. Decentralized control of
cooperative robotic vehicles: theory and application. IEEE Transactions
on Robotics and Automation, 18:852– 864, 2002.

[35] E. Ferranti, N. Trigoni, and M. Levene. Brick and mortar - an on-line
multi-agent exploration algorithm. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2007.

[36] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary
pattern formation by asynchronous, anonymous, oblivious robots. The-
oretical Computer Sciense, 407(1-3):412–447, 2008.

[37] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach
to collaborative multi-robot localization. Autonomous Robots, 8(3):325–
344, 2000.

[38] J. Fredslund and M. Mataric. A general algorithm for robot formation
using local sensing and minimal communication. IEEE Transactions on
Robotics and Automation, 18:837–846, 2002.

[39] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Annals of Mathematics and Artificial Intelli-
gence, 31(1-4):77–98, 2001.

136

BIBLIOGRAPHY

[40] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid en-
vironments by a mobile robot. Computational Geometry, 24:197–224,
2003.

[41] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[42] B. P. Gerkey and M. J. Matarić. Murdoch: publish/subscribe task al-
location for heterogeneous agents. In Proceedings of the fourth interna-
tional conference on Autonomous agents (AGENTS-00), pages 203–204,
2000.

[43] B. P. Gerkey and M. J. Matarić. A formal analysis and taxonomy of
task allocation in multi-robot systems. The International Journal of
Robotics Research, 23:939–954, 2004.

[44] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project
- tools for multi-robot and distributed sensor systems. In Proceedings
of the International Conference on Advanced Robotics, pages 317–323,
Coimbra, Portugal, Jul 2003.

[45] T. Haynes and S. Sen. Evolving behavioral strategies predators and
prey. In IJCAI-95 Workshop on Adaptation and Learning in Multiagent
Systems, pages 32–37, 1995.

[46] N. Hazon and G. A. Kaminka. Redundancy, efficiency and robustness
in multi-robot coverage. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), 2005.

[47] N. Hazon and G. A. Kaminka. On redundancy, efficiency, and robustness
in coverage for multiple robots. Robotics and Autonomous Systems, to
appear, 2008.

[48] S. Hedberg. Robots cleaning up hazardous waste. AI Expert, pages
20–24, May 1995.

[49] Y. Huang, Z. Cao, and E. Hall. Region filling operations for mobile
robot using computer graphics. In Proceedings of the IEEE Conference
on Robotics and Automation (ICRA-86), pages 1607–1614, 1986.

137

BIBLIOGRAPHY

[50] L. Iocchi, D. Nardi, and M. Salerno. Reactivity and deliberation: A
survey on multi-robot systems. In Balancing Reactivity and Social De-
liberation in Multi-Agent Systems, From RoboCup to Real-World Appli-
cations (selected papers from the ECAI 2000 Workshop and additional
contributions), pages 9–34, 2001.

[51] G. A. Kaminka, R. Schechter-Glick, and V. Sadov. Using sensor mor-
phology for multirobot formations. IEEE Transactions on Robotics,
24(2):271–282, 2008.

[52] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsub-
ara. Robocup: A challenge problem for ai and robotics. In RoboCup-97:
Robot Soccer World Cup I, pages 1–19, 1998.

[53] C. S. Kong, A. P. New, and I. Rekleitis. Distributed coverage with multi-
robot system. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2006.

[54] S. Kraus, J. S. Rosenschein, and M. Fenster. Exploiting focal points
among alternative solutions: Two approaches. Annals of Math and Ar-
tificial Intelligence, 28(1–4):187–258, 2000.

[55] S. Kumar and P. R. Cohen. Towards a fault-tolerant multi-agent system
architecture. In Proceedings of the fourth international conference on
Autonomous agents (AGENTS-00), pages 459–466, 2000.

[56] M. Lemay, F. Michaud, D. Letourneau, and J. M. Valin. Autonomous
initialization of robot formation. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2004.

[57] H. B. Mann and D. R. Whitney. On a test of whether one of two random
variables is stochastically larger than the other. Annals of Mathematical
Statistics, 1947.

[58] N., N. Hazon, and G. A. Kaminka. The giving tree: Constructing trees
for efficient offline and online multi-robot coverage. Special issue of the
Annals of Math and Artificial Intelligence journal (AMAI) on Multi-
Robot Coverage, Search, and Exploration, 2009, to appear.

138

BIBLIOGRAPHY

[59] D. J. Naffin and G. S. Sukhatme. Negotiated formations. In Proceed-
ings of the International Conference on Intelligent Autonomous Systems,
pages 181–190, Mar 2004.

[60] E. Osherovich, V. Yanovski, W. I. A, and A. M. Bruckstein. Robust and
efficient covering of unknown continuous domains with simple, ant-like
a(ge)nts. Technical report, Technion, Israel, 2007.

[61] L. E. Parker. Current research in multirobot systems. Artificial Life
and Robotics, 7, 2003.

[62] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus. An
efficient heuristic approach for security against multiple adversaries. In
Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-08), 2007.

[63] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Security in mul-
tiagent systems by policy randomization. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-07), 2007.

[64] J. Pita, M. Jain, F. Ordonez, , M. Tambe, S. Kraus, and R. Magorii-
Cohen. Effective solutions for real-world stackelberg games: When
agents must deal with human uncertainties. In Proceedings of the Eighth
International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS-09), 2009.

[65] M. A. Rahman, M. S. Miah, W. Gueaieb, and A. E. Saddik. Senora:
A p2p service oriented framework for collaborative multi-robot sensor
network. IEEE Sensors Journal, Special Issue on Intelligent Sensors,
7(5):658–666, 2007.

[66] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot exploration of an un-
known environment, efficiently reducing the odometry error. In Interna-
tional Joint Conference in Artificial Intelligence (IJCAI-97), volume 2,
pages 1340–1345, Nagoya, Japan, August 1997. Morgan Kaufmann Pub-
lishers, Inc.

[67] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot collaboration for
robust exploration. Annals of Mathematics and Artificial Intelligence,
31:7–40, 2001.

139

BIBLIOGRAPHY

[68] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset. Limited commu-
nication, multi-robot team based coverage. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages
3462–3468, 2004.

[69] T. Sak, J. Wainer, and S. K. Goldenstein. Probabilistic multiagent
patrolling. In Proc. of the 19th Brazilian Symposium on Artificial Intel-
ligence (SBIA-08), pages 124–133, 2008.

[70] P. V. Sander, D. Peleshchuk, and B. J. Grosz. A scalable, distributed
algorithm for efficient task allocation. In Proceedings of the First In-
ternational Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-02), pages 1191–1198, 2002.

[71] T. Sandholm. Algorithm for optimal winner determination in combina-
torial auctions. Artificial Intelligence, 135(1-2):1–54, 2002.

[72] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme.
Coalition structure generation with worst case guarantees. Artificial
Intelligence, pages 209–238, 1999.

[73] T. Sandholm and V. Lesser. Coalitions among computationally bounded
agents. Artificial Intelligence, 94(1):99–137, 1997.

[74] S. Sen and S. Dutta. Searching for optimal coalition structures. In Pro-
ceedings of the Fourth International Conference on Multiagent Systems,
pages 287 – 292, 2000.

[75] K. C. Sevcik. Characterizations of parallelism in applications and their
use in scheduling. In Proceedings of ACM Conference on Measurement
and Modeling of Computation Systems, pages 171–180, May 1989.

[76] O. Shehory and S. Kraus. Methods for task allocation via agent coalition
formation. Artificial Intelligence, 101(1-2):165–200, 1998.

[77] J. S. Shieh and T. W. Calvert. View and route planning for patrol and
exploring robots. Advanced Robotics, 6(4):399–430, 1992.

[78] A. Shiloni, N. Agmon, and G. A. Kaminka. Of robot ants and elephants.
In Proceedings of the Eighth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-09), 2009.

140

BIBLIOGRAPHY

[79] T. C. H. Sit, Z. Liu, M. H. A. Jr., and W. K. G. Seah. Multi-robot mobil-
ity enhanced hop-count based localization in ad hoc networks. Robotics
and Autonomous Systems, 55(3):244–252, 2007.

[80] S. Stramigioli. Special issue on mobile multirobot systems. IEEE
Robotics and Automation Magazine, 15(1), 2008.

[81] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: For-
mation of geometric patterns. SIAM Journal on Computing, 28(4):1347–
1363, 1999.

[82] J. Svennebring and S. Koenig. Building terrain-covering ant robots - a
feasibility study. Autonomous Robots, 16(3):313–332, 2004.

[83] M. Tambe and W. Zhang. Towards flexible teamwork in persistent
teams: extended report. Journal of Autonomous Agents and Multi-
Agent Systems, 3:159–183, 1998.

[84] P. Tosic and G. Agha. Maximal clique based distributed group formation
for autonomous agent coalitions. In Coalitions and Teams Workshop,
AAMAS, 2004.

[85] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry. Prob-
abilistic pursuit-evasion games - theory, implementation, and experi-
mental evaluation. Robotics and Automation, IEEE Transactions on,
18(5):662–669, 2002.

[86] I. Wagner, M. Lindenbaum, and A. Bruckstein. Mac vs. pc determinism
and randomness as complementary approaches to robotic exploration
of continuous unknown domains. International Journal of Robotics Re-
search, 19(1):12–31, 2000.

[87] I. A. Wagner and A. M. Bruckstein. From ants to a(ge)nts: A special
issue on ant-robotics. Annals of Math and Artificial Intelligence, 31(1-
4):1–5, 2001.

[88] X. Zheng, S. Jain, S. Koenig, and D. Kempe. Multi-robot forest cov-
erage. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2005.

141

