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Abstract

Intention recognition is the ability to reason and infer information about others,
based on observations of their behavior. Unfortunately, to date there have been
only a handful of investigations into the integration of intention recognition into
agent architectures. In particular, there are open questions as to the effect of inten-
tion recognition on the computational resources available to the agent. The issue
is of particular importance in modern virtual environments, where the agent may
be interacting with multiple other agents. This work tackles this question ana-
lytically and empirically. First, we examine run-time considerations, and offer a
novel view of plan-recognition as a sampling process. Under this view, an existing
work can be viewed as if trying to reduce the computational load on the agent by
reducing the number of hypotheses it considers. In contrast, we reduce the Fre-
quency by which the recognition process is sampled. We provide an analytical
model allowing selection of a fixed-frequency recognition, and examine a number
of heuristics for dynamically-changing plans. In the second part of the thesis, we
consider a method of integrating plan recognition processes, called Mirroring, in
which the executable knowledge of the agent is re-used, as is, for recognition.
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Chapter 1

Introduction

Intention recognition is the ability to monitor observable actions of other agents
and from those, infer their unobservable goals and plans [13, 38, 16]. Previous
research has shown that intention recognition is an important and beneficial capa-
bility [37, 16, 21, 48, 53, 17, 2, 34, 60]. For example, in a hostile environments,
an agent should know it’s opponent’s intentions [60, 50, 35, 64] and accordingly
decide its own actions for better results. In teamwork, intention recognition is
beneficial for detecting disagreements and coordinating without communication
[26, 59, 52, 34]. In real time tracking systems, intention recognition is important
to detect a suspicious behavior for surveillance and activity recognition [7, 58].
In natural language, intention recognition improve user-computer communica-
tion by assimilating ongoing dialogue and reasoning on the acquired knowledge
[12, 23, 17, 2]. Another critical role of intention recognition is the ability to iden-
tify failures at agent activities, to improve the system performances and robustness
[34]. Recent work [31, 20] on crowd behavior modeling by social comparison the-
ory strongly suggests that knowing about others, at all times (simultaneously with
self-modeling), is a basic need.

Most of the previous research in intention recognition has focused on stand-
alone plan recognition systems. For example, AHMEM [11] is a general frame-
work for online probabilistic plan recognition which was implemented in a surveil-
lance domain. Monitoring by Overhearing [32]; a monitoring approach that ap-
plies plan-recognition based on team members’ routine communications. ISAAC
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[49] is an off-line automated team analysis system, that applied team modeling
based on machine learning. Additional applications include modeling and ana-
lyzing behavior of live insect colonies [10] using an off-line system that applies
vision-based observations.

Assimilating intention recognition capability in agent architecture has many
advantages: 1. It is essential for the flexibility and efficiency of the modeling
task. 2. Resources saving eliminating the need for knowledge maintenance, by
performing recognition on the same data structures; and eliminating the need for
synchronizing two databases. In addition, the need to maintain two plan library
databases and a special API for data transferring between the executer agent and
the observed agent prevents software development and debug processes from be-
ing easily accomplished. 3. Intention recognition capability in agent architecture
may increase the opportunities for other social mechanisms, such as a social com-
parison mechanism [20], self-tracking (where an agent tracks itself to achieve fault
tolerance) [33], and an integrated imitation mechanism [18, 42, 20].

Unfortunately, despite the demonstrated need for integrating intention recog-
nition in agents, there have been only a handful of investigations, into the inte-
gration of intention recognition into agent architectures. Thus, the integration of
intention recognition capabilities into agent architectures is an open challenge.

Examples for works which face the challenge of integrating the intention recog-
nition into agent architecture are: Chalupsky’s work [15], on SIMBA (SIMula-
tive Belief Ascription), implements mechanism in formal and logical language;
Laird’s work [39], adds anticipation to an AI bot for the game Quake II; Tambe
and Rosenbloom’s work [60], on REal-time Situated Commitments, implements
intention recognition in the intelligent pilot agent participating in a real-world
synthetic air-combat environment; Kaminka and Tambe’s work [34], on RESL
implements detecting failures algorithms in teams of cooperating agents via social
relationships between the agents. Rao and Murray’s work [50], provides reactive
plan recognition within the framework of the agent’s mental state, and applies it
in a pilot agent which operates in an air-combat modeling.

This research examines the integration of intention recognition into cognitive
architectures. The key challenge faced in such integration is reducing the com-
putational load of the recognition process, which is fueled by the need to reason

2



about the inherent ambiguity of the recognition results. In general, more than one
hypothesized explanation exists for observations and each observed agent may
trigger multiple recognition hypotheses. Thus, the computational load of recogni-
tion is exacerbated in the presence of multiple observed agents.

In an integrated recognition system the agent’s computational load (hereinafter
Computational Load) consists, as in Equation 1.1, of the load results from self ex-
ecuting (hereinafter Execution Load) and from the load results from the recogni-
tion algorithm it activates on the observed agents (hereinafter Recognition Load).
Our research objective is to evaluate the integration of the recognition ability into
the agent architecture, by evaluating the Recognition Load.

Computational Load = Execution Load + Recognition Load (1.1)

Integrated intention recognition architecture must deal with the following ques-
tions: When to perform the intention recognition process (all the time [60], or
according to an event [39]); and whom to perform the intention recognition pro-
cess on (one agent [60], or on all agents [34]). In general, there would be more
than one explanation that fits the observations. Because of real-time requirements,
we cannot wait for the observed actions to resolve ambiguities, so the mechanism
may need to commit to a single chosen hypothesis and be able to correct it [60],
or to maintain all the possible hypotheses at the same time [34].

Integrated intention recognition systems must therefore be selective in their
recognition process. We argue that previous work in this area can in fact be cate-
gorized according to the way monitoring selectivity is addressed. Some [60, 34]
limit the number of maintained hypotheses for others, some trigger the recog-
nition processes selectively [39], or limit the focus to specific agents [34, 28].
Nevertheless, none of these approaches has yielded an architecture with built-in
intention-recognition capabilities.

This research explores a novel approach to monitoring selectivity in the pres-
ence of multiple agents. The key to this approach is to reduce the time in which
recognition is carried out. Instead of executing the recognition process with every
sense-think-act cycle as previous approaches do, we choose instead to apply selec-
tivity in terms of the time in which the process is triggered. Our approach is called,
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hereinafter, Temporal Monitoring Selectivity (details in Chapter 3). The Temporal

Monitoring Selectivity approach can be viewed as a sampling technique, in which
one chooses the time points for using the observations to generate hypotheses, see
for details Section 3.1.

Two major sampling heuristics can be implemented in Temporal Monitoring

Selectivity, one is designed as static heuristic and the other dynamic heuristic.
In the static heuristic, which is the most commonly-used sampling scheme, the
recognition algorithm is periodically triggered with a fixed rate which is deter-
mined in advance. The static heuristic assumes no knowledge of the recognition
algorithm. Using static heuristic with a fixed rate, smaller than the maximum rate,
the system can trigger the recognition algorithm, directly reducing the Recognition

Load. But, this heuristic cannot guarantee the quality of the recognition. Static

heuristic involves a tradeoff decision for the users to make: How much are they
willing to lose in recognition quality in order to gain a decrease in Recognition

Load.
The dynamic heuristic dynamically adjusts the rate, in which the recognition

process is triggered based on information about others, and the recognition load.
Some heuristics in which the sampling rate is dynamically changed were sug-
gested and their performances were compared to the fixed-rate heuristic. It was
shown that the improvement obtained by dynamic sampling can indeed be signif-
icant. We show that using dynamic heuristic to trigger the recognition algorithm,
achieves a decrease in Recognition Load while not affecting recognition quality,
Section 3.3.

We present analytical models to evaluate different heuristics for the Tempo-

ral Monitoring Selectivity approach in an integrated recognition system. First we
evaluate the Recognition Load and the recognition quality when running the in-
tegrated system using different values of fixed rates. We start with the maximum
rate in which the integrated system can trigger the recognition algorithm and fin-
ish with the lowest rate which still provides some degree of accuracy. We use the
Recognition Load and the recognition quality of the fixed rates as a baseline for
the integrated system. Then, we suggest several heuristics, whose performance
will be compared with this baseline.
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In the second phase of this research the Mirroring approach is presented. Mir-

roring is a specific approach to providing intention recognition at the architectural
level, in which the executable procedural knowledge of the agent is re-used, as is,
for recognition (details in Chapter 4). The Mirroring approach offers significant
savings in computational resources compared to most existing approaches (where
a separate recognition knowledge plan library is utilized, e.g., as in [26, 34, 39]). It
also provides greater opportunity for social mechanisms that rely on comparisons
between the executer agent and the observed agent (e.g., for identifying failures
[34], or for social comparison [31]). In this phase we show how the Temporal

Monitoring Selectivity approach has yielded in an architecture with built-in in-
tention recognition capabilities. We describe Mirroring in detail, and discuss the
architectural requirements that are needed to allow it to work. The Mirroring ap-
proach is implemented in M-DIESEL a prototype architecture built on top of Soar
[42].

The Temporal Monitoring Selectivity approach is evaluated on two simula-
tors. The suspicious behavior recognition simulator which executes the integrated
intention recognition system SBR [7], and the VR-Forces simulator which ex-
ecutes the integrated intention recognition architecture M-DIESEL. We conduct
experiments to measure the load and the quality of the two systems using differ-
ent heuristics and conclude that the dynamic policy significantly outperforms the
fixed frequency sampling (details in Chapter 5).
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Chapter 2

Related Work

This work is obviously related in general to plan recognition. However, the lit-
erature on plan recognition is vast, and most of it is not directly related — our
work is complementary. We therefore point the reader to [38, 16, 13] for general
introduction to plan recognition, and focus here on more closely related work.

2.1 Monitoring Selectivity

An open challenge in all integrated intention recognition systems is to manage
resources, while maintaining recognition results that support the agent’s reasoning
processes, which require information about what others are doing. It has been
hypothesized that a trade-off may exist between the load on the agent and the
recognition quality [60]. The intuition for this trade-off is that the more resources
the agent has to spend on recognition (up to a point), the faster it can converge
to its resolution. Therefore, improving the recognition while minimizing the load
is not likely to be a solution. Instead, some monitoring selectivity is required for
optimization.

Therefore, integrated intention recognition systems must be selective in their
recognition process. Indeed, previous investigations addressing integration of in-
tention recognition can be viewed as taking different approaches to provide heuris-
tics to the problem of monitoring selectivity.

One general approach is focused on reducing the number of hypotheses about
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which the agent reasons, thereby reducing the computational load involved in
generating hypotheses and reasoning. RESC [60] was developed to provide soft
real-time recognition responses, by eliminating all hypotheses but one (which is
selected based on a combination of hypothesis-ranking heuristics). Similarly, a
related algorithm called RESL [34] was used to maintain only 1–2 hypotheses, to
detect disagreements in a team of agents. Thus RESC and RESL sacrifice recog-
nition completeness–they cannot guarantee that the correct hypothesis is returned
in their results. In contrast to these works, our method pursues all hypotheses but
restricts the time in which the recognition process is allowed to run.

Laird [39] takes a different approach to monitoring selectivity. He explores
an integrated intention recognition system (observing a single agent), which is
triggered only under task-dependent conditions, typically when the agent has suf-
ficient time and computation resources to carry out the recognition and when the
result is likely to be useful. Moreover, the recognition process terminates if mul-
tiple hypotheses are available, since the agent has no way to select between them.
By dynamically triggering the recognition process, Laird’s approach is a precur-
sor to the heuristics that we develop in this research. However, in contrast to this
earlier work, our focus is on domain-independent heuristics for multiple agents.
Furthermore, we support multiple hypotheses for these agents.

Another approach to monitoring selectivity in the context of multiple agents,
is to limit the number of agents that are tracked. Kaminka and Tambe [34] and
later Kaminka and Bowling [28] have provided a number of analytical bounds to
the number of agents that need to be monitored, for specific recognition tasks. Our
approach here is complementary to these works.

Our approach relies on the ability of the intention recognition system to freeze
itself and resume again, while taking into account missing observations. Previous
works propose operation models to address the lack of continuity in the observa-
tions stream. Kaminka et. al. [32], suggest using a temporal model to simulate
execution while no observations are received. Avrahami-Zilberbrand et. al. [9, 7],
propose the use of a special tag on unobservable plans to allow the recognition
algorithm to ignore lack of observations for them.
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2.2 Dynamic Sampling

Dynamic sampling utilizes the option of varying the sampling rates according to
the situation of the system, thus obtaining intention recognition with improved
efficiency. The basic idea is the following: Rather than allocating a fixed amount
of resources to each recognized agent, apply a dynamic recognition procedure. By
using a dynamic approach, the recognition is controlled and can be changed any
time according to actual needs.

When observing a single agent, the recognition algorithm can be ruled accord-
ing to the preference in resources allocation between the observed agent and the
executed agent. This possibility may be particularly appealing when a large num-
ber of agents has to be observed in parallel. Rather than giving each agent a fixed
share of the recognizer resources (either in terms of observer units or time slots),
we may want to divide the recognizer resources among the agents depending on
their state and the importance of an immediate updating of the state of each of
them. Thus, when the recognition of a given agent is known fairly well, most of
the resources may be shifted to the recognizing of the other agents.

In this section we survey several areas in which dynamic sampling is used and
achieves improvement, compared with fixed sampling. It should be emphasized
that the dynamic sampling procedure is suitable for those situations in which the
amount of resources of the sampling equipment (e.g., radar, agent architecture) is
adjustable.

Target Tracking
In the example of controlling N objects using radar [6, 63], the same amount
of samples are executed by the fixed rate heuristic to the objects. The dynamic
sampling heuristic, on the other hand, suggests allocating most of the resources to
a one specified object for a short and random time and then shifting the resources
to another specified object.

Assaf and Ritov [6], apply the dynamic sampling technique to a typical prob-
lem in optimal control theory, that of tracking and controlling the position of an
object. They first present the results for the basic model (with a fixed sampling
rate) then the dynamic sampling formulation of the problem is presented as an
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optimization problem in the state space. They write the formal optimality equa-
tion with the objective of minimizing the average cost per time unit. After that,
they propose a heuristically sub-optimal sampling and control heuristic. The per-
formance of that heuristic is then compared with the fixed-rate heuristic and it is
shown that the improvement obtained by dynamic sampling is indeed significant.
We also formulate our problem, present the results of fixed sample rates and sug-
gest several dynamic heuristics in which their performance are compared with the
fixed-rate heuristic.

Previous works in Target Tracking area vary the sampling rate subject to a re-
striction. Assaf and Ritov [6], keep the long-run average dynamic sampling rate
at the same level of the fixed rate sampling procedure. In Zhang et. al. work [63],
when having a fixed sampling interval T , the kind of dynamic sampling consid-
ered is that the system samples at interval T1 and T2, alternatively. But to make
the overall sampling rate equal and to have a fair comparison, they have a con-
straint of T1 + T2 = 2T . In this work we do not use a cost depending on the
sampling rate which is used, and we do not keep an average sampling rate at the
same level as the fixed rate sampling.

Data Mining
Data mining involves sorting through large amounts of data and picking out rel-
evant information using algorithms which may also use dynamic sampling ap-
proaches. As data warehouses grow the computational efficiency of data mining
algorithms on large databases becomes increasingly important [27].

Sampling a database involves a decision about a tradeoff between accuracy
and a decrease in running time of a data mining algorithm. Using a sample from
the database can speed up the data mining process, but this is only acceptable if it
does not reduce the quality of the mined knowledge. Static Sampling assumes no
knowledge of the running algorithm. It applies some fixed criteria to the sample to
determine if it is suitably representative of the original large database. This helps
improve the efficiency by directly reducing the size of the training data. However,
this strategy can not guarantee the learning accuracy. Dynamic sampling refers
to the use of knowledge about the behavior of the mining algorithm in order to
choose a sampling size. We expect to directly reduce the computational load
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when using fixed sampling on the recognition process but also to downgrade in
the recognition outcomes.

John and Langley [27] introduce the ’Probably Close Enough’ (PCE) criterion
to describe the desired properties of a sample, as a way of evaluating sampling
strategy. When they believe that the performance of their data mining algorithm
on a sample is probably close to what it would be if they ran it on the entire
database, then they would be satisfied with the sample. PCE is similar to the
Probably Approximately Correct bound in computational learning theory.

In this work we introduce the Recognition Error parameter, which expresses
the quantity of close enough between the evaluated sampling and the system high-
est fixed rate sampling.

Given this framework, many learning algorithms can be used to estimate close

enough. John and Langley [27] choose the naive Bayesian classifier. Experimen-
tal studies suggest that naive Bayes tend to learn more rapidly, in terms of the
number of training cases needed to achieve high accuracy, than most induction al-
gorithms (Langley and Sage [40]). In addition, they like to reduce the naive Bayes
computational complexity even further by incorporating dynamic sampling.

Another good example of dynamic sampling are the peepholing algorithm de-
scribed by Catlett [14] and races of Moore and Lee [41].

Detecting a Change
Another subject area in which dynamic sampling is used for improving the perfor-
mance is Detecting a Change. The problem originally arose out of considerations
of quality control. When a process is ’in control’, observations are distributed
according to Fo. At the unknown point v, the process jumps ’out of control’ and
ensuing observations are distributed according to Fl. The objective is to detect
that a change took place as soon as possible’ after its occurrence, subject to a
restriction on the rate of false detections.

In our scope of interest, in integrated intention recognition, the objective is to
detect that a change in the observed agent’s behavior took place ’as soon as pos-
sible’ after its occurrence. This problem also is important in the study of impacts
of treatment, since the point when an action of the executer agent on the observed
agent might take effect is usually unknown [54] and should take into account in
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the executer’s decision system.
In order to evaluate and compare procedures, [3, 45, 46, 5, 4] formalize a

restriction on false detections, as well as formalize the objective of detecting a
change ’as soon as possible’ after its occurrence. We also, determine criteria to
express the different between the actual change in the observed agent behavior and
the sampled one, as we consider an actual change in the observed agent behavior,
as the one occurring with the system highest fixed rate sampling on the recognition
process.

Pointers for the solution to the optimal stopping problem may be found in the
references of [3, 45, 46, 5, 4]. For an up to date survey and a more complete list
of references, see Pollak [45, 46].

The standard procedures with a constant sampling rate are the Page (or CUSUM)
procedure [43, 44] and the Roberts-Shiryayev procedure [55]. The idea of dy-
namic sampling has been used by Girshick and Rubin [24] from a Bayesian de-
cision point of view. Recently, Assaf [3] considered a Bayesian dynamic sam-
pling procedure in the surveillance context and which re-initiated interest. In [3]
a heuristic derivation of the optimal rate and stopping time for the dynamic sam-
pling problem is given. The performance of the resulting heuristic is approximated
by a family of sub-optimal heuristics.

Srivastava and Wu [57] propose that the dynamic sampling plan as a procedure
which takes fewer samples when no change is expected but takes more samples
when a change is expected, should be more efficient than the corresponding fixed
sampling plan. Our dynamic heuristics in this work is based on that distinction
[57]. The density of the recognition samples will be controlled by the uncertainty
level about the observed agent behavior, thus, take more samples when a change
in agent behavior is expected.

Assaf, Ritov, Pollak and Yakir in [3, 5, 4] and Srivastava and Wu in [57] show
comparisons between the dynamic sampling procedures and previous results ob-
tained for a fixed sampling rate. The comparisons show that employing dynamic
sampling heuristics can result in a dramatic reduction in the maximal expected
delay to the fixed rate one.

Signal Analysis
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Modern digital data processing of functions (or signals or images), uses a dis-
cretized version of the original signal f that is obtained by sampling f on a dis-
crete set. The question then arises whether and how f can be recovered from its
samples. Therefore, the objective of research on the sampling problem is twofold.
The first goal is to quantify the conditions under which it is possible to recover
particular classes of functions from different sets of discrete samples. The second
goal is to use these analytical results to develop explicit reconstruction schemes
for the analysis and processing of digital data.

Since infinitely many functions can have the same sampled values, the sam-
pling problem becomes meaningful only after imposing some a priori conditions
on f (the original one). The standard assumption is that the function f on Rd be-
longs to the space of band-limited functions B. In fact, all band-limited functions
have infinite support since they are analytic. However, non-band-limited functions
that retain some of the simplicity and structure of band-limited models are more
amenable to numerical implementation and are more flexible for approximating
real data. Since our recognition process is time limited, we assume that our sig-
nal is band-limited as was shown in [1]. Since, the behavior plan library of the
observed agent is finite, the number of the potential behaviors which returned by
the recognition algorithm is finite, too. Therefore, we can give a lower bound on
the maximal distance between two sampling points needed for reconstructing a
function from its samples as was required in [1].

In the same way of reconstructing [1], we derive mathematical models, based
on fixed samplings, of the recognition process. A model help us to analytically
determine the best fixed sampling for reconstruct the entire recognition process.

2.3 Mirroring

An important finding of neuroscience occurred in the last decade. Mirror neurons
(MN) were discovered in the frontal lobes of macaques [19, 51]. MN are active
when the monkeys perform actions; however, these neurons are also fired when
the monkeys watch someone else perform these actions. Due to brain evolution,
there is strong assumption that this observation/action matching system also exists
in the human brain. Today, MN play a major role in explaining some human
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abilities, such as empathy, language learning, imitation, and theory of mind. In
the MN mechanism in the human brain, the same neurons are involved either in
the action and in the recognition [19, 51], enhancing the theory that this is an
inherent nature ability and also explain how it is done simultaneously for several
observed humans. This work tries to emulate intention recognition behavior as in
the MN system.

In the following, just the relevant previous works, which integrate intention
recognition capability into the agent’s architecture, are related.

Chalupsky’s work [15] on SIMBA (SIMulative Belief Ascription), implements
a Mirroring mechanism in formal and logical language. SIMBA maintains a
knowledge base, which includes the beliefs of the executed agent and the ob-
served agent, as it believes they are. SIMBA maintains multi-reasoning contexts,
one for each agent. SIMBA uses other agent beliefs in conjunction with the exe-
cuted agent’s reasoning to simulate the observed agent’s reasoning.

Laird [39] and Tambe & Rosenbloom [60], maintain a state of the observed
agent and assume that the observed agent has the same goals and tactics as the
executed agent, thereby using the same behavior hierarchy, knowledge, and rules
of the executed agent. Laird [39] maintains the observed agent’s state as a sub-
state of the executed agent, which means that the prediction of the observed agent
is not done simultaneously with the executed agent performing. On the contrary
RESC maintains a separated state of the observed agent; thus, the execution and
the recognition can be performed simultaneously corresponding to the Mirroring

technique.
Laird [39] predicts the observed agent just in case the executed agent will

use this prediction. This intention recognition time performing corresponds to a
dynamic frequency function that depends on self-cost. On the contrary RESC per-
forms the intention recognition process all the time, corresponding to a constant
high frequency.

Laird [39] stops prediction when there are a number of hypotheses. By not
confronting multiple hypotheses, it reduces the computational complexity. RESC
commits to a single hypothesis at a time; on one hand, it reduces the computational
complexity by maintaining heuristics to commit a single hypothesis, but, on the
other hand does backtracking on failure to commit another hypothesis and does
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not stop, as Anticipation. In contrast to the two previous works, our Mirroring

architecture maintains multiple hypotheses for the current state;
Unlike Laird [39] and RESC [60] which perform intention recognition of one

agent at a time, our Mirroring architecture deals with multi-agents recognition. In
addition it maintains a recipe for each observed agent.

14



Chapter 3

Temporal Monitoring Selectivity

In this chapter we present our approach for reducing the computational load which
is added when integrating the recognition process into a complete agent system
that also caries out tasks while monitoring. This approach focuses on temporal
monitoring selectivity, i.e. reducing the load by selecting times in which to trig-
ger the recognition process. Section 3.1 discusses our approach of sampling the
the observation stream, instead of triggering the process in every system cycle.
Section 3.2 discusses constant sampling rate and our method to find the optimal
static sampling rate. Section 3.3 discusses dynamic sampling method and the sug-
gested heuristics for dynamically changing the sampling rates in order to reduce
the recognition load. Section 3.4 discusses our approach when the integrated sys-
tem is required to recognized multiple agents.

Hereafter this work uses the following notations: An agent architecture com-
prising the intention recognition capability will be termed integrated intention
recognition architecture (IIRA). The primary agent that executes the intention
recognition will be termed executer agent. The recognized agent will be termed
observed agent.

3.1 Monitoring as sampling

A plan recognition algorithm involves a mapping from the observed action se-
quence into some plan representation that identifies the goal of the plan. Since
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there may be multiple plans (i.e., hypotheses) available to explain the observa-
tions, the recognition algorithm yields a list of potential hypotheses. One of the
algorithm’s key challenge is to disambiguate among those competing hypotheses
to the degree possible. In principle, some degree of ambiguity is inherent and
cannot be eliminated without an oracle which selects the correct hypothesis out of
the set.

A block diagram of an IIRA which contains a recognition process is shown
in Figure 3.1. The recognition process consists of collecting the observations by
sensors and calling the recognition algorithm with those observations. The recog-
nition process returns the system a list of hypotheses (depending on the recogni-
tion algorithm the hypotheses list might be ranked, e.g., probabilistically). The
system triggers the recognition process with every system cycle.

Figure 3.1: A block diagram of an IIRA using system cycle.

The algorithm utilized by the IIRA to trigger the recognition process is pre-
sented in the Algorithm 1. The IIRA calls the Main routine every system cycle.
An IIRA needs to implement a RecognitionProcess routine which is called by the
Main routine ( Main routine, line 1 in the Algorithm 1).
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Algorithm 1 Triggering recognition process with every system cycle
– Main routine

1: m_hypothesesList ← RecognitionProcess()

– RecognitionProcess routine
1: m_observations ← CollectsObservations()
2: hypothesesList ← Activates(Algorithm(m_observations))
3: return hypothesesList

Our objective is to reduce the computational load, hereafter Recognition Load,
resulting from the recognition process which is integrated in the system. To be
able to measure the Recognition Load, we suggest measuring the load per unit
time that the recognition process consumes. Measuring the load of the recogni-
tion process can be done differently depending on the system implementation, the
recognition algorithm, and on the architecture capability to provide information
about the system resources used during run time. For the purpose of being inde-
pendent of a particular implementation, we measure load based on the size of the
hypotheses list.

The size of the hypotheses list at each time point expresses the recognition
load at a specific time point. Therefore, we suggest that a function of the size
of the hypotheses list, can be a good indication of the recognition load of the
entire process. This relies on an assumption, that the computational load of the
recognition algorithm which involved in the recognition process is affected by the
number of the hypotheses it maintains. Several algorithms fulfill this assumption
[22, 7, 34].

We propose a formulation for the size of hypotheses list (as a measure of the
recognition load). Lets h : N → N be the hypotheses number function such that
h[n] is the number of hypotheses maintained by the IIRA for the observed agent
at time n, where: n ∈ [0..N ] denotes the time index and N is the total time used
up by the recognition algorithm for the agent.

Suppose an observed agent chooses one of five different waypoints to head
towards, that are positioned along a road. The executer agent, observing the other
agent’s movements, wants to know which waypoint the observed agent runs to-
ward. The executer agent executes an intention recognition process. The hy-
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potheses number function of the recognition process starts with five maintained
hypotheses (one for each possible waypoint) and should decreased over time and
finally converges to one (the waypoint the observed agent chose to run to), as is
shown in Figure 3.2.

Figure 3.2: Calling recognition process every system cycle.

Activating recognition process at discrete time points by the IIRA implies a
specific time lattice, consisting of the recognition activation times for observed
agent. Let L = [n1, n2, ..., nJ ] be the time lattice of the agent, where nj ∈ N, j ∈
{1, ..., J} are the time points when the recognition process monitors the observed
agent.

In the example shown in Figure 3.2 the IIRA activates the recognition process
every 1 seconds, therefore the relative time lattice is L = [0, 1, 2, ..., 10], where
j ∈ {1, 2, .., 11} and J = 11. At time 2 the recognition process handles 4 hy-
potheses; at time 6 it handles 2 hypotheses.

The area under that function expresses the load of the recognition process over
run time. Let H be the average number of hypotheses, which the recognition pro-
cess maintains over the scenario run time. The value of H can be easily calculated
from the hypotheses number function, dividing the number of the maintained hy-
potheses over time by the scenario runtime as follows:
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H =

∑J
j=1 h[L[j]]

N
(3.1)

Where:
h is the hypotheses number function of the observed agent.
J is the last monitoring time of the observed agent.
N is the total run time of the observed agent.

Definition 3.1.1. The Recognition Load of the observed agent is defined as:

RecognitionLoad = H (3.2)

In the example shown in Figure 3.2 the recognition process handles 30 hy-
potheses over 11 seconds. Hence, we can say that the Recognition Load is 2.727

hypotheses per second.
Our objective is to reduce the Recognition Load. One way is to reduce the

amplitude of the hypotheses number function. Thus, reducing the size of the hy-
potheses list which is yielded by the recognition algorithm. RESC [60] and RESL
[34] are examples of IIRA which use that way of reduction the number of hy-
potheses. They eliminate all hypotheses but one or two (which are selected based
on hypothesis-ranking heuristics).

We allow any recognition technique to be used, such that all available knowl-
edge is brought to bear. Even so, in the general case, the set of remaining hypothe-
ses will include more than one hypothesis. Thus in the general case, we require
that the recognition algorithm be minimal and complete in that at least one of the
hypotheses is always the correct one [34, Definition 3].

Definition 3.1.2. Given an observed agent A and any behavior B that may be

executed by A, a complete recognition algorithm is a recognition algorithm which

guarantees to include the correct hypothesis B in the set of hypotheses referred to

A.

Definition 3.1.3. Given a set of hypotheses H referred to any observed agent A,

a minimal complete recognition algorithm is a complete recognition algorithm

which cannot eliminate any hypothesis from H unless it use an oracle.
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Under these requirements, the following theorem holds.

Theorem 3.1.4. Eliminating an hypothesis from the potential hypotheses list elim-

inates the completeness of the recognition system.

Proof. We assume that the IIRA has brought to bear any knowledge of the future
behavior of the observed agent. Thus, there is no guarantee that one of the elim-
inated hypotheses is not the correct hypothesis. Therefore the set of hypotheses
may fail to include the correct hypothesis.

Note that the requirement of completeness is critical. If the system builder
allows for incomplete recognition, then a simple solution to the recognition load
issue would be to always select a single hypothesis and discard the rest.

Corollary 3.1.5. A minimal complete recognition system, cannot reduce the am-

plitude of the graph of hypotheses number function, in order to reduce the area

under it.

Since we cannot hope to reduce the amplitude of the hypotheses number func-

tion, we take an alternative approach focusing on the frequency in which the IIRA
calls the recognition process.

Theorem 3.1.6. Activating the recognition process with the system highest fre-

quency (every system cycle), consumes the maximal Recognition Load.

Proof. Any activation of the recognition process consumes some resources from
the system for the sake of collecting observations, feeding them into the recog-
nition algorithm, and executing it. Using a triggering rate which is less than the
highest triggering rate (i.e., system cycle) can only decrease the number of activa-
tions through run time, hence, can only decrease the resource consumption.

By using a smaller frequency from the system cycle, for activating the recog-
nition process, the number of times of handling the observations, decreases, and
therefore, the area under the graph of the hypotheses number function decreases
as well. In other words, the Recognition Load on the system is reduced.

Suppose we have the same scenario as demonstrate in Figure 3.2 but now the
IIRA activates the recognition process every 2 seconds instead of every second.
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The relative time lattice is L1 = [0, 2, 4, 6, 8, 10], j ∈ {1, 2, .., 6} and J1 = 6,
as shown in Figure 3.3. At time 3 no hypothesis was handled. At time 4 the
recognition process handles 3 hypotheses. Over 11 seconds the IIRA handles
16 hypotheses. Thus, the Recognition Load of the recognition process is 1.454

hypotheses per second, while it was 2.727 hypotheses per second when using the
highest system frequency.

Decreasing the frequency of calling the recognition process reduces the amount
of resources consumes from the system. This reduction in resource usage may po-
tentially reduce the system’s accuracy, as new observations may be ignored, if they
take place when the recognition process is not triggered. We discuss this accuracy
later in this chapter.

Figure 3.3: Calling recognition process every 2 seconds.

By using a smaller frequency than the system cycle, for triggering the recog-
nition process, we are in fact proposing a sampling approach to the recognition
process. The sampling frequency will be expressed by the Sampling Interval,
hereafter Ft, the number of seconds between two calls of the recognition process
by the IIRA. Let F ∗

t be the Minimal Sampling Interval, hence, when the Ft equals
to the system cycle. Figure 3.4 presents a block diagram of an IIRA which triggers
the process not with every system cycle, but every Ft.

The algorithm utilized by the IIRA to trigger the recognition process is pre-
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Figure 3.4: A block diagram of an IIRA using sampling interval.

sented in Algorithm 2. In order for an IIRA to use a sampling interval, Ft should
be initialized and maintained as well as duration variable which holds the time
from the last call for the recognition process. The IIRA calls the Main routine
every system cycle. If the time exceeds the Ft, the system calls the recognition
process again (Main routine, lines 1–2 at Algorithm 2).

When using smaller and smaller frequency we can reduce more and more
the Recognition Load, but then we may hurt the recognition results, by missing
potential hypotheses which could be returned from the recognition algorithm if
we were to call it with the missed observations.

This case is demonstrated in Figure 3.5. Suppose we have the same scenario
as demonstrate in Figure 3.2 but now the IIRA calls the recognition process every
3 seconds instead of every second. Because of the smaller frequency the IIRA
misses the third time point, where the recognition process should returns 4 hy-
potheses, as can see in Figure 3.2 at time point 2.

We assume that the system’s highest rate does not allow an observed agent to
change its behavior without being observed. Under this assumption, the following
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Algorithm 2 Triggering recognition process with sampling interval
– Initialization routine

1: m_previousTrigger ← clock()
2: Ft ← SamplingInterval

– Main routine
1: duration ← clock()−m_previousTrigger
2: if duration > Ft then
3: m_hypothesesList ← RecognitionProcess()
4: m_previousTrigger ← clock()

– RecognitionProcess routine
1: m_observations ← CollectsObservations()
2: hypothesesList ← Activates(Algorithm(m_observations))
3: return hypothesesList

theorem holds.

Theorem 3.1.7. When using the highest system rate to activate the recognition

process the recognition results is complete.

Proof. When using a sampling rate which is less than the maximal one, there is
a chance to miss a change in the observed agent behavior, i.e., to eliminate an
hypothesis. Based on Theorem 3.1.4, the result would be incomplete.

There is an ideal sampling interval in which the amount of resources con-
sumes from the IIRA is minimal while the recognition performance are maximally
achieved. This ideal sampling interval triggers the recognition process with every
change in the observed agent’s intentions, i.e., with every change in the hypothe-
ses list.

Figure 3.6 shows the hypotheses number function of the related ideal sam-
pling interval for the one which is shown in Figure 3.2. Only five observations
are required to yield the same information contained in the first hypotheses num-

ber function. In the case shown in Figure 3.6, the IIRA handles 15 hypotheses
over 11 seconds, thus, the Recognition Load of the recognition process is 1.363

hypotheses per second. This sampling achieves minimal average load, while still
capturing all the changes points, thus no reduction in the quality of the recognition
results.
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Figure 3.5: Calling recognition process every 3 seconds.

To be able to evaluate a sampling interval against the highest sampling rate,
we need to measure recognition quality, by measuring Recognition Error. A good
sampling interval is the one in which its performance approximates the highest
sampling rate in terms of error, but reduces the computational load. The Recog-

nition Error parameter represents how much the result of a sample is close to one
achieved with the highest sampling rate. When the results are close, the Recogni-

tion Error of such a process should be close to zero.
An ideal recognition process recognizes all the observed agent’s intentions,

all the changes in the hypotheses list, ideally, at their changed time occurrences.
Thus, two components must be evaluated and combined in measuring Recogni-

tion Error: One expresses the quality of the timing of the recognition process
(how quickly does it recognize the changes); the other expresses the sensitivity to
changes of the recognition process (does it recognize all the changes?).

We propose a practical common way to evaluate the Recognition Error param-
eter of a recognition process sample, by measuring the MSE (Mean Squared Error)
between two hypotheses number function: One representing the evaluated sample
and the other representing the system’s highest sampling rate of the recognition
process. The measured error expresses differences in time and the magnitude di-
mensions of the two hypotheses number function.
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Figure 3.6: The ideal sampling interval of the example shown in Figure 3.2.

But how can we compare two samples each with a different lattice of time
points?

Assumption 3.1.8. Between two activations of the recognition process we assume

that the IIRA considers the last returned hypotheses list as the current correct list.

Hence, the current hypotheses list related to the hypotheses number function, at

the last time point.

Based on the above assumption we use the Zero-Order-Hold (ZOH) interpo-
lation of the hypotheses number function to expand the function over a full time
points lattice (Figure 3.7). Let ZOH(h[n]) be the Zero-Order-Hold (ZOH) inter-
polation of the hypotheses number function, defined as follows:

ZOH(h[n]) =
J−1∑
j=1

h[L[j]](U [n−L[j]]−U [n−L[j−1]])+h[L[J ]](U [n−L[J ]]−U [n−N ])

(3.3)
Where:

U [n− n0] =





1 if n− n0 ≥ 0,

0 otherwise.
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(a) An example of h of a sampling.

(b) ZOH of the example of h.

Figure 3.7: An example for h[n] and its related ZOH(h[n]).
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Let ZOH(h∗[n]) denote the ZOH of the hypotheses number function when the
system uses its highest sampling rate to activate the recognition process.

Based on this, we can now compare two hypotheses number function using
their ZOH interpolation.

Definition 3.1.9. Let us define the Recognition Error to be:

E =
D

2
(h∗[n], h[n])

N
(3.4)

Where:

D(h∗[n], h[n]) = ‖ZOH(h∗[n]), ZOH(h[n])‖2 =

√√√√
N∑

n=1

(ZOH(h∗[n])− ZOH(h[n]))2

(3.5)
h∗[n] is the hypotheses number function when the system uses
its highest sampling rate
h[n] is the hypotheses number function when the system uses
evaluated sampling rate
N is the total time period of the signals

According to definitions of ZOH and Recognition Error which is defined by
Equation 3.4, Figure 3.8 demonstrates the way of evaluate a sampling interval
against the highest system sampling rate. Sub-figure 3.8(a) presents the ZOH of
the hypotheses number function of a recognition process with system cycle rate (2
seconds). Sub-figure 3.8(b) presents the hypotheses number function of a recog-
nition process with 8 seconds sampling interval. Sub-figure 3.8(c) presents the
ZOH of the hypotheses number function as it shown in Sub-figure 3.8(b). Finally,
Sub-figure 3.8(d) presents the differences between the two ZOH of samplings.
The Recognition Error is easily calculated and equals to 2.2.

We now turn to describing the sampling which is performed just when a
change in the observed agent’s intention occurs, resulting in either a change in
the size or contents of the hypotheses list. On one hand this sampling responds
to all changes of the agent’s intention. On the other hand, this process is com-
putationally efficient. This sampling signal is called hereafter: The Changing
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(a) ZOH(h∗). (b) h of 8-rate sampling.

(c) ZOH(h) of 8-rate sampling. (d) ZOH(h∗)-ZOH(h) (notice change in
y-axis range).

Figure 3.8: An example for calculating a Recognition Error.
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Sampling Signal.

(a) ZOH(h∗). (b) h of Changing Sampling Signal.

(c) ZOH of Changing Sampling Signal. (d) ZOH(h∗)-ZOH(h).

Figure 3.9: Recognition Error of the Changing Sampling Signal.

To be able to prove that Changing Sampling Signal is the ideal sampling sig-
nal, we assume:

Assumption 3.1.10. A change in the contents of the hypotheses list, as well as a

change in the size of the list are reflected by the Changing Sampling Signal. For

simplicity, our examples for Changing Sampling Signal, only include changes in

the size of the hypotheses list.

Theorem 3.1.11. The Changing Sampling Signal has an ideal sampling rate.

Proof. Assume for contradiction that the Changing Sampling Signal does not
have the ideal sampling rate. Hence, at least one of the following cases occurs:

• Case 1: The Changing Sampling Signal does not achieve the maximal recog-
nition results, as the system highest sampling signal achieves. Based on the
definition, the Changing Sampling Signal detects all the changes as they
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occur when using the highest system sampling rate. The ZOH of an hy-

potheses number function is an interpolation which keeps on the previous
value until the value is changed, thus the ZOH signal is changed just at the
changed points of the hypotheses number function. The hypotheses number

function of the Changing Sampling Signal includes only the changed points
of the highest sampling signal, thus the related ZOH performs the same
ZOH of the highest sampling signal. According to Equations 3.4 and 3.5
the distance between two identical ZOH is zero, hence, the Recognition Er-

ror of the Changing Sampling Signal is equal to zero. Thus, the Changing

Sampling Signal achieves the same recognition results as the highest sys-
tem sampling rate does, which performs the maximal outcomes, according
to Theorem 3.1.7.

• Case 2: Assume for contradiction that the Changing Sampling Signal does
not consumes minimal resources. Hence, there is another sampling signal,
S’, which utilizes minimal resources with the same recognition results. Its
relative hypotheses number function, h[n], has a reduction in either the am-
plitude (i.e., S’ results in a smaller number of hypotheses in at least one time
point) or it triggers the recognition process at different times (and possibly
less times).

In the case of reduction in the amplitude, Corollary 3.1.5, implies that the
system is not minimally complete, hence this case is impossible.

In the case of different sampling times, there exists at least one time point
n0 which is different between S’ and the Changing Sampling Signal. For
n0, either it misses a change in the observed agent’s intention (and therefore
its recognition performance is less than the Changing Sampling Signal), or
n0 does not express a change in the agent’s intention, hence, this sample is
a redundant one and can be thrown. If the sample is thrown, its means that
the system has a prior knowledge that this sample is redundant compared to
the Changing Sampling Signal. Since we assume that our system does not
have a prior knowledge, this is also impossible.

Therefor, the Changing Sampling Signal has the ideal sampling rate.
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We cannot sample the recognition process with the ideal sampling rate because
we cannot predict when exactly the number of the potential hypotheses might be
changed. Thus, in the next sections we present methods to approximate the ideal
sampling rate.

3.2 Fixed sampling interval

In general, there is no way to know the Changing Sampling Signal because the
executer cannot predict the time points the observed agent might change its plans.
Therefore, we look for methods to approximate the ideal sampling rate. At this
section we will discuss methods to approximate the ideal sampling rate when
using fixed sampling rates. A fixed sampling rate means using a constant rate of
recognition.

As we defined already, Ft stand for the sampling interval (in seconds). Ft

is constant, when using fixed sampling interval. Thus the recognition process is
triggered every pre-determined interval. Where Ft = F ∗

t the system then uses the
system highest rate sampling and is essentially equivalent to RESL [34], which
maintains knowledge of all individual hypotheses, for all agents, at all times.

By determining the sampling interval parameter, the time lattice of a recogni-
tion process can be controlled. A block diagram of such an IIRA which triggers
the recognition process every fixed sampling interval is shown in Figure 3.10. The
algorithm utilized by the IIRA to trigger the recognition process is identical to the
one which is presented in Algorithm 2.

As it was shown in the previous section it is obvious that when a system us-
ing a smaller sampling rate than its system highest sampling rate the amount of
resources consumes from the system is decreased, though possibly at the cost of
quality (recognition results). Using any smaller sampling rate (than the system
cycle) decreases the amount of resources.

We want to find an optimal fixed sampling interval according to recognition
performance and available system resources. To do this, we present an analytic
model of the IIRA when using fixed sampling rates. The model estimates two sys-
tem variables. The first one is the computational load resulting from activating the
recognition process (the Recognition Load, Equation 3.2). In addition, our objec-
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Figure 3.10: A block diagram of an IIRA using fixed sampling interval.

tive is not just to decrease the Recognition Load but to decrease it while satisfying
the recognition quality as a system requirement. Hence, the second variable is the
Recognition Error measure (Equation 3.4). After we have a models for Recogni-

tion Load and Recognition Error as functions of fixed sampling interval, we can
analytically find the fixed sampling interval that achieves the optimal performance
for the two system criteria as required from the system.

This section deals with fixed sampling interval, therefore, the primal parameter
of the model that affects the Recognition Load and the Recognition Error is the
time between two consequent samples. Two theoretic models for the Recognition

Load and for the Recognition Error are discussed in the following subsections.

3.2.1 Estimated Recognition Load model for the fixed sampling
interval

The objective of the Temporal Monitoring Selectivity approach is to reduce the
computational load, Recognition Load, consumed from the agent computational
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resources (Computational Load) for the recognition process:

Computational Load = Execution Load + Recognition Load (3.6)

We suggest the following analytic model for estimating of Recognition Load.
We use the widehat notation to distinguish the estimation model from the value
that is measured by Equation 3.2. The model is calculated as a function of the
fixed sampling interval:

Estimated Recognition Load = R̂L =
r

Ft

(3.7)

Where:
Computational Load is the total load on the executer
Ft stands for the sampling interval
r stands for the computational load generated by the recognition
process.

An executer agent consumes Computational Load from the computer at ev-
ery time unit. This load is produced by two loading sources: the Execution

Load, which is the computational load generated by the execution process of the
agent, and the Recognition Load, which is the computational load generated by
the recognition process of the agent. According to our approach the recognition
process is no longer triggered at every system time unit, but at a fixed sampling
interval. Therefore, the computational load per time unit, resulted by the recogni-
tion process, can be calculated as its computational load divided by the sampling
interval, hence r

Ft
.

Equations 3.6 and 3.7, imply that the Estimated Recognition Load vanishes
when the sampling interval approaches infinity and the Computational Load con-
verges to the Execution Load.
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3.2.2 Estimated Recognition Error model for the fixed sampling
interval of a linear decreasing signal

We now turn to defining an analytic model for the Recognition Error imposed by
applying a fixed sampling interval. Evidently, the fixed sampling interval affects
the data in a way similar to the downsampling operator in signal processing, such
as in the Nyquist and Shannon theorems (signal processing techniques that are
described in [47]).

However, utilizing signal processing techniques is highly dependent on sev-
eral restrictive assumptions that are not always correct in our case. Nyquist and
Shannon theorems were originally stated on continuous signals. To avoid mis-
leading implementation of these techniques, one should assume that the number
of hypotheses is large enough to neglect the quantization effect, in other words,
that the signal is smooth.

Since the list of hypotheses, which is returned by the recognition algorithm,
cannot be assumed to include a large number of hypotheses (the recognition al-
gorithm is minimal complete). We do not focus on smooth signals. Further in-
vestigation into the smooth case is beyond the scope of this work, but it appears
to be a promising direction to exploit downsampling error analysis techniques for
monitoring optimization.

For a small number of hypotheses signal (which is our case), a better approx-
imation can be obtained when a number of typical characteristics are defined.
Such characteristics are: A steady state, a linear decreasing signal and a linear
increasing signal. When dealing with few hypotheses, most of the signals can be
approximated to a degree by a combination of these three characteristics. The first
characteristic is degenerate and has a trivial solution of no error no matter what
the sampling interval is. The second and the third characteristics are analogous,
and entail the same model derivation. We therefore present a model for one of
these.

We now discuss a simplified signal case, of a linear decreasing characteris-
tic of the hypotheses number function. In this subsection an analytical model for
the linear decreasing signal is presented. This model is divided into two parts:
One is when the sampling interval is larger then the time between two consequent
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changes in the number of hypotheses, and one is when the sampling interval is
strictly smaller then the time between two consequent changes in the number of
hypotheses. We show in Section 5.2.2 that this model can also be an approxima-
tion for a non-linear decreasing signal.

A linear decreasing signal is the form describing a linear decreasing function
of the number of hypotheses over time. An example of a linear decreasing signal is
shown in Figure 3.11. The signal starts with 6 hypotheses and every four seconds
the number of hypotheses is decreased by one. The linear signal contains six
changes in its hypotheses number over 24 seconds, Therefore the width of each
change is 24

6
= 4 second.

Figure 3.11: An example of a linear decreasing signal.

In order to develop the error model for the linear decreasing signal, several
parameters should be defined:

• Ft denotes the sampling interval, the number of time units between conse-
quent samples.

• Ct denotes the average of time units between changes (how fast the signal
changes).

• N denotes the total time of the signal.
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• H denotes the total number of hypotheses changes over N .

• k = Ft

Ct
denotes a normalized sampling interval.

• φ denotes the signal phase (see below).

Clearly, in a linear decreasing scenario Ct can be calculated according to:

Ct =
N

H
(3.8)

Substituting 3.8 in the definition of k yields:

k =
Ft

Ct

=
FtH

N
(3.9)

When analyzing a signal and its relative sampled signals the phase term φ

must be taken into consideration. There is no absolute time at which all the sig-
nals start, therefor the phase expresses the associated starting point of each of the
signals. In most cases the phase is measured from the starting point of a reference
signal. In our work the reference signal is chosen to be the one that was generated
with the highest system rate.

Two separate linear models are described: One for when the sampling interval
Ft is higher than the time between two consequent changes in the number of
hypotheses Ct (k ≥ 1); and one for when the sampling interval is strictly smaller
than the time between two consequent changes in the number of hypotheses (k <

1).

3.2.2.1 The k ≥ 1 case

As aforesaid, in this section we deal with linear decreasing signals. For intuition
purpose, in the following examples we assume a signal that is decreased by one
hypothesis every one second. Figures 3.12 to 3.14 display sampled signals with
different sampling intervals. In each of the figures three curves are plotted. The
curve with the triangle points depicts sampling with phase φ = 0. The curve with
the square points depicts sampling with phase φ = 0.333. The curve with the
diamond points depicts sampling with phase φ = 0.666.
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In this work, the MSE was chosen for calculating the error between two signals
(Equation 3.4). It is calculated by multiplying the squares of the differences by
the time period over which the difference lasts, and normalizing by dividing the
result by the time period of the signals.

Figure 3.12 shows the sampled signal when sampling the signal with k = 1.
As can be seen in Figure 3.12 the error is affected only by the difference in phase
and is equal to E = 12φ

1
. Figure 3.13 shows the sampled signal when sampling the

Figure 3.12: An example of a sampled signal with k=1.

signal with k = 2. As can be seen in Figure 3.13 the error is E = 12+22φ
2

the first
component in the numerator results from the sampling error, the second results
from the phase error and the denominator expresses the period of time over which
the error is calculated.
Figure 3.14 shows the sampled signal for k = 3 and the error is E = (12+22)+32φ

3
.

The widehat notation is used to distinguish the estimation model from the
value that is measured by Equation 3.4.

Theorem 3.2.1. A general equation for estimating the Recognition Error as a

functions of k and φ for the k ≥ 1 case is:
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Figure 3.13: An example of a sampled signal with k=2.

Figure 3.14: An example of a sampled signal with k=3.
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EstimatedRecognitionError = R̂E(k, φ) = E0 +
2k2 − 3k + 1

6
+ kφ (3.10)

Where:

k ≥ 1

0 ≤ φ ≤ 1.

E0 is the initial error.

Proof. The Estimated Recognition Error is composed of three parts: One results
from a sampling error, one results from a phase error, and one results from initial
conditions. In this case k ≥ 1 ⇒ Ct ≤ Ft, therefore, sampling causes missing
changes. The number of missing changes is depend on k and equals to k − 1. For
example, in Figure 3.14 k is 3 and the number of missing changes is 2.

The square of the error imposed by one missing change is 12×Ct. The square
of the error imposed by two missing changes is 22 × Ct, and the square of the
error imposed by the n-th missing change is n2 × Ct. The sum of the squares of
the errors over one sample is

∑k−1
n=1n

2 × Ct, and the MSE is therefore:

∑k−1
n=1n

2 × Ct

Ft

=

∑k−1
n=1n

2

k
(3.11)

Since:

k−1∑
n=1

n2 =
k∑

n=1

n2 − k2 =
k(k + 1)(2k + 1)

6
− k2 =

k(2k2 − 3k + 1)

6
(3.12)

the sampling error is: 2k2−3k+1
6

.
The second error component resulting from the phase error, contributes an

error of k that lasts φ seconds. Thus, the MSE of the phase is : k2φ
k

= kφ.
The third error component is the constant E0 resulting from the initial con-

dition of an IIRA which has a minimal sampling interval Ft
∗, and will therefore

vary between systems. When the system uses its minimal sampling interval the
Estimated Recognition Error is expected to be zero, i.e., R̂E|Ft=Ft

∗ = 0. In order
to meet this requirement, and since the sampling error component for Ft

∗ is zero,
E0 needs to be −kφ.
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Figure 3.15: The Estimated Recognition Error model as a function of k ≥ 1.

A graph describing the sampling error for k ≥ 1 (the second term of Equation
3.10) is shown in Figure 3.15. The Estimated Recognition Error is polynomial in
k, hence, reducing the Recognition Load by increasing k by a factor 2, increases
the Estimated Recognition Error by factor of 4. That trade-off must be carefully
considered by the system in the light of its cost.

3.2.2.2 The k < 1 case

Theorem 3.2.2. When k < 1, the phase is in range of [0, k].

Proof. When k = Ft

Ct
< 1 ⇒ Ft < Ct. Suppose that a change occurs at time τ0

and the last sampling before that change occurs at time τ . The phase between the
signals can be either one of the following cases:

• τ0 − τ = k, hence the next sampling will occur at time τ + k = τ0, when
the change occurs, therefore φ = 0.

• τ0 − τ = ϕ, where ϕ < k. k = ϕ + (k − ϕ) is always correct. The next
sampling will occur at time τ +k = τ +ϕ+(k−ϕ) = τ0+(k−ϕ) < τ0+k,
and therefore φ < k.

• τ0 − τ = 0, hence the next sampling will occur at time τ0 + k, k times after
the change occur, therefore φ = k.
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Figure 3.16 shows the three phase’s ranges described above. The curve with
the triangle points demonstrates sampling with φ = 0. The curve with diamond
points demonstrates sampling with φ = k and the curve with the square points
demonstrates sampling with 0 < φ < k.

Figure 3.16: An example of a sampled signal with k < 1.

Theorem 3.2.3. When the time between changes, in a signal, is much greater than

the sampling interval, the sampled signal does not miss a change.

Proof. As was shown above, for k < 1 the phase between the sampled signal and
its signal is φε[0, k]. Hence, the next sample will occur in at most k seconds after
the change. Since k < 1, Ct > Ft, and the next sample is taken before another
change takes place. In other words the sampled signal does not miss a change.

Based on Theorem 3.2.3, the Estimated Recognition Error is only affected by
the phase error and the initial condition of an IIRA which has a minimal sampling
interval. For intuition purpose, in the following example we assume a signal that
is decreased by one hypothesis every one second. The phase error contributes
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differences value which equals to 1 (hence, the 12 in the numerator), lasts φ sec-
onds and occurs once in a change, which lasts one second (hence, the 1 in the
denominator). Therefore, the Estimated Recognition Error model is reduced to:

Estimated Recognition Error = R̂E(φ) = E0 +
12φ

1
= E0 + φ (3.13)

Where
k < 1

0 ≤ φ ≤ k

E0 is the initial error.

In order to meet the requirement that R̂E|Ft=Ft
∗ = 0, E0 needs to be −φ.

Assumption 3.2.4. The phase φ is uniformly distributed in its range [0, k]. The

intuition behind the assumption is that there is no likely value for φ, since the

starting point of the signal only depends on an arbitrary time when the recognition

process starts. Therefore the averaged value of the phase is φ = k−0
2

= k
2
.

We believe that the average phase error as function of k is a good error model
for the linear decreasing signal (for the k < 1 case). The estimated error model
for the linear decreasing signal as a function of k is:

Estimated Recognition Error = R̂E(k) = E0 + φ = E0 +
k

2
(3.14)

Where:
k < 1

E0 is the initial error

In order to meet the requirement R̂E|Ft=Ft
∗ = 0, E0 needs to be −k

2
.

A graph describing the recognition error as a function of k < 1 is shown in
Figure 3.17. In this example, the error model represents a system with F ∗

t = 2

seconds and the linear decreasing signal is characterized by H = 9 and N = 136.
Therefore, E0 = −k

2
|Ft

∗ = −Ft
∗H

2N
= − 2×9

2×136
= −0.066. We can see in Figure
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3.17 that the Estimated Recognition Error is linear in k. It equals zero when using
the minimal k.

Figure 3.17: The Estimated Recognition Error model as a function of k < 1.

Substituting k = 1 in Equation 3.10 the error is: R̂E = E0 + 2k2−3k+1
6

+kφ =

E0 + 2−3+1
6

+ φ = E0 + φ. Substituting k = 1 in Equation 3.14 the error is:
R̂E = E0 + φ. Therefore the two models are continuous at k = 1.

3.2.3 Estimated models for the fixed sampling interval of a non-
linear decreasing signal

Since there is no way to force a linear tendency in the behavior of the observed
agent, a more suitable way to describe the behavior of the observed agent for a
decreasing signal scenario is by the monotonic decreasing signal or by the non-
monotonic decreasing signal.

A monotonic decreasing signal is a signal whose hypotheses number function

always decreases but not necessarily at a constant rate. An example for such a
signal is shown in Figure 3.18. The first decrease occurs after two seconds, and
the second decrease occurs after four additional seconds.

A non-monotonic signal is a signal where at the end of the run time its number
of hypotheses is less than it was at the beginning of the run, but its hypotheses
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Figure 3.18: An example of a monotonic decreasing signal.

number function does not always decrease over all the run time. An example
for such a signal is shown in Figure 3.19. As can be seen, at the first change
the number of the hypotheses is reduced from 5 to 3 but at the second change
the number is going up from 3 to 4. At the end of the run time the number of
hypotheses is 2, less than at the beginning, which starts with 5 hypotheses.

Our objective is to try out the models (described in Sections 3.2.1 and 3.2.2)
for the monotonic and non-monotonic decreasing hypotheses number function sig-
nals. We empirically show in Sections 5.2.1 and 5.2.2 that these models in some
cases can be useful as an approximation for these signal’s performance and in
some cases can be useful as a lower bound for their performance.

3.3 Dynamic sampling

The hypotheses number function of the recognition process can be thought of as
a stochastic signal. As the observed agent changes its behavior there is no way
to perform an ideal sampling rate for a stochastic signal without having a prior
knowledge of the future behavior of the observed agent.

A common approach to sample a stochastic signal is using heuristics [6, 63,
3, 45, 46, 5, 4]. In this section we present heuristics to approximate the ideal
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Figure 3.19: An example of a non-monotonic decreasing signal.

sampling rate in order to reduce the Recognition Load while keeping of a required
Recognition Error. To evaluate the use of the heuristics, their performances are
empirically evaluated and compared to the performances of the fixed sampling
intervals ( Chapter 5.2.3).

Definition 3.3.1. A dynamic sampling method, is one where the sampling interval

Ft varies in time, and can be denoted as Ft[n].

A block diagram of an IIRA which triggers the recognition process according
to a dynamic sampling interval is shown in Figure 3.20. As can be seen, the
sampling interval is dynamically changed according to new knowledge derived
from the recognition process.

The algorithm utilized by the IIRA to trigger the recognition process is pre-
sented in Algorithm 3. The IIRA calls the Main routine every system cycle. In
order for the IIRA to use a dynamic sampling interval, an UpdateInterval routine
which returns a new value for the sampling interval should be implemented, as
well as a DynamicFlag which enables the routine. The IIRA calls the UpdateIn-

terval routine upon arrival of new information about the hypotheses list from the
recognition process and if the DynamicFlag is activated (line 4 in the Main routine
in Algorithm 3).

45



Figure 3.20: A block diagram of an IIRA using dynamic sampling interval.

In this section two fundamental heuristics which dynamically change the Ft

will be suggested. Both are based on the entropy of the hypotheses list and thus
we discuss entropy first.

3.3.1 What is Entropy?

Entropy, borrowed from information theory, is a quantitative measure of variance
in a distribution over categorial data. This can be useful for measuring the uncer-
tainty represented by distribution.

Relying on the Information Theory, we suggest referring to entropy as a mea-
sure of the uncertainty in the observed agent’s intention. The uncertainty is ex-
pressed by the multiplicity in the number of hypotheses which potentially can
be the agent’s state. The size of the hypotheses list, which is maintained by the
recognition process, can be a plausible indication on the current uncertainty level
of the recognition system about an observed agent’s state. Therefore, we suggest
using the entropy of the hypotheses number function for indicating the uncertainty
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Algorithm 3 Triggering recognition process with dynamic interval
– Initialization routine

1: m_previousTrigger ← clock()
2: Ft ← SamplingInterval
3: m_dynamicF lag ← DynamicF lag

– Main routine
1: duration ← clock()−m_previousTrigger
2: if duration > Ft then
3: m_hypothesesList ← RecognitionProcess()
4: if sizeChanged(m_hypothesesList) ∩m_dynamicF lag then
5: Ft ← UpdatesInterval(m_hypothesesList)
6: m_previousTrigger ← clock()

– RecognitionProcess routine
1: m_observations ← CollectsObservations()
2: hypothesesList ← Activates(Algorithm(m_observations))
3: return hypothesesList

– UpdateInterval routine
1: newInterval ← U(hypothesesList)
2: return newInterval

in the agent’s hypothesized state.
Consider a recognition algorithm yielding an hypotheses list with a finite num-

ber of hypotheses 0 ≤ h[n] ≤ H , where h[n] is the value of the hypotheses number

function, expresses the size of the hypotheses list at time unit n, and H is the max-
imal size of the hypotheses number function. The hypotheses list is returned with
an associated probability distribution, P [n] = (p1, p2, ....., ph[n]). The probability
distribution has to satisfy the following properties:

∑i=h[n]
i=1 pi = 1 with pi ≥ 0 ∀i.

According to Shannon’s information measure, the entropy of this state is defined
by:

S(p1, p2, ..., ph[n]) = −
i=h[n]∑
i=1

pilog2(pi) (3.15)

A simple case is when all the potential hypotheses derived by the recognition
algorithm have an equal probability of 1/h[n] as in the case of symbolic recogni-
tion algorithms, such as [7]. In this case, the entropy of the state is:
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S[n] = log2(h[n]) (3.16)

Let Smax be the entropy of the state which yields an hypotheses list with the
maximal size H . A graph of the entropy of the process as a function of list size,
in the case of equal probabilities, is shown in Figure 3.21. The entropy of the
process increases with the number of potential hypotheses.

Figure 3.21: Entropy as a function of the number of hypotheses.

Based on the entropy definition above, we introduce our heuristics in the next
subsections. The sampling interval of the observed agent will be dynamically
changed according to different functions of its hypothesized state’s entropy.

3.3.2 Uncertainty heuristic

The basic idea behind this heuristic is to ease the uncertainty of the agent’s state,
or in other words, to decrease the entropy of the recognition process. In order to
decrease the entropy, we need to increase the sampling rate of the recognition pro-
cess by increasing the amount of resources consumed by the system for the recog-
nition process. Thus this heuristic responds to greater uncertainty (larger number
of hypotheses) by increasing the sampling rate (or decreasing the sampling inter-
val). The intuition is that when uncertainty grows, or the number of hypotheses

48



increases, the sampling rate is increased, to give the agent more chance to reduce
the uncertainty. The relationship between sampling interval and the entropy is
given by:

Fu ∝ 1

S
(3.17)

Where S is the entropy of the state.
We suggest the following function to control Ft during run time:

Fu[n] = (2Smax − 2S[n])F ∗
t + F ∗

t = (H − h[n])F ∗
t + F ∗

t (3.18)

Where:
F ∗

t is the minimal sampling interval of the IIRA
H is the maximal size of the hypotheses list of the scenario
h[n] is the current size of the hypotheses list
S[n] is the current entropy
Smax is the entropy when h[n] = H

When the size of the hypotheses list is maximal, the uncertainty of the agent’s
intention is maximal, hence, the entropy is maximal. As a result, the sampling
interval is set to a minimal value. Upon decreasing the number of hypotheses by
one, the sampling interval is increased by F ∗

t .
We demonstrate this heuristic on a system having F ∗

t = 2 and on the scenario
which is presented in Figure 3.19, thus H = 5. The scenario starts with the maxi-
mal size of hypotheses list, therefore, the sampling interval is set to F ∗

t according
to Equation 3.18: Fu[0] = (H − h[0])F ∗

t + F ∗
t = (5− 5)2 + 2 = 2. The Fu stays

constant until the next change in the size of the list occurs. This change happens
at time point 2 and the number of hypotheses is changed to 3. As a result, Fu is
updated to: Fu[2] = (H − h[2])F ∗

t + F ∗
t = (5 − 3)2 + 2 = 6. At time point 6,

the size of the hypotheses list is changed to 4, therefore, the sampling interval is
updated again accordingly to: Fu[6] = (H − h[6])F ∗

t + F ∗
t = (5 − 4)2 + 2 = 4.

This value holds until time point 11 when another change in the size of the list
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occurs and so on, until the scenario is over.

3.3.3 Load heuristic

The second heuristic stems from the opposite intuition: Here the sampling inter-
val is increased proportionally to the load of the process, in order to allow the
agent to better manage its resources. As the number of hypotheses increases, the
computational load increases and thus the sampling interval should be increased,
in order to reduce the load. The relationship between the sampling interval and
the entropy of the state (S) is:

Fl ∝ S (3.19)

Where S is the entropy of the state.
We suggest the following function for determine Ft during run time:

Fl[n] = 2S[n]F ∗
t = h[n]F ∗

t (3.20)

Where:
F ∗

t is the minimal sampling interval of the IIRA
S[n] is the current entropy
h[n] is the current size of hypotheses list

When the size of the hypotheses list is maximal, the uncertainty of the agent’s
intention is maximal, hence, the load on the agent is maximal. As a result, the
sampling interval is increased. Upon increasing the number of hypotheses by one,
the sampling interval is increased by F ∗

t .
We demonstrate this heuristic on the same system and scenario described

above for the Uncertainty heuristic. The scenario (shown in Figure 3.19) starts
with the maximal number of hypotheses, therefore, the sampling interval accord-
ing to Equation 3.20 is set to: Fl[0] = h[0]F ∗

t = 5×2 = 10. The Fl stays constant
until the next change in the size of the list occurs. This change happens at time
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point 2 and the number of hypotheses is changed to 3. As a result, Fl is updated
to: Fl[2] = h[2]F ∗

t = 3 × 2 = 6. At time point 6, the size of the hypotheses
list is changed to 4, therefore, the sampling interval is updated accordingly to:
Fl[6] = h[6]F ∗

t = 4 × 2 = 8. This value holds until time point 11 when another
change in the size of the list occurs and so on, until the scenario is over.

3.3.4 Combination heuristic

A combination of these heuristics is possible, where U is a function that incorpo-
rates the advantages of both heuristics described above.

Fc ∝ U(Fl, Fu) (3.21)

In this thesis, we examined the following function to determine Fc during run
time:

Fc[n] = max(Fu[n], Fl[n]) (3.22)

We demonstrate this heuristic on the example described above. The scenario
(shown in Figure 3.19) starts with the maximal size of hypotheses list, therefore,
the sampling interval according to Equation 3.22 is set to: Fc[0] = max(Fu[0], Fl[0]) =

max(2, 10) = 10. Fc stays constant until a change in the size of the list occurs.
This change happens at time point 2 and the number of hypotheses is changed to
3. As a result, Fc is updated to: Fu[2] = max(6, 6) = 6. At time point 6, the size
of the hypotheses list is changed to 4, therefore, the sampling interval is updated
to: Fc[6] = max(4, 8) = 8. This value holds until time point 11 when another
change in the size of the list occurs and so on, until the scenario is over.

3.4 Multi-agent recognition

IIRA is often required to recognize not just a single observed agent, but a number
of agents. In general, more than one hypothesized explanation exists for obser-
vations and observed agent may trigger multiple recognition hypotheses. Thus,
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the computational load of a recognition process is exacerbated in the presence of
multiple observed agents, and therefore, it becomes more crucial to reduce the
computational load of the recognition process when dealing with an integrated
multi recognition system. Such a system be called hereafter IIMRA.

In this section we expand our approach of Temporal Monitoring Selectivity for
the recognition of the single agent case (described in Sections 3.1 – 3.3) to the
recognition of the multiple agents case.

In Subsection 3.4.1 we discuss our approach of sampling, instead of trigger-
ing the process in every system cycle for the multi-agent recognition case. In
Subsection 3.4.2 we discuss static sampling rate and our method to find the opti-
mal static sampling rate for the multi-agent recognition case. In Subsection 3.4.3
we discuss dynamic sampling method and the suggested heuristics for dynamic
sampling rates in order to reduce the computational load for the multi-agent recog-
nition case.

3.4.1 Monitoring as sampling

In order to apply our Temporal Monitoring Selectivity approach on multiple ob-
served agents, our IIMRA should maintain multiple recognition processes, a pro-
cess for each observed agent. As a results, the system can decide whose process
is triggered and when, in a separate and independent way.

A block diagram of an IIMRA which contains multiple recognition processes,
one for each observed agent, is shown in Figure 3.22. Each of the recognition
process is implemented in the same way as was presented for the single observed
agent case in Section 3.1. In order to apply the sampling approach, a separate
sampling interval is allocated to each of the processes of the i-th observed agent
and denote by Fti.

Algorithm 4 is utilized by the IIMRA to trigger each of the recognition pro-
cesses. In order for the IIMRA to use a separate sampling interval, Fti should be
maintained for each process as well as durationi variable which holds the time
from the last call for the i-th recognition process. The IIMRA calls the Main rou-
tine every system cycle. If the time exceeds Fti, the system calls the recognition
process again (Main routine, line 2–3 in Algorithm 4).
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Figure 3.22: A block diagram of an IIMRA.

Algorithm 4 Triggering multiple recognition processes with sampling interval
– Initialization routine

1: for all i do
2: m_previousTriggeri ← clock()
3: Fti ← SamplingInterval

– Main routine
1: for all i do
2: durationi ← clock()−m_previousTriggeri

3: if durationi > Fti then
4: m_hypothesesListi ← RecognitionProcess(i)
5: m_previousTriggeri ← clock()

– RecognitionProcess(i) routine
1: m_observations ← CollectsObservations(i)
2: hypothesesList ← Activates(Algorithm(m_observations))
3: return hypothesesList
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Our objective is to reduce the computational load generated by the multiple
recognition processes without downgrading the recognition results. In this part we
present the formulations for Recognition Load and Recognition Error, to evaluate
those two system parameters and to choose the system performance accordingly,
for the multi-agent recognition case. The formulations for the multi-agent recog-
nition case are mostly relying on the single recognition case which is described in
Section 3.1.

The recognition process of the i-th agent provides the system with a list of its
hypotheses. Let hi : N → N be the hypotheses number function such that hi[n]

is the number of hypotheses maintained by the IIMRA for the i-th observed agent
at time n, where n ∈ [0..Ni] denotes the time index and Ni is the total run time
used up by the recognition algorithm for the i-th agent. Let Li = [n1, n2, ..., nJi

]

be the time lattice of the i-th agent, where nj ∈ N, j ∈ {1, ..., Ji} are the time
points when the recognition process monitors the i-th observed agent, clearly,
nJi

≤ Ni ∀ i. Let Hi be the average number of hypotheses, which the recognition
process maintains over the scenario run time for the i-th agent. The value of Hi is
calculated by Equation 3.1 while using hi, Li, and Ni instead of h, L, and N as in
the single case.

Since the executer agent performs I recognition processes each consumes its
computational load, the total computational load consumed from the executer re-
sources for recognition all the observed agents is the accumulated load over all
the I processes.

Definition 3.4.1. The Recognition Load of the IIMRA is therefore:

Recognition Load =
I∑

i=1

Hi (3.23)

Where:

I is the number of the observed agents.

Let Ei denotes the Recognition Error of the i-th observed agent calculated by
Equation 3.4, while using h∗i , hi and Ni instead of h∗, h and N as in the single
case.
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A common way to evaluate a process error is by measuring its MSE (Mean
Squared Error). We consider the multi-agent recognition case as an expanded pro-
cess, therefore we examine what the influence of the number of observed agents
on the error of that process is, by averaging the Recognition Error of all the I

processes.

Definition 3.4.2. The Recognition Error of the IIMRA is:

Recognition Error =

∑I
i=1 Ei

I
(3.24)

Where:

I is the number of the observed agents.

3.4.2 Fixed sampling interval

In this subsection we describe the analytic models of the two system parameters:
The Recognition Load and the Recognition Error in order to find an optimal fixed
sampling interval for the multi-agent recognition case. The models rely on the
models which are presented in Section 3.2 for the single case.

By fixed sampling rate we imply using a constant rate of recognition, thus
Fti is constant ∀ i. In this work we use the same constant value for all i, hence
Fti = Ft ∀ i.

Estimation Recognition Load

Assumption 3.4.3. All the observed agents impose the same Recognition Load,

which is denoted by r.

In case where the above assumption fails to hold, one can use r as the the
maximal Recognition Load of the observed agents deriving the worst case esti-
mation or can use r as the the mean Estimated Recognition Load of the observed
agents deriving the average case estimation. In this work we consider that the
assumption holds valid for the sake of simplicity.
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In recognition algorithms, the executer try to point out the behavior that is most
suitable to its observations from a behavior library. The behavior library includes
all the knowledge the executer has about all the observed agents. Therefore, any
observed agent is recognized against the same comprehensive behavior library
and by the same algorithm. This algorithm does not depend on the identity of the
agent and its intention.

Definition 3.4.4. The estimated Recognition Load model for IIMRA is:

Estimated Recognition Load = R̂L =
I × r

Ft

(3.25)

Where:

Estimated Recognition Load is the computational load which

is generated by all the recognition processes.

Ft stands for the sampling interval

I stands for the number of observed agents

r stands for the computational load generated by the recognition

process for a single agent

Based on assumption 3.4.3, and Equations 3.6 and 3.7 for the single case, each
observed agent adds its relative computational recognition load to the multi-agent
recognition process. We therefore multiply the single Estimated Recognition Load

with the number of the observed agents I .

Estimation Recognition Error
We assume that each scenario of the i-th agent has the same characteristics of
number of hypotheses changes, H , and the same total run time, N . Therefore
each of the i-th agent has the same normalized sampling interval: ki = k = FtH

N
.

Based on the this assumption, R̂Ei the error model of the i-th agent can be cal-
culated in the same way as for the single case. For k ≥ 1 case, R̂Ei is calculated
by Equation 3.10 and for the k < 1 case, R̂Ei is calculated by Equation 3.14.

In order to comply with the definition of the measured Recognition Error of
the multi-agent recognition case as is defined in Definition 3.4.2, we define the
estimated Recognition Error model to be:
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Definition 3.4.5. The estimated Recognition Error model of the IIMRA is:

Estimated Recognition Error = R̂E =

∑I
i=1 R̂Ei

I
(3.26)

Where:

I is the number of the observed agents

3.4.3 Dynamic sampling

Relying on the dynamic sampling method for the single case (Section 3.3) we de-
fine in this section the dynamic sampling method for the multi-agent case. In this
work we use the same heuristics, based on the entropy definition (Section 3.3), for
activating each of the multiple recognition processes. To evaluate the use of these
heuristics for the multi-agent case, their performances are empirically evaluated
and compared to the performances of the fixed sampling intervals (Chapter 5.3.2).

A dynamic sampling method in the IIMRA, is one in which the sampling
interval Fti varies with time and each recognition process of an observed agent is
triggered according to its own Fti.

A block diagram of such an IIMRA which triggers the recognition processes
according to each dynamic sampling interval is shown in Figure 3.23. As can
be seen, each of the sampling interval is dynamically changed according to new
knowledge derived from its related recognition process.

The algorithm utilized by the IIMRA to trigger each of the recognition process
is presented in Algorithm 5. In order for the IIMRA to use a dynamic sampling in-
terval, an UpdateInterval routine which returns a new value for the i-th sampling
interval should be implemented as well as a DynamicFlag which enables the rou-
tine. The IIRA calls the Main routine every system cycle. The UpdateInterval

routine is called if there is a new information from the i-th recognition process
about the hypotheses list and the DynamicFlag is activated (line 5 in the Main

routine presented in Algorithm 5).
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Algorithm 5 Triggering multi recognition processes with dynamic interval
– Initialization routine

1: for all i do
2: m_previousTriggeri ← clock()
3: Fti ← SamplingInterval
4: m_dynamicF lag ← DynamicF lag

– Main routine
1: for all i do
2: durationi ← clock()−m_previousTriggeri

3: if durationi > Fti then
4: m_hypothesesListi ← RecognitionProcess(i)
5: if sizeChanged(m_hypothesesListi) ∩m_dynamicF lag then
6: Fti ← UpdatesInterval(m_hypothesesListi)
7: m_previousTriggeri ← clock()

– RecognitionProcess(i) routine
1: m_observations ← CollectsObservations(i)
2: hypothesesList ← Activates(Algorithm(m_observations))
3: return hypothesesList

– UpdateInterval routine
1: newInterval ← U(hypothesesList)
2: return newInterval
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Figure 3.23: A block diagram of an IIMRA using dynamic sampling intervals.
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Chapter 4

Mirroring

Based on recent researches, it is evident that intention recognition activity should
be done continuously and simultaneously with the agent’s model execution. This
work aims at characterizing architecture for implementation of a continuous and
simultaneous tracking capability.

Plan- and intention- recognition systems are built from two components: A
recognition algorithm, and a plan-library (database) which it utilizes. While the
previous chapter has tackled challenges associated with computation run-time, a
key challenge in integration—the space requirements of the plan-library—remains
unaddressed. In particular, the recognition system must tackle the following is-
sues:

• Storing the plan library database in memory, in such a way that observations
indicative of the others’ knowledge/perception can be utilized.

• Adding knowledge that the executer agent acquires about possible plans, to
the plan library. For instance, if the executer agents learns a new plan, it
would also need to store knowledge of this plan such that it can be recog-
nized when others are observed executing it. Or vice-versa, if the observed
agent is found to be executing a novel plan, knowledge of it should ideally
be acquired by the executer agent for its own goals (e.g., for imitation or
programming by demonstration [18, 42, 20]).

• Comparison between the hypotehsized plans of the observed agent, and the
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plan being executed by the executer agent. Such comparisons form the basis
for observation-based coordination [26, 34].

This chapter addresses the integration challenges by advocating an approach,
called Mirroring, which is independent of the Temporal Monitoring Selectivity

approach, presented earlier. This is a specific approach to providing intention
recognition at the architectural level, in which the executable procedural knowl-
edge of the agent is re-used, as is, for recognition. This approach offers significant
savings in computational resources compared to most existing approaches (where
a separate recognition knowledge plan library is utilized, e.g., as in [26, 34, 39]). It
also provides greater opportunity for social mechanisms that rely on comparisons
between the executer agent and the observed agent (e.g., for identifying failures
[34], or for social comparison [31]).

The Mirroring technique—inspired by mirror neurons in mammal brains [19,
51]—is based on three basic principles: (1) to reflect the knowledge of an executer
agent to the observed agent’s point of view; (2) to maintain the same database
structure and apply the executer agent’s mechanisms to the database of the ob-
served agent; and (3) to unite the intention recognition process with the executer
agent task together with the primary process.

We describe Mirroring in detail, and discuss the architectural requirements
that are needed for it to work (Section 4.1). We evaluated its use in integrating
plan-recognition capabilities into DIESEL [62, 36], an implemented teamwork
and taskwork architecture, built on top of Soar [42]. DIESEL was chosen because
its capabilities to support the three requirements that are needed to implement Mir-

roring (described in Section 4.1.2): an agent’s state, recipe and task-maintenance
behaviors. Hereafter, DIESEL which utilizes Mirroring, is called, M-DIESEL. In
Section 4.2 we describe how easily the Temporal Monitoring Selectivity approach
can be utilized in an IIMRA which applies recognition ability via Mirroring.

4.1 Intention recognition via Mirroring

In this section, an implementation of Mirroring is described. Specifically, we
show how the same set of rules which was written for the executing agent is acti-
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vated simultaneously on the executing agent plan library and re-uses to generate
expected observations, which form the basis for recognition.

First the data structures and the mechanisms of the executed agent will be
described (Section 4.1.1), follow by the steps, which are needed to be done, in
order to get the same process on the observed agent database (4.1.2). As a result,
this work shows a technique of maintaining multiple states at the same time; one
state of the executed agent and one state for each of the observed agents. We
describe in details a running example of the recognition process via Mirroring as
it is utilized in M-DIESEL IIMRA for a scenario with two pilots agents. (Section
4.1.3).

4.1.1 What’s in an agent?

This section describes the basic structures of an agent, and its primary compo-
nents. We then describe how these components are utilized for Mirroring.

Agent’s state
An agent’s state is the data structure which maintains the agent’s knowledge base.
The state structure includes the inputs which the agent senses from its sensors,
its variables which represent the results of processing these sensor readings, its
plan graph, the memory of the agent, and the commands sent by the agent to its
actuators.

Recipe mechanism
This work utilizes BDI or Behavior-based architectures, in which the executed
agent’s behavior repertoire is described by a directed acyclic connected graph [9],
where vertices indicate behaviors, and edges can be of two types: vertical edges
that decompose top behaviors into sub-behaviors, and sequential edges that spec-
ify the expected temporal order of execution. Each of the behaviors has precondi-
tions, which must be true in order to be chosen to be performed, end-conditions,
which must be true in order to terminate execution of the behavior. These condi-
tions are tested against the agent’s state. When a behavior is selected for execu-
tion, its application logic is applied to generate commands. The described graph
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is a data structure which represents the agent plan, and called recipe. The recipe
mechanism maintains the agent’s transitions in the graph.

When one behavior is terminated (its end-conditions are satisfied), the conse-
quent behavior in the graph with true preconditions is proposed. When a com-
pounded behavior is selected, its subordinate behavior that has true preconditions
is proposed for running simultaneously. A set of consequent activated behaviors,
starting from the root of the recipe, is marked as active path. The last behavior
of an active path is the current agent behavior. For full details, please look at
[25, 29, 30]

Execution monitoring via maintenance conditions
The active path represents the agent’s intended behavior, rather than the real be-
havior of the agent. An example is when the active behavior in the executer agent’s
recipe is now ’walking-along-route,’ but the agent is not moving due to a mechan-
ical failure.

In order to determine the real behavior of the agent, the system needs a mon-
itor mechanism which is able to check its progress along the behavior’s graph.
Monitoring its own active path provides the agent with fault detection ability.

To address this monitoring, the agent utilizes monitoring conditions on the
execution of commands [33]. These monitoring conditions provide assertions on
the execution: They utilize the agent’s own sensors to verify that its execution and
behavior are correct. Since application of different behaviors result in different
commands being sent (or different sequences of commands), the monitoring con-
ditions for execution are associated with behaviors: Each behavior has a set of
monitoring conditions that assert its own execution.

Figure 4.1 presents a block diagram of the executer agent architecture. The
executer maintains input layer to get observations, and an output layer to send
commands to its actuators. The executer supports its own state (model of the
world, beliefs, etc.). The executer architecture applies two mechanism: The recipe
mechanism which maintains the plan graph of the executer agent and the execution
monitoring mechanism.
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Figure 4.1: Executer agent’s architecture.
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4.1.2 Mirroring implementation

The previous subsection explains what is needed to implement an executer agent
and a self-intention recognition for it. In this subsection, we explain how the same
mechanisms are applied to an executer agent to achieve an IIMRA via Mirroring.
First, we describe the steps, which are needed to be done, in order to apply the
three executer’s architectural components (as described in Subsection 4.1.1) also
on the observed agent, and as a results achieve a mirroring process for it. In order
to apply Mirroring, the major task is to define a set of instructions how to im-
plement every mechanism of the executer agent, without restricting the rules for
a specific state, but implementing them with referring to any state. As a result,
once a new state is built the executer agent’s mechanisms simultaneously run on it.

Observed Agent’s state
The state of the observed agent represents the observed agent’s hypothesized
model of the world, beliefs, etc. It therefore reflects the executing agent’s be-
liefs in the hypothesized state of the observed agent. The observed agent’s state

is the data structure which maintains the hypothesized observed agent’s knowl-
edge base. The state structure includes simulated inputs which the observed agent
might sense from its sensors, its variables which represent the results of process-
ing these simulated sensor readings, the memory of the observed agent, and the
commands which might sent by the observed agent to its actuators. The decision
when to instantiate an observed agent’s state is according to an application re-
quirement. In this work a new state data structure is instantiated once an observed
agent first is identified. The only difference in the observed state is that its output
layer on the state structure is not connected to the agent’s output. This prevents
the executed agent from behaving like the observed agent. In order to maintain
the observed input layer a set of translating rules that interpret the executed agent
inputs onto the observed agent inputs is required to be written. The translating
process is performed when the observations are changed.

Recipe mechanism
Once a different observed state is built, the recipe mechanism runs on its behav-
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ior’s graph. Due to uncertainty of the observed behavior, not only one behavior
path is marked as active as in the executed state, but all the hypothesized behav-
ior’s paths which might be the current path are marked as active.

Monitoring mechanism
Once a different observed state is built, the monitoring mechanism runs on its be-
havior’s graph. The process of reducing incorrect hypothesized paths along time is
carried out utilizing the monitoring mechanism: An hypothesized path is declared
as a failure hypothesis when its relative monitoring condition fails, indicating that
this behavior is no longer running, as occurs when the executed agent monitors
itself. All remaining plans, not marked as failure seem as hypotheses as to the
correct state of the observed agent.

A blocks diagram of an agent’s architecture which applies a recognition process
via Mirroring is shown in Figure 4.2. The executer supports multiple states. One
state for its own state (model of the world, beliefs, etc.), and one state for each of
the observed agents. Each state is connected to the input layer to collect observa-
tions, the observed agent’s state is connected through a set of translation rules in
order to translate the executer observations onto the observed observations. Only
the executer state is connected to the output layer, so that it be the only agent
which commands its actuators. The recipe and the monitoring mechanisms run on
every existing state data structure without distinction who it belong to.

The Mirroring algorithm is presented in Algorithm 6. The architecture calls
the initialization routine to instantiate the state of the executer, agent 0 (line 1)
and another state for every observed agent i-th (line 4), where the other agents
are marked 1 and above. The instantiation of the i-th observed agent’s state can
be done according to an application requirement and not automatically when the
application starts as it is demonstrated here. The Main routine executes its infinite
loop with every system cycle. The executer’s state is updated according to obser-
vations (line 3–4 in Main routine) and the observed agent’s state is updated via
translating the executer’s observations (line 6 in Main routine).

In order to maintain the behavior’s graph of the executer as well as of the
observed agents the recipe mechanism is called with the relative state (line 7 in
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Figure 4.2: Mirroring: Multiple states in the executer agent’s architecture.
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Main routine). In order to verify the plan graph of the executer as well as of the
observed agents the monitoring mechanism is called with the relative state (line 8
in the Main routine). Then the hypothesized behaviors list of the executer as well
as of the observed agents is generated by calling the CollectBehaviors routine with
the relative plan graph (line 9 in the Main routine). The CollectBehaviors routine
passes the plan graph and collects all the behaviors which fulfil the condition: The
behavior is the last behavior of an active path and does not have failed monitor
conditions on it which indicates that this behavior can not really run (line 3 in the
CollectBehaviors routine). If the hypotheses behavior list of the executer’s state is
empty we conclude that a fault is detected, since the executer has just one active
path on its behavior’s graph. The generating of the hypotheses list of an observed
agent’s state is the final step in the intention recognition process via Mirroring.

4.1.3 Mirroring running example

We demonstrate now the recognition process via Mirroring. We use an example
scenario with two pilot agents (Figure 4.3). Five navigation points 1 – 5 are se-
lected, marked as X on the map. The executer agent, represented by the aircraft
symbol E, runs a recognition process, for the observed agent’s intentions, which
is represented by aircraft symbol O. E executes its patrol plan and flies to nav-
igation point 5 (Figure 4.3(a)) while O flies to navigation point 1. E wants to
know if O intends to fly to navigation point 2 or to navigation point 3 or to fly to
navigation point 4. We demonstrate the recognition process along the three steps
scenario: O flies to navigation point 1 (Figure 4.3(a)), arrives at navigation point
1 (Figure 4.3(b)) and turns right to navigation point 3 (Figure 4.3(c)), all while
E’s patrol plan is on going.

E generates its own plan using the behavior graph shown in Figure 4.4(a). The
solid lines indicate the actual behavior path executed by E and the dashed lines
indicate unselected behaviors. Here, E is executing its plan: ’Execute-Mission’
– ’Patrol’ – ’Flight-on-Route’ – ’Flight-to-Nav’, and it flies toward navigation
point 5. A monitoring condition, called ’Head-On’, was defined to ’Flight-to-
Nav’ behavior, in order to verify the real execution of the behavior. As long as the
head of the aircraft points to the navigation point, no ’failed_monitor’ flag is set
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Algorithm 6 Intention recognition via Mirroring
– Initialization() routine

1: State0 ← initiate(executer)
2: m_observedAgents ← observations
3: for all m_observedAgentsi do {0 ≤ i}
4: Statei+1 ← initiate(m_observedAgentsi)

– Main() routine
1: while true do
2: for all Statei do {0 ≤ i}
3: if Statei.executer = yes then
4: Statei.input ← observations
5: else
6: Statei.input ← Translation(observations)
7: Statei.recipe ← PerformRecipeMechanism(Statei)
8: Statei.recipe ← CheckMonitoringConditipons(Statei)
9: Statei.m_hypothesesList ← CollectBehaviors(Statei.recipe)

10: if Statei.executer = yes
∧

Statei.m_hypothesesList = ∅ then
11: ExecuterFaultDetection()

– CollectBehaviors(recipe) routine
1: hypothesesList ← ∅
2: for all recipe.behavior do
3: if recipe.behavior is the last behavior of an active path

∧
recipe.behavior.failed_monitor = ∅ then

4: hypothesesList ← {P}⋃
hypothesesList

5: return hypothesesList
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(a) (b) (c)

Figure 4.3: A simulated scenario.

on the related ’Flight-to-Nav’ behavior, and the behavior is considered running as
expected.

The executer agent’s state contains all the relevant data structure common to
all the behaviors. It maintains all of the dynamic sensor inputs regarding itself
such as its heading and altitude, as well as dynamic radar input regarding O, such
as heading, range, altitude, position. It also maintains dynamic sensor inputs re-
garding special points in its map.

E’s state, for the situation in Figure 4.3(a), is shown in Figure 4.5. E flies to
navigation point 5, therefore its active behavior in its recipe is the ’Flight-to-Nav’
behavior (’State.Recipe.Behaviors.Flight-to-Nav.Active’ = Yes) with ’Pointer to
Nav’ = 5 and ’Pointer to Route’ = 3 which is the ’Patrol’ route. Since its head
points to navigation point 5, no ’failed_monitor’ is set on this active behavior,
therefore, no fault is detected (line 6 in Main routine in Algorithm 6) and this
active behavior is considered as the real running one. In addition, E detects O

on its radar, therefore the ’Entity’ data structure is created with the values of
O such as: ID=5, X = 0 and Y = −100 (’State.Input.Objects.Entity.ID’ = 5,
’State.Input.Objects.Entity.Position.X’ = 0, ’State.Input.Objects.Entity.Position.Y’
= −100).

Mirroring allows us reuse the state topology in recognition of other agents.
Although this is not a mandatory assumption [60], in our example we assume that
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(a) Executer agent: Behavior graph.

(b) Observed agent: Behavior graph.

Figure 4.4: Behavior graph: Solid lines indicate active behaviors; dashed indicate
unselected behaviors.
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Figure 4.5: The executer’s state when executing the scenario in Figure 4.3(a).
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E and O posses an identical behavior library. Thus, E uses a graph such as the
one in Figure 4.4(b) to recognize O’s intention. Here, the graph (the solid lines
in Figure 4.4(b)) represents E’s state of O’s current hypotheses behaviors for the
situation of Figure 4.3(a). Such O’s state is described in Figure 4.6.

(a) (b)

Figure 4.6: The observed’s state when executing the scenario in Figure 4.3(a).
Note, (b) is a continuation of (a).

The ’input’ data structure in O’s state is reflected by a set of translation rules,
from the E’s state ’input’ data structure (line 1 in Main routine in Algorithm 6).
The ’Self’ data structure in Figure 4.6(a) reflects to O, consequently the ID value
is 5 and Y position value is−100. The ’Entity’ data structure reflects to E, conse-
quently the ID value is 1 and the Y position value is 100 (’State.Input.Objects.Entity.ID’
= 1).

As long as O flies toward navigation point 1 (Figure 4.3(a)) three plans are
hypothesized:

1. ’Execute-Mission’ – ’Attack’ – ’Left-Maneuver’ – ’Flight-on-Route’ – ’Flight-
to-Nav’.

2. ’Execute-Mission’ – ’Attack’ – ’Right-Maneuver’ – ’Flight-on-Route’ –
’Flight-to-Nav’.
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3. ’Execute-Mission’ – ’Patrol’ – ’Flight-on-Route’ – ’Flight-to-Nav’.

Thus, the three pathes in the O’s behaviors graph (Figure 4.4(b)) are active
and possible. This hypothesized plans are represented in O’s state (Figure 4.6(b))
by the three active behaviors ’Flight-to-Nav’. Each of the active behaviors are
aimed at navigation point 1, but this point belongs to three different routes. These
three active behaviors with no ’failed_monitor’ flag (since its head towards navi-
gation point 1), constitute the hypotheses list of the observed agent (lines 3–4 in
CollectBehaviors routine in Algorithm 6).

When O arrived at point 1 (Figure 4.3(b)), the ’Flight-to-Nav’ behavior of
point 1 ends for all of the three different ’Flight-on-Route’ behaviors. Each of the
’Flight-on-Route’ behaviors chose the next navigation point to fly to, according to
their defined routes. Therefore, three new ’Flight-to-Nav’ behaviors are created
and activated on the O’s state: One represents navigation point 2 which belongs
to the ’Left-Maneuver’ parent behavior. One represents navigation point 3 which
belongs to the ’Right-Maneuver’ parent behavior. And one represents navigation
point 4 which belongs to the ’Patrol’ parent behavior.

Such an updated O’s state (for situation in Figure 4.3(b)) is shown in Figure
4.7. Since the head of O is towards navigation point 4, the monitoring condi-
tions for navigation point 2 and navigation point 3 is no longer valid, and the
’failed_monitor’ flag appears on the ’Flight-to-Nav’ behaviors of the relative nav-
igation points. Therefore the hypotheses list consists of one hypothesized path:
’Execute-Mission – Patrol – Flight-on-Route – Flight-to-Nav’ (lines 3–4 in Col-

lectBehaviors routine in Algorithm 6).
When O aircraft turns its head to navigation point 3 (Figure 4.3(c)), the O’s

state is updated as presented in Figure 4.8. The monitoring condition ’Head-On’
is utilized to navigation point 3, therefore the ’failed_monitor’ flag is removed
from its relative ’Flight-to-Nav’ behavior, thus the hypothesized path ’Execute-
Mission’ – ’Attack’ – ’Right-Maneuver’ – ’Flight-on-Route’ – ’Flight-to-Nav’ is
added to the hypotheses list. Since O is no longer pointing to navigation point
4 the ’failed_monitor’ flag is set to its relative ’Flight-to-Nav’ behavior, and the
hypothesized path ’Execute-Mission’ – ’Patrol’ – ’Flight-on-Route’ – ’Flight-to-
Nav’ is removed from the hypotheses list (lines 3–4 in CollectBehaviors routine
in Algorithm 6).
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Figure 4.7: The observed’s state when executing the scenario in Figure 4.3(b).

75



Figure 4.8: The observed’s state when executing the scenario in Figure 4.3(c).
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Such recognition is supported here via a uniform data structure and mecha-
nisms for the execution of the agent’s own behaviors and recognizing other agent’s
behaviors. In particular, executer’s behavior and observed’s behavior are selected
and terminated in the same manner. Thus, as observed’s state changes, which it
does in reflecting the changing world situation, new observed’s behavior may get
selected in response.

In M-DIESEL all the mechanisms were developed in the executed agent’s
point of view, but with a reference to a virtual state. Once a state is built, the
mechanisms are applied to this state. As a result, this work achieved performing
of the executed agent simultaneously with intention recognition of multi observed-
agents as a side-effect. Examples of the Soar code implementation in M-DIESEL,
which applies the Mirroring approach to providing intention recognition at the
architecture level can be found in Appendix A.

4.2 Applying Temporal Monitoring Selectivity in Mir-
roring architecture

The Mirroring architecture easily enables to apply the Temporal Monitoring Se-

lectivity approach, in order to reduce the Recognition Load, as described in details
in Section 3. The Mirroring already maintains a separated state for every observed
agent, therefore, its recognition process can triggered separately from the executed
process, by controlling its own Ft variable. The Ft can be a constant value or dy-
namically changed, thus the Mirroring architecture obtains all the advantages the
Temporal Monitoring Selectivity approach achieves. In this section we describe
the implementation of the Temporal Monitoring Selectivity in the M-DIESEL ar-
chitecture. The evaluation of the Temporal Monitoring Selectivity approach in the
M-DIESEL architecture, is described in details in Chapter 5.

In this research we use Soar’s built-in mechanisms, for triggering the intention
recognition process. Soar causes the rules to be executed depending on changes;
When there are no changes in the conditions, the rules will not be executed. The
input data structure in the observed agent’s state is freezed for Ft seconds, as a
result, the observed agent’s state is not changed and therefore the mechanisms
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rules does not apply for it, thus no intention recognition is performed. A block
diagram of such architecture which triggers the recognition process according to
Ft variable is presented in Figure 4.9.

Figure 4.9: Applying Temporal Monitoring Selectivity in Mirroring architecture.

The relative triggering algorithm is presented by Algorithm 7. The observed
agent’s state is "frozen" for Ft seconds by preventing from the set of translation
rules to be executed for Ft seconds. The Timeout routine is called to hold Ft (line
6 in the Main routine). When the next triggering time arrives, an update_input flag
is set in the observed agent’s state (line 2 in the Timeout routine). The translation
rules which are depended on that flag are then executed and the observed agent’s
state is updated (line 8 in the Main routine). Changes in the observed agent’s state,
cause the mechanisms rules to be executed on it (lines 9–11 in the Main routine),
therefore to the intention recognition process to run.
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Algorithm 7 Temporal Monitoring Selectivity applying in Mirroring
– Initialization() routine

1: State0 ← initiate(executer)
2: m_observedAgents ← observations
3: for all m_observedAgentsi do {0 ≤ i}
4: Statei+1 ← initiate(m_observedAgentsi)
5: Statei+1.Ft ← SamplingInterval
6: Statei+1.m_nextTrigger ← clock() + Statei+1.Ft

– Main() routine
1: while true do
2: for all Statei do {0 ≤ i}
3: if Statei.executer = yes then
4: Statei.input ← observations
5: else
6: Timeout(Statei)
7: if Statei.update_input = true then
8: Statei.input ← Translation(observations)
9: Statei.recipe ← PerformRecipeMechanism(Statei)

10: Statei.recipe ← CheckMonitoringConditipons(Statei)
11: Statei.m_hypothesesList ← CollectBehaviors(Statei.recipe)
12: if Statei.executer = yes

∧
Statei.m_hypothesesList = ∅ then

13: ExecuterFaultDetection()

– CollectBehaviors(recipe) routine
1: hypothesesList ← ∅
2: for all recipe.behavior do
3: if recipe.behavior is the last behavior of an active path

∧
recipe.behavior.failed_monitor = ∅ then

4: hypothesesList ← {P}⋃
hypothesesList

5: return hypothesesList

– Timeout(State) routine
1: if State.m_nextTrigger < clock() then
2: State.update_input ← true
3: State.m_nextTrigger ← clock() + State.Ft

4: else
5: State.update_input ← false
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Chapter 5

Experiments

In this work two IIMRA were used to evaluate our proposed approaches to in-
tegrating of plan recognition: One system is called SBR and one is M-DIESEL.
SBR is an IIMRA, built into a simulator for suspicious behavior recognition (Fig-
ure 5.1). It was built for research purposes at the MAVERICK lab in Bar-Ilan
University. The recognition algorithm is described in the work of Avrahami-
Zilberbrand et al. [9]. M-DIESEL is an IIMRA, which its recognition ability,
applied by Mirroring, was implemented and integrated into the DIESEL architec-
ture as part of this research. DIESEL is an agent architecture [62, 36] realized
in Soar [42], and was implemented in the same lab at Bar-Ilan University for in-
dustrial usage. The M-DIESEL system was utilized in VR-Forces (Figure 5.2),
a powerful and flexible simulation toolkit for generating and executing battlefield
scenarios [61].

In Section 5.1 the experiment data sets are described. In Section 5.2 we eval-
uate our approach of Time Monitoring Selectivity for the recognition of a single
observed agent. In Section 5.3 we evaluate our approach of Time Monitoring

Selectivity for the recognition of multiple observed agents. Section 5.4 provides
results of examining Mirroring.
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Figure 5.1: Suspicious behavior recognition simulator.

Figure 5.2: VR-Forces simulator.
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5.1 Experiment data sets

In order to apply the sampling method, both systems the SBR and the M-DIESEL
were updated to trigger each of the recognition processes according to a relative
sampling interval, Ft. The SBR system has F ∗

t = 0.4 seconds. The M-DIESEL
system has F ∗

t = 2 seconds.
We evaluate four scenarios: The linear, monotonic non-linear and non-monotonic

scenarios (described in Sections 5.1.1 – 5.1.3) were execute 30 times on the suspi-
cious behavior recognition simulator, and the non-monotonic scenario (described
in Section 5.1.4) was execute 50 times on the VR-Forces simulator.

When an agent is situated in a simulator it executes a selected scenario (one
of the four evaluated scenarios). When I + 1 agents are situated in a simulator
each of the I + 1 runs the same evaluated scenario. One agent is the executer
and the recognizer of the other I agents, which are the observed agents. The
executer triggers the I recognition processes with the simulator minimal sampling
interval. The hypotheses number function which were yielded by the I intention
recognition processes are denoted to be the original signals. Then, the original
signals were sampled with several fixed sampling interval and according to three
heuristics which apply dynamic sampling interval. The original signals which
yielded by the suspicious behavior simulator were sampled with Ft: 0.4, 0.8, 1.2,
1.6, 2.0, 2.4, 4.8, 3.2, 3.6, 4.0, 4.4, 4.8 seconds for the fixed sampling Interval.
Those which yielded by the VR-Forces were sampled with Ft: 2, 4, 6, 8, 10, 12,
20, 30, 40, 80 seconds. The dynamic sampling was according to each of the three
heuristic’s equations: Equation 3.18 for the Uncertainty Heuristic, Equation 3.20
for the Load Heuristic, and Equation 3.22 for the Combination Heuristic.

All the original signals with their sampled signals which belong to one sce-
nario were gathered to be a single experiment data set. Therefore we achieve four
experiment data sets: 1. ’SBR linear scenario data set’ 2. ’SBR monotonic non-
linear scenario data set’ 3. ’SBR non-monotonic scenario data set’ 4.’M-DIESEL
non-monotonic scenario data set’.
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5.1.1 The linear scenario on the suspicious behavior recogni-
tion simulator

Figure 5.3: Linear scenario, SBR.

The scenario of a situated agent in the suspicious behavior recognition simu-
lator is to walk along a straight corridor with 10 exit doors which are placed in a
same distance, and exit through the last door. The intention recognition process
of an observed agent maintains ten different hypotheses, one for every door the
observed agent is able to exit. The intention recognition process goal is to deter-
mine the door towards which the observed agent walks. The hypotheses number
starts with 10 hypotheses, then it is reduce along time when the observed agent
passes nine doors till one truth hypothesis is committed, when the agent exits the
last door. The ZOH of the hypotheses number function, which is yielded by such
recognition process triggered with F ∗

t , characterizes a linear signal (Figure 5.3),
with N = 70 seconds and H = 9 changes.

5.1.2 The monotonic non-linear scenario on the suspicious be-
havior recognition simulator

The scenario of a situated agent in the suspicious behavior recognition simulator
is the same scenario which described for the linear scenario (in 5.1.1) but now
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Figure 5.4: Monotonic scenario, SBR.

the ten doors are placed in varied distances. The ZOH of the hypotheses number

function, which is yielded by the relative recognition process triggered with F ∗
t ,

characterizes a monotonic non-linear signal (Figure 5.4), with N = 73 seconds
and H = 9 changes.

5.1.3 The non-monotonic scenario on the suspicious behavior
recognition simulator

The scenario of a situated agent in the suspicious behavior recognition simulator
is the same scenario which described for the monotonic non-linear scenario with
5 doors (in 5.1.2) but now additional doors are hide behind corners which are
placed along the corridor. The number of potential doors at each point is varied
but not exceed value of 5. The ZOH of the hypotheses number function, which
is yielded by the relative recognition process triggered with F ∗

t , characterizes a
non-monotonic signal (Figure 5.5), with N = 76 seconds and H = 9 changes.

5.1.4 The non-monotonic scenario on the VR-Forces simulator

The task of a situated agent in the VR-Forces simulator is to randomly chose one
of five different waypoints and run towards it. The intention recognition process
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Figure 5.5: Non-monotonic scenario, SBR.

Figure 5.6: Non-monotonic scenario, M-DIESEL.
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of the observed agent maintains five different hypotheses, one for every waypoint
the observed agent is able to choose. The intention recognition process goal is to
determine the waypoint towards which the observed agent runs. The hypotheses
number is reduce along time till one correct hypothesis is committed. The ZOH
of the hypotheses number function, which is yielded by such recognition process
triggered with F ∗

t , characterizes a non-monotonic signal (Figure 5.6), with N =

136 seconds and H = 9 changes.

5.2 Single observed agent

In this section we describe the evaluation of the SBR and the M-DIESEL sys-
tems for the single agent recognition case. Two agents were situated in suspicious
behavior recognition simulator and in VR-Forces simulator. One agent is the ex-
ecuter and the recognizer of the other agent, which is the observed agent. Four
experiment data sets for I = 1 were generated as described in Section 5.1 and
evaluated.

In Subsection 5.2.1 we examine our suggested model for the Estimated Recog-

nition Load against the four experiment data sets with fixed sampling interval. In
Subsection 5.2.2 we examine our suggested linear model for the Estimated Recog-

nition Error against the four experiment data sets with fixed sampling interval. In
Subsection 5.2.3 we evaluate the performance of the four scenarios with dynamic
sampling interval against those achieved with fixed sampling interval.

5.2.1 Estimated Recognition Load model for the fixed sampling
interval

The objective of this experiment is to evaluate our Estimated Recognition Load

model (described in Section 3.2.1). Our hypothesis is that the computational load,
consumed by the recognition process in an IIRA, can be reduced as a function of a
fixed sampling interval, Ft, according to Equation 3.7. In addition, we show with
this experiment an empirical way to estimate the unknown system parameter, r (in
Equation 3.7).
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In this experiment we compared the Estimated Recognition Load values as a
function of k, calculated by Equation 3.7 with those measured from the four ex-
periment data sets, by Equation 3.2. Against each experiment data set we present
several Estimated Recognition Load models related to several values of r and con-
clude which r matches each scenario and each simulator.

Figure 5.7: Linear scenario, SBR: Recognition Load as a function of k.

The non-square points curves, in Figures 5.7–5.10, presents the values of the
Estimated Recognition Load as a function of k that were calculated by Equation
3.7 with different values of r. The empirical results for the Recognition Load as a
function of k are presented by the square points curve.

In all four scenarios, the circle curve which presented the error model values,
calculated with a specific r, coincides with the square points curve, which presents
the empirical results for the Recognition Load as a function of k. According to
the complete matching between the model values and the experiments results, the
unknown system parameter, r, is empirically estimated: r = 6 for ’SBR linear
scenario’, r = 6 for ’SBR monotonic non-linear scenario’, r = 2.5 for ’SBR
non-monotonic scenario’, and r = 2.9 for ’M-DIESEL non-monotonic scenario’.

According to the consist results, for different decreasing signals in different
IIRA we conclude that the suggested model (Equation 3.7) is a good estimation
for the Recognition Load as a function of Ft of a recognition process in an IIRA.
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Figure 5.8: Monotonic scenario, SBR: Recognition Load as a function of k.

Figure 5.9: Non-monotonic scenario, SBR: Recognition Load as a function of k.
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Figure 5.10: Non-monotonic scenario, M-DIESEL: Recognition Load as a func-
tion of k.

5.2.2 Estimated Recognition Error model for the fixed sampling
interval

The objective of this experiment is to evaluate our Estimated Recognition Error

model (described in Section 3.2.2). Our hypothesis is that the linear Estimated

Recognition Error model as a function of k can be an approximation for the mono-
tonic non-linear, and the non-monotonic decreasing signals (described in Section
3.2.3) of the recognition process in an integrated system.

We compared the Estimated Recognition Error values as a function of k cal-
culated by Equation 3.14, with those measured from the four experiment data sets
by Equation 3.4. The model error values are presented by the diamond points
curve in Figures 5.11 – 5.14, and the results of the measured Recognition Error as
a function of k, are depicted in these figures by the square points curve. The error
bars mark one standard deviation below, and one above, the mean error results.

As it can be seen in Figures 5.11 – 5.14, around k = 0.4 a deviation between
the model values and the experiments results has occurred, in all scenarios.

In the ’SBR linear scenario’, ’SBR monotonic scenario’ and ’M-DIESEL non-
monotonic scenario’, the model values are within one standard deviation of the
experiment data sets results and outside one standard deviation of the data set
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Figure 5.11: Linear scenario, SBR: Recognition Error as a function of k.

Figure 5.12: Monotonic scenario, SBR: Recognition Error as a function of k.
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Figure 5.13: Non-monotonic, SBR: Recognition Error as a function of k.

Figure 5.14: Non-monotonic scenario, M-DIESEL: Recognition Error as a func-
tion of k.
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results in the ’SBR non-monotonic scenario’. Therefore, the linear error model
(Equation 3.14) can be an approximation for estimation the Recognition Error as
a function of k in some of the cases. However, the model results may still be
useful as a lower bound for the Recognition Error of the recognition process in an
IIRA.

5.2.3 Dynamic sampling compared with fixed sampling

The objective of this experiment is to evaluate the performance of the dynamic
sampling method compared with those of the fixed sampling. Our hypothesis is
that the dynamic sampling can reduce the Recognition Load while not downgrad-
ing the Recognition Error.

In evaluating the dynamic sampling performance, we face the technical obsta-
cle that Ft varies with time along the scenario. This fact complicates the com-
parison with the fixed sampling performance, since their performance cannot be
presented as a function of Ft as the fixed sampling performance can. In order to
tackle this difficulty, we propose a new graph expressing the Recognition Load as
a function of the Recognition Error. In such a diagram, every heuristic is repre-
sented by a single point (RecognitionError0, RecognitionLoad0) depicting the
performance of the heuristic.

Definition 5.2.1. A family of heuristics (FoH) is a group of heuristics that differ

only in one parameter. A family of heuristics may be represented by a curve

connecting points associated with different values of the parameter.

The Uncertainty and the Combination heuristics are expanded to a family of
heuristics by varying the H parameter in Equation 3.18. We used the FoH con-
vention to present the fixed sampling performance while the varied parameter is
Ft and the dynamic sampling performance while the varied parameter is H .

Additional samples were performed on the original signals and expand the date
sets. In the ’SBR linear scenario data set’ and ’SBR monotonic non-linear sce-
nario data set’ a FoH of the Uncertainty heuristic and of the Combination heuristic
were generated with H = 10, 15, 30 and 50. In the ’SBR non-monotonic scenario
data set’ and ’M-DIESEL non-monotonic scenario data set’ a FoH of the Uncer-
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tainty heuristic and of the Combination heuristic were generated with H = 5, 7,
10, 15, 30 and 50.

The measured results of the Recognition Load and of the Recognition Error

with fixed sampling interval on the four experiment data sets were taken from Sub-
sections 5.2.1 and 5.2.2. The results of the Fixed FoH are presented on a graph
which depicts the Recognition Load as a function of Recognition Error and are
plotted by the square curve (Figures 5.15 – 5.18), each square point presents the
performance of a fixed Ft. The results of the Recognition Load and of the Recog-

nition Error with dynamic sampling interval on the four experiment data sets were
measured by Equation 3.2 and Equation 3.4 and are presented on the same graph
of Recognition Load as a function of Recognition Error for comparison with the
Fixed FoH results (Figures 5.15 – 5.18). The results of the Uncertainty FoH are
presented by the diamond curve in these figures, each diamond point presents the
performance of a fixed H . The performance of the Load Heuristic is presented by
the circle point, and the performance of the Combination FoH are presented by
the triangle curve, each triangle point presents the performance of a fixed H .

As can be seen in Figures 5.15(a), 5.16(a), 5.17(a), and 5.18(a), in all the
four scenarios, the square curve, which represents the Fixed FoH, demonstrates
the same tendency: as the sampling interval increases, the Recognition Error in-
creases. Recognition Load, however, decreases asymptotically to a typical load
value. We expect this typical load value to be identical to the load on the agent
when executing its task without running the recognition process on the observed
agent (as is presented in Equation 3.6). In addition, the performance of the Un-
certainty and of the Combination FoH (presented by the diamond and triangle
points curves) decrease asymptotically to the same load value and converge with
the Fixed sampling FoH curve, due to the fact that there is a minimal load on the
executer agent and no improvement can be achieved.

Figures 5.15(b), 5.16(b), 5.17(b), and 5.18(b), zoom in and focus on the most
relevant performance range, in each of the four scenarios: The heuristics yield no
improvement compared with the Fixed sampling FoH, in the ’SBR linear scenario
experiment data set’ (Figure 5.15(b)). In the ’SBR monotonic non-linear scenario
experiment data set’, the Combination FoH (Fc) performs better than the Uncer-
tainty FOH (Fu) and the Load heuristic (Fl) compared with the Fixed FoH curve
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(a) Recognition Load as a function of Recognition Error.

(b) Recognition Load as a function of Recognition Error,
note: this figure is a zooming of 5.15(a).

Figure 5.15: Linear scenario, SBR performance: Dynamic sampling heuristics
compared with the Fixed sampling FoH.
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(a) Recognition Load as a function of Recognition Error.

(b) Recognition Load as a function of Recognition Error,
note: this figure is a zooming of 5.16(a).

Figure 5.16: Monotonic scenario, SBR performance: Dynamic sampling heuris-
tics compared with the Fixed sampling FoH.
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(a) Recognition Load as a function of Recognition Error.

(b) Recognition Load as a function of Recognition Error,
note: this figure is a zooming of 5.17(a).

Figure 5.17: Non-monotonic scenario, SBR performance: Dynamic sampling
heuristics compared with the Fixed sampling FoH.
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(a) Recognition Load as a function of Recognition Error.

(b) Recognition Load as a function of Recognition Error,
note: this figure is a zooming of 5.18(a).

Figure 5.18: Non-monotonic scenario, M-DIESEL performance: Dynamic sam-
pling heuristics compared with the Fixed sampling FoH.

97



Uncertainty Load Combination
H = 5 H = 7 H = 7 H = 10

SBR Linear
SBR Monotonic 5.75E−31 1.52E−39

SBR Non-Monotonic 8.45E−32

M-DIESEL Non-Monotonic 1.24E−42 2.5E−16 3.5E−7 2.4E−36

Table 5.1: Two-tailed paired t-Test results between the Fixed FoH and the dynamic
heuristics for the single agent recognition case

(Figure 5.16(b)). In the non-monotonic scenario in both systems (Figures 5.17(b)
and 5.18(b)) the Uncertainty FoH (Fu) performs better than the Load heuristic (Fl)
and the Combination FoH (Fc) compared with the Fixed FoH curve.

A two-tailed t-Test contrasting the results for each heuristic (which shows an
improvement), with the Recognition Load results for the same Recognition Error

(those of the Fixed FoH curve), shows that the difference between them is sta-
tistically significant. Thus, we support the hypothesis that the dynamic sampling
can reduce the Recognition Load while still providing the same recognition per-
formance. The results of all two-tailed paired t-Test between the Fixed FoH and
the dynamic heuristics are shown in Table 5.1.

5.3 Multiple observed agents

We evaluate our approach for the multi-agent recognition case in two IIMRA, the
SBR and the M-DIESEL. Since we expect that the SBR yields the same results
for the multi-agent recognition case as the results for the single agent recognition
case for the linear scenario and for the monotonic non-linear scenario we did
not execute experiments on these scenarios. Therefore, we focus on the non-
monotonic decreasing signal scenario. We situated different number of observed
agents: I = 3, 7, and 10, in the suspicious behavior recognition simulator, and
I = 3, 5 and 8 in the VR-Forces simulator. Each simulator executed its non-
monotonic scenario for 10 times for every I agents. Then we sampled the original
signals with several constant values and three dynamic heuristics, and yielded two
experiment data set: ’SBR non-monotonic multi scenario experiment data set’and
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’M-DIESEL non-monotonic multi scenario experiment data set’.
In subsection 5.3.1 we examine our suggested models for the multi Estimated

Recognition Load and for the multi Estimated Recognition Error. In Subsection
5.3.2 we evaluate the performance of the two IIMRA (SBR and M-DIESEL) with
dynamic sampling against those achieved with fixed sampling for the multi-agent
recognition case.

5.3.1 Estimated Recognition Load and Estimated Recognition
Error models for the fixed sampling interval

The objective of this experiment is to evaluate our Estimated Recognition Load

model for the multi-agent recognition case, as well as our Estimated Recognition

Error model (described in Section 3.4.2). The first hypothesis is that the computa-
tional load, consumed by the recognition processes in an IIMRA, can be reduced
as a function of a fixed sampling interval, Ft, according to Equation 3.25. In
addition, we support with this experiment for Assumption 3.4.3 that all the ob-
served agents impose the same computational load, r. The second hypothesis is
that the Recognition Error for the multi-agent recognition case increases linearly
as a function of fixed sampling interval, k, according to Equation 3.14.

To examine our hypotheses we compared the Estimated Recognition Load val-
ues as a function of k, calculated by Equation 3.25 as well as the Estimated Recog-

nition Error values as a function of k, calculated by Equation 3.26 with those
measured by Equation 3.23 and Equation 3.24 from the two experiment data sets
for different values of I .

The empirical results (presented by the square points curve) and the the esti-
mated model values (presented by the diamond points curve) for the Recognition

Load, as a function of k and I , are depicted in sub-figures (a), (c), and (e) in Fig-
ures 5.19 and 5.20. The empirical results and the estimated model values for the
Recognition Error are presented in the same way in sub-figures (b), (d), and (f) in
Figures 5.19 and 5.20.

According to the results of the two evaluated IIMRA, we support the hypothe-
sis that our suggested Estimated Recognition Load model as a function of k and I

(Equation 3.23) is a good approximations for the non-monotonic decreasing sig-

99



(a) Recognition Load as a function of k,
I = 3, r = 2.5.

(b) Recognition Error as a function of k,
I = 3.

(c) Recognition Load as a function of k,
I = 7, r = 2.5.

(d) Recognition Error as a function of k,
I = 7.

(e) Recognition Load as a function of k,
I = 10, r = 2.5.

(f) Recognition Error as a function of k,
I = 10.

Figure 5.19: SBR: Estimated models compared with experiments. Note that the
same r value is used with all I values.
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(a) Recognition Load as a function of k,
I = 3, r = 2.9.

(b) Recognition Error as a function of k,
I = 3.

(c) Recognition Load as a function of k,
I = 5, r = 2.9.

(d) Recognition Error as a function of k,
I = 5.

(e) Recognition Load as a function of k,
I = 8, r = 2.9.

(f) Recognition Error as a function of k,
I = 8.

Figure 5.20: M-DIESEL: Estimated models compared with experiments. Note
that the same r value is used with all I values.
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nals for the multi-agent recognition case. In addition, according to the matching
between the model results while using the same value of r and different values
of I , we support our assumption (Assumption 3.4.3) that when the multiple ob-
served agents execute the same scenario, the integrated system consumes the same
amount of resources for each of the recognition process.

In the ’M-DIESEL non-monotonic multi scenario experiment data set’, the
estimated error model values are within one standard deviation of the empirical
results and are outside one standard deviation in the ’SBR non-monotonic multi
scenario experiment data set’ . Like in the single agent recognition case the lin-
ear error model for the multi-agent recognition case (Equation 3.24)) can be an
approximation for the Recognition Error as a function of k only in some of the
cases. However, the model results may still be useful as a lower bound for the
Recognition Error of the recognition processes in an IIMRA.

5.3.2 Dynamic sampling compared with fixed sampling

The objective of this experiment is to evaluate the performance of the dynamic
sampling method compared with those of the fixed sampling for the multi-agent
recognition case. Our hypothesis is that the dynamic sampling can reduce the
Recognition Load while not downgrading the Recognition Error.

First we examine the performance of using the fixed sampling method for
different number of observed agents, I . Then we take one case of I , for each
system, and examine the performance of the dynamic sampling compared with
those of the fixed sampling.

The results of the fixed sampling interval for the two experiment data sets,
were taken from Section 5.3.1, and presented in a graph which depicts the Recog-

nition Load as a function of Recognition Error. Each point of each curve in
this graph presents the performance of a fixed Ft. Each curve in this graph
present different I . Figure 5.21 presents the fixed sampling performance of the
SBR IIMRA, and Figure 5.22 presents the fixed sampling performance of the M-
DIESEL IIMRA.

Each curve related to different I at Figures 5.21 and 5.22 demonstrates the
same tendency with no dependency on I: as the sampling interval increases, the
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Figure 5.21: SBR: Fixed sampling performance.

Figure 5.22: M-DIESEL: Fixed sampling performance.
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Recognition Error increases. Recognition Load, however, decreases asymptot-
ically to the same typical load value. We expect this typical load value to be
identical to the load on the agent when executing its task without performing any
of the recognition processes on the observed agents.

To evaluate the dynamic sampling performance for the multi-agent recogni-
tion case, we use the data set generated by the suspicious behavior recognition
simulator with 10 observed agents, and the data set generated by the VR-Forces
simulator with 5 observed agents.

The empirical results of the Recognition Load and of the Recognition Error

with fixed sampling interval were taken from the experiment described in Subsec-
tion 5.3.1. The results of the Fixed FoH are presented on a graph which depicts
the Recognition Load as a function of Recognition Error (Figures 5.23 and 5.24)
and are plotted by the square curve. The empirical results of the Recognition Load

and of the Recognition Error with dynamic sampling interval were measured by
Equation 3.23 and Equation 3.24 and are presented on the same graphs of Recog-

nition Load as a function of Recognition Error for comparison with the Fixed FoH
results (Figures 5.23 and 5.24). The results of the Uncertainty FoH are presented
by the diamond curve in these figures, each diamond point presents the perfor-
mance of a fixed H . The performance of the Load Heuristic is presented by the
circle point, and the performance of the Combination FoH are presented by the
triangle curve, each triangle point presents the performance of a fixed H .

As can be seen in Figures 5.23(a) and 5.24(a) in both systems the performance
of the Uncertainty and of the Combination FoH converge to the same performance
of the Fixed sampling FoH, due to the fact that there is a minimal load on the
executer agent and no improvement can be achieved.

Figures 5.23(b) and 5.24(b), zoom in and focus on the most relevant perfor-
mance range. The Uncertainty FoH (Fu) performs better than the Load heuristic
(Fl) and the Combination FoH (Fc) compared with the Fixed FoH curve in both
IIMRA.

A two-tailed t-Test contrasting the results for Fu and Fc (which shows an im-
provement), with the Recognition Load results for the same Recognition Error

(those of the Fixed FoH curve), shows that the difference between them is statisti-
cally significant. Thus, we support the hypothesis that the dynamic sampling can
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(a) Recognition Load as a function of Recognition Error.

(b) Recognition Load as a function of Recognition Error,
note: this figure is a zooming of 5.23(a).

Figure 5.23: SBR: Dynamic sampling heuristics compared with the Fixed sam-
pling FoH, I = 10.
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(a) Recognition Load as a function of Recognition Error.

(b) Recognition Load as a function of Recognition Error,
note: this figure is a zooming of 5.24(a).

Figure 5.24: M-DIESEL: Dynamic sampling heuristics compared with the Fixed
sampling FoH, I = 5.
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Uncertainty Load Combination
H = 5 H = 7 H = 7 H = 10

SBR Non-Monotonic
I = 10 8.12E−14

M-DIESEL Non-Monotonic
I = 5 5.2E−12 4.17E−13 2.69E−6 1.32E−11

Table 5.2: Two-tailed paired t-Test results between the Fixed FoH and the dynamic
heuristics for the multi-agent recognition case

reduce the Recognition Load while still providing the same recognition perfor-
mance also in the multi-agent recognition case. The results of two-tailed paired
t-Test between the Fixed FoH and the dynamic heuristics are summarized in Table
5.2.

5.4 Mirroring

To evaluate the efforts which were needed to implement Mirroring, the number of
rules is compared between a system with Mirroring and a system without. Let X

be the number of mechanism rules, let Y be the number of application rules and
Z be the number of rules which needed to be added in order to adjust the system
to a Mirroring one. In a Mirroring system, the comprehensive number of rules is
X +Y +Z, where k rules from Z are dedicated to translating the observations and
their number is constant. In a system without Mirroring, the total number of rules
is 2X + 2Y , since one set of rules is devoted to the executer agent and another set
of rules is devoted to the observed agent. Y grows with the system, while it can
be easily noticed that the effort with Mirroring is constant.

We demonstrate the efforts required to adjust DIESEL to M-DIESEL: DIESEL
system consists of X = 164 mechanism rules and Y = 358 application rules. In
order to apply a recognition ability via Mirroring k = 19 translation rules and
l = 26 additional mechanism-adjustment rules (such as rules for deciding on
when to instantiate the observed agent’s state) were required (where Z = k + l).
We believe that the l adjustment mechanism rules are also required in a system
without Mirroring. Thus, the k translation rules which are 5.3 percents of the Y

107



application rules. Since Y is expected to grow with the growing of the application
and k is expected to stay constant, the savings are very significant. Compare this
with systems with plan recognition and no mirroring, where any additional rules
in Y , would necessitate adding appropriate recognition rules.
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Chapter 6

Discussion and Conclusions

In this work the Temporal Monitoring Selectivity approach is introduced in order
to reduce the computational load resulting from integrating the intention recog-
nition ability into an agent system without downgrading the recognition quality.
Then, Mirroring is introduced as an integration technique.

Two integrated intention recognition systems were used to evaluate our sug-
gested approach: One system is called SBR which is run in the suspicious be-

havior recognition simulator and one is M-DIESEL which is executed in the VR-
Forces. In order to apply the sampling method, both systems were updated to
trigger each of the recognition processes according to a corresponding sampling
interval, Ft. Four experimental data sets were presented and compared:

1. ’SBR linear scenario data set’, the scenario is presented in Figure 5.3.

2. ’SBR monotonic non-linear scenario data set’, the scenario is presented in
Figure 5.4.

3. ’SBR non-monotonic scenario data set’, the scenario is presented in Figure
5.5.

4. ’M-DIESEL non-monotonic scenario data set’, the scenario is presented in
Figure 5.6.

First the experiments results are discussed, followed by discussion the proce-
dure that this research defines for evaluation the integrating a recognition ability
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into the system. Then, we discuss the opportunities that the Temporal Monitor-

ing Selectivity approach raises. At last, we summarize the requirements from a
recognition algorithm to be integrated with the suggested Temporal Monitoring

Selectivity approach.

Recognition Load Model
Our main hypothesis is that the computational load, consumed by the recognition
process in an integrated system, can be reduced to a function of a fixed sampling
interval, Ft, according to Equation 3.7.

The results (Figures 5.7, 5.8, 5.9, and 5.10) for the Recognition Load as a
function of Ft, on all four experiment data sets, demonstrate the same tendency.
The Recognition Load, decreases asymptotically to a typical load value, and we
expect this typical load value to be identical to the load on the agent when exe-
cuting its task without running the recognition process on the observed agent (as
is presented in Equation 3.6). In all four experiment data sets the results coincide
with the model values, thus the Recognition Load model, which we suggested
(Equation 3.7) is a good approximation for the Recognition Load as a function of
Ft in an integrated system. Furthermore, this work shows an empirical way to re-
veal the value of r in the model Equation 3.7, which represents the computational
load of the recognition process in the integrated system, and which is depend on
the recognition algorithm and on the scenario.

Recognition Error Model
In order to apply an analytic model for the Recognition Error as a function of Ft

for the recognition process in an integrated system, we discuss the characteristics
of a typical signal describing the recognition process. In this work the linear de-
creasing signal is used according to the assumption that when dealing with few
hypotheses, most of the signals can be approximated, to a degree, by a combi-
nation of three typical characteristics: a steady state signal, a linear decreasing
signal and a linear increasing signal.

Our hypothesis is that the linear Recognition Error model as a function of k,
according to Equation 3.14, is a good approximation for the non-linear decreas-
ing signals of the recognition process for the single agent recognition case in an
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integrated system.
The results (Figures 5.11, 5.12, 5.13, and 5.14) for the Recognition Error as a

function of k, in all four experiment data sets, demonstrate the same tendency. As
the sampling interval increases, the Recognition Error increases. The Recognition

Error model values are within the variance of the three scenarios (out of four) em-
pirical results, pointing out that the linear model is a practical approximation for
the non-linear decreasing signal. In addition, in the scenario in which the model
values are out of the variance of the experimental results, the model can be used
as a lower bound for the Recognition Error of the recognition process in an inte-
grated system. Nevertheless, the recognition error model is not as accurate as the
load model, and farther work is required on developing it.

Dynamic Sampling compared with Fixed Sampling
In this work a number of general heuristics are suggested: The Fixed FoH, the Un-
certainty FoH, the Load heuristic and the Combination FoH. Their performances
are compared by a graph of Recognition Load as a function of Recognition Error.

Our hypothesis is that the dynamic sampling (Uncertainty, Load and Combi-
nation FoH) can reduce the Recognition Load while not downgrading the Recog-

nition Error compared to the fixed sampling (Fixed FoH).
According to the results (Figures 5.15, 5.16, 5.17, and 5.18), the Fixed FoH

curve demonstrates the tendency: as the sampling interval increases, the Recog-

nition Error increases. Recognition Load, however, decreases asymptotically to a
typical load value. Also, the performances of the Uncertainty and of the Combina-
tion FoH decrease asymptotically to the same typical load value as the Fixed FoH
and converge to the same performance of the Fixed FoH, due to the fact that there
is a minimal load on the executer agent and no improvement can be achieved.

To summarize the performances of the suggested heuristics:

1. For the linear decreasing signals the dynamic heuristics achieved no im-
provement compared with the Fixed FoH.

2. For the monotonic decreasing signals the Combination FoH achieved better
performance.
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3. For the non-monotonic decreasing signals (in different two systems) the
Uncertainty FoH achieved better performance.

Using a FoH is a practical tool to derive the suitable sampling heuristic de-
pends on the performance’s demands of the integrated system. For example, in
the non-monotonic decreasing scenario on the VR-Forces simulator, if the re-
quirement of the system is not to exceed Recognition Error of 0.08, then, the
system might use the Uncertainty heuristic with H = 5. If the requirement is
not to consume more than 0.29 Recognition Load, then, the system might use the
Uncertainty heuristic with H = 7.

Expanding to Multiple recognition processes
This research shows that the sampling approach reduces the computational load
of multi-agent intention recognition processes. By applying different dynamic Ft

to each of the intention recognition processes, better performance is obtained.
The recurrent and consistent behavior of the two simulators for the non-monotonic

signal (Figures 5.21 and 5.22), i.e. Recognition Load and Recognition Error that
were demonstrated in this research, strongly points out that a baseline of Recogni-

tion Load as a function of the number of observed agents, I , as well as a function
of fixed Ft can be modeled by Equation 3.25. In addition, we base the assumption
that all the observed agents impose the same computational load, r, as it demon-
strated in Figures 5.19 and 5.20.

Figures 5.23 and 5.24 demonstrate the performances of the Fixed FoH, the Un-
certainty FoH, the Load heuristic and the Combination FoH for the multi case for
the non-monotonic decreasing signal on SBR and M-DIESEL simulators. When
using the dynamic sampling, each of the recognition process of the i-th observed
agent is triggered according to its dynamic Fti. We demonstrate that with the Un-
certainty FoH the performance of the entire system is improved. The tendency of
the performance of the dynamic FoH are much the same as in the single case since
the scenarios of the multiple observed agents are the same.

Evaluation of a recognition process in an integrated system
In addition to the suggested sampling method, this work describes in details a
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benchmark to evaluate the performance of a recognition process which is inte-
grated in a system. The benchmark is:

1. Define a formal and common language. In this work the h[n], h[n]∗, L[j],N ,
H , ZOH(h[n]), Ft, F ∗

t were defined.

2. Define the system parameters to be evaluated and the measurement method.
In this work the Recognition Load and the Recognition Error were chosen to
be the system parameters to be evaluated. The Recognition Load was mea-
sured according to Equation 3.2 and the Recognition Error was measured
according to Equation 3.4.

3. Base the chosen system parameters on models. Once a baseline is defined,
the system performance can be evaluated, avoiding the experiments that
should be done to achieve parameters measurements. The baseline can also
be applied to estimate the optimal recognition process depending on sys-
tem requirements. In this work we show that the Recognition Load model
(Equation 3.7) and the Recognition Error model (Equation 3.14) are good
approximations for the system performance with Fixed sampling FoH.

4. Determine a protocol to compare the performances of different heuristics
for the recognition process. In this work we present and compare the results
of the fixed sampling FOH and of the dynamic sampling heuristics by the
performance graph - the Recognition Load as a function of the Recognition

Error.

This benchmark for system evaluation is also practical for comparison between
heuristics in order to chose which heuristic is better to use for satisfying prede-
fined system performance requirements. For example, in the case of the ’SBR
monotonic non-linear scenario’ if the requirement of the system is not to exceed
Recognition Error of 0.12, then, the system might chose the Load heuristic al-
though it improves load reduction less than the Uncertainty FoH compared with
the Fixed FoH but with less recognition quality. If the requirement is not to exceed
Recognition Error of 0.14, then the Uncertainty FoH with H = 10 is better than
the Load heuristic (see Table 5.2).
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The sampling method as a basis for applying general heuristics
The sampling method, triggering each of the recognition processes according to a
controlled dynamic Ft, enables using a wide range of heuristics. These heuristics
provide opportunities to deal with dynamic system constraints, like new knowl-
edge about the observed agent or new requirement of the executer agent, the de-
cision of whom and when perform the recognition process. We believe that, base
on our research, other ways of dynamically changing the Ft parameter, can be ex-
plored for the single recognition case and for the multi recognition case. Several
suggested heuristics are:

1. In social comparison system, the focus of attention, i.e., the level of impor-
tance of each recognized agent, changes in time. Thus, observation target
is changed. Our method can easily accomplish the heuristic depend on the
focus of attention as: Fti[n] = (A−FOA[n](i))F ∗

t , where A is a parameter
of the heuristic, FOA[n](i) is the value of the focus of attention of the i-th
observed agent at time n. The Ft of the i-th agent is changed according to
its attention, the sampling frequency should increase upon increasing of the
FOA.

2. In a system in which the recognition process lasts for a long time and
the intention of the observed agent is varied frequently, a heuristics de-
pends on the history of changes in its intentions, can be defined as: Ft =

(C −∑i=n
i=n−T c[i])F ∗

t , where C is the heuristic parameter, T is the memory
interval and c[i] is the number of changes in the observed agent intentions
from the last time it was observed.

3. A heuristic that changes the Ft parameter as a function of the recognized
agent’s intention, informed by the contents of the hypotheses list which is
returned from the recognition process. For example, if one of the hypothe-
ses is Attack, meaning the observed agent is potentially recognized as an
attacker of the executer, the executer can increase the recognition process
frequency, in order to guard from it’s steps, or decrease the recognition
process frequency, in order to save computational resources for its own exe-
cution activities. The decision what to do, according to the observed agent’s
intention, depends on the system application.
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4. A Time-Division Multiplexing (TDM) heuristic in which the recognizer di-
vides the time into several recurrent timeslots with fixed length, one for
each recognition process. The intention recognition process of agent 1 runs
at timeslot 1, the intention recognition process for agent 2 runs at timeslot 2,
etc. One TDM frame consists of one timeslot per agent. After the last agent
the cycle starts all over again with a new frame, starting with the second
sample of the recognition algorithm. Another heuristic can be based on the
TDM heuristic where the monitoring order within each TDM frame will be
determined by the agent’s priority.

5. A heuristic which is based on clustering similar agents and monitoring only
one representative agent from each cluster.

6. A heuristic that applies different values of fixed sampling interval to each
of the i-th observed agent according to predefined preference and interlaces
it with Time-Division Multiplexing in order to spread the load among the
time-slots.

7. Another direction is to allow each Fti to be dynamically changed according
to a different heuristic.

Requirements from a recognition algorithm for using sampling method
In order to be integrated in a system which use sampling method, the recognition
algorithm might need to meet the following requirements:

1. The recognition algorithm which is run in the integrated system is complete.
In other words, at least one of the hypotheses the recognition algorithm re-
turns is the correct behavior leading to a successful recognition. Preferably,
it should be minimally complete, but this is not strictly required.

2. The recognition algorithm’s computational load is affected by the number
of the hypotheses that it maintains. Therefore, the Recognition Load can be
measured by a function of the size of the hypotheses list which is returned
by the recognition algorithm.

115



3. Our sampling approach relies on the ability of the recognition algorithm
to freeze itself and then resume, while taking into account the fact that it
missed observations (e.g., as was done by Kaminka et al. [32], Avrahami-
Zilberbrand et al. [9, 7]).

4. Each of the maintained hypotheses is considered to consume the same amount
of computational resources as the others, independently to the way in which
the hypotheses are generated.

5. The recognition algorithm is executed only at the time points when the in-
tegrated system activates it. Thus, we use accumulated value over time,
to measure the computational resources consumed by the recognition algo-
rithm up to now, in order to express the Recognition Load criterion.

6. Our recognition process has no previous knowledge about the observed
agent intentions, such as when it might change its goals. In other words,
it has no access to an oracle (otherwise, why recognition at all?).

In Section 3.3 we discussed the advantage of an algorithm which supplies a
ranked list of hypotheses to be integrated in a system in the light of the com-
putational load. When hypotheses list is yielded with different probabilities, the
uncertainty is decreased by the information that the least probable state, can be
removed from the possible set of future hypotheses list. Therefore, when using
different probabilities, the entropy of a process is smaller, relatively to the case of
equal probabilities. For example, if the recognition algorithm returns 3 hypothe-
ses, with probability 1/3, then the entropy is: 1.58. When a recognition algorithm
returns 3 hypotheses with the probabilities: 1/2, 3/8 and 1/8, the entropy is:
1.395, less than the first one.

The property of yielding probabilities with the hypotheses list, can be a sig-
nificant advantage for a recognition algorithm to be preferred by an integrated
system. Examples for a recognition algorithm which supplies different probabil-
ities are Geib and Goldman [22], and Avrahami-Zilberbrand [8], AHMEM [11],
etc.
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Mirroring
Integrating intention recognition via Mirroring seems to be the right technique
according to its achievements: simultaneous performing, multi-intention recogni-
tions, good software engineering, and improving performance by applying Tem-

poral Monitoring Selectivity approach. We believe that the Mirroring technique
and the way the brain recognizes behavior are very related.
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Appendix A

Soar code examples for Mirroring
implementation

Here are some examples of rules, which are written in Soar. Soar works by testing
the if parts of rules. These if parts are called conditions and appear before the
arrow symbol in the rule sentence. If all of the conditions of a rule are true in the
current situation, the then parts, or actions, of the rule are executed, which usually
involves making changes to working memory, which holds all of the dynamic data
structures in a Soar program. The then parts appear after the arrow symbol in the
rule sentence. For introduction to Soar, see [56]

The rule of building a new state on the top state, for a new observed agent is:

sp {mirroring*initialize*state

:o-support

(state <s> ^superstate nil)

(<s> ^mode RECOGNITION)

(<s> ^state <state>)

(<state> ^executer yes

^inputs <m-in>)

(<m-in> ^objects <m-objs>

^self.time <t>)

(<m-objs> ^ent <m-ent>)
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(<m-ent> ^id <id>

^health <ht>

^movement <mov>

^posture <posture>)

{(<m-ent> ^position <pos>)

(<pos> ^coordinate world

^location <loc>

^heading <hd>

^pitch <pc>)

(<loc> ^x <x>

^y <y>

^z <z>)}

{(<m-ent> ^position <pos2>)

(<pos2> ^coordinate self

^azimuth <az>

^elevation <el>)}

-{(<s> ^state <any>)

(<any> ^executer no)

(<any> ^inputs.self.id <id>)}

-->

(<s> ^state <state1>)

(<state1> ^executer no

^type state

^inputs <o-in>

^intention <int>)

(<int> ^count 0)

(<o-in> ^objects <any>

^self <o-self>

^freeze <frz>)

(<o-self> ^id <id>

^time <t>)

(<o-self> ^position <o-pos>

^health <ht>
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^movement <mov>

^posture <posture>

^speed normal

^stamina excellent)

(<o-pos> ^location <o-loc>

^azimuth <az>

^elevation <el>

^pitch <pc>

^heading <hd>)

(<o-loc> ^x <x>

^y <y>

^z <z>)

(<frz> ^timeout 80)

(<o-in> ^update_input yes)

}

The rule is executed just if the executer in RECOGNITION mode and a new
observed agent, which has not have its own state yet, is identified. Then a new
state structure is created with a variable state1.executer = no. state1, is a
structure that reflects the perception of the observed agent, thus, the sub-structure
state1.input.self hold the knowledge about its own id, position, orientation,
health, speed, stamina and so on.

When a new state is created, its input layer need to be updated, therefore in
the above rule the state1.update_input set to true. As a results, all the transla-
tion rules are executed. The translation rules interpret the input layer data of the
executer’s state from its perception into the the observed agent’s perception. An
example for such a rule is:

sp {mirroring*translate*inputs*self*location*x

:o-support

(state <s> ^state <state>

^state <state1>)

(<state> ^executer yes)

(<state> ^inputs.objects <objs>)
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{(<objs> ^ent <ent>)

(<ent> ^id <id>)

(<ent> ^position <pos>)

(<pos> ^coordinate world)

(<pos> ^location <loc>)

(<loc> ^x <x>)}

(<state1> ^executer no)

(<state1> ^inputs <o-in>)

{(<o-in> ^self <o-self>)

(<o-self> ^id <id>)

(<o-self> ^position <o-pos>)

(<o-pos> ^location <o-loc> )

(<o-loc> ^x <o-x> {<> <x>})}

(<o-in> ^update-input yes)

-->

(<o-loc> ^x <o-x> -)

(<o-loc> ^x <x> +)

}

This rule updates the x location of the observed agent, by reads it from the entity

sub-structure in the state structure of the executer and write it in the sub-structure
self in the state of the observed agent.

All the application rules are written with no consideration who’s the state be-
longs to. For example, the next rule is the precondition rule of the behavior lay-

down. Its occurrence is a precondition for this behavior to become active in the
agent recipe. In case it becomes an active behavior on the observed agent’s recipe,
it considered as a potential hypothesis for the observed’s intention.

sp {ops*lay-down*precondition

(state <s> ^state <state>)

(<state> ^recipe <recipe>

^events <events>

^inputs <inputs>)

(<recipe> ^rsc <rsc>)
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(<rsc> ^sc <sc>)

(<sc> ^name lay-down)

(<inputs> ^self.posture <posture> <> Lie )

-->

(<sc> ^precondition <precondition>)

(<precondition> ^value true )

(<precondition> ^dparams nil)

(<precondition> ^type success )

}

In order to operate the simulator, according to the executer behavior, the agent
writes a command on the output layer. An example to command the simulator to
lay-down is:

sp {ops*lay-down*apply

:o-support

(state <s> ^state <state>)

(<state> ^recipe <recipe>

^events <events>

^outputs <outputs>)

(<recipe> ^rsc <rsc>)

(<rsc> ^sc <sc>)

(<sc> ^name <cname> lay-down

^active yes

^dparams <dparams>)

-->

(<outputs> ^set-posture <kneel>)

(<kneel> ^command-id 19)

(<kneel> ^posture Lie )

(<kneel> ^move-type stopped)

}

This rules is an example for an applicable rule which is not distinguish who’s
agent this state belongs to. This rule writes the command-id 19 on the output layer
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the simulator reacts accordingly and the agent lays down. How can we be sure that
only command from the executer statestate will be written to the simulator?

An output layer is built as a bridge layer on the top of the output-link layer,
which is a shared memory between the agent program and the simulator program.
When the observed agent’s state is built, it created without an output sub-structure,
thus, the above rule never be executed for the observed agent, according to the
condition of the existence of the output sub-structure. An output layer is created
just for the executer by this rule:

sp {output-link*generate

(state <s> ^state <state>)

(<state> ^executer yes

^io.output-link <il>)

-->

(<state> ^outputs <il>)

}
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