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Abstract

Modeling crowd behavior is an important challenge for cognitive modelers,
multi-agent systems and social simulation. In this dissertation we explore
several techniques for modeling crowd behaviors and address important chal-
lenges concerning each technique.

In the first part of the work we use the agent based approach for mod-
eling crowd behavior. We present the extended Social Comparison model
(SCT), which we believe is a general cognitive process underlying the social
behavior of each individual in a crowd. In this work we provide a qualita-
tive evaluation of the SCT model, as well as others, in contrast to human
pedestrian behavior. The results clearly demonstrate that the SCT model
is superior to others in its fidelity to human pedestrian behavior. Moreover,
we have focused on an open question which has arisen from the SCT model,
namely when should the SCT process be used at the architectural level in
order to guide action-selection of agents. We have extended the SCT model
to address this open question. We argue that comparisons take place all
the time (i.e., differences are perceived and processed), but the cognitive
architecture limits actions taken to minimize differences in cases where the
comparisons yield significant differences. In addition we examine the impact
of cultural differences on the macro level behavior produced in pedestrian
and evacuation domains. In this work we have advanced by treating culture
as a first-class object in models of physical crowds and have extended the
SCT model accordingly. We introduced cultural individual-level parameters
into the simulations, and then examined the effects of these individual level
parameters on the emergent crowd dynamics.

In the second part of the work we use the qualitative reasoning approach
for modeling demonstrations. We present a first attempt to use qualitative
reasoning techniques in order to model crowd behaviors. To the best of our
knowledge, such techniques have never been applied to modeling and reason-
ing regarding crowd behaviors, nor in particular demonstrations. We have
developed qualitative models consistent with the partial, qualitative social
science literature, which has enabled us to model the interactions between
different factors that influence violence in demonstrations. We then utilized
the qualitative simulations to predict the potential eruption of violence, at
various levels, based on a description of the demographics, environmental
settings, and police responses. In addition to providing predictions, the re-
sulting qualitative simulation graphs were analyzed to determine the factors
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that are most important in influencing the outcome. These factors can be
used to support decision-makers.
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Chapter 1

Introduction
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A crowd is a large group of people who are in close geographical or log-
ical states. Individuals in crowds are affected by each other’s presence and
actions, often acting in a seemingly coordinated fashion, as if governed by a
single mind. However, this coordination is achieved with little or no verbal
communication.

Modeling crowd behavior is an important challenge for cognitive model-
ers, multi-agent systems and social simulation. Models of crowd behavior
facilitate analysis and prediction, are sought in training simulations [75],
safety decision-support systems [12], traffic management [37, 68], business
and organizational science.

Computer simulation is considered to be a promising approach for mod-
eling and reasoning of different social phenomena [26] in particular crowd
behavior. There are several micro (individual) and macro (group) level tech-
niques that enable such modeling (see e.g., exp. 3.3.1, 8.1). Using a micro
level approach we model the behavior of each individual and his/her responses
to other agents. Collective behavior is the compound of many individuals’
behaviors. Using a macro level approach we can model collective behavior
by modeling macro level interactions between macro level factors.

Nonetheless, there are many open challenges. Micro level approaches re-
quire detailed individual modeling and are difficult to use in domains where
such detailed information is unavailable. Moreover, existing models for this
approach are usually not validated against human data and do not yet ac-
count for cultural factors affecting crowd behavior, and even more so, for
crowds composed of members of different cultures. Macro level approaches
enable reasoning about produced social behavior by modeling macro level
interactions between different macro level factors. However, these techniques
are not yet applied for modeling crowd behaviors.

In this dissertation we explore several techniques for modeling crowd be-
haviors and address important challenges in each. We use both an agent
based approach (micro level) and a qualitative reasoning (macro level) ap-
proach.

In the first part of the work we use the agent based approach for modeling
crowd behavior. We present the extended Social Comparison model (SCT),
which we believe is the general cognitive process underlying the social be-
havior of each individual in a crowd. We examine this model in pedestrian
dynamics and evacuation behavior. We validate this model against human
data. We also examine the question of when social comparison is triggered
at the architectural level. In addition we examine the impact of cultural dif-
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1.1 Modeling crowd behavior using an agent based approach

ferences on the produced macro level behavior in pedestrian and evacuation
domains.

In the second part of the work we use the qualitative reasoning approach
for modeling demonstrations. We present a pioneer attempt to use qualitative
reasoning techniques in order to model crowd behaviors. To our knowledge,
such techniques have never been applied to modeling and reasoning regard-
ing crowd behaviors, nor in particular demonstrations. We have developed
qualitative models consistent with the partial, qualitative social science lit-
erature, which allows us to model the interactions between different factors
that influence violence in demonstrations. We then utilize qualitative sim-
ulations in order to predict the potential eruption of violence, at various
levels, based on a description of the demographics, environmental settings,
and police responses. In addition to providing predictions, the resulting qual-
itative simulation graphs are analyzed in order to determine the factors most
influential on the outcome. These factors can assist decision-makers.

In the following sections we discuss the contributions of the dissertation
in more detail. In Section 1.1 we describe our contributions to modeling
crowd behavior using an agent based approach. In Section 1.2 we introduce
our work on modeling crowd behavior using a qualitative reasoning approach.
We present the thesis structure in Section 1.3 and our publications in Section
1.4.

1.1 Modeling crowd behavior using an agent

based approach

Using agent-based simulations, we simulated social behaviors by modeling
each individual, and their individual responses to each other. By modeling
agents’ social cognition, we have the ability to model complicated social in-
teractions. Such simulations have been successfully used in modeling crowd
behaviors [24, 44], economic phenomena [83], and more. It is a bottom-up
approach in the sense that in order to observe macro-level behavior we must
model the micro-level interactions which necessitate detailed individual mod-
eling. However, such micro level resolution enables us to examine complicated
social interactions among the individuals in addition to the emergent macro
level behavior.

For several decades researchers have developed micro level computational
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1.1 Modeling crowd behavior using an agent based approach

models for simulation of collective behavior. Indeed, a variety of computa-
tional models have been proposed that exhibit crowd-like behavior in different
tasks. For instance, cellular automata models are used to model pedestrian
movements [8,37] or people evacuating an area during an emergency [36,46].

The biggest challenge in modeling crowd behaviors is in their evaluation
process. Unfortunately, only a handful of existing models of crowd behavior
have been evaluated against real-world human crowd data. The main diffi-
culty is the lack of human data for the evaluation of these models. Moreover,
essentially no computational cognitive models have been proposed which are
tied to the cognitive science theory. Instead, existing models are domain-
specific; the algorithms used change from one crowd behavior to the next.
No attempt has been made to construct a single cognitive mechanism which
accounts for all of the different behaviors.

Recently, we presented an innovative cognitive model of crowd behav-
ior [24], which has two key novelties (compared to previous models): First,
there is a single computational mechanism (algorithm) used to generate dif-
ferent crowd phenomena and second, it is based on a prominent social psy-
chological theory. In particular, the model is based on Social Comparison
Theory (SCT ) [21], a popular social psychological theory that has been con-
tinuously evolving since the 1950s. The key idea in SCT is that humans,
lacking objective means to evaluate their state, compare themselves to oth-
ers that are similar to them.

We believe that social comparison is a general cognitive process underly-
ing the social behavior of each individual in a crowd. Unlike previous crowd
models that concentrate on specific behavior, the SCT model can account for
different crowd behaviors, depending on the perceptions and actions available
to each individual [24].

However, while the SCT model has been proven to be superior to other
computational models in behavior-specific measures (e.g., the formation of
lanes in bidirectional movement), it has never been validated against human
crowd data.

In this work we provide a qualitative evaluation of the SCT model, as
well as of others, in comparison to human pedestrian behavior. Moreover,
we expand the SCT model to account for the timing of the SCT process at
the architectural level and also for cultural differences among the agents.

In Chapter 3 we evaluate the SCT model on general pedestrian move-
ment which includes individuals, couples, and groups, all walking at different
speeds. We compare the performance of the model to other popular models

4



1.1 Modeling crowd behavior using an agent based approach

from the literature and explore the impact of different parameters and model
components (e.g., bounds) on the generated behavior. The evaluation was
carried out by 39 human subjects who compared the behavior generated from
the different models to videos of real-world pedestrians. The results clearly
demonstrate that the SCT model is superior to others in its fidelity to human
pedestrian behavior.

In Chapter 4, we focus on a specific open question emerging from the
SCT model, namely the question of when the SCT process should be used
at the architectural level in order to guide action-selection in agents. In
particular, social psychological theory advocates a model in which social
comparison occurs only when the agent lacks objective means to evaluate its
own progress [21]. This approach, in which the social comparison process is
triggered only when the agent is uncertain as to how to pursue its task goals,
works successfully when used to simulate bi-directional pedestrian movement.
However, it fails when modeling uni-directional movement; here, an approach
in which agents compare themselves to others at all times is preferable. This
on-going comparison approach is also supported by evidence from social psy-
chology and economics.

Earlier successful demonstrations of the fidelity of the SCT model were
thus switched between different triggering mechanisms ad-hoc; In Section
4.1.2 we present the results of experiments which demonstrate that the two
triggering mechanisms are mutually-exclusive. This interferes with a clear
understanding of how social comparison processes are used within a cognitive
architecture. Clearly, social comparison at the architectural level cannot be
changed based on the domain.

As part of the research, we hypothesized that social comparison processes
are indeed on-going, and that humans are aware of—and compare themselves
to—others at all times. Our hypothesis is that action selection mechanisms in
the cognitive architecture are responsible at times for selecting actions which
minimize social differences (i.e., act on the social comparison results), and
at other times, for selecting actions that serve other goals. We experimented
with two alternative mechanisms, and we were able to rule out one of them.
This result places constraints on the cognitive architecture mechanisms that
are used in social comparison.

Additionally, we examined alternative SCT algorithms, extending and
refining the SCT algorithm published earlier (in [24]). An important moti-
vation for this was the fact that the previously published algorithm ignored
the group size while executing comparisons. There is evidence from social
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1.1 Modeling crowd behavior using an agent based approach

psychology that shows that in fact the size of the group is an important
factor in the individual’s social action-selection. The refined algorithms are
presented and examined experimentally.

We also examined the impact of cultural differences on the resulting macro
level crowd dynamics in pedestrian and evacuation domains. Unfortunately,
existing models of physical crowds do not yet account for cultural factors. So-
cial science literature on the effects of culture on physical crowds is extensive
when it comes to individual interactions (e.g., personal spaces and speed),
but rarely addresses the macro-level phenomena (e.g., pedestrian flow). As
a result, it is difficult to validate models against data. This is particularly
true of mixed-cultural physical crowds, in which the evolving crowd dynamics
from individual interactions is inherently difficult to predict. Furthermore, to
date agent-based models have ignored cultural differences in physical crowd
models (e.g., in pedestrians), and treat all individuals as culturally homoge-
neous, who adjust to cultural parameters ad-hoc.

In this work we have taken a step towards treating culture as a first-class
object in models of physical crowds. We have examined the impact of cul-
tural differences on crowd dynamics in pedestrian and evacuation domains,
using proven agent-based simulations of the two domains. We introduced
cultural individual-level parameters into the simulations, and then examined
the effects of these individual level parameters on the emergent crowd dynam-
ics. Moreover, we examined the effects of mixing individuals with different
cultural parameters in the same physical crowd.

In the pedestrian domain (Chapter 5), we related the resulting culturally-
aware simulation to pedestrian data which we recorded from videos of pedes-
trians in five different countries: Iraq, Israel, England, Canada, and France.
We characterized these cultures along four individual- level parameters: per-
sonal spaces, speed, avoidance side (i.e., which side is preferred when avoid-
ing an oncoming pedestrian), and group formations. We used well-known
crowd-level quantitative measures (e.g., flow, number of collisions, and mean
speed) to identify crowd- level effects. We show that the model can faithfully
replicate the observed pedestrian behavior in these videos.

In the evacuation domain (Chapter 6), we examined individual cultural
parameters (documented in social science literature) with reference to how
seriously people treat possible threats, their tendency to notify others, and
their tendency to form groups. We then used the simulations to explore
the impact of these tendencies on the resulting crowd behavior (measured
quantitatively in times of evacuation, panic levels, etc.).
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1.2 Modeling crowd behavior using a qualitative reasoning
approach

1.2 Modeling crowd behavior using a quali-

tative reasoning approach

We propose Qualitative Reasoning (QR) as a macro-level approach which
enables modeling and reasoning without simulating interactions between in-
dividuals. By using a macro level approach we can reason about produced
social behavior by modeling macro level interactions between different macro
level factors. Although it may seem that this resolution is too low and there-
fore difficult to deduce useful conclusions, QR approaches have been found to
be efficient for modeling and reasoning for macro level processes. Moreover,
there are domains where high resolution such as agent-based modeling may
be unavailable and even unnecessary.

In this section we use a macro level approach for modeling crowd behavior
in particular demonstration behavior. Indeed violent demonstrations with
many casualties among participants, police forces and innocent bystanders,
unfortunately are not rare. Can we know the potential nature of an event
before it ends with tragic outcomes? Accurate predictions regarding the
potential violence level of a demonstration can improve the decision making
process of the police, and decrease the number of casualties.

In general, there are several ways that can improve the decision mak-
ing process of the police: the use of expert consultants, numeric simulations
(e.g., [62]) and agent based simulations [44]. The use of expert psychologists
and sociologists for consultations is a very common approach. However such
consultation before every demonstration is neither a practical nor affordable
solution. The use of numerical simulations (e.g., [62]) requires full informa-
tion regarding the domain, which in many cases such as reasoning regarding
the violence level in demonstrations, simply does not exist. Agent-based
simulation approaches (e.g., [44]) require modeling at the micro (individual)
level which in many cases may be impractical. Indeed in general, one of the
biggest challenges in the crowd modeling field is the lack of precise data. Such
precise data is even difficult to obtain since crowd experiments are complex
and costly.

This is not to say that social sciences do not have deep and extensive
knowledge of demonstrations. On the contrary, significant literature exists
on the factors that impact violence during demonstrations. However, the
literature mainly reports partial, macro-level qualitative descriptions of the
influential factors. Integrating these together is a formidable challenge that
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1.2 Modeling crowd behavior using a qualitative reasoning
approach

requires novel forms of modeling.
To enable modeling and reasoning with imprecise and partial information

we propose qualitative reasoning techniques. Qualitative Reasoning (QR)
[22,47] is a sub-area of artificial intelligence (AI), which enables modeling and
reasoning with partial or imprecise numeric information. The QR approach
shows that while having a qualitative representation of data and order values
(such as little/medium/large), it is still possible to draw useful conclusions.

In this work (Part II) we describe a novel application of QR for model-
ing and reasoning about the potential violence level during demonstrations.
We have developed qualitative models consistent with the imprecise descrip-
tions in social science literature, which allows us to model the interactions
between different factors that influence violence in demonstrations. We have
developed three separate models, which incrementally increase in complex-
ity, and in the number of factors each considers. These three models were
evaluated on real-world scenarios, using news reports and Wikipedia entries
as the source of information as to the values of different quantities.

We have developed an innovative technique, which considers the number
of paths leading to different violent outcomes. Using this technique, we are
able to provide an estimate of the likelihood of different outcomes, for each
test case. We have compared the predictions of the different models, and we
have demonstrated an important benefit of using QR for social simulation
modeling, i.e., the ability to easily test social science theories on real-world
data.

Moreover, we have examined whether decision trees, a popular machine
learning approach, can be used for qualitative predictions. While the results
show that the decision trees provide accurate predictions (slightly better
than our QR models) they lack the ability to support hypothetical what-if
reasoning, because they do not have the explanatory power of a social science
model. Thus, we claim that using QR is better for reasoning in this task.

Finally, we have developed an algorithm which analyzes the qualitative
simulation graph of each test-case, to determine the factors that are most
important in influencing the outcomes of the specific case under considera-
tion. The key to this algorithm is to determine simulation graph nodes with
high outcome entropy, i.e., nodes which lead to different outcomes, at fairly
uniform likelihoods. In the states corresponding to such nodes, it is possible
to identify actionable factors that can be used to influence the outcomes.
We show that for real-world cases, the algorithm identifies the causes also
identified by experts.
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1.3 Thesis overview

1.3 Thesis overview

This dissertation comprises 9 chapters, organized into two main parts (see
Figure 1.1). This chapter presents the introduction to this thesis and the
next chapter surveys the related work. Chapters 3 − 6 constitute Part 1 of
the dissertation, which deals with modeling crowd behavior using an agent-
based approach. Part 2 of the dissertation presents the macro level approach
for modeling crowd behaviors which is a Qualitative Reasoning approach and
is presented in Chapters 7 and 8. In Chapter 9 we provide our conclusions
and discuss future work.

Figure 1.1: Thesis Structure.

9



1.4 Publications

1.4 Publications

Results that appear in this dissertation have been published in the following
proceedings, journals, refereed conferences, books and workshops:

• Natalie Fridman and Gal A. Kaminka. Using Qualitative Reasoning
for Social Simulation of Crowds. In ACM Transactions on Intelligent
Systems and Technology, 2012, In press.

• Natalie Fridman, Avishy Zilka, and Gal A. Kaminka. The impact of
cultural differences on crowd dynamics in pedestrian and evacuation
domains: An Extended Abstract. In Proceedings of the Eleventh In-
ternational Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-12), 2012. Short paper.

• Natalie Fridman and Gal A. Kaminka. Towards a Computational
Model of Social Comparison: Some Implications for the Cognitive Ar-
chitecture. In Cognitive Systems Research, 12(2):186-197, 2011.

• Natalie Fridman, Tomer Zilberstein and Gal A. Kaminka. Predicting
Demonstrations’ Violence level using Qualitative Reasoning. In Inter-
national Conference on Social Computing, Behavioral-Cultural Model-
ing, & Prediction (SBP-11), 2011.

• Jason Tsai, Natalie Fridman, Emma Bowring, Matthew Brown, Shira
Epstein, Gal Kaminka, Stacy Marsella, Andrew Ogden, Inbal Rika,
Ankur Sheel, Matthew Taylor, Xuezhi Wang, Avishay Zilka, Milind
Tambe. ESCAPES: Evacuation Simulation with Children, Authorities,
Parents, Emotions, and Social Comparison. In International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS-11),
2011.

• Natalie Fridman, Gal A. Kaminka and Avishay Zilka. Towards Quali-
tative Reasoning for Policy Decision Support in Demonstrations. Ac-
cepted to Agent-based Modeling for PoLicy Engineering (AMPLE)
workshop at AAMAS 2011.

• Gal A. Kaminka and Natalie Fridman. Using Qualitative Reasoning
for Social Simulation of Crowds: A Preliminary Report. In Qualitative
Reasoning (QR) workshop, 2011.

10



1.4 Publications

• Natalie Fridman and Gal A. Kaminka. Modeling Pedestrian Crowd
Behavior Based on a Cognitive Model of Social Comparison Theory.
In Computational and Mathematical Organizational Theory, Volume
16, Issue 4, Page 348. Special issue on Social Simulation from the
Perspective of Artificial Intelligence. 2010.

• Natalie Fridman and Gal A. Kaminka. Comparing Human and Syn-
thetic Group Behaviors: A Model Based on Social Psychology. In
International Conference on Cognitive Modeling (ICCM-09), 2009. A
previous version of this paper was presented at the proceedings of the
Multi-Agent Based Simulation (MABS) workshop at AAMAS-2009.

• Natalie Fridman, Gal A. Kaminka and Meytal Traub. First Steps To-
wards a Social Comparison Model of Crowds. In International Con-
ference on Cognitive Modeling (ICCM-09), 2009. A slightly different
version of this paper was also presented at the Social Simulation work-
shop at IJCAI 2009.

• Jason Tsai, Emma Bowring, Shira Epstein, Natalie Fridman, Prakhar
Garg, Gal Kaminka, Andrew Ogden, Milind Tambe, and Matthew Tay-
lor. Agent-based Evacuation Modeling: Simulating the Los Angeles
International Airport. In Workshop on Emergency Management: Inci-
dent, Resource, and Supply Chain Management (EMWS-09), 2009.

11



Chapter 2

Related Work

12



2.1 A micro-level approach to modeling crowd behavior

2.1 A micro-level approach to modeling

crowd behavior

Social psychology literature provides several views on the emergence of
crowds and the mechanisms underlying their behaviors. These views can
inspire computational models, but are unfortunately too abstract to be used
algorithmically. In contrast, computational crowd models tend to focus on
specific crowd behaviors (e.g, flocking). A common theme in all of them
is the generation of behavior from the aggregation of many local rules of
interaction, e.g., [46, 66–68].

Moreover, understanding and modeling cultural differences in crowd be-
havior is an important challenge for social and exact science researchers. So-
cial psychology literature provides several views on the cultural differences
in micro level interactions among groups of people, but they usually do not
examine the influence of these differences on the resulting macro level be-
havior such as pedestrian flow. Exact science researchers have been inspired
by social psychology literature to develop computational models for crowd
behaviors, but their focus has been on predicting the resulting macro level
behavior from micro level interactions. Nonetheless, to the best of our knowl-
edge, existing computational models for crowd behaviors have not yet taken
cultural differences into account.

2.1.1 Social psychology

A phenomenon observed in crowds, and discovered early in crowd behavior
research is that people in crowds act similar to one another, often acting in
a coordinated fashion, as if governed by a single mind [1, 6, 9, 49]. However,
this coordination is achieved with little or no verbal communication.

Le Bon [49] emphasized a view of crowd behaviors as controlled by a
”Collective Mind”, and observed that an individual who becomes a part of
the crowd transforms to become identical to the others in the crowd. Le Bon
explains the homogeneous behavior by two processes: (i) Imitation, where
people in a crowd imitate each other; and (ii) Contagion, where people in a
crowd behave differently from how they typically would, individually.

Blumer [9] explains that this coordinated crowd behavior occurs through
a ”circular reaction” process which underlies each individual who participates
in the collective behavior. According to Blumer, ”circular reaction” is: ”a
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2.1 A micro-level approach to modeling crowd behavior

type of interstimulation wherein the response of one individual reproduces
the stimulation that has come from another individual and in being reflected
back to this individual reinforces the stimulation.”.

According to Allport, crowd behavior is a product of the behavior of like-
minded individuals. Allport’s explanation of crowd homogeneous behavior is
that similar people act in similar ways; otherwise they would not be a part
of the same group. However, individual behavior is affected by the behavior
of his surroundings, thus, according to Allport, ”the individual in the crowd
behaves just as he would behave alone, only more so.”

Turner and Killian [80] investigated the Emergent-norm Theory, which
hypothesizes that crowd members indeed imitate each other, but also create
new norms for the crowd as the dynamics of the situation dictate. Thus while
crowds are not entirely predictable, their collective behavior is a function of
the decision-making processes of their members.

Berk’s [6] explanation of crowd behavior is based on the decision making
theory. According to the decision-theory, each individual always tries to
maximize his reward and minimize costs. Berk argues that crowd behaviors
are no exception, and that they should be understood from a game-theoretic
perspective. He explained coordinated behavior of crowds as consistent with
agents using a minimax strategy where the greater the number of participants
who engage in a specific action, the less the cost will be for the individual
engaging in the action. Thus, each individual will select the action of the
majority.

Different theories provide different explanations as to what drives indi-
vidual behavior when the individual is a part of a crowd. However, there is
a consensus among all the theorieswhich asserts that when an individual is
part of a crowd, his or her individual behavior is affected by others.

We based our work on the Social Comparison Theory [21], which (to the
best of our knowledge) has never been applied to modeling crowd behavior.
Nevertheless, as we show in section 3.1, key elements of the theory are at
the very least compatible with those theories discussed above. Previously,
Carley and Newell [17] examined the implications of SCT on computational
agents and their sociability. We base our work on their observations.

Moreover, in social psychology there has been extensive research on the
cultural differences in micro level interactions among groups of people. Cul-
tural differences have been revealed in a variety of human behaviors such as in
different pedestrian dynamics, evacuation behavior and more. In the pedes-
trian domain there are several cultural attributes that have been examined
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2.1 A micro-level approach to modeling crowd behavior

across different countries such as the distance that pedestrian keep from one
another, their walking speed etc. Cultural differences have been also found
in evacuation behavior such as the way the people react to the event, the
way people evacuate themselves etc. In this dissertation we provide several
examples of these cultural phenomena, which have been described in social
psychology literature.

Hall [30–33] examined the distances that pedestrian keep from one an-
other across different cultures. He was one of the first researchers who defined
the concept of proxemics or the personal space which is an invisible bound-
ary that people maintain from each other in different contexts. According to
Hall each person is surrounded by four invisible bubbles of space: Intimate,
Personal, Social and Public. Personal distance refers to interactions among
good friends or family members. Social distance refers to interactions among
acquaintances and public distance is used for all other interactions such as
public speaking. Changes in the bubbles depend, among other things on
relationships to the closest person and also on cultural background.

Beaulieu [5] also examined cultural differences in personal space where she
measured personal differences in 4 cultural groups. The research showed that
Anglo Saxons used the largest zone of personal space, while Mediterraneans
and Latinos used the shortest distance.

Levin and Norenzayan [50] examined the cultural differences in the pace of
life from 31 countries. According to their definition the pace of life comprises
three indicators: average walking speed, the postal speed and the accuracy
of public clocks. They showed that Japan has the fastest pace of live. They
also showed people in England and France have faster walking speed than
people in Jordan or Syria.

Berkowitz [7] provides a naturalistic study of urban pedestrians in six
national groupings by analyzing their national social behaviors. His goal was
to contribute to quantitative cross-cultural data on various pedestrian social
behaviors. He examined 20 different locations in 6 different countries such
as Italy, England, Iran, Turkey and more. His study shows that in Moslem
countries, England and West Germany there is higher incidence of people in
groups than in Italy and the United States.

Chattaraj et. al., [19] examined whether there are cultural differences
between Indians and Germans, in pedestrian streams in corridors. In an
experiment they performed on pedestrians walking in straight lines, they
found that the speed of Indian individuals is less dependent on density than
the speed of German individuals. Moreover, they also found that German
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2.1 A micro-level approach to modeling crowd behavior

groups keep greater personal space than Indian groups.
Patterson et. al., [63] examined the cultural differences in micro-

interactions of pedestrians in Japan and in the United States as they walked
past a confederate. They concentrated on the effect of sex of the confederate
and his or her behavior when passing one another on the sidewalk such as
glances, smiles, nods, greetings and more. The results show that pedestrians
in Japan are less responsive in terms of smiles, nods or verbalizing a greeting
than pedestrians in the United States.

Cultural differences also have been examined in the evacuation domain.
Andrée and Eriksson [2] examined cultural differences between Swedish and
Australian in evacuation scenarios. They conducted experiments where they
examined behavior and emotional patterns of 257 students from Sweden and
Australia during a fire alarm and collected data by using questionnaires, video
recordings and semi-structured interviews with the subjects. The results
show that the Australians students are more serious about the alarm than
the Swedish and they were also more scared.

Bryan [16] also examined cultural differences in the evacuation domain.
He conducted an experiment which involved 584 participants over 335 fire
incidents and collected data by interviewing the subjects. He also compared
the results to the findings of previous studies. He compared different param-
eters such as participants’ awareness to the fire incident, the participants’
initial action during the incident etc. The study showed among other results
that people of different cultures tend to notify others about the existence
of the event, to different extents. For example, in the U.S there is a higher
tendency to notify others about the event than in England

2.1.2 Computational models

Work on computer modeling of collective behavior has been carried out in
other branches of science, in particular for modeling and simulation. Inspired
by different fields of science, researchers have been developing computational
models for simulation of collective behavior. However, only a few models
have been validated against human data [20, 35, 46] Indeed, only limited
quantitative data exists on the behavior of human crowds at a resolution
which permits accurate modeling. Moreover, a key problem with these mod-
els is that the algorithms they provide change with the crowd phenomenon
modeled.

Reynolds [66] simulated bird flocking using simple, individual-local rules,
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2.1 A micro-level approach to modeling crowd behavior

which interact to create coherent collective movement. There are only three
rules: Avoid collision with neighbors, match velocity with neighbors, and
stay close to the center of gravity of all neighbors. Each simulated bird is
treated as a particle, attracted and repelled by others. On the one hand there
is a desire to stay close to the flock, but on the other hand, there is a desire
to avoid collisions. However, this model is limited only to the interactions
of the agents, and does not allow individual goals (e.g., their own steering
behavior).

Tu and Terzopoulos [79] simulated the motion of artificial fish with ad-
dressed individual goals. Like Reynolds’ ”boids”, the artificial fish are au-
tonomous creatures with simple behaviors, but combined they are able to
create a more complex, collective behavior. However, unlike Reynolds’ boids,
where their behavior was selected based on the current state of their neigh-
bors, each fish revealed habits and a mental state (for example hunger, fear
etc.) that also have an impact on behavior selection. Indeed, Reynolds later
expanded his work on collective movement in [67] but, this time he allowed
steering behavior among the autonomous agents. In the revised model, each
agent has a set of simple steering behaviors such as seek, flee, pursuit, evade,
etc. The combination of these simpler behaviors creates a complex steering
behavior.

Similar ideas have been applied in swarm robotics. Matarić [52] sees
collective (complex) behaviors as a combination of basic behaviors. Each
robot has spatial behaviors (controllers) that are combined to create different
kinds of group behavior: for example, flocking consisting of safe-wandering
(moving around without bumping), homing, dispersion (moving away from
other agents), and aggregation (moving towards other agents). The combined
outputs of the basic behaviors provide a velocity vector which is used to
control the robot.

Yamashita and Umemura [88] took a different approach in simulating
panic behavior. While inspired by Reynolds’ boid model, they proposed
a model where each simulated person moves according to three instincts:
escape instinct, group instinct and imitational instinct. According to Ya-
mashita and Umemura, when a person is in a state of panic, he or she acts
based on their instincts which simplifies their decision making process.

Henderson compared pedestrian movement to gaskinetic fluids. Based on
experiments on real human crowds, he showed in [41] that crowd distribu-
tion is compatible with Maxwell-Boltzmann’s distribution. Henderson [42]
developed a pedestrian movement model based on the Maxwell-Boltzmann
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2.1 A micro-level approach to modeling crowd behavior

theory. Since each person has mass and velocity, the crowd may be com-
pared to liquid gas and under certain assumptions, the Maxwell-Boltzmann
theory may be applied. Based on Boltzmann-like equations, Helbing [34,35]
developed a general behavior model for simulation of crowd dynamics. The
proposed model takes into account social forces caused by interaction be-
tween the individuals and external or spontaneous forces which are caused
by the physical environment.

Helbing et al. [35, 37, 38] observed self-organization in collective motion
phenomena which can be caused by interaction among pedestrians. Self-
organization, in this case means that there were some behavioral phenomena
which were not planned, e.g., creation of lane formation in pedestrian move-
ment. These lanes are created as a result of pedestrians moving against the
flow. The number of lanes that are created cannot be planned. It depends
on the width of the street and on pedestrian density.

Helbing and Vicsek [39] expanded their physical model by using game
theory. The attraction force can be expanded to profitable force which may
lead to optimal self-organization in pedestrian movement. Each entity cal-
culates the ”expected success” per each possible action and the action with
maximum success is chosen. In pedestrian relations, actions are possible di-
rections in which an entity can move and optimal self-organization is minimal
interaction between entities.

Moussäıd et al. [57] examined the impact of a group’s motion on pedes-
trian crowd dynamics. They showed that social interactions among group
members create different group walking patterns. They also examined the
impact of such patterns on the pedestrian flow. Their results show that in
low density group members tend to walk side by side, however, as the density
increases the group members form a V-like pattern formation which reduces
the flow due to its non-aerodynamic shape.

Brown et al. [13] examined how individual characteristics impact crowd
evacuation. They expanded Helbing’s physical model by adding individual
parameters to each agent, such as dependence level and altruism level. Ac-
cording to the model, groups combining altruism and dependent agents will
be formed. By changing these attributes, they examined crowd evacuation
by measuring the flow of people passing the door per second, and population
distribution in the flow.

Blue and Adler [8] proposed a different approach to model collective dy-
namics. They used Cellular Automata (CA) in order to simulate collective
behaviors, in particular pedestrian movement. The focus again was on lo-
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cal interactions whereby each simulated pedestrian is controlled by an au-
tomaton, which decides on its next action or behavior, based on its local
neighborhoods. These rules are responsible for making a decision about lane
changing and forward movement. If the path ahead is free, then it is taken.
If not, then the automaton seeks to proceed left or right. If both lanes are
available, one is chosen arbitrarily. Blue and Adler showed that this simple
rule results in the formation of lanes in movement, similar to those formed
in human pedestrian movement [87].

Toyama et al. [77] expanded the cellular automata model by adding dif-
ferent pedestrian characteristics, such as speed, gender, repulsion level, etc.
The model was examined on bi-directional pedestrian movement behavior
and on evacuation behavior. The main problem with this approach is that
each collective behavior is simulated with a different CA model. For exam-
ple, CA for simulation of pedestrian behavior has a different set of rules than
the CA for evacuation behavior.

Osaragi [60] proposed a model for simulating pedestrian flow by using the
concept of pedestrian mental stress. Pedestrian mental stress increases as a
result of other pedestrians (density) and whether the pedestrian is unable
to move to her destination using the shortest path. To decrease her men-
tal stress, the pedestrian may dynamically change her direction or walking
velocity. Because of these dynamic changes, the simulated pedestrians are
heterogeneous. The model parameters were estimated using observed data.

Kretz [46] proposed the Floor field-and-Agent based Simulation Tool
model (F.A.S.T) which is a discrete-space and discrete-time model for pedes-
trian motion. The F.A.S.T model can be classified as an extension of Prob-
abilistic Cellular Automata (PCA). The F.A.S.T model has been validated
against human data. In particular, the model simulation results of evacua-
tion scenarios were compared to results of an evacuation exercise at a primary
school.

Daamen and Hoogendoorn [20] performed empirical experiments on hu-
man crowds, in particular in terms of movement as pedestrians. In these
experiments, participants were asked to walk through a monitored area, in
both directions. Their movements were recorded. One conclusion was that
”during capacity conditions, two trails or lanes are formed: pedestrians tend
to walk diagonally behind each other, thereby reducing the head ways and
thus maximizing the use of the infrastructure supply”.

In all of these previous works above, the behavior of crowds in every do-
main of study (pedestrian movement, flocking, evacuation, etc.) is computed
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using a different algorithm, yet the actions and perceptions remain largely in-
variant (e.g., distances to others, occupied spaces versus empty spaces, goal
locations, etc.). Instead, the computation itself changes between modeled
behaviors.

For instance, many models of crowd behavior utilize cellular-automata
(CA), which differ between domains. One CA model for pedestrian move-
ment [8] uses a set of 6 IF-THEN rules which work in parallel for all cells, to
simulate the movement of pedestrians in cells. The rules utilize knowledge
of the occupancy in adjacent (rules 1,3 in [8]) and farther cells (rule 2), as
well as knowledge of the distance to oncoming pedestrians in the same lane
(rules 4 and 6). The rules set the forward velocity and position of the enti-
ties, by using a set of non-deterministic choices (sub-rules 5a,5b,5c), biased
by distributions which differ depending on the environmental settings (e.g.,
choose from a uniform 50%/50% split distribution if two nearby cells are oc-
cupied, or from a 10%/80%/10% distribution when three cells are available).
Another CA model for evacuation [76] uses knowledge of adjacent cells and
distances to exits, and sets the position of the entities. Thus the actions
and perceptions of each entity are similar to those used in the pedestrian
model. But the algorithmic computation of the new position is done in two
deterministic rules [76, pp. 17], which does not involve arbitrary choices at
all.

In contrast to these previous investigations, we seek a single cognitive
mechanism—a single algorithm—that, when executed by individuals, will
give rise to different crowd behaviors, depending on the perceptions and
actions available to the agents. This single algorithm will account for different
crowd phenomena, by virtue of the actions and perceptions available to each
individual.

In our previous work [24], we presented a model of crowd behavior, based
on the social comparison theory (SCT) [17, 21], a popular social psychol-
ogy theory that has been continuously evolving since the 1950s. The key
idea in this theory is that humans, lacking objective means to evaluate their
state, compare themselves to others who are similar. We believe that social
comparison is a general cognitive process underlying the social behavior of
each individual in a crowd. While the model was successfully evaluated on
a variety of pedestrian behaviors [24], it was not evaluated against human
data.
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2.2 A macro-level approach to modeling

crowd behavior

There are several macro (group) level techniques that enable modeling and
reasoning in relation to different social phenomena. Some of these tech-
niques require building a model, e.g., system dynamics, qualitative reason-
ing. Nonetheless there are others that do not require a model as an input
to enable predictions, such as machine learning techniques, in particular a
decision tree.

System dynamics [26] is a macro level approach in the sense that it mod-
els an entire system. It uses defined stocks, flows and feedback loops to
model system behavior. The models are basically sets of differential equa-
tions that describe changes in the system. In our domain, such accurate and
full definitions are not available.

As stated there are techniques that do not require a model as input.
Instead, machine learning techniques can facilitate reasoning regarding social
phenomena by inducing a model from examples of the target concepts. For
instance, a decision tree learning algorithm [55] uses a set of examples and
the target classes to which they belong (for instance, examples of properties
of demonstrations and their associated violence level) as input and induces
(builds) a model, in the form of a decision tree. This decision tree allows
classification of the observed data according to the given properties. However,
as we show in this paper, prediction (classification) accuracy is not the only
requirement for policy decision-support. In particular, we show that QR
models can be much better at analyzing hypothetical settings.

Qualitative reasoning (QR) [22, 47] is a macro-level approach to mod-
eling and reasoning with partial and imprecise numeric information. The
traditional usage of QR is in modeling common-sense reasoning, e.g., in
physics [22]. Indeed, for several decades extensive studies have been con-
ducted on QR techniques in physics to enable reasoning about physical sys-
tems. However, while QR is usually associated with physics, other branches
of science such as ecology [69], social science [45], politics [23] etc., are also
beginning to adopt this approach. Even though social science is much less
formal than physics, QR approaches have been found to be just as powerful.

For example, Kamps and Peli [45] present the use of QR in the applica-
tion of social science. They showed that the QR approach was successfully
applicable for modeling and reasoning about the density dependence theory
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of organizational ecology. They simulated the growth pattern of a popula-
tion and enabled prediction regarding the population size. Salles and Bre-
deweg [69] used QR techniques in ecological modeling. Based on theoretical
and commonsense knowledge, they built a qualitative model of population
and community dynamics in the Brazilian Cerrado vegetation. They showed
that QR models successfully capture ecological knowledge and enable valid
prediction of different behaviors in ecological systems.

Brajnic and Lines [11] applied the QR technique in complex, socio-
economic allocation problems, in particular the allocation of national in-
come between several important resources such as capital investment, social
services etc., They show that with relatively weak quantitative information
about functional relationships useful prediction regarding the behavior of an
economic society can be drawn.

In this work we used a qualitative reasoning approach for modeling and
reasoning about the demonstration behavior of the crowd. In particular,
our goal was to model and predict the violence level during demonstrations.
There are several theories in social science regarding the influencing factors
on the violence level. These factors are described partially and qualitatively,
at a macro-level without full and precise information. Moreover, we are not
aware of almost any simple model that attempts to be comprehensive. Thus,
we use a qualitative reasoning approach for modeling and reasoning regarding
the potential violence level of demonstrations. To the best of our knowledge,
QR techniques have never been used to model crowd behavior phenomena.
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3.1 An Existing Model of Social Comparison

In this chapter we present the existing model of Social Comparison (SCT).
However, while the existing SCT model has demonstrated good results in
modeling pedestrian behavior [24], it has never been evaluated against hu-
man data. In this chapter we provide a qualitative evaluation of the SCT
model against human pedestrian behavior. We also evaluate our model in
evacuation behavior. Moreover, we discuss why we believe that the SCT
model is compatible for modeling crowd behaviors.

3.1 An Existing Model of Social Comparison

In recent years we have been successfully developing the SCT model of crowd
behavior, inspired by the social psychological theory of social comparison.
Festinger’s Social Comparison Theory (SCT) [21] served as an inspiration for
the social skills necessary for our agent to be able to exhibit crowd behavior.
According to the social comparison theory, when lacking objective means of
appraisal of their opinions and capabilities, people compare their opinions
and capabilities to those of others who are similar to them. They then
attempt to correct any differences found.

Festinger presents the social comparison theory as an explicit set of ax-
ioms. The following subset of axioms (re-worded) is particularly relevant (see
also [17,21] for additional discussion):

• When lacking objective means of evaluation, the agents compare their
state to that of others;

• Comparison increases with similarity;

• Agents take steps to reduce differences to the objects of comparison.

According to our existing SCT model, each observed agent Ai is consid-
ered to be a tuple of k state features A ≡ ⟨fA

1 , . . . , f
A
k ⟩. Each feature f i

j of
agent Ai (1 ≤ j ≤ k) corresponds to a dimension, such that agent Ai is rep-
resented by a point in a k-dimensional space, where the various dimensions
correspond to state features (such as the location in x, y coordinates, color,
heading, etc.)

For each such agent, we calculate a similarity value Sim(Ame, Ao), which
measures the similarity between the observed agent Ao and the agent carrying
out the comparison process Ame. The agent with the highest value is selected.
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3.1 An Existing Model of Social Comparison

If its similarity is between the given maximum and minimum values, the
comparing agent is triggered to perform actions to reduce the discrepancy.

Algorithm 1 Argmax SCT (O,Ame, Smin, Smax)

1: S ← ∅
2: for all Ao ∈ O do
3: if Smin < Sim(Ame, Ao) < Smax then
4: S → S ∪ Ao

5: Ac ← argmaxAc∈S(Sim(Ame, Ao)
6: D ← differences between me and agent Ac

7: a← SelectAction(D)
8: Apply action a with its Gain (Eq. 3.2) to minimize the differences in D.

This process is described in the Algorithm 1. Each agent Ai executes
the following algorithm (Algorithm 1). In line 2 and 3, for each observed
agent Ao ∈ O, we calculate a similarity value Sim(Ame, Ao), which measures
the similarity between the observed agent Ao and the agent carrying out the
comparison process (Ame) (Eq. 3.1). We model each agent as an ordered
set of features, where similarity can be calculated for each feature indepen-
dently of the others. We measure similarity between agents independently
along each dimension. The similarities in different dimensions are functions
sfi(f

Ame
i , fAo

i ) : fi× fi 7→ [0, 1]. The function sfi defines the similarity in fea-
ture fi between the two agents Ame and Ao. A value of 0 indicates complete
dissimilarity. A value of 1 indicates complete similarity. For instance, one
commonly used feature denotes the normalized Euclidean distance, inverted:
A value of 0 means that the agents are as far apart as possible. A value of 1
means that they are positioned in the same location.

To determine the overall similarity between two agents, we use a weighted
sum over the functions sfi . With each feature fi, we associate a weight
wi ≥ 0. The similarity between two agents is then given by Eq. 3.1 below.

Sim(Ame, Ao) ≡
k∑

j=1

sfj(f
Ame
j , fAi

j ) · wj (3.1)

For each calculated similarity value, in line 3 we check if it is bounded
by Smin and Smax, and in line 5 we select the agent Ac that maximizes the
similarity, but still falls within the bounds. Smin denotes values that are not
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3.2 Can Festinger’s social comparison theory be used for
modeling crowd behaviors?

sufficiently similar, and the associated agents are ignored. Festinger states
that “when a discrepancy exists with respect to opinions or abilities there
will be tendencies to cease comparing oneself with those in the group who
are very different from oneself” [21]. Respectively, there is also an upper
bound on similarity Smax, which prevents the agent from trying to minimize
differences where they are not meaningful or helpful. For instance, without
this upper bound, an agent that is stuck in a location may compare itself to
others, and prefer those that are similarly stuck in place.

In line 6, we determine the list of features (fi, wi) which cause the dif-
ferences between Ame and the selected agent Ac (list of features with fi <
1). We order these features in an increasing order of weight wi, such that
the first feature to trigger corrective action is the one with the lowest weight.
Thus, the correction order increases from the lowest weight to the highest
weight. The reason for this ordering is intuitive, and indeed we did not find
evidence for it (or against it) in the literature.

Finally, in step 7 of the algorithm, the comparing agent Ame takes one
corrective action (a) on the selected feature. Note that we assume that
every feature has one associated corrective action that minimizes its gaps
with the target agent, independently of other features. Festinger asserts that
“the stronger the attraction to the group the stronger will be the pressure
toward uniformity concerning abilities and opinions within that group” [21].
To model this, we use a gain function Gain (Eq. 3.2), which translates
into the amount of effort or power invested in the action. For instance, for
movement, the gain function would translate into velocity; the greater the
gain, the greater the velocity.

Gain(Sim(Ame, Ac)) ≡
Smax − Smin

Smax − Sim(Ame, Ac)
(3.2)

3.2 Can Festinger’s social comparison theory

be used for modeling crowd behaviors?

In order to use a computational model of social comparison theory for model-
ing crowd behaviors we need to address the following issues. First, we need to
examine whether there is a connection between the social comparison theory
and crowd behavior. Second, we need to check whether the social compar-
ison theory can be applied to superficial comparisons, i.e., at the level of
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modeling crowd behaviors?

visible differences between agents, in addition to cognitive differences (e.g.,
intentions). We address these two issues below.

3.2.1 Social comparison in crowds

To the best of our knowledge, the social comparison theory has never been
associated with crowd behavior phenomena. However, we believe that the
social comparison theory may account for some important characteristics of
crowd behavior, as it clearly addresses processes in groups, and no limit is
placed on a group’s size.

We focus on one of the primary characteristics of crowds, i.e. the similar-
ity between individuals’ behaviors. This similarity is explained by a process
of imitation [49], convergence of like-minded individuals [1], or emerging
norms [80].

Social comparison processes can give rise to this phenomenon. Festinger
states that ”the existence of a discrepancy in a group with respect to opin-
ions or abilities will lead to action on the part of members of that group to
reduce the discrepancy” [21, p. 124]. Indeed, one implication of SCT is the
formation of homogeneous groups. Festinger notes that ”the drive for self
evaluation is a force acting on persons to belong to groups, to associate with
others. People, then, tend to move into groups which, in their judgment, hold
opinions which agree with their own“ [21, p. 135]. This quote, in particular,
seems to be compatible with [1].

3.2.2 Do people engage in surface comparisons?

Festinger hypothesizes that ”there exists, in the human organism, a drive
to evaluate his opinions and his abilities” [21, p. 117]. Thus a question
which emerges with respect to the mechanisms we describe in this work is
whether in fact this type of surface comparisons is associated with the social
comparison theory.

There has been extensive research clarifying the concepts of ”abilities”
and ”opinions”. Smith and Arnkelsson [72] explain that evaluation ability
refers to a person’s performance on a specific task. Festinger himself provides
a link between ability and performance as he states ”abilities are of course
manifested only through performance which is assumed to depend upon the
particular ability” [21, p. 118]. He then provides an example “Thus, if a
person evaluates his running ability, he will do so by comparing his time to
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run some distance with the times that other persons have taken.” [21, p.
118].

Moreover, the meaning of opinion comparison, also has been extensively
investigated throughout the years since the publication of [21]. Goethals and
Darley [27] associate this concept with ”the Related Attributes Hypothesis”
which states that people will prefer to compare themselves with others sim-
ilar to them on attributes that are related to their opinion or performance.
Festinger provides the basis for this research by claiming that ”if persons
who are divergent from one’s own opinion or ability are perceived as differ-
ent from oneself on attributes consistent with the divergent, the tendency to
narrow the range of comparability becomes stronger” [21, p. 133]. Goethals
and Klein provide an example which directly acknowledges surface compar-
isons: ”An individual evaluating his or her tennis-playing ability. He or she
might compare with others who are about the same age, who have the same
degree of recent practice and comparable equipment, and who are the same
sex” [28, p. 25].

There is much evidence that people perform surface comparison in their
everyday tasks even when they are walking down the street. For example,
people use SCT to decide whether to return a lost wallet [43]. Here is another
example: A well-known experiment in social sciences was performed by Mil-
gram et al. [54]. The experiment involved one participant who stood in the
middle of a busy street and stared into an empty spot in the sky. The pur-
pose of the experiments was to examine group pressure. The results showed
that when there was only one participant, only a few people that passed
briefly glanced up. However, when there were several participants, almost
80 percent of those passing by also stopped and stared into the sky. Thus
it seems that the application of the social comparison theory to explaining
crowd behavior is justified.
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3.3 Pedestrian Behavior: Validation Against

Human Data

In this section we evaluate the SCT model (presented in Section 3.1) on gen-
eral pedestrian movement which includes individuals, couples, and groups, all
walking at different speeds in a bidirectional fashion. We compare the perfor-
mance of the model with popular models from the literature, and explore the
impact of different parameters and model components (e.g., bounds) on the
generated behavior. The evaluation was carried out by 39 human subjects
who compared the behavior generated from the different models to movies of
real-world pedestrians. The results clearly demonstrate that the SCT model
is superior to others in its fidelity to human pedestrian behavior.

The SCT model was previously evaluated separately on different crowd
behaviors [24]. In particular, it was assessed in reference to different types of
pedestrian movement phenomena such as the formation of lanes in bidirec-
tional movement of individuals, movement in small groups with and without
obstacles, etc. When evaluated on a specific behavior, community-recognized
standard measures, such as flow, number of lane changes, etc. can be applied.
However, when evaluating the model against human data, it must account
for a more complete set of behaviors, all mixed together. For example, when
watching pedestrians, we can observe people moving as groups like a fam-
ily, friends and couples or as individuals, all walking at different speeds in a
bidirectional fashion.

A different evaluation methodology is thus needed. One of the greatest
challenges in modeling crowd behaviors is the great absence of human crowd
behavior data that can be used as a basis for comparison. The main difficulty
in the creation of such data is that controlled experiments are complex to de-
sign, and costly to execute, since they have to be in large scales. A standard
methodology of evaluation does not exist; some researchers generate accu-
rate behavioral data by engaging crowds in virtual environments [64], while
others do qualitative comparisons of their models’ predictions in comparison
with movies of crowds, i.e., via observation experiments, e.g., [36, 46]. We
followed the same approach. Below, we describe the observation experiments
we executed to evaluate the SCT model on general pedestrian behavior.
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3.3.1 Comparison of the SCT Model Generating
Pedestrians’ Behavior and Human Pedestrian
Behavior

We used human crowd movies where different pedestrian behavior phenom-
ena are presented (Figure 3.1) and created screen-capture movies of different
models of the same behavior (Figure 3.2). We relied on experiments with
human subjects which compare each of the resulting simulated behaviors to
human crowd behavior. In addition, the subjects also voted for the most
similar and dissimilar simulated behavior.

(a) (b)

Figure 3.1: Human pedestrian behavior.

Simulated Behavior: Experiment Setup.

To simulate pedestrian behavior, we used Net-Logo. We defined a sidewalk
with 104 patches in length and 10 patches in width. In order to match human
crowd density the sample population comprised 30 agents. Agents were able
to move in a circular fashion from east to west or in opposite directions at
different speeds. Agents that belong to the same group had the same color.
In order to create small groups, couples and individuals, we used 15 different
colors to define our population (this was a large number considering the
population size). Agents were placed in random positions at the beginning
of the experiment, and each agent had a limited visual distance of 10 patches
and a cone-shaped-field-of-view of 120 degrees.
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(a)

(b)

Figure 3.2: Simulated pedestrian behavior.
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Each agent had a set of features and their corresponding weights. In
order to simulate pedestrian movement, we used the following features and
weights: color (weight 3); walking direction east or west (weight 2); and
position (weight 1), given global coordinates. To account for the Western
cultural instinct that friends (and family) walk side-by-side, rather than in
columns, we used another feature: The similarity in position along the x-axis
- X-Coordinate (weight 0.5).

The rationale for feature priorities, as represented in their weights, stems
from our intuition and common experience regarding how pedestrians act.
Positional difference (distance, side-by-side) is the easiest difference to cor-
rect, and the least indicative of a similarity between pedestrians. Direction
is more indicative of a similarity between agents, and color (which we use to
denote sub-groups within the crowds) even more so. For instance, if an agent
sees two agents, one proceeding in the same direction as it (and far away),
and the other very close to it (but in the opposite direction), it will calculate
greater similarity to the first agent, and try to minimize the distance to it
(this may cause a lane change) and only then it will try to locate itself on
the same X-coordinate.

The similarities in different features (fi) are calculated as follows. fcolor =
1 if the color is the same, otherwise 0. fdirection = 1 if the direction is the same,
otherwise 0, fdistance =

1
dist

, where dist is the Euclidean distance between the
positions of the agents and finally, fx−coordinate = 1 if the x-coordinate is
the same, otherwise it equals 0. Each agent calculates the similarity value
Sim(Ame, Ao) according to the model. If the chosen feature for closing the
gap is distance, then the velocity for movement will be multiplied by the
calculated gain Gain. For other features (which are binary), the gain is
ignored.

We examined the impact of the SCT model components on the quality
of the simulated pedestrian behavior. In particular, we examined the impact
of SCT bounds (Smin and Smax), gain function, and correction order on the
generated behavior. We defined seven models, each emphasizing a different
SCT component. The models are explained below, and summarized in Table
3.1.

First we examined the impact of SCT bounds on the generated pedestrian
behavior. We hypothesized that narrower bounds would provide more similar
behavior to the individual model. To examine this hypothesis, we defined
the following models:
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• SCT-B-2-6.5 We set Smax to 6.5 (namely, practically no agents are
too similar) and Smin to 2 (which means that agents that differ only
in distance and in the X-axis are not considered similar). The gain
was calculated according to Eq. 3.2 and the correction order was from
the low weight features (distance) to the high weight features. In this
domain agents could not change their color, thus, the last corrected fea-
ture was direction. Our hypothesis was that this model would provide
the behavior most similar to human pedestrians.

• SCT-B-5-6.5 We set the Smin to 5 which means that agents that are
similar at least in color and direction are considered to be similar. Thus,
in this model only agents with the same color and direction would move
together.

Another component that we examined was the impact of correction order
on simulated pedestrian behavior. In the SCT-H-L model we defined the
correction order to be from high to low. Our agents could not change their
colors, and in this model if the selected agent moved in the opposite direction,
the agent would first change its direction and then try to close the distance
gap.

Finally, we evaluated the importance of the gain in the model. We defined
the following models:

• SCT-NoGain Was defined without the gain function (i.e., the gain was
constant 1).

• SCT-G-C2 The gain function was constant (2).

• SCT-G-C3 The gain function was constant (3).

• SCT-G-C4.5 The gain function was constant (4.5).

The various SCT models were compared to the individual choice model,
commonly used in crowd research [8, 36]. In the individual model, each
agent makes its decisions independently of its peers and in the pedestrian
domain, when forward movement is blocked, an agent will arbitrarily choose
a different lane. This model has been shown to be qualitatively compatible
with pedestrian motion, and is often used as a baseline technique in crowd
research (see, for instance, [46]).
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Model Smax Smin Gain Correction order
SCT-B-2-6.5 6.5 2 Eq. 3.2 (func.) L-H
SCT-B-5-6.5 6.5 5 Eq. 3.2 (func.) L-H
SCT-B-H-L 6.5 2 Eq. 3.2 (func.) H-L
SCT-B-NoGain 6.5 2 1 (const) L-H
SCT-G-C2 6.5 2 2 (const) L-H
SCT-G-C3 6.5 2 3 (const) L-H
SCT-G-C4.5 6.5 2 4.5 (const) L-H

Table 3.1: SCT Models

Comparison to Human Crowds.

In order to compare the simulated behavior to general behavior and not to
specific video clips, we used several video clips on human pedestrian behavior
and several screen-captured movies for each model. In the simulated behavior
we created three screen-captured movies for each model that was randomly
chosen for each subject. In human behavior we used two sets of video clips
that were taken from different locations and at different times. The first set
of movie clips were taken in the morning in downtown Vancouver, during
rush hour. People mainly walked individually, and only a few moved in
small groups. The second set of movie clips were taken in the afternoon on
a street that leads to the Eiffel tower in Paris, during leisure time. Most of
the pedestrians were families and friends that moved in small groups, or as
couples. Each real-world video clip was cut to one minute clips. To generate
a one-minute clip in the simulated behaviors, each model was executed for
5000 cycles (6 minutes), and the last minute was used.

We built a web-based experiment which enabled the subjects to partic-
ipate during their free time. First we presented a brief description about
the experiments. The subjects were told that the purpose of the experiment
was to compare each of the simulated behaviors to human crowd behavior.
However, the purpose of the simulation was not to simulate each pedestrian
observed in the human crowd, but to simulate the general pedestrian behav-
ior. The experiment was carried out in two phases, a training phase that
was presented to the subjects after the description of the experiment, and an
experiment phase.

The experiment was carried out with 39 subjects (ages: 20–84, mean: 29,
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number of males: 28). An additional 6 subjects were dropped due to technical
reasons (such as network problems that prevented them from viewing the
clips). The subjects were asked to watch the human pedestrian movie which
was randomly chosen in each experiment. Then, they were asked to view a
screen-captured movie of each model that was also chosen randomly. After
each simulated movie, the subjects were asked to rank the observed behavior,
which was followed by a question: To what degree was the observed simulated
behavior similar to previously observed human behavior? (1 – not similar, 6 –
similar). At the end of the experiment, we asked the subjects two additional
questions: Which simulated movie was the most similar to human behavior
and which simulated movie was the most dissimilar? To control the effects
of order, the order of the presentation on the page was randomized.

Initially we had planned to compare eight different simulated behaviors
to human pedestrian behavior, the individual choice model and seven SCT
models. We ran a short pilot where we presented the experiment to three
subjects and then we asked their opinion. All the subjects claimed that
the experiment was too long. Moreover, they claimed that the SCT-B-2-6.5
model provided very similar behavior to the behaviors in the SCT-H-L model
and similar behavior was also observed in the SCT-NoGain, SCT-G-C2, SCT-
G-C3 and SCT-G-C4.5 models. Consequently, we reduced the number of
different models that were presented to the subjects. In the experiment
phase we compared four simulated behaviors. We used the Individual-choice
model, SCT-B-2-6.5, SCT-B-5-6.5 and one of the randomly chosen models,
SCT-NoGain, SCT-G-C3 and SCT-G-C4.5. The SCT-H-L and SCT-G-C2
models were used only in the training phase, thus their results were not
included in this work.

3.3.2 Results

We first examined the ranking of the models in comparison to the actual
crowd. The results are summarized in Figure 3.3. The categories on the
X-axis correspond to different models. The Y-axis corresponds to grades of
the compared models. Each set of bar shows the mean and median results.
A higher result indicates improved fidelity, i.e., greater similarity to human
pedestrian behavior.

The results clearly demonstrate that the SCT-B-2-6.5 model provides
higher results than the compared models. While it may seem that the SCT-
B-2-6.5 model results are close to the results of the Individual and the SCT-
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Figure 3.3: Results of the comparison to human pedestrians

B-5-6.5 models, according to a t-test (two-tailed) the SCT-B-2-6.5 was found
to perform significantly different than both the Individual model (p = 0.001)
and the SCT-B-5-6.5 model(p = 0.03).

Another hypothesis underlying the experiment was that the SCT model
with narrower bounds (Smin, Smax) would provide behavior closer to individ-
ual model behavior, but not the same. Indeed, the results demonstrate that
SCT-B-5-6.5 lies between the SCT-B-2-6.5 and individual models. According
to the t-test (two-tailed) SCT-B-5-6.5 was found to be significantly different
from SCT-B-2-6.5 (p = 0.03) and significantly different from the Individual
model (p = 0.017).

Our last hypothesis was that the SCT models without the gain function
would provide behavior less similar to human pedestrian behavior. The re-
sults clearly demonstrate that the SCT-NoGain, SCT-G-C3 and SCT-G-C4.5
models in which the gain is fixed, attain the lowest results.

When we asked the subjects: ”which simulated behavior was most similar
to human behavior?” The SCT-B-2-6.5 model received the highest number of
votes. To the question of ”which simulated behavior was the most dissimilar
to human behavior?”, the subjects responded that the SCT-NoGain, SCT-
G-C3 and SCT-G-C4.5 models were the least similar. The responses to these
two questions are depicted in Figure 3.4.

37



3.3 Pedestrian Behavior: Validation Against Human Data

Figure 3.4: Most similar/dissimilar results.
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3.4 Evacuation Behavior

In this section we evaluate the SCT model in reference to evacuation behav-
ior. To model evacuation behavior, we used ESCAPES which is a multiagent
evacuation simulation [78] that incorporates four key features: (i) different
agent types; (ii) emotional interactions; (iii) informational interactions; (iv)
behavioral interactions among agents. ESCAPES was used to model evacua-
tion behavior in the International Terminal at the Los Angeles International
Airport (LAX). It has been shown that ESCAPES provides good results
for modeling evacuation behavior. Moreover, it received much praise from
LAX security officers. We show that the use of SCT in evacuation leads to
increased grouping of agents.

ESCAPES is a simulation of an airport with 4 terminals and 4 available
exits where individual agents and also families wander freely around in shops
or in available areas before the event. After the event, agents evacuate them-
selves. Moreover, in this simulation authority figures are also present who
have the task of patrolling before the event and informing other agents about
the event and about the available exits after the event. Each agent has a
subset of 14 available behaviors from which it selects one, using a common
architecture based on a BDI framework, according to its knowledge about
the world and about other agents. For a more realistic simulation, agents
have incomplete knowledge about their environment, in particular about the
available exits and also about the event. Each agent holds an event certainty
value (an integer between 0 and 2), which indicates the agent’s awareness
regarding the event and when the event certainty is high an agent will decide
to evacuate. Each agent also has a specific level of emotions which affects
its behavior during the evacuation, in particular its speed. Speed is modeled
as an integer value between 0 and 3, and fear is modeled as an integer value
between 0 and 2 (FearFactor) where 0 indicates that the agent has no fear.
Higher levels of fear lead to higher movement speeds. Moreover, an agent’s
fear is affected by several factors such as its proximity to the event (which
increases the agent’s event certainty and also its fear), presence of authority
figures (which decreases the agent’s fear) and more. Agents that decide to
evacuate also spread the knowledge about the event to their neighbors.

We found the utilization of the computational model of social comparison
(SCT) to be helpful in developing agents with social skills crucial to accurate
simulation of different crowd behaviors, in particular in evacuations. Social
comparison is considered a general cognitive process, which underlies human
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social behavior. During emergencies, individuals face greater uncertainty,
and thus the weight of social comparison in human decision-making is in-
creased [48]. The SCT computational model can be used, for instance, by
agents who wish to exit an area, urgently. If they do not know the location
of a close exit, they may turn to mimicking others hoping that they will lead
them to safety.

For the simulation, SCT was implemented as follows: first, the agent
compared itself to others around it by measuring the similarity in a set of
features, including speed, emotion state, distance, etc. The similarity values
were totaled, and the agent most similar (within bounds) was selected. The
agent executing SCT took actions to reduce dissimilarities to the selected
maximally-similar agent.

The use of SCT in evacuation led to increased grouping of the agents,
as we show in the experiment results. This grouping (herding) has been
reported by [2, 36] as occurring in real-world emergencies. We thus believe
that SCT, as a cognitive model, can account for herding in human crowds.

3.4.1 Evaluation of the SCT model in an evacuation
scenario

First we examined the population without authority figures. To examine
the impact of agents’ grouping behavior on the evacuation we compared
agents using the SCT process and agents not using the SCT process and
we measured the mean value of the agents’ connectivity. Connectivity was
defined as the number of connectivity components in the adjacency matrix of
the agents and we took the mean value of all the unevacuated agents. Thus
a higher connectivity value means increased grouping. Graph 3.5 presents
the impact of SCT on the agents’ connectivity. The results show that agents’
using the SCT process had much higher connectivity which indicates more
grouping behavior than agents not using the SCT process. Moreover, the
connectivity of agents using SCT was found to be significantly higher than
the connectivity of agents not using SCT, according to the one tailed t-test,
alpha = 0.01.

We then examined the impact of the SCT process on the population with
authority figures. We defined 5 authority figures and as in previous experi-
ments we measured the agents’ connectivity. Graph 3.6 presents the impact
of the SCT process on the agents’ connectivity. The x-axis corresponds to
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Figure 3.5: The effect of SCT on density (without authorities)

the time steps and the y-axis corresponds to the agents’ connectivity. In
contrast to the population without authority figures, in this case there was
no significant difference in connectivity between the agents using the SCT
process and those not, according to the two-tailed t-test, alpha = 0.49.
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Figure 3.6: The effect of SCT on density (with 5 authorities)
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Chapter 4

Social Comparison at the
Cognitive Architecture Level
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4.1 When are social comparison processes triggered?

The SCT model relies on simulated entities (agents) to compare them-
selves to others, but the timing of these comparisons is not well understood:
People clearly do not imitate others all the time. Nonetheless, there is evi-
dence that shows that people (and therefore agents), do some comparison at
all times (but do not act on them). While some progress has been made to
address this question, it still remains open.

In this chapter, we address this open question. We argue that comparisons
take place all the time (i.e., differences are perceived and processed), but the
cognitive architecture limits actions taken to minimize differences to cases
where the comparisons yield significant differences. We use both pedestrian
domain experiments as well as movies of human pedestrians to argue our
viewpoint.

4.1 When are social comparison processes

triggered?

In this section, we address the question of when social comparison is trig-
gered. We examine possible answers to this question in Section 4.1.1, and
in Section 4.1.2 we present findings of experiments we conducted, which rule
out some of the possible solutions and support others.

4.1.1 Social comparison at the cognitive architecture
level

There are two possible implementations of the SCT process at the architec-
tural level. The first, which seems to follow directly from Festinger’s So-
cial Comparison theory, treats the SCT process as an uncertainty-resolution
method, i.e., as a weak (read: general) problem-solving method, which is
social. The second, takes a different approach, whereby an SCT process is
constantly active, in parallel to any problem solving activity which necessi-
tates the agents to be constantly aware of others around them.

According to Festinger, people use social comparison when they lack the
knowledge required to make their decisions. Thus one way of implementing
the SCT process in a cognitive architecture is as a response to an uncertainty:
When an agent is in an uncertain state, it may call on a comparison process
to assess similarity and proposed actions.
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As a result we may treat the social comparison theory as a new kind
of uncertainty-resolution method. Unlike previous uncertainty-resolution
(problem-solving) techniques, whereby the agent focuses on using its own
resources, in this case the agent uses knowledge of others as a basis for re-
solving the uncertainty.

Readers familiar with the Soar integrated cognitive architecture will un-
doubtedly be reminded of the capabilities of Soar to detect impasses, situ-
ations in which the agent has no direct knowledge of how to proceed with
its task, and relies on problem-solving methods to resolve the impasse [59].
In viewing SCT as a problem-solving activity, in Soar it is modeled as an
impasse-resolution method.

However, elaborations on social comparison theory have expanded the
view of when comparison takes place. Hakmiller [29] and Singer [71] ex-
panded the theory and demonstrated that people tend to confirm or reassure
that their actions or beliefs are the correct ones, by comparing themselves to
others. Thus according to this approach people tend to use social comparison
in parallel to their decision making process.

We thus offer an account in which a second hypothesis (in which a com-
parison process is always active) can be made compatible with Festinger’s
observations (that comparison occurs with uncertainty). Our hypothesis is
that social comparison should always be active alongside any goal-oriented
action-selection processes. The state of low uncertainty corresponds to the
goal-oriented processes being able to produce coherent actions, which are
then selected by the agents for execution. But when uncertainty increases
(the goal-oriented processes do not suggest actions for execution), the social
comparison processes manage to ”advance” their own proposed actions for
execution.

In other words, an alternative is to view the SCT as an on-going process,
which takes place (at the architectural level) in parallel with any problem-
solving activity. Whereas normally, actions are proposed (and selected) by
cognitive architecture based on their suitability for the current goal (e.g.,
through means-ends analysis), in a socially-comparative architecture of this
type, the agents’ actions are also proposed based on the results of social com-
parisons. In other words, the agent would consider actions that advance it
towards its goal, as well as actions that seek to minimize perceived differences
to other agents.

It may seem easy to dismiss the implementation question as insignifi-
cant. However, the implementation choice carries significant impact: Since
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SCT processes inherently rely on knowing about the behavior of others, the
implementation question raises a more fundamental question about where
modeling of others (e.g., using plan recognition) occurs in cognition: Is it a
problem-solving activity, or is it carried out all the time, at an architectural
level?

4.1.2 Experiments

We conducted a set of experiments to evaluate which of these two approaches
(Comparison as Problem-Solving or Continuous Comparison) is more appli-
cable in the context of pedestrian behavior simulations. We recreated the
experiment setup and simulation environment used in [24, 25], and rewrote
agents to operate in this environment.

We examined the two approaches in the context of pedestrian grouping
behavior and bidirectional movement of individual pedestrians, described in
Section 4.1.2. In these experiments we compared two types of SCT agents:
the SCT-Problem-Solving agent and the SCT-Continuous agent. These
agents had the same feature set and performed the SCT process in the same
way as described previously. However, the main difference between them was
when the SCT process was activated. While with a SCT-Problem-Solving
agent the SCT process was activated when an agent was in an uncertain state,
with a SCT-Continuous agent the SCT process was continuously active.

Simulation environment and setup

To simulate pedestrian behavior, we used the Net-Logo [86]. We defined a
sidewalk comprising 104 units in length, where agents were able to move in
a circular fashion from east to west (reappearing on the east side when they
reached the boundaries of the west site) or in the opposite direction. Each
agent had a limited visual distance of 10 patches and a cone-shaped-field-of-
view of 120 degrees.

Each agent had a set of features and their corresponding weights. For
simulating pedestrian movement, we used the following features and weights:
color (weight 3); walking direction east or west (weight 2); and position
(weight 1), given global coordinates. In grouping pedestrian simulation, to
account for the Western cultural norm that friends (and family) walk side-
by-side, rather than one after the other in rows, we used another feature i.e.,
similarity in the position along the x-axis - X-Coordinate (weight 0.5).
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The similarities of the different features (s(fi)) were calculated as follows:

• s(fcolor) = 1 if the color was the same, otherwise 0.

• s(fdirection) = 1 if the direction was the same, otherwise 0.

• s(fdistance) = max( 1
dist

, 1), where dist was the Euclidean distance be-
tween the positions of the agents.

• s(fx−coordinate) = 1 if the x-coordinate was the same, otherwise 0.

Each agent calculated the similarity value Sim(Ame, Ao). If the chosen
feature for closing the gap was distance, then the velocity for movement was
multiplied by the calculated gain, denoted Gain. For other features (which
were binary), the gain was ignored (as it had no effect on categorical values).

The rationale for the feature priorities, as represented in their weights,
stemmed from our intuition and common experience regarding how pedes-
trians act. The positional difference (distance, side-by-side) is the easiest
difference to correct, and the least indicative of a similarity between pedes-
trians. Direction is more indicative of a similarity between agents, and color
(which we use to denote sub-groups within the crowds) even more so. For
instance, if an agent sees two agents, one proceeding in the same direction
(and far away), and the other very close to it (but in the opposite direction),
it will calculate a greater similarity to the first agent, and try to minimize
the distance to it (this may cause a lane change) and only then the agent
will try to position itself on the same X-coordinate.

Two Crowd Modeling Tasks

We examined two pedestrian crowd tasks. In the first, all the simulated
pedestrians moved in the same direction (uni-directional traffic), and were
divided into five groups, based on their color. Each agent was placed ran-
domly, so that initially they were dispersed. Successful execution of the task
involved moving while creating clusters of groups of the same color. In the
second task, the simulated pedestrians moved in opposite directions (ran-
domly assigned to agents). Each agent was independent of the others—no
grouping was expected or desired.

To illustrate, Figure 4.1 depicts screen shots of the simulation running
this task. The screens show the initial positions of the agents in one of the
trials 4.1(a), their positions after moving 5000 cycles using the continuous
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SCT approach 4.1(b) and their positions after 5000 cycles using the problem-
solving approach 4.1(c). The results in figure shows that the continuous SCT
approach takes into account grouping behavior while the problem-solving
approach does not.

 

(a) Initial random positions.

 

(b) After 5000 cycles of continuous comparison.

(c) After 5000 cycles, social comparison only when stuck.

Figure 4.1: Screen shots of the comparison of implementation of the
approaches for grouped pedestrian movement.

Figure 4.2 displays the screen shots of the individual pedestrian experi-
ments. The screens show the initial positions of the agents in one of the trials
4.2(a), their positions after moving 5000 cycles using the SCT-Continuous
approach 4.2(b) and their positions after 5000 cycles using the SCT-Problem-
Solving approach 4.2(c).

For each of the two tasks, we compared the two trigger types, i.e., the
problem-solving, and the continuous comparison. The only difference in the
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(a) Initial random positions.

(b) After 5000 cycles of continuous comparison.

(c) After 5000 cycles, social comparison only when stuck.

Figure 4.2: Screen shots of the comparison of implementation of the
approaches for individual pedestrian bi-directional movement.

runs concerned the activation of the SCT process. In the problem-solving
trigger, the social comparison process was activated only when the agent
was stuck and was unable to proceed towards its movement goal. In the
continuous mode, the agent constantly compared itself to others and acted
on this comparison. Namely the SCT process was continually active.

The results of the pedestrian grouping experiment where all the agents
were divided into five groups and moved in the same direction is presented
in Table 4.1. We used a hierarchical social entropy to measure the grouping
behavior [4]. Lower values indicate improved grouping. Table 4.1 shows the
measurement results for the SCT-Continuous approach and for the SCT-
Problem-Solving approach. The results depicted in the table reveal that
the SCT-Continuous approach provides improved grouping compared to the
SCT-Problem-Solving approach. Each entry in the table averages the results
of 15 runs; the standard deviation is provided in parentheses.

However, the conclusion is reversed when the task is changed. The SCT-
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SCT-Continuous SCT-Problem-Solving
102.36 (sd.19.15) 171.75 (sd.11.9)

Table 4.1: Grouping measurements of the SCT-Continuous approach
and the SCT-Problem-Solving approach. Lower values indicate
improved grouping.

Problem-Solving approach can perform much better. Figure 4.3 presents the
results of a bidirectional traffic experiment where individual agents walked
in two opposite directions on a simulated sidewalk and there were no groups,
i.e., each agent constituted an individual. As is common in the literature
on bidirectional pedestrian behavior, we measured the total number of lane
changes. (i.e., how many times the agents needed to move left or right).
The X-axis represents the density. The Y-axis represents the number of lane
changes during the course of 5000 cycles. Lower values indicate improved
lane changes. Each configuration was repeated 30 times. While it may seem
like the SCT-Continuous approach provided slightly lower lane changes in
higher density (0.19), the changes were not found to be significantly different
from the SCT-Problem-Solving approach (two-tailed t-test, alpha = 0.258).
However, in a lower density (0.07) a significant difference was found between
the two approaches (two-tailed t-test, alpha < 0.01).

The results in the two tasks show that neither of the two approaches are
superior, even within the same domain. In grouping pedestrian behavior,
simulated humans should perform social-comparison continuously; but when
the movement is bidirectional in low densities, they should perform it only
if they are stuck.

4.2 Continuous Social Comparison with Ac-

tion Selection

Our goal was to provide a single mechanism that would account for different
crowd behaviors (different tasks). The results above seemingly threaten this
goal, as they seem to imply that appropriate triggering of social comparison
is task-dependent, and therefore, one could argue that comparison does not
take place at the cognitive architecture level.

In this section, we address this argument in depth. First, we closely
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Figure 4.3: Measurement of lane changes in the SCT-Continuous
approach and the SCT-Problem-Solving approach. Lower values
indicate improved lane changes.

examine the claim and show that in fact it may still be possible to account
for the results while allowing social comparison to take place within the
architecture (Section 4.2.1). Then, we examine ways of weighing the proposed
actions that are motivated by the social comparison process, so as to enable
their selection by the architecture in a flexible manner (Section 4.2.3).

4.2.1 Social Comparison at the Architecture Level

Let us examine the conclusions of the previous section more closely. Can an
architectural triggering mechanism of either type discussed above support
this task-dependent behavior? The problem-solving triggering mechanism
cannot emulate continuous comparison, i.e., if it is not continuously running
it cannot simulate a process that is continuously running.

However, a continuous comparison mechanism may emulate a sometimes-
triggered process, if the action-selection mechanism will at times ignore the
actions chosen by the social comparison process. According to this view,

51



4.2 Continuous Social Comparison with Action Selection

the social comparison process should be implemented as a secondary parallel
process within the cognitive architecture. Whereas normally, actions are
proposed (and selected) by the architecture based on their suitability to the
current goal (e.g., through means-end analysis), in our agent actions were also
proposed based on their suitability to SCT. In other words, at every cycle,
an agent will consider actions that will advance it towards its goal and, it
will also consider social actions that seek to minimize perceived differences
from other agents. Thus, the SCT-proposed actions compete with the task-
oriented actions for control of the agent.

We consider two potential action-selection mechanisms which allow the
competition between goal-oriented actions and socially-oriented actions. For
simplicity, we describe these using a hypothetical example whereby two ac-
tions are proposed: One goal-oriented and one socially-oriented. Let us de-
note the weight (activation) of the goal-oriented action by α. Let us denote
the weight of the social action, stemming from the social comparison pro-
cess by β. Thus the following two alternative mechanisms are possible for
choosing between the actions:

max(α, β). In this approach, similar to earlier work on spreading activation
techniques, the action selection mechanism simply selects the action
with the greatest weight.

thresholdβ. In this approach, the social action is selected for execution, but
only if β is sufficiently high. That is, only if β > C for some given
constant C; otherwise, the goal-oriented action is selected.

In both cases, once the action is selected, it is executed. In the next
decision-making cycle, new values for α and β are calculated, and again an
action is selected, ad infinitum.

The discussion on an agent’s α (goal-oriented weight) is not included in
the scope of this thesis. For our work, it is suffice to assume that 0 ≤ α ≤ 1,
where α = 0 when the agent has no motivation to carry out the action,
and α = 1 when the agent is fully motivated to carry out the action. In
our implementation of pedestrian behaviors (individual pedestrian and group
pedestrian), all the agents in both of the implementations have identical goals
(movement in their assigned direction), and their α value varies between
α = 1 when their path is clear, and α = 0 when they are blocked. Therefore,
when analyzing these behaviors we can disregard the constant α measures
and focus only on the changing β measures.
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4.2.2 Extended SCT algorithm

Algorithm 2 revises the earlier algorithm presented in section 3.1 to allow
our revised view of the social comparison process. It differs from the earlier
algorithm whereby instead of selecting an action a and executing it, it returns
a recommendation for a, with a weight β. Formally, it returns a tuple ⟨a, βa⟩.

Among all observed agents (Ao ∈ O), we calculate a similarity value
Sim(Ame, Ao), which measures the similarity between the observed agent Ao

and the agent carrying out the comparison process (Ame). Between all agents
that are not too dissimilar or too similar (i.e, agents in S), a representative
agent (Ac) is selected by GetAgentForComparison(S). In our implementation
Ac is the agent with the maximal similarity value within the bounds (Smin,
Smax). D receives a list of features which corresponds to the differences
between me (Ame) and the compared agent Ac. Then, an agent that agent
carrying out the comparison process (Ame) calculates the β value, which
represents the agent’s attractiveness to the selected agent (Ac). The function
CalculateBeta(Ac,Smin, Smax) receives the compared agent (Ac), and the
similarity bounds (Smin, Smax) and returns the β value, which replaces the
use of the gain function in the earlier version of the algorithm.

In the basic SCT model as presented in section 3.1, the gain function
(Gain(Sim(Ame, Ac))) represents the normalized distance between the simi-
larity with the selected agent to the two extreme values of similarity (Smax,
Smin). To calculate an agent’s attractiveness to the selected agent (β), we
use this gain to account for normalized values (between 0 and 1).

Algorithm 2 SCT (O, Ame, Smin, Smax)

1: S ← ∅
2: for all Ao ∈ O do {Add only agents not too similar or not too dissimilar}
3: if Smin < Sim(Ame, Ao) < Smax then
4: S → S ∪ Ao

5: Ac ← GetAgentForComparison(Ame, S)
6: D ← CalculateDifferences(Ac)
7: β ← CalculateBeta(Ac,S, Smin, Smax)
8: a← SelectAction(D)
9: return ⟨a, β⟩.
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4.2.3 Calculating β

In this section we focus on determining appropriate ways to calculate β values
which shall meet the following requirements:

• Facilitate good simulation of pedestrian traffic in both tasks described
in Section 4.1. We observed such an approach in Algorithm 1.

• Work well when the social comparison process is continuously running.
Algorithm 1 fails in fulfilling this requirement, since it fails in the task
of unidirectional traffic in groups.

• Preferably, be justifiable or otherwise compatible with cognitive science
and psychology theory.

The β measure is a function of the agent’s attraction to the observed
agents (with whom it has compared itself). We distinguish between two
approaches. The first approach is based on selecting an individual agent
from the group and calculating the attraction to it. In Algorithm 1 the
agent chosen was the agent with the highest similarity, that was still less
than the maximal similar threshold Smax. The second approach takes an
entire group of agents into account when calculating β, without singling out
any particular agent.

Individual Argmax Selection: Similarity Range

In our basic SCT model, an agent compares itself to one selected agent.
This individual comparison approach was successfully implemented in our
previous work, and provided good results in reference to different crowd
behaviors (see, for instance, its evaluation with respect to human pedestrian
data [25]). In this section we present compatibility of the extended model to
the basic model and also propose beta calculation to account for the timing
extension.

In our basic SCT model (Algorithm 1), between all observed agents
Ao ∈ O, the comparing agent selects the most similar agent Ac within the
similarity range and compares itself to it. We attach a Gain value to the cor-
rection action o that minimized the differences to the selected agent, which
indicates the amount of effort that should be invested in the action. The
Gain(Sim(Ame, Ac)) function represents the normalized distance between
the similarity with the selected agent to the two extreme values of similarity
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(Smax, Smin). To calculate the agent’s attractiveness to the selected agent
(β), we will use this gain to account for normalized values (between 0 and
1).

There is some evidence of this approach in psychology literature relevant
to the social comparison theory. In particular, Volkmann [82] proposed the
range theory of social judgment, which emphasized the relationship between
what is being judged and the two extreme values of the stimulus context. In
social comparison, the context is the group, which includes other people with
whom one’s own conditions can be compared and in our implementation we
compare the similarity value.

Thus, in this variant of the extended SCT model, between all observed
agents in O, S receives the group of agents with the similarity value within
the bounds. Ac receives one agent from the GetAgentForComparison(S)
method, which selects the most similar one (with the highest similarity value
within the S). D receives the vector of features with the values of 0 or 1
which indicate the feature value differences from the selected agent.

To calculate an agent’s attractiveness to the selected agent (β value), we
calculate the normalized distance between the similarity with the selected
agent and the two extreme values of similarity (Smax, Smin). The definition
of CalculateBeta(Ac, S, Smin, Smax) in this case is presented in 4.1.

βargmax = CalculateBeta(Ac, S, Smin, Smax) =
(Sim(Ame, Ac))− Smin

Smax − Smin

(4.1)

Group Comparisons

One area in which the individual model fails is that it ignores the size of the
group being compared. There is much evidence that the size of the group has
an effect on the imitational tendencies of the individual. For instance, a well-
known experiment in social sciences was performed by Milgram, Bickman,
and Berkowitz [54]. The experiment involved one participant who stood in
the middle of a busy street and stared into an empty spot in the sky. The
experiments purpose was to examine group pressure. The results showed
that when there was only one participant, there were only a few people that
passed and briefly glanced up. However, when there were several participants,
almost 80 percent of the passers-by also stopped and stared into the sky.
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We therefore seek a model in which the number of similar agents in the
group impacts β. We propose two such models, both tied to psychology
literature on judgment of stimulus with respect to a context of other stimuli.

Mean Agent. Inspired by Helson’s adaptation-level theory [40], we pro-
pose an alternative approach. Helson proposes that the baseline of judging
a stimulus should be the mean of the stimuli that provide the context, such
that the rating given to a stimulus is a function of its difference from the
mean. Thus, instead of selecting one agent, i.e., the most similar and ignor-
ing all others, we would like to take into account the group factor by looking
at an abstract mean agent, and determining the similarity to it.

We created the mean agent Amean and calculated the agent’s attractive-
ness to it. The function GetAgentForComparison(S) in this case created
the mean agent Amean from the selected agents in S. Each agent was as-
sumed to be modeled by a set of features and the mean agent was modeled
by features with mean values from S1. The compared agent Ac was then the
mean agent Amean. Note that this agent did not necessarily exist. D receives
the vector of features with values 0 to 1 which indicate the feature value dif-
ferences between Ame and the mean agent. The β measure is again based on
the range principle which is the normalized distance between the similarity
with the mean agent and the two extreme values of similarity (Smax, Smin).

Thus the β measure is calculated as before (Eq. 4.1), but with modifica-
tion of the parameters. Rather than Ac being the most similar agent, it is
now a hypothetical mean agent calculated as follows:

βmean = CalculateBeta(Ac, S, Smin, Smax) =
(Sim(Ame, Ac))− Smin

Smax − Smin

(4.2)

Range-Frequency Theory. We consider a second model, inspired by Par-
ducci’s Range-Frequency theory [61]. According to this theory, overall judg-
ment of a stimulus should not rely only on its range to the mean, but instead
should take into account its relative frequency—via its percentile rank—in
the group of stimuli. Thus judgment should be modeled as a weighted sum
of its range and percentile rank (frequency).

We thus propose an alternative approach for the β calculations (Eq. 4.5),
which, in addition to range, also takes into consideration the group distribu-

1For categorical features, we use mode values.
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tion (via the percentile rank of the result). The β is then a weighted sum of
the range to the mean (Eq. 4.3) and frequency values (Eq. 4.4), as shown in
Eq. 4.5.

The range calculation (4.3) is identical to the calculation for the mean
agent model; it is the range to the hypothetical mean agent. We also calcu-
lated the percentile rank (frequency, in the terms of Parducci’s theory). For
all agents in the selected group (S), we calculated their similarity value to
the mean agent (Sim(Ak,Amean)), and we also compared the agent’s similar-
ity to the mean agent similarity (Sim(Ame,Amean) and the compared agent’s
similarity). We calculated the number of agents with the same similarity
value as similarity value of the compared agent (my similarity) divided by
the number of agents |S|.

Range =
Sim(Ame, Amean)− Smin

Smax − Smin

(4.3)

Let |ISim| denote the number of agents with a similarity value identical to
mine. |S| is the total number of agents. Then the frequency value Frequency
is calculated according to following equation:

Frequency =
|ISim|
|S|

(4.4)

To compromise between range and frequency, we used the weight p to
determine the proportions the range and frequency components were assigned
in the weighted sum. Usually, equal weight is given to both the results.
The β is the weighted sum between the Range and Frequency values and is
calculated according to following equation:

βRF = CalculateBeta(Ac, S, Smin, Smax) = p ·Range+ (1− p) · Frequency
(4.5)

4.2.4 Experiments

We carried out several experiments to evaluate the hypotheses discussed in
this section. The experiment design and setup were already discussed in Sec-
tion 4.1.2. In Section 4.2.4 we present the results of the experiments which
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applied social comparison continuously, using both the max(α, β) and the
threshold β action-selection mechanisms. We show that one of these mech-
anisms works well for the two tasks. Then in Section 4.2.4 we present the
results of experiments with the three β models, comparing them (unfortu-
nately, indirectly) to human pedestrian data.

Experimenting with Action-Selection Mechanisms

Our first task was to determine which, if any, of the two hypothetical action-
selection mechanisms may be used to allow social-comparison to take place
in parallel to any goal-oriented action-selection process. The two proposed
mechanisms were max(α, β) (in which the highest gain wins) and threshold
β (in which the socially-motivated action wins if its threshold is higher than
some fixed constant C). We varied the separator C value between 0.2, 0.3
and 0.4 (chosen based on pilot experiments). The weight p in the RF model
was set at 0.8.

In these experiments, we used the two mechanisms in variations on the
pedestrian tasks described above. These variations included bidirectional
individual movement in high-density settings, bidirectional individual move-
ment in low-density settings, and unidirectional movement in groups. As
before, in the bidirectional movement tasks, we measured performance by
the accumulated number of lane changes (as before); in the unidirectional
grouping task, we measured clustering by means of hierarchical social en-
tropy [4].

In the pedestrian traffic tasks, the goal-oriented α was always set ac-
cording the following rule: α is 1 if the agent’s path is clear, or otherwise
0. Because of this rule—fixed along all tasks and experiments—we could
control the action-selection mechanism and evaluate its performance in the
different tasks, with respect only to the socially-motivated actions, proposed
with weight β.

Table 4.2 shows the results of the experiments. The left column in each
table indicates the β variant in use. The next two columns depict the results
for the bidirectional movement task, in two different densities. The last
column shows the results for the unidirectional grouping task.

Several conclusions can be drawn from these results. First, the reader
should note that all results for the unidirectional grouping task in Ta-
ble 4.2(a) (last column) are higher (worse) than the respective results in
Tables 4.2(b)–4.2(d). In the bidirectional movement tasks, the results are in-

58



4.2 Continuous Social Comparison with Action Selection

Bidirectional Bidirectional Unidirectional
β model Traffic Traffic (Grouping)

High Density Low Density
(Lane changes) (Lane changes) (Hier. entropy)

βargmax 25531.75 8707.48 168.89
βmean 35110.93 9864.27 170.47
βRF 29199.73 9592.33 172.64

(a) max(α, β).

Bidirectional Bidirectional Unidirectional
β model Traffic Traffic (Grouping)

High Density Low Density
(lane changes) (lane changes) (hier. entropy)

βargmax 26086.47 9607.27 108.41
βmean 37533.33 9279.07 162.44
βRF 64401.2 40128.13 136.79

(b) threshold β (threshold= 0.2).

Bidirectional Bidirectional Unidirectional
β model Traffic Traffic (Grouping)

High Density Low Density
(lane changes) (lane changes) (hier. entropy)

βargmax 25587.87 9833.53 108.3
βmean 37819.13 10837.4 155.66
βRF 32349.8 7697.13 147.34

(c) threshold β (threshold= 0.3).

Bidirectional Bidirectional Unidirectional
β model Traffic Traffic (Grouping)

High Density Low Density
(lane changes) (lane changes) (hier. entropy)

βargmax 23414 8638.27 109.19
βmean 39198.8 11033.91 160.58
βRF 36539.53 8769.6 149.6

(d) threshold β (threshold= 0.4).

Table 4.2: The results of applying two action selection mechanisms in the two
tasks, for the βargmax, βmean and βRF variants. Table (a) shows the results
of the max(α, β) mechanism. Tables (b)–(d) show the results when applying
the threshold β mechanism, with a threshold of C = 0.2, C = 0.3, C = 0.4,
respectively. All results are averaged over dozens of trials (15–50). The lower
the results the better.
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conclusive. Thus we can conclude that the max(α, β) mechanism is inferior
to the threshold β mechanism.

Second, we can conclude that the RF model is superior to the mean-agent
model, when using the threshold β action-selection mechanism. In all cases
except one (when C = 0.2), the results for the RF model improve for those
of the mean-agent model.

Third, in general, the βargmax model is superior to the others. This was
unexpected, given its failure to account for group size. However, the results
show that the βargmax model provides better performance than the βmean and
the βRF models.

Comparison with Human Pedestrian Data

The previous sets of results were all based on quantitative measures of perfor-
mance, on an absolute scale where the lower the result the better. These are
well-recognized measures, but they are artificial; they have not been applied
to human data. Thus, we do not know the nominal values for normal human
pedestrian traffic. Consequently better (lower) results on the absolute scale
may in fact be unrealistic.

Hence, for final evaluation, we also conducted experiments which indi-
rectly compare the performance of the various models to human crowd data,
which we published in [25]. The experiments were carried out as follows.

First, in [25] we allowed human subjects to qualitatively compare various
variants of the βargmax model, based on continuous comparison, with movies
of human pedestrians moving bidirectionally, in groups. The models were
also compared to the random selection process, which is often used in the
literature as baseline. While a detailed discussion of the results of the paper
are outside the scope of this document, we will mention that one clear win-
ning model—one of the βargmax variants—emerged. We denote this model
SCTargmax. This model relied on SCT as a problem-solving activity, where
the social comparison process was only triggered occasionally. As shown in
Section 4.1, this type of triggering mechanism is problematic.

However, given the success of the SCTargmax compared to other models,
we can now use it as a basis for comparison against newer models, such as
those investigated in the course of this research. In particular, we compared
the results of using this model on the same task with human data, with the
results of applying the various variants described above.

The results of this experiment are shown in Table 4.3. The table shows
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both lane-changes and hierarchical social entropy results for the same task
(bidirectional movement in small groups). The table compares several mod-
els: The original (which was judged by human subjects to be the closest to
human movement), shown in the second column; the βargmax model, in the
next column; and finally the βmean and βRF model, in the last two columns,
respectively.

The table shows that the βRF model, introduced in this paper, seems to
be the closest to the original winning model in terms of the number of lane
changes, and is also very close to it in terms of the social entropy measure used
to evaluate grouping. While we have shown that the βRF model proposed,
in some cases, displays superior performance to that of the βargmax model,
our results are less conclusive than we would have liked. Nevertheless, these
results show much promise for future development.

Measure Baseline βargmax βmean βRF

Lane Changes 5974.5 2880.67 4283.97 5267.73
Social Entropy 22.32 25.99 22.4 21.69

Table 4.3: A comparison of different crowd models in the task of bidirectional
pedestrian traffic in small groups. The first column shows the baseline, which
was shown in our earlier work to be the closest to human data of previous
models.
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Chapter 5

The Impact of Cultural
Differences on Crowd Dynamics
in the Pedestrian Domain
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5.1 Cultural Differences in the Pedestrians Domain

In this chapter we examine the impact of cultural differences on crowd
dynamics in the pedestrian domain. In this domain we relate to recorded
pedestrian data in five different countries: Iraq, Israel, England, Canada and
France. We characterize these cultures based on cultural attributes at the
individual level: personal spaces, speed, avoidance side and group formations.
We use an agent-based simulation to investigate the impact on the resulting
macro level behavior, such as pedestrian flow, number of collisions, etc. We
also examine the impact of mixed-culture pedestrians on the resulting macro-
level behavior. We quantitatively validate the simulation against data from
movies on human crowds in different countries.

5.1 Cultural Differences in the Pedestrians

Domain

In this section we define the attributes that have an impact on pedestrian dy-
namics among different cultures. First, we define the cultural attributes that
have an impact on pedestrian dynamics across different countries. Based on
literature reviews and expert consultations we refer to the following cultural
attributes: personal space, base walking speed, avoidance side, and group
formations (in particular gender-heterogeneity, size, and shape, e.g., whether
side-by-side, or one gender in front of the other):

• Personal space is an invisible boundary that people maintain between
each other. According to Hall each person is surrounded by four invisi-
ble “bubbles” of space [5,30,33]: Intimate, Personal, Social and Public.
Intimate distance refers to embracing, touching or whispering. Personal
distance refers to interactions among good friends or family members.
Social distance refers to interactions among acquaintances and pub-
lic distance is used for all other interactions such as public speaking.
Changes in the bubbles depend, among other things on relationships to
the closest person and also on cultural background. Sociologists have
found that people in different cultures maintain different distances.

• Pedestrian walking speed has also been found to be another cultural
attribute [50]. In some cultures pedestrians walk much faster than in
others. For example, people in England and France have faster walking
paces than people in Jordan or Syria.
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• We refer to the avoidance side as the side of passing other pedestrians in
situations of collision avoidance. In order to avoid collisions pedestrians
choose whether to avoid the other person on the right or left side. It
has been found that side preference is also a cultural decision [56]. For
example, pedestrians in the European continent tend to walk more on
the right side of the sidewalk, whereas, in Japan or Korea, pedestrians
have been reported to walk more on the left side.

• In group formations we examined the portion of pedestrians that walk
as individuals versus as groups, and also who comprise the groups. For
example, we differentiate between genders, homogeneous and heteroge-
neous groups. It has been reported that up to 70% of the people in a
crowd move in groups such as families or friends versus individuals [57].
In this work we distinguish between individuals and groups and also
size and gender in group formation. For example, according to experts,
people in Arabic countries walk in larger groups than people in Europe.
Moreover, it has also been observed that in the Arabic cultures there is
a greater tendency for men to walk in front of women than in Europe,
where men and women usually walk side by side.

To quantitatively characterize the examined cultures based on the pre-
sented cultural attributes, we analyzed videos of human pedestrian dynamics
where pedestrians from different countries walk on sidewalks. We quantita-
tively measured the attributes in movies taken in five different cultures: Iraq,
Israel, England, Canada and France. Then we use a pedestrian simulation
to show the impact of these cultural attributes on the resulting macro-level
crowd dynamics. In the following section we provide a detailed description
of the video analysis process and present our results.

5.1.1 Extended Model of Social Comparison

The way pedestrians maneuver within group formations tends to vary be-
tween different cultures. For example, as stated in Arabic cultures men have
shown a greater tendency to walk in front of women than in Europe, where
men and women usually walk side by side. We propose to extend the SCT
model to account for hierarchical comparison.

According to the social comparison theory the tendency of people to com-
pare themselves to others differs between individuals. Social comparison re-
searchers have reported that while some people prefer to make downward
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comparisons others may prefer to make their comparisons upward [84]. Peo-
ple make upward comparisons with other individuals they perceive to be bet-
ter than themselves while people make downward comparisons with others
who are considered to be worse than themselves. The main reason for these
differences is the individual variance in personal and social variables. This
tendency affects the target selection process, namely to whom people prefer
to compare themselves and inevitably the different reactions that people may
have following these comparisons.

We expand the SCT mechanism, presented in section 4.2.2, to account for
hierarchical comparison, upward and downward. Each agent holds personal
and social variables such as social class, comparison tendency etc. We define
several social classes to which agents can belong. An agent performing the
social comparison process will select several agents instead of one agent for
comparison, i.e., one agent from each social class. Then, according to its
sociological factors it will choose the final agent with which to compare.
Consequently, the behavior parameters will be updated according to the
social class.

This process is described in the following algorithm, which is executed by
the comparing agent.

Algorithm 3 Hierarchical SCT (O, Ame, Smin, Smax, B, C)

1: A← ⟨⟩
2: for i← 1 to |C| do do
3: S ← ∅
4: for all Ao ∈ Ci do do
5: if Smin < Sim(Ame, Ao, Ci) < Smax then
6: S → S ∪ Ao

7: Ai ← ChooseAgent(Ame, S, Ci)
8: (Ac, Cj)← GetAgentForComparison(A, v)
9: D ← CalculateDifferences(Ac, Ame, Cj)
10: β ← CalculateBeta(Ac,O, Smin, Smax, Cj)
11: a← SelectAction(D,Cj)
12: return ⟨a, β⟩.

Algorithm 3 differs from the algorithm presented in section 4.2.2. In
this algorithm an agent selects several potential agents for comparison, i.e.,
one agent from each social class. C represents a vector of social classes
to which agents can belong. A is a vector of agents of size |C|, where Ai
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corresponds to the agent chosen from each social class, Ci. Between all
observed agents and for each social class Ci, we calculate the similarity value,
and if the similarity value is within the bounds (Smin, Smax), the agent, Ao,
is added to set S. Between all the selected agents from each social class Ci,
a representative agent Ai, is selected. Then, agent selects one chosen agent
for the comparison using GetAgentForComparison(A, v), which receives the
vector of the representative agents of each social class A and the vector of
sociological factors v. Thus, Ac represents the agent chosen for comparison,
and Cj represents the social class to which the selected agent belongs.

D receives a list of features which corresponds to the differences between
the agent that performs the comparison process, and Ac, i.e., the agent used
for comparison. It also includes the social class to which the compared agent
belongs, Cj. Accordingly, different actions may be recommended based on
the different social classes to which the selected agent belongs such as walking
behind or walking next to the selected agent. Then, an agent calculates the
β value, which represents the agent’s attractiveness to the selected group,
as described in section 4.2.2. The function CalculateBeta(Ac,S, Smin, Smax,
Cj) receives the compared agent (Ac), the selected group (S), the similarity
bounds (Smin, Smax) and the social class to which the selected agent belongs
(Cj), and returns the β value.

5.1.2 Video Analysis of Human Pedestrian Dynamics

Overall, we collected over one hundred hours of pedestrian footage in different
locations. In some, we only collected a few minutes of video while in others
many hours:

• The movies from France were recorded in Paris from the top of the
Eiffel tower. The movies were taken in the afternoon and portray two
streets that lead to the Eiffel tower. In total we analyzed two movies
of two different locations that are 1:40 and 2:47 minutes long.

• The movies from Iraq were recorded from a web camera overlooking the
yard in front of the Hussein mosque in Karbala. In total, we recorded
over 30 different 3-hour videos (over 90 hours) in this location. The
videos were recorded during different times of the day. About a third
of the videos were irrelevant due to static views, or because the web
camera was off, etc. Of the remaining videos, we randomly chose six of
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the movies and analyzed the first three minutes of each. Thus, in total
we utilized 18 minutes of pedestrian dynamics in Iraq.

• The movies from Israel were similarly recorded from a web camera
overlooking the Western Wall in Jerusalem. We recorded over 30 videos
during different parts of the day, again each three hours long. A third of
these videos were found to be irrelevant for the same reasons associated
with Iraq and among the remaining ones we randomly selected four
movies and analyzed the first three minutes of each. Thus, in total we
utilized 12 minutes of films depicting pedestrian dynamics in Israel.

• The movies from Canada were video taped from one of the streets in
downtown Vancouver in the morning and also in the afternoon. In total
we analyzed four movies that are 0:15, 0:24, 1:18 and 3:36 minutes long.

• The movies from England were video taped in London in two different
locations: Two movies from the London Eye (1:23 and 0:31 minutes
long), and one from the Millennium Bridge (31 seconds long).

For the purposes of the analysis, we used a total of 45 minutes. We asked
four subjects to analyze the movies in order to extract the group forma-
tions, speed, and avoidance side parameters. Each movie was analyzed by
two different subjects and we used the mean value of each measure in our
results. For example, to extract the group formations, the subjects counted
the number of individuals and the number of groups. For each individual
the subjects were asked to specify whether the pedestrian was a man or a
woman. For each group the subjects were asked to specify the size of the
group; couples, three people or more and also the gender composition of each
group; two women, two men, a man and a woman, woman with child, etc.
To estimate the speed, the subjects sampled 10 pedestrians in each movie,
counting their steps within 15 seconds. To convert the steps into an esti-
mated velocity measurement, we used the known average human step length
for adults (75cm) [3].

To determine the personal spaces between people depicted in the movies,
we used aerial photography and satellite image interpretation techniques
which involve the estimation of the size of images. To enable successful
measurement of the length, width and perimeter of a specific object, it is
necessary to know the scale of the photo. Consequently, we measured the
size of a few well-known objects for comparison with the unknown object. In
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each movie we tried to estimate personal spaces with two techniques: ”Google
Earth” to determine the objects’ sizes, or comparison with the known sizes
of familiar objects (such as cars or sports-field dimensions). If only one tech-
nique was feasible, then we used only one measurement; otherwise we took
the mean value between the two measurements.

We present an example in which we used both techniques to estimate the
distance. In one of the movies from Iraq a truck passed by the pedestrians
(Figure 5.1). The standard size of a truck is 8ft (2.4384m). We measured
the truck’s width on the screen (marked in yellow) and found that it was
0.98cm. We then drew a line between the two people in the movie (marked
in red) and found that it was 0.15cm on the screen. We thus deduced that
the distance in reality is: (0.98/0.15)× 2.4384m = 37cm.

Figure 5.1: Technique 1 for the personal space estimation

To verify these estimations we used another method i.e., ”Google Earth”.
We found that the width of the area is 38m (including the white shades;
see Figure 5.2). Each segment in the 16-segment yellow line is therefore
2.375 meters. Again, simple math shows the distance is approximately 36
centimeters. As stated when both measurements were possible we used the
mean of the two.

5.1.3 Results of Video Analysis

The results show that indeed the five countries differ from each other in
the four cultural parameters. We present the analysis of the results of each
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Figure 5.2: Technique 2, using Google Earth for the personal space
estimation

parameter i.e., gender group formation, speed, passing side and personal
spaces, in order to demonstrate that they actually vary between the cultures.
Moreover, some of the trends were found to be consistent with the literature.

Gender Group Formations

We begin by examining the groups and their makeup. Table 5.1 presents
the results of gender group formations. The first column corresponds to
the examined formations. Then we present the distribution of each of these
formations by culture: Iraq, Canada, Israel and France. Each value is the
mean value of two measures of two subjects. In tables 5.2, 5.3, 5.4 and 5.5
we present the statistics extracted from the data received.

First we examined the portion of pedestrians that move as individuals
versus groups. Table 5.2 presents the results. The first column corresponds to
the formation (individuals or groups). Then we present the distribution of the
pedestrians in each culture examined. The results show that in Vancouver,
Canada, people move more as individuals than as groups. In every other
country there is a higher tendency of pedestrians to move as groups.

We also checked whether pedestrians who move in groups tend to do so
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Formation Iraq Canada Israel England France
1 man 20.9% 42.4% 33.3% 12.4% 9.21%

1 woman 6.88% 17.3% 14.6% 5.53% 4.61%
2 men 15.4% 14% 15.7% 24.9% 14.5%

2 women 12.3% 9.05% 11.8% 10.1% 11.8%
1 man next to 1 woman 5.22% 4.94% 9.27% 24.9% 35.5%

1 man in front of 1 woman 2.61% 0 0.36% 3.69% 5.26%
1 man & 1 child 0.71% 0 1.78% 3.69% 1.32

1 woman & 1 child 2.14% 0 1.43% 3.69% 0
3 men 8.9% 7.41% 6.42% 5.53% 0

3 women 7.47% 4.94% 4.28% 0 1.97%
1 man next to 2 women 4.27% 0 0.53% 2.76% 1.97%

1 man in front of 2 women 1.78% 0 0 1.38% 0
2 men & 1 child 0.71% 0 0 0 0

2 women & 1 child 1.42% 0 0 0 0
1 man, 1 woman & 1 child 1.42% 0 0.18% 1.38% 5.92%

2 men & 1 woman 0.71% 0 0 0 7.89%
2 men, 1 woman & 1 child 0.47% 0 0 0 0
2 women & 2 children 0.95% 0 0 0 0

3 men & 1 child 1.42% 0 0 0 0
1 man & 3 women 0 0 0 0 0

4 women 4.27% 0 0 0 0

Table 5.1: Distribution of gender group formation

Formation Iraq Canada Israel England France
Individuals 28% 60% 48% 18% 14%
Groups 72% 40% 52% 82% 86%

Table 5.2: Group formation: Individuals versus groups

in homogeneous or heterogeneous gender groups. The results are presented
in Table 5.3. The findings show that in Iraq, Canada, Israel and England,
pedestrians move more in homogeneous gender groups. Indeed, in France we
observed many couples, i.e. a man and a woman, who move together.

We also examined the pedestrian cultural tendency concerning the sizes
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Groups Iraq Canada Israel England France
Heterogeneous 23% 12% 21% 42% 66%
Homogeneous 77% 88% 79% 58% 34%

Table 5.3: Homogeneous versus heterogeneous gender groups

of the groups. For all the pedestrians that move in groups we provide the
statistics on their distribution into groups of several sizes, such as groups
of 2, 3, 4 and more. Table 5.4 presents these results which show that in
Iraq there is a higher tendency to move in larger groups than in the other
countries examined.

Group size Iraq Canada Israel England France
Groups of 2 64% 77% 84% 91% 85%
Groups of 3 30% 23% 16% 9% 15%

Groups of 4 and more 6% 0 0 0 0

Table 5.4: Size of group formations

According to experts, men in Arabic countries demonstrate a greater ten-
dency to walk in front of women than in other countries, where they usually
walk side by side. We checked whether this finding was supported in the
videos from Iraq and compared it to the videos from the other countries.
The results presented in Table 5.5 show that in Iraq this tendency was ob-
served in 33% of the couples, demonstrating a higher tendency than in the
other countries examined.

Formation Iraq Canada Israel England France
Man next to woman 67% 100% 96% 87% 87%

Man in front of woman 33% 0 4% 13% 13%

Table 5.5: Man and woman walking formation
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Pedestrian speed

We then examined individual speed, and its variance based on gender and
grouping in the different cultures. Table 5.6 presents the results of pedes-
trians’ speed (measured in steps per 15 seconds; the conversion to distances
introduces noise that is not relevant at this stage. We will discuss the noise
in the section on the simulation comparison). Again, the first column corre-
sponds to the examined formations. Then we present the mean speed of two
samples of each examined formation for each culture: Iraq, Canada, Israel
and France. The values are the number of footsteps of the observed pedestri-
ans within 15 seconds. As in noted in the previous section, we then present
the statistics that we extracted from the data received.

Formation Iraq Canada Israel England France
1 man 25.3 27.8 26.7 28.7 27.3

1 woman 22.1 27.6 24.9 23.5 26
2 men 23.2 27.8 24.5 26.2 26.3

2 women 20.6 31.2 22.6 24.1 26.3
1 man next to 1 woman 23 28 22.5 25 24.8

1 man in front of 1 woman 23
1 man & 1 child 31.5

1 woman & 1 child
3 men 23 30.5 25 28.7

3 women 20 26.2 30
1 man next to 2 women 23 20

1 man in front of 2 women 22
2 men & 1 child

2 women & 1 child
1 men, 1 woman & 1 child 23.8

2 men & 1 woman 24
2 men, 1 woman & 1 child
2 women & 2 children

3 men & 1 child
4 woman 25.9

Table 5.6: Pedestrian speed

Table 5.7 shows that men walk faster than women in all the cultures that
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were observed. As for the difference in the cultures, Iraqi pedestrians walk
the slowest (this supports earlier research [50]). Moreover, in Iraq men as well
as women walk slower than the pedestrian of the other countries observed.

Formation Iraq Canada Israel England France
men 25.3 27.8 26.7 28.7 27.3

women 22.1 27.6 24.9 23.5 26

Table 5.7: Speed of men versus women

Next, we examined the effects of grouping on speed. In this case we
examined the mean speed of pedestrians who move as individuals versus the
mean speed of pedestrians who move in groups. The results presented in
Table 5.8 show that in all cultures people as individuals move faster than
people in groups.

Formation Iraq Canada Israel England France
Individuals 25.1 28.6 25.7 26.5 26.6
Groups 23 27.3 24.6 25 24.9

Table 5.8: Speed of individuals versus groups

We also examined whether there is a difference in mean speed between
homogeneous and heterogeneous gender groups of all the pedestrians that
move in groups. Moreover, we examined whether there is a difference in speed
among groups of men versus groups of women. The results summarized in
Table 5.9 show that in Iraq and England the group of women are the slowest
of the the groups. However, in all the cultures the groups of men are the
fastest of the groups.

Avoidance side

In this section we present the results of the pedestrian avoidance side. The
results depicted in table 5.10 presents . The first column correspond to right
or left avoidance side and then we presents the distribution of each examined
cultures. The results show that in Iraq, Canada and England the pedestrians
prefer the right side while in Israel and France they prefer the left side.
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Formation Iraq Canada Israel England France
Mixed groups 23.4 25.8 22.8 24.5 24

Men homogeneous groups 24.1 28.8 26.3 26 26.8
Women homogeneous groups 21.5 26.5 24.5 23.8 25.6

Table 5.9: Speed of homogeneous versus heterogeneous gender
groups

Passing side Iraq Canada Israel England France
Right 62% 63% 41% 77% 45%
Left 38% 37% 59% 23% 55%

Table 5.10: Passing side

Personal spaces

Finally, the video analysis shows that there are cultural differences in per-
sonal spaces. Table 5.11 provides the personal spaces within groups, as well
as the mean personal space. We examined whether there is a difference in
the personal spaces kept by men and women in the same group. We dis-
tinguished between heterogeneous gender groups, homogeneous male groups
and homogeneous female groups. The results show that in Iraq, Israel and
France women keep less personal space than men. The biggest gap between
the group of men and the group of women was observed in Iraq. The re-
sults of the mean space shows that in Iraq pedestrians who walk in groups
maintain the smallest personal space than in the other cultures observed.

Group Type Iraq Canada Israel England France
Mixed gender 26.5 46 50.3 35
Men only 43.8 65.8 66.5 49.5 57.5

Women only 18.3 70 50.3 52 40.5
Mean space 32.7 67.9 57.9 50.3 41.7

Table 5.11: Personal space kept by men and women within the same
group.
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5.2 The Impact of Cultural Differences on

Pedestrian Dynamics: Evaluation

After establishing that the parameters chosen do indeed vary significantly
between cultures, we used an agent-based simulation to examine their effect
on macro-level pedestrian dynamics. We used the popular OpenSteer [65] as
the simulation platform. We simulated a sidewalk where agents can move in
a circular fashion from east to west, or in the opposite direction. Each agent
had a limited visual distance (beyond this distance it could not see). Agents
were not allowed to move through other agents, in case of possible collision
the agents attempted to avoid each other. The base pedestrian model was
SCT [25], which was implemented fully and then extended to support the
parameters noted above. The modifications to the original algorithm are
described in Section 5.1.1.

To enable visibility of group formations, each agent was given a color:
Individual men marked in dark green and individual women marked in gray.
In families, the husband was blue, the wife pink, and the children, who also
had a smaller radius, were yellow. Agents in groups (non-family) appeared
in light green if they were females and in oranges if they were males.

To account for cultural differences, each agent contained a set of cultural
variables such as speed, personal spaces and avoidance side. Moreover, to
account for group formations, each agent contained the following variables:
group ID and social factors such as the agent’s comparison tendency and
the agent’s social class which influence the agent’s social comparison process
(the SCT process) to select the agent for comparison, as described in section
5.1.1. To enable the most accuracy possible in the simulation, we translated
the data on the cultural variables received from the analysis of the human
movies as described below.

• Personal space - recall, there are four spaces which people maintain:
intimate, personal, social and public. Due to the limitations of the
simulation, we modeled only three of them: personal, social and public.
Hall [30–33] reported two settings of distances for these three spaces:
close and far. Close was defined as a personal distance of 46 cm,
social distance of 120 cm, and a public distance of 370 cm. Far was
defined as a personal distance of 76 cm, social distance of 210 cm, and
a public distance of 760 cm. Because of the high possibility of noise
in our estimation of the personal spaces in human pedestrian movies
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and since we also measured only the distances among couples (which is
personal rings), we used Hall’s values of close and far. For each value
that we received from the analysis of the human movies we examined
how close the value was to one of Hall’s rings. In the translation for
the simulation, we normalized all the distances based on the shortest
(46cm). Thus, the three values for close (⟨46, 120, 370⟩), were translated
into simulation distances of ⟨1, 2.6, 8⟩ and for far (⟨76, 210, 760⟩) were
translated into ⟨1.65, 4.56, 16.5⟩.

• Speed - In our simulation we defined three speeds of walking: slow
walk, average walk and faster walk. We analyzed the data extracted
from the different cultures, and divided the speed samples into the three
groups of speed in our simulation. Among all the received samples of
speed, we computed the 33th percentile and the 67th percentile, in
order to attain the two separators between these three groups, and
received the values of 24.0 and 27.0, respectively. Thus, the three
ranges of speed were: [20-24), [24-27), [27-31.5), where 20 and 31.5
were the minimum and maximum values, respectively, that were been
sampled. Then we estimated the ratios between the speeds. Taking the
mean of every range we attained: 22, 25.5, 29.25 steps per 15 seconds.
Various resources suggest 75cm as a solid estimation for a human’s
average step [3] and we converted the number of steps we received per
15 sec. to m/s which resulted in 1.1 m/s, 1.27 m/s and 1.46 m/s.
Then we examined what speed in our simulation would give us the
average speed of 1.1 m/s. We found that by using the 2.27 speed in
our simulation we attained an average speed of 1.1 m/s and based on
the received ratios between the speeds examined in human behavior we
revealed the following speed level rates in our simulations: 2.27, 2.62
and 3.01.

• Avoidance side. In situations of possible collision an agent will choose
whether to avoid the other agent on the right or left side. Each agent
has a cultural preference for the avoidance side. This variable was
initialized in the beginning of the simulation according to the analyzed
human pedestrian dynamics portrayed in the movies and according to
the culture to which the simulated agent belonged.

In all the experiments described below, we examine the impact of indi-
vidual cultural differences on the resulting macro-level pedestrian behavior,
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as measured by the following standard measures:

• Pedestrian flow: number of agents that cross a certain line divided by
the width of the line and the time the process takes

• Mean speed: over all agents (this is the difference from the set individ-
ual speed, which each agent may or may not be able to achieve)

• Mean number of collisions: between two agents, averaged over all agents

• Mean number of lane changes: the number of direction changes of
the agent that are above a predetermined threshold, averaged over all
agents

5.2.1 Experiment 1: Impact of each of the cultural
parameters on pedestrian dynamics

In this section we examine the impact of each of the cultural parameters on
the overall pedestrian dynamics. In all the experiments in this section, we
set the sidewalk as 110×20 and the number of agents at 100. To account for
group formations we divided our agents into two categories, 30% individuals
and 70% in groups as observed in some of the movies, and also in [57].
Furthermore, we divided the agents into different group sizes and gender
formations, namely couples of women, groups of 3 men, mixed gender couples,
etc. as follows:

• Individuals: 30%

• Groups: 70%

– 5/7 in formations of groups of 2, which consisted of:

∗ Men couples: 33%

∗ Women couples: 33%

∗ Mixed couples: 33%

– 1/7 in formations of groups of 3, which consisted of:

∗ Groups of 3 men: 50%

∗ Groups of 3 women: 50%

– 1/7 in formation of groups of 4, which we defined as husband, wife
and 2 children.
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Speed

First we examined the influence of the mixed speed population on the pedes-
trian behavior produced. We initialized the passing side of all the agents as
the right side, the personal space of all the agents as close and the group
formation as defined in section 5.2.1. We varied the percentage of agents
who walked at a low (1.0) speed (versus a fast speed of 1.33): either 0% at
a low speed, 20%, 50%, 80% or 100% and we examined the impact of the
mixed speed population on the flow of the pedestrians, the mean number of
collisions and the mean number of lane changes.

Figure 5.3 illustrates the effect of the mixed speed population on the
mean number of collisions. The results show that the population that moves
with the highest speed incurs the lowest number of collisions. The average
number of collisions when all the agents walk at a high speed was 0.27. The
highest number of collisions was found in the mixed population where 50%
walked at a low speed and 50% at a high speed (mean value: 0.5). Moreover,
this was found to be significantly different than populations that walked at
homogeneous speeds where all agents either walked at a high speed or a low
speed (two tailed t-test, alpha < 0.01 in both cases).

Figure 5.3: The effect of mixed speed on the mean number of colli-
sions

We also examined whether the agents’ mixed speeds have an effect on
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the number of lane changes. The findings presented in Figure 5.4 show that
homogeneous speed (low or high) result in less lane changes. According to
the two-tailed t-test, there is no significant difference between the high speed
population and the low speed population in the number of lane changes
(alpha = 0.2). Moreover, the mixed speed populations demonstrated the
highest number of lane changes. The number of lane changes in the popula-
tion where 50% of the agents walked at a high speed and 50% at a low speed,
was found to be significantly different than the population of agents that all
walked at a low speed and the population of agents that all walked at a high
speed(two tailed t-test, alpha < 0.01 in both cases).

Figure 5.4: The effect of mixed speed on the mean number of lane
changes

Figure 5.5 shows the influence of the mixed speed population on the flow
of pedestrians. The results are not surprising, the more agents that move at
a higher speed the higher the flow. As we can see in the results, the highest
flow was found in the population of agents that all walked at the highest
speed and the lowest flow was of the population with lowest speed. However,
an interesting finding was the ratio between the changes in the population
which caused changes in the flow. For example if we increased our population
from 0% low speed to 20% low speed the flow decreased by 6%. Moreover,
there was only 1% difference in the flow between the population of agents
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that all walked at the lowest speed and the population of the agents in which
80% walked at the lowest speed.

Figure 5.5: The effect of the mixed speed on the flow

Personal space

In this experiment we examined whether the difference in personal spaces
among the agents had an impact on the pedestrian behavior produced. We
initialized the avoidance side of all the agents to the right, the speed of all
the agents to 1 (which is a slow pace) and the group formation was defined
as detailed in section 5.2.1. We varied the percentage of agents with close
personal space (versus far personal space) 0%, 20%, 50%, 80% or 100% and
we examined its impact on the flow of pedestrians, the mean speed, the
number of collisions and the number of lane changes.

First, we examined whether personal space had an impact on the number
of collisions between the agents. The results shown in Figure 5.6 demonstrate
that a significant difference was revealed in the number of collisions between
the agents with close personal space and those with far personal space (two
tailed t-test, alpha = 0.01). The mean number of collisions of agents was
0.47 for those with close personal space and 0.49 for those with far personal
space. Though it seems that the difference between these values is not large
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it was found to be statistically significant. Surprisingly, the lowest number
of collisions was found to be among the mixed group where 50% of agents
maintain a close personal space while walking and 50% maintain a far space.
Moreover, a significant difference was found between the homogeneous far
personal space group (all agents maintained a far personal space) and the
heterogeneous group (50% of the agents maintained a close space and 50%
maintained a far space) according to the two tailed t-test (alpha = 0.01).
However, no significant difference was found between the homogeneous close
personal space group (all agents maintained a close personal space) and the
heterogeneous group (50% of the agents maintained a close personal space
and 50% maintained a far personal space) according to the two tailed t-test
(alpha = 0.09).

Figure 5.6: The effect of personal space on the mean number of
collisions

We then examined whether personal space has an impact on the number
of lane changes. The results are presented in graph 5.7. While it seems there
is almost no difference in the results, the difference in the number of lane
changes between agents maintaining close personal space and those main-
taining far personal space was found to be statistically significant according
to the two tailed t-test (alpha < 0.01). The agents that maintained close
personal space made less lane changes. The results also show that there is a
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significant difference between the homogeneous groups (all agents with close
personal space or all agents with far personal space) and the heterogeneous
group (50% of the agents with close personal space and 50% with far) accord-
ing to the two tailed t-test (alpha = 0.01 and alpha = 0.03, respectively).

Figure 5.7: The effect of personal space on the mean number of lane
changes

Figure 5.8 shows the results of the effect of personal spaces of the agents on
their speed. The results show that agents that maintain close personal space
have a higher mean speed than agents that maintain a far personal space,
even though both groups were initialized with the same speed. Moreover,
a significant difference was found between agents with close personal space
and far personal space (two tailed t-test, alpha < 0.01). Differences in the
mean speed were also revealed between the homogeneous groups (all agents
maintained close personal space or all maintained far personal space) and
the heterogeneous group (50% of agents kept a close personal space and 50%
kept a far space) according to the two tailed t-test (alpha < 0.01 in both
cases).

In addition we examined the impact of the personal spaces of the agents
on the flow. As depicted in Figure 5.9, the results show that agents with
close personal space demonstrate a higher flow than agents with far personal
space. As we have shown in our results presented earlier, the agents that move
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Figure 5.8: The effect of personal space on the mean speed

while maintaining a far personal space have a higher number of collisions and
a higher number of lane changes than agents that maintain close personal
space, which affect their mean speed and eventually their flow.

Figure 5.9: The effect of personal space on the flow
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Avoidance side

Furthermore, we examined whether the pedestrian’s avoidance side has an
impact on the pedestrian dynamics. In this experiment we initialized the
speed of all the agents at a slow pace, the group formation was set as detailed
in section 5.2.1 and the personal space of all the agents was defined as close.
We varied the percentage of agents with right avoidance side (versus left
avoidance side) between 0%, 20%, 50%, 80% and 100% and we examined
the impact of these mixed populations on the pedestrian’s flow, mean speed,
number of collisions and number of lane changes.

First, we examined whether the agent’s avoidance side had any impact
on the number of collisions between the agents. The results presented in
Figure 5.10 show that the lowest number of collisions was found in homoge-
neous groups where all agents used the right avoidance side or all agents used
the left avoidance side. The highest number of collisions was found in the
heterogeneous group where 50% of agents used the right avoidance side and
50% used the left avoidance side. Moreover, the difference between the ho-
mogeneous groups and the heterogeneous group was found to be statistically
significant according to the two tailed t-test (alpha < 0.01 in both cases).

Figure 5.10: The effect of the passing side on the mean number of
collisions

Figure 5.11 represents the results of the effect of agents’ avoidance side
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on the number of lane changes. Similar to the previous results, the lowest
number of lane changes was found in the homogeneous groups where all
agents either used the right or the left avoidance side and the highest number
of lane changes was found in heterogeneous group where 50% of the agents
used the right avoidance side and 50% used the left avoidance side. Again
a significant difference was found between the homogeneous groups and the
heterogeneous group according to the two tailed t-test (alpha < 0.01 in both
cases).

Figure 5.11: Effect of the passing side on the mean number of lane
changes

We also examined the impact of the avoidance side on the agents’ mean
speed. The results, as depicted in Figure 5.12, reveal that the homogeneous
group of agents had a higher mean speed than the heterogeneous group of
agents. Moreover, a significant difference was revealed between these groups,
according to two tailed t-test, alpha < 0.01 in both cases.

We then examined the impact of the agents’ avoidance side on their flow.
Figure 5.13 clearly shows a higher flow among the homogeneous groups of
agents than the heterogeneous group of agents.
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Figure 5.12: Effect of the passing side on the mean speed

Figure 5.13: Effect of the passing side on the flow

Group formations with a fixed speed

In this experiment we examined whether the pedestrians movement in differ-
ent groups has an impact on the pedestrian behavior produced. We initialized
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the avoidance side of all the agents to the right, the speed of all the agents at
a slow pace and the personal space of all the agents as close. We varied the
percentage of agents that move in groups (versus individuals) between 0%,
20%, 50%, 80% or 100% and we examined their impact on the pedestrians’
flow, mean speed and the number of collisions. The distribution into the
different sizes and gender formations of all the agents that walked in groups
was the same as described above in Section 5.2.1.

Figure 5.14 displays the effect of the groups on the number of collisions.
The results clearly show that the higher the number of groups in the popu-
lation the higher the number of collisions. Moreover, a significant difference
was found in the number of collisions between populations where all agents
moved in groups and populations where all the agents moved as individuals,
according to the two tailed t-test (alpha < 0.01).

Figure 5.14: Effect of groups on the mean number of collisions

Moreover we examined the influence of groups on the number of lane
changes. The results are illustrated in Figure 5.15. The findings clearly show
that the population in which all agents walk individually have the lowest
number of lane changes. There is a significant difference in number of lane
changes between the population in which all the agents walk in groups and
the population in which all the agents walk individually, according to the
two tailed t-test (alpha < 0.01). However, no significant difference was found
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between the homogeneous population where all agents walk in groups and
the heterogeneous population where 50% of agents walk in groups and 50%
walk as individuals, according to the two tailed t-test (alpha = 0.1).

Figure 5.15: Effect of groups on the mean number of lane changes

Then we examined whether groups affect the pedestrian speed. The re-
sults in Figure 5.16 show that the population in which all the agents walk in
groups walk at a higher speed. This finding was a bit unexpected. However,
the main reason for this phenomenon is that the agents in groups occasionally
accelerate to a higher speed in order to maintain the formations.

Finally we examined the influence of group formations on the pedestrian
flow. The results presented in Figure 5.17 show that agents that walk indi-
vidually (0% groups) display the highest flow.

Group formations with varied speeds

Similar to the previous experiment we examined the impact of groups on
pedestrian dynamics. However, as we have shown in section 5.1.3, gender
and different group formations walk at different speeds. In this experiment
we initialized the speed of each formation (individual men, individual women,
groups of men, groups of women and mixed groups) based on the analysis
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Figure 5.16: Effect of groups on the mean speed

Figure 5.17: Effect of the groups on the flow

of the data taken from the human movies (section 5.1.3) and on the mean
value of all the five cultures we sampled.

Table 5.12 presents the mean values of the different formations. The first
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column corresponds to the different formations and the second column cor-
responds to the mean speed across all five cultures in the specific formation.
The results show that individual men walk at the highest speed while the
group of women walk at the lowest speed.

Formation Mean speed (#footsteps per 15 sec.)
Individual men 27.3

Individual women 25.3
Mixed group 23.9

Men homogeneous group 25.9
Women homogeneous group 23.7

Table 5.12: Mean speed of different formations in the human video
analysis

Again in this simulation we initialized the avoidance side of all the agents
to the right and the personal space of all the agents to close. However, the
speed was set according to the formation to which the agent belonged. We
varied the percentage of agents that walked in groups (versus individually):
0%, 20%, 50%, 80% or 100% in groups and we examined their impact on the
pedestrians’ flow, mean speed and number of collisions.

First we examined the impact of group formations on the pedestrians’
number of collisions. Figure 5.18 shows that individual agents had the low-
est number of collisions. The highest number of collisions was observed in the
mixed population, where 80% of agents walked in groups and 20% individu-
ally (mean value of collisions 0.63), i.e. even higher than in the homogeneous
population in which all the agents walked in groups (mean value of collisions
0.57). Moreover, this finding was found to be significantly higher according
to the one tailed t-test (alpha < 0.01).

In this experiment we also examined the impact of groups on lane for-
mation. In Figure 5.19 we can see that the higher the number of groups the
higher the number of lane changes. A significant difference was revealed in
the number of lane changes between the population in which all the agents
walk in groups and the population in which all the agents walk individually,
based on the two tailed t-test (alpha < 0.01). Moreover, a significant differ-
ence was found between the homogeneous population in which all the agents
walk in groups or all walk individually and the heterogeneous population in
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Figure 5.18: The effect of groups on the mean number of collisions

which 50% of the agents walk in groups and 50% walk individually, according
to two tailed t-test (alpha < 0.01 in both cases).

Figure 5.19: The impact of groups on the mean number of lane
changes
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We also examined the impact of groups on the pedestrian mean speed.
Figure 5.20 shows that the higher the number of groups the lower the mean
speed of the agents. As in the previous experiment a significant difference
was revealed in the agents’ mean speed between the population in which
all the agents walked in groups and the population in which all the agents
walked individually based on the two tailed t-test (alpha < 0.01). Moreover, a
significant difference was also revealed between the homogeneous population
in which all the agents walk in groups or all the agents walk individually and
the heterogeneous population in which 50% of the agents walk in groups and
50% walk individually based on the two tailed t-test (alpha < 0.01 in both
cases).

Figure 5.20: The effect of groups on the mean speed

Finally we examined the influence of group formation on the pedestrian
flow. The results in Figure 5.21 show that the agents that walk individually
(0% groups) depict the highest flow. Moreover, we found that the higher the
number of groups the slower the flow.

5.2.2 Experiment 2: Differences between cultures

In this section we present our findings concerning the different cultures, i.e.,
Iraq, Israel, England, Canada and France. We examined whether they have
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Figure 5.21: The effect of the groups on the flow

a different impact on pedestrian dynamics. For each culture we set each of
the cultural parameters (frequencies of formations, speed, personal space and
avoidance side) according to the values extracted from the real videos of the
said culture as detailed in section 5.1.3.

First we examined whether there is a difference between cultures in the
number of pedestrian collisions. The results presented in graph 5.22 show
that France had the highest number of collisions among the pedestrians. We
believe that the main cause for this is the fact that the avoidance side was
more heterogeneous in France than in the other countries (45% preferred the
right avoidance side and 55% preferred the left avoidance side). The lowest
number of collisions was in Iraq.

We then examined whether there is a difference between cultures in refer-
ence to the number of lane changes of the pedestrians. The results in Graph
5.23 demonstrate that the lowest number of lane changes was found among
the pedestrians in Iraq while the highest was in Canada. Furthermore, the
pedestrians in Canada kept the greatest personal space between one another
which we believe is the main reason behind this result as detailed in section
5.2.1.

In addition we examined whether there is a difference between cultures
in pedestrians’ speed. In Figure 5.24 we can see that the pedestrians in
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Figure 5.22: The mean number of collisions by cultures

Canada have the highest mean speed. The lowest mean speed was found
among the pedestrians in Iraq. These results were not surprising since they
were supported by the outcome of the human video analysis as detailed in
Section 5.1.3. Namely, more pedestrians in Canada walk individually at a
higher speed than in other cultures, while pedestrians in Iraq walk more in
groups at a much slower speed than in other cultures.

Finally we examined whether there is a difference between cultures in
reference to the pedestrians’ flow. The results presented in Graph 5.25 in-
dicate that the highest flow was found in Canada while the pedestrians in
Iraq, Israel and France provided the lowest flow.

5.2.3 Experiment 3: Mixed Cultures

Lastly, we examined the effect of pedestrians of mixed cultures walking on
the same sidewalk on pedestrian dynamics. For example, we checked the
influence of a mixed population such as part of the pedestrians from Iraq
and part from Canada on the pedestrian dynamics.

As it is infeasible to experiment with all the variations of cultures, we
provide the examples of mixing between two cultures: Iraq and Canada. In
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Figure 5.23: Mean number of lane changes by culture

this section we assert that x% of the population are from Iraq, and (100-
x)% are from Canada, and we vary the values of x: 20,50 and 80. As in
the previous section we set each of the cultural parameters (frequencies of
formations, speed, personal space and passing side)based on the values taken
from real videos of the culture as presented in section 5.1.3.

First we examined the impact of the mixed populations on the number
of collisions. The results presented in graph 5.26 show that the higher the
percentage of Canadians in the population the higher the number of collisions.
The lowest number of collisions were found in the population comprising
20% Canadians and 80% Iraqians. Moreover, a significant difference was
found between populations comprising 20% Canadians and 80% Iraqians, and
populations comprising 80% Canadians and only 20% Iraqians, according to
the two tailed t-test (alpha < 0.01).

In the next experiment we examined the impact of mixed populations
(Canada and Iraq) on the number of lane changes. The results presented
in Graph 5.27, as in the previous experiment demonstrate that the higher
the percentage of Canadians in the population the higher the number of lane
changes. Here again, the lowest number of collisions was found in population
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Figure 5.24: Mean speed by culture

where 20% were from Canada and 80% from Iraq. Moreover, a significant
difference was found in the number of lane changes between populations
where 20% were from Canada and 80% from Iraq, and where 80% were from
Canada and only 20% were from Iraq, according to the two tailed t-test
(alpha < 0.01).

Then we examined the impact of mixed cultures on the pedestrians’ speed.
Figure 5.28 illustrates that the more Canadian pedestrians in the population
the higher the mean population speed. The lowest mean speed was found
in the population in which 80% were from Iraq and 20% were from Canada.
As in previous experiments, a significant difference was revealed in the mean
speed between a population with 20% Canadians and 80% Iraqians, and a
population with 80% Canadians and only 20% Iraqians, according to the two
tailed t-test alpha < 0.01.

Furthermore, we examined the impact of mixed cultures on pedestrians’
flow. The results in Graph 5.29 indicate that the highest flow was found in
populations in which 80% were from Canada and only 20% from Iraq. The
lowest flow was found in populations in which 80% were from Iraq and only
20% from Canada.
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Figure 5.25: Pedestrian flow by culture

Figure 5.26: The effect of mixed populations of Iraqians and Cana-
dians on the mean number of collisions

5.2.4 Experiment 4: Comparison to human data

In the previous experiments we focused on the use of simulations to inves-
tigate the effects of individual or bundled cultural parameters on overall
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Figure 5.27: The effect of mixed populations of Iraqians and Cana-
dians on the mean number of lane changes

crowd behavior. However, an important underlying question is whether the
fidelity of the simulation is sufficient to support conclusions concerning hu-
man crowds.

Consequently in this section we examine whether the simulation can pro-
duce similar behavior to that of the observed human pedestrian crowd. We
quantitatively compared the macro level measures (flow and mean speed)
generated by the simulation to those of the crowds in the videos. We did not
compare the number of collisions for this part, since humans rarely collide
(not even once in the video recordings), since they employ a more sophisti-
cated obstacle avoidance algorithm than in the simulation.

To carry out this comparison, we recreated the initial settings from four of
the videos in the simulation. Specifically, we set the density of the pedestrian
crowd (how many pedestrians per unit area); we set the individual parameters
of agents and groups per the measured quantized values from the videos; and
we ran the simulation for the same time as the videos. Note that we did not
place simulated pedestrians in the initial locations of human pedestrians,
so that such fine-resolution placement would not affect the macro-level of
crowd dynamics. Human subjects measured the human crowd flow and mean
speed by sampling pedestrians in the videos, and those sampled values were
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Figure 5.28: Impact of mixed populations of Iraqians and Canadians
on the mean speed

compared to the flow and mean speed analyzed directly from the simulated
trajectory data.

Flow comparison

Flow is defined as the number of persons that cross a certain line divided by
the width of the line and the time the process takes. In order to extract the
flow from the human pedestrian movies, we defined the sizes of the sidewalk
or of the examined area. Estimating the exact sizes from the movies may
constitute a great challenge, due to the position of the camera. However,
there were several movies that provided very good conditions which would
suffice for a good approximation of these sizes. Thus, we analyzed the flow
from 4 different movies, two from France (1:40 min and 2:47 min each), one
from Canada (3:36 min) and one from London (30 sec). The analysis was
done only on the portions of the videos in which the deducible part was
visible. It has been shown that density has a large impact on the flow [73].
Thus to quantitatively compare the simulation flow to the human pedestrian
flow we had to account for the density. To extract the density from the
examined human pedestrian movies, we sampled the number of pedestrians
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Figure 5.29: Impact of mixed populations of Iraqians and Canadians
on the pedestrian flow

in a defined area every 5 seconds, and used the average number over all the
samples.

Table 5.13 presents the densities of the examined movies. The first column
presents the examined video, then we present the length and the width of
the sidewalk, the resulting squared area, the average number of pedestrians
in the area, and finally the density. The density was measured according to
the following equation: area/#people.

Movie Length Width Area #People Density
France1 25m 5m 125m2 8.238 15.17
France2 16.5m 5.5m 90.75m2 5.5 16.5
Canada 9m 3.9m 35.1m2 4.428 7.92
London 12m 12m 144m2 7.4 19.4

Table 5.13: Density analysis in human pedestrian movies

The flow values were manually extracted from the four videos of the hu-
man pedestrians, which were analyzed, in the following manner: For each
video, we counted the number of pedestrians who passed a certain line (de-
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termined as the ”finish” line, i.e., one of the height borders of the sidewalk).
The time variable was assigned with the number of seconds measured and
the width of the sidewalk as defined in Table 5.13. The flow was calculated
as follows: the number of agents that crossed a certain line divided by the
width of the line and the time the process took.

To quantitatively compare the flow extracted from the human pedestrian
movies to the simulation flow, we created an accurate approximation of the
human pedestrians’ analyzed scene. First we converted the values from the
human pedestrian analysis into simulation values. We used the ratio between
the width of the person in the human pedestrian scene (which was approxi-
mately 0.5 m), and the width of the agent in the simulation (which was 1).
For example, in the movie from Canada the size of the measured sidewalk
was 9X3.9 meters, while in our simulation it was converted to 18× 7.8 based
on the conversion rate.

Figure 5.30 depicts these conversions. The x-axis corresponds to the ex-
amined movie and the y-axis corresponds to the flow measurement. For each
movie, we present two bars, a blue bar corresponding to the flow extracted
from the human movie and a white bar corresponding to the flow received
from our simulations. The results indicate a 15% error in France1, a 4% error
in France2 and a 10% error in London. The maximal error we experienced
was 16% which was in the movie from Canada. The mean error that we
received was 11%. Note that overall a perfect match is essentially impossi-
ble due to the fact that the simulation uses a low-resolution, discrete results
(e.g., only three values for speed) and mean values.

Speed comparison

In this experiment we quantitatively compared the mean speed of human
pedestrians in the examined movies to the our agents’ mean speed. The
human pedestrians’ mean speed is the mean speed values calculated from
the video analysis. The simulation mean speed is the mean speed value
calculated from the simulations.

Figure 5.31 presents the results. The x-axis corresponds to the examined
movies and the y-axis corresponds to the mean measurement. For each movie,
we present two bars, a blue bar corresponding to the mean speed that was
extracted from the human movie and a white bar corresponding to the mean
speed from our simulations. The results show 21% error in France1 which
was the maximal error, a 16% error in France2, a 10% error in Canada and
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Figure 5.30: Comparison of flow to human data

a 6% error in London. The mean error was 13%.

Figure 5.31: Comparison of mean speed to human data
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Chapter 6

The Impact of Cultural
Differences on Crowd Dynamics
in the Evacuation Domain
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6.1 Cultural Differences in the Evacuation Domain

In this chapter we examine the impact of cultural differences on crowd
dynamics in the evacuation domain. We use an established simulation system
to investigate cultural differences reported in the literature, and additionally
explore the resulting macro level behavior.

6.1 Cultural Differences in the Evacuation

Domain

Cultural differences also have been found in the evacuation domain. For
example, it has been found that cultural differences influence the manner in
which people evacuate themselves. For example, there are cultures where
people tend to evacuate more in groups, and other cultures where people
prefer to evacuate individually [2]. It also has been documented that some
cultures perceive the event at different levels of seriousness and also with
different levels of fear [2]. Moreover, it has been found that in some cultures
there is more tendency to notify others about the event in comparison to
other cultures [16]. Based on the literature we extracted cultural differences
from evacuation scenarios such as seriousness, the tendency to notify others
and group behavior. In this section we define each of these factors in detail.
We use an evacuation simulation to examine the impact of these factors on
the resulting macro level behavior, e.g. evacuation time, average speed.

The tendency of people to notify others about the event during an evac-
uation has been considered to be a cultural inclination [16]. It has been
documented that different cultures tend to notify others about the existence
of the event, to different extents. For example, in the America there is a
higher tendency to notify others about the event than in England.

The level of seriousness participants associate to the fire alarm and also
their feelings during the event, have also been found to be a cultural at-
tribute [2]. It has been found that there is a significant difference between
the Australian and Swedish populations when it comes to the emotions of
fear and insecurity. People in Australia tend to take alarms more seriously
and they also experience a higher level of fear and insecurity than the Swedish
participants.

Another cultural difference which has also been found to influence the
manner in which people evacuate is whether they evacuate individually or
in groups. For example, it has been found that Swedish participants seem
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to prefer to evacuate in groups more than Australians who tend to evacuate
individually [2].

6.2 Evaluation of the Impact of Cultural Dif-

ferences on Evacuation

To examine cultural differences in evacuation behavior, we used the ES-
CAPES, which is a multiagent evacuation simulation, described in Section
3.4.1 and to examine the impact of these cultural differences on the resulting
macro level behavior we used the following measures:

• Evacuation time: in each cycle we recorded the number of agents that
are still in the terminal.

• Fear: Number of agents with HIGH fear versus LOW fear.

• Connectivity: number of connectivity components in the adjacency
matrix of the agents

• Speed: the mean speed of the agents

6.2.1 Experiment 1: The impact of notifying others
about the evacuation

In this section we study the impact of the tendency of agents to notify others
about the event on the produced macro level of behavior. In the ESCAPES
simulation, agents that are close to the event location have full knowledge
regarding the event. However, agents that are at a distance from the event
are unaware about what is happening. Agents aware of the event can convey
the certainty of the event to other agents close to them.

In this experiment we varied the percentage of the close neighbors to
whom an agent conveys its knowledge about the event and examined the
impact on the evacuation time and on the agent’s fear factor. Moreover,
since authority figures in our simulation also notify others about the event, we
examined the impact of notifying others with and without authority figures.

First we checked the impact of conveying the agents’ knowledge on the
evacuation time and also on their fear level, without the presence of the au-
thority figures in the simulated environment. Figure 6.1 presents the results
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of the agents’ evacuation time. The x-axis represents the time steps and the
y-axis represents the percentage of unevacuated agents. The results clearly
show that the more agents communicate the faster the evacuation time. How-
ever, no significant difference was found between agents that convey their
knowledge about the event to all close neighbors (100% message conveyance)
and agents that convey their knowledge to 80% of the close neighbors (80%
message conveyance), according to the two-tailed t-test (alpha = 0.26). How-
ever, a significant difference was found between 80% of message conveyance
and 50% of message conveyance (two-tailed t-test, alpha = 0.04). Moreover,
a significant difference was also revealed between 50% of message conveyance
and 20% of message conveyance (two-tailed t-test, alpha < 0.01). Likewise,
a significant difference was also observed between agents that convey their
knowledge to 20% of the close neighbors and agents that do not convey any
knowledge (two-tailed t-test, alpha < 0.01).

Figure 6.1: The impact of agents’ conveying their knowledge on the
evacuation time (without authority figures present)

In addition we examined the impact of agents’ conveying knowledge on
their fear level. Figure 6.2 presents the results. The x-axis represents the
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time steps and the y-axis represents the amount of unevacuated agents with
a FearFactor of 2. The results show that the more the agent notifies others
about the event the higher the fear level in the population.

Figure 6.2: The impact of agents’ conveying their knowledge on the
fear factor (without authority figures present)

In addition we examined the impact of the agents’ conveying knowledge
on the evacuation behavior with the presence of 5 authority figures in the
simulation environment. First we examined the impact of agents’ convey-
ing knowledge on the evacuation time. Figure 6.3 presents the results. The
x-axis represents the time steps and the y-axis represents the percent of
unevacuated agents. The results show that the more agents notify others
regarding the event the faster the evacuation time. However, the presence of
authority figures caused almost no effect on the evacuation time among fully
communicative agents (i.e., 100% notify others) in comparison to Figure 6.1.
For example, the mean evacuation time in a population with 5 authority fig-
ures among 100% fully communicative agents was 24.5 while the mean value
among the same fully communicative agents without authorities present, as
illustrated in Figure 6.1 was 23.4, which was not found to be significantly
lower (according to the one tailed t-test, alpha = 0.42). However, among
non-communicative agents (i.e., 0% notify others), the authority figures had
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a great impact. For example, the mean evacuation time in a population with
5 authority figures among non-communicative agents (0% notify others) was
45.05 while the mean value among the same non-communicative agents but
in a population without authorities (Figure 6.1) was 80.2. The difference was
found to be significantly lower (according to the one tailed t-test, alpha <
0.01).

Figure 6.3: The impact of agents conveying their knowledge on the
evacuation time (with authority figures present)

We also examined the impact of agents’ conveying their knowledge on the
fear factor. In this case, again, we examined the population with the presence
of 5 authority figures. Figure 6.4 presents the results. The x-axis represents
the time steps and the y-axis represents the amount of unevacuated agents
with a FearFactor of 2. The results show that more communicative agents
cause higher fear among the population. Moreover, the presence of authority
figures causes lower fear among the agents in comparison to a population
without authority figures (see Figure 6.2). For example the mean value of
the number of agents with a FearFactor of 2 in a population with 100%
fully communicative agents and 5 authority figures present was 5.2 whereas

108



6.2 Evaluation of the Impact of Cultural Differences on
Evacuation

the mean value of 100% fully communicative agents without authority figures
present was 12.2. This difference was found to be statistically significant (one
tailed, t-test alpha < 0.01). In another example the mean value of the number
of agents with a FearFactor = 2 in a population of non-communicative agents
(0% notify others) and authority figures present was 3.3 whereas the mean
value was 10.09 in the same population of agents with no authority figures
present. Again this difference was found to be statistically significant(one
tailed, t-test alpha < 0.01).

Figure 6.4: The impact of agents conveying their knowledge on the
fear factor (with authority figures present)

6.2.2 Experiment 2: The impact of the seriousness
level on the evacuation

The level of seriousness that participants associate with a fire alarm has also
been found to be a cultural attribute. The level of seriousness affects the
participants’ level of fear during the event. In this experiment we examined
the impact of an agent’s seriousness on its fear and in consequence on the
produced macro level of the evacuation behavior.

In our simulation each agent has an eventCertainty variable which indi-
cates the knowledge the agent has regarding the event and also a FearFactor
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variable that defines an agent’s level of fear. In the ESCAPES simulation the
eventCertainty variable has a direct effect on the agent’s FearFactor . Conse-
quently, if an agent has a HIGH eventCertainty then its FearFactor will also
be HIGH. To account for the cultural difference in the levels of seriousness
that people have during an evacuation, we modified our simulation as follows:
we defined a level of seriousness that an agent has (not serious, semi-serious,
very serious). When an agent finds out about an event (eventCertainty =
HIGH) its FearFactor will be affected by its seriousness level. Serious agents
will have a high level of fear (FearFactor = HIGH), semi-serious agents will
have a low level of fear (FearFactor = LOW), and non-serious agents will
have no fear (FearFactor = NONE).

In this experiment we varied the percent of serious agents versus semi-
serious agents and examined the impact on the evacuation time, the agents’
fear factor and their mean speed (since an agent’s speed is affected by its
FearFactor, the more the agent is afraid the faster it will proceed to the
exit). In our simulations the authority figures had a calming effect; though
they notified others regarding the event they still reduced the fear level of the
agents As a result, we examined the impact of seriousness with and without
authority figures present.

First we examined the impact of agents’ seriousness on the evacuation
time, mean speed and also on their fear level, with no presence of the au-
thority figures in the simulated environment. Figure 6.5 presents the results
of the agents’ evacuation time. The x-axis represents the time steps and the
y-axis represents the percent of unevacuated agents. The results show that
the time of evacuation of more serious agents is less than evacuation time of
less serious agents. A significant difference was found between the popula-
tion of all serious agents (100% seriousness) and the population of no serious
agents (0% seriousness), according to the two-tailed t-test (alpha = 0.004).

The same pattern was also observed in reference to the evacuators’ speed.
Figure 6.6 shows that the more serious the agents the faster the speed. Fur-
thermore, the difference between the population of 20% of serious agents
(20% seriousness) and the population of non-serious agents (0% seriousness)
was found to be statistically significant according to the two-tailed t-test
(alpha < 0.01).

Moreover, we examined the impact of the agents’ seriousness on their fear
level, with no authority figures present in the simulated environment. Figure
6.7 presents the results. The x-axis represents the time steps and the y-axis
represents the amount of unevacuated agents with a FearFactor of 2. The
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Figure 6.5: The impact of the agents’ seriousness on the evacuation
time (without authority figures present)

results show that the higher the seriousness the higher the fear.
We then examined the impact of the agents’ seriousness on evacuation be-

havior with the presence of 5 authority figures in the simulation environment.
First we examined the impact of agents’ seriousness on the evacuation time.
Figure 6.5 presents the results. The x-axis represents the time steps and the
y-axis represents the percent of unevacuated agents. The results show that
the presence of authority figures causes almost no change in the evacuation
time of serious and less serious agents. Moreover, no significant difference
was found between the population of all serious agents (100% seriousness)
and population of no serious agents (0% seriousness), according to the two-
tailed t-test (alpha = 0.39). Moreover, the authority figures had almost no
effect on the evacuation time among serious agents (100% seriousness) in
comparison to the evacuation time of the serious agents in the environment
without authority figures present as depicted in Figure 6.5. For example, the
mean evacuation time in populations of 100% serious agents with 5 authority
figures was 24.5 whereas the mean value of the same serious agents but in a
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Figure 6.6: The impact of agents’ seriousness on the mean speed
(without authority figures present)

population without authorities (Figure 6.5) was 23.4. The difference was not
found to be significantly lower (according to one tailed t-test, alpha = 0.42).
In contrast, the authority figures had a great impact on the population of
non-serious agents (0% seriousness). For example, the mean evacuation time
in the population of non-serious agents (0% seriousness) with 5 authority
figures was 29.6, whereas the mean-evacuation time of the same population
without authority figures present (Figure 6.5) was 41.1. This difference was
found to be statistically significant (according to the one tailed t-test, alpha
= 0.03).

We also examined the impact of agents’ seriousness on the evacuators’
mean speed. The results displayed in Figure 6.9 show that the presence
of authority figures cause agents to evacuate within much less time at high
speeds (speed level > 2) in comparison to the agents who evacuate without
authority figures present as depicted in Graph 6.6. The results also show
that authority figures have almost no impact on the population comprising
100% seriousness. For example the mean speed of 100% serious agents with 5
authority figures present was 1.43 compared to a mean speed of 1.42 without
authority figures present. The main reason for such slight influence of the
authority figures is that on the one hand they have a calming effect which
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Figure 6.7: The impact of agents’ seriousness on the fear factor
(without authority figures present)

causes agents to reduce their speed and on the other hand they notify other
agents regarding the event which in contrast causes them to increase their
speed. Nonetheless, authority figures have an impact on the population of
non serious agents (0% seriousness). For example the mean speed of 0%
serious agents with 5 authority figures present was 1.3 while the mean speed
of 0% serious agents without authority figures present was 0.9. This difference
was found to be statistically significant (according to the one tailed t-test,
alpha < 0.01).

Next we examined the impact of the agents’ seriousness on the fear factor.
Here again we examined the population with the presence of 5 authority
figures. Figure 6.10 presents the results. The x-axis represents the time
steps and the y-axis represents the amount of unevacuated agents with a
FearFactor of 2. The results show that more serious agents have greater fear.
However, the presence of authority figures lowered the fear among the agents
in comparison to a population without authority figures present (Figure 6.7).
For example the mean value of the number of agents with a FearFactor of
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Figure 6.8: The impact of agents’ seriousness on the evacuation time
(with authority figures present)

2 in a population with 100% serious agents and 5 authority figures was 5.2
while the mean value of this population without the authority figures present
was 12.2.

6.2.3 Experiment 3: The impact of group behavior on
evacuation

In our final experiment we discuss the impact of how people evacuate on
the evacuation behavior produced. As mentioned it has been shown that in
some cultures people tend to evacuate in groups while in others they tend to
evacuate individually.

In the ESCAPES evacuation simulation it has been shown that the use of
SCT increases grouping behavior, as described in section 3.4.1. In this section
we investigate the impact of this grouping behavior on the on evacuation
time, the agents’ fear factor and the agents’ mean speed. Moreover, we
examine the impact of the authority figures on the produced behavior.
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Figure 6.9: The impact of the agents’ seriousness on the mean speed
(with authority figures present)

First we examined the population without authority figures. To examine
the impact of agents’ grouping behavior on the evacuation we compared
agents with the SCT process and agents without the SCT process and we
measured the agents’ evacuation time, their fear factor and their mean speed.
Figure 6.11, which presents the impact of SCT on the evacuation time, shows
that the evacuation time with SCT seems to be slightly longer than without
SCT. Nonetheless this difference was not found to be statistically significant
according to the one tailed t-test (alpha = 0.3).

Figure 6.12 illustrates the results of the impact on the agents’ fear factor.
The x-axis represents the time steps and the y-axis represents the number of
agents with a FearFactor of 2. The results show that there was no significant
difference in the fear factor between agents with the SCT process and those
without, according to the two tailed t-test (alpha = 0.9).

In addition, we examined the impact of the SCT process on the agents’
mean speed. Figure 6.13 presents the results of agents’ mean speed. The x-
axis represents the time steps and the y-axis represents the mean speed. As
in the previous results, no significant difference was found in the mean speed
between agents with the SCT process and those without the SCT process,
according to the two tailed t-test (alpha = 0.9).
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Figure 6.10: The impact of the agents’ seriousness on the fear factor
(with authority figures present)

We then examined the impact of the SCT process on the population
with authority figures present. As in the previous experiments we defined
5 authority figures and measured the agents’ evacuation time, fear factor
and mean speed. Figure 6.14 shows the results of the evacuation time. The
x-axis corresponds to the time steps and the y-axis represents the number
of unevacuated agents. The results show that no significant difference was
found in evacuation time between agents with the SCT process and those
without, according to the two tailed t-test (alpha = 0.48).

Similar results were also found in reference to the agents’ fear and mean
speed. The results regarding the agents’ fear factor presented in Figure 6.15
show that no significant difference was found in the fear factor of agents
with the SCT process and those without, according to the two tailed t-test
(alpha = 0.88). The results regarding the agents’ mean speed, which appear
in Figure 6.16 again reveal that no significant difference was found between
the agents’ mean speed of those with the SCT process and those without,
according to the two tailed t-test (alpha = 0.65).
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Figure 6.11: The effect of SCT on the evacuation time (without
authority figures present)
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Figure 6.12: The effect of SCT on the fear factor (without authority
figures present)

Figure 6.13: The effect of SCT on the mean speed (without authority
figures present)
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Figure 6.14: The effect of SCT on the evacuation time (with 5 au-
thority figures present)
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Figure 6.15: The effect of SCT on the fear factor (with 5 authority
figures present)

Figure 6.16: The effect of SCT on the mean speed (with 5 authority
figures present)
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In this part of the thesis we discuss a macro level approach for modeling
crowd behavior in demonstrations in particular. The ability to model and
reason about the potential violence level of a demonstration is extremely
important to the police in their decision making process. Unfortunately, ex-
isting knowledge regarding demonstrations is composed of partial qualitative
descriptions without complete and precise numerical information. In this
part we describe a pioneer attempt to use qualitative reasoning techniques
to model demonstrations. To the best of our knowledge, such techniques
have never been applied to modeling and reasoning about crowd behaviors,
nor in demonstrations in particular. We developed qualitative models con-
sistent with the partial, qualitative social science literature. This enabled us
to model the interactions between different factors that influence violence in
demonstrations. We then utilized the qualitative simulation to predict the
potential eruption of violence at various levels, based on a description of the
demographics, environmental settings, and police responses. We incremen-
tally present and compare three of these qualitative models. The results show
that while two of the models fail to predict the outcomes of real-world events
reported and analyzed in the literature, one model provides good results.
We also examined whether a popular machine learning algorithm (decision
tree learning) can be used. While the results show that the decision trees
provide improved predictions, we demonstrate that the QR models can be
more sensitive to changes, and can account for what if scenarios, in contrast
to decision trees. Moreover, we introduce a novel analysis algorithm which
analyzes the QR simulations, to automatically determine the factors that
are most important in influencing the outcome in specific real-world demon-
strations. We show that the algorithm identifies factors that correspond to
experts analysis of these events.
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Qualitative Reasoning and
Simulation
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7.1 What is Qualitative Reasoning?

In this chapter we provide a brief description of the Qualitative Reason-
ing (QR) approach. We present our QR models of demonstration and the
evaluation methods. In chapter 8 we present the results of our evaluation.

7.1 What is Qualitative Reasoning?

A comprehensive discussion on QR is beyond the scope of this work. Below
we provide a brief description and refer the reader to [22, 47] for additional
details.

Qualitative simulation enables reasoning about possible system behaviors
that can emerge from an initial world state. A qualitative model is like any
other model, in the sense that it has variables, which hold values, and there
are rules or relations between the variables that govern how a given value of a
variable influences another variable. Once an initial state (value assignment)
is give, the model can be used to determine all possible values that can result
from valid inference (i.e., given the known relations between variables).

The key idea in qualitative reasoning and simulation, however, is that
the values of variables and the rules that govern their evolution are given in
descriptive, qualitative terms, rather than numerical. A qualitative model is
made from a set of quantities which are variables. Quantities are the lowest
resolution representation for continuous parameters and are each composed
of a pair of values: magnitude and derivative. The magnitude represents the
amount of quantity and the derivative represents the direction of change. The
set of possible values is described by Quantity Space (QS) which is a finite
and ordered set of qualitative landmark values. Landmark values represent
important real-number values.

For example, suppose we would like to represent the amount of water in
a pipe. The magnitude represents the amount of water and we may define
its quantity set (QS) with the following landmarks: QS = zero, plus,max,
which represent no water in the pipe, some water in the pipe, or full capacity
of water in the pipe. The derivative represents the direction of change and it
has the following quantity set: QS = min, zero, plus which represents three
possible directions accordingly: decreasing, steady and increasing. If there is
a state with the following quantity < plus, plus > then in the current state,
there is some amount of water in the pipe which is increasing.

In addition to quantities, a qualitative model is created from a set of
causal relationships, which relate quantities to each other, given both their
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magnitude as well as their derivative. There are two types of casual relation-
ship between quantities, direct and indirect influence. The direct influence,
denoted I signifies that A causes B; if B occurs then A might be the reason
for it occuring. The indirect influence, denoted P signifies that A causes B
only if A causes C and C causes B. A quantity that is not influenced by
any process is considered to be a constant. Each influence may be positive
(I+, P+) or negative (I−, P−) meaning the derivative of the target quantity
increases or decreases accordingly.

A qualitative simulation takes as input the initial state of the world (i.e., a
value assignment for the quantities) and qualitative descriptions of processes
that change the state. It produces a state transition graph. Each state is a
possible unique behavior that the model develops and it contains a unique set
of values and inequality statements (quantities) which describe the current
behavior of the system.

To construct the state graph, qualitative simulation uses the partial mod-
els to drive changes in the quantity magnitudes and derivatives, until they
no longer change. Each path of transitions, representing the application of
the models to the quantities, represents a single possibility of how the state
may develop from the initial state until it converges to a final state. The
collection of all of these paths, leading from the initial state to the terminal
state is the entire set of possible system behaviors.

Thus a state graph captures the set of all possible behaviors that the
model may manifest. It consists of a set of states and the transitions between
them (state-transitions). State transitions transform one state into another,
by specifying the changes in values and in inequality statements. Each state
may be the origin of multiple transitions which lead to multiple possible
developments of the state. A sequence of states connected by state transitions
where each state is the immediate successor of the one before, is called a
behavior path.

In each cycle and for each quantity, all influences (direct and indirect)
are combined. When positive and negative influences are combined am-
biguities may occur. The qualitative simulation considers all the possible
combinations thus, when qualitative description is incomplete, it provides a
non-deterministic prediction.

QR is a well-established technique in artificial intelligence and computer
science. There are free, user-friendly software packages that exist for speci-
fying qualitative models, and for reasoning with them. Indeed, for most of
the experiments we discuss in this work, we utilized a free software package
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that was available called GARP3 [14]. This software package allows visual
entry and running of models.

7.2 Proposed models for Qualitative Simula-

tion of Demonstrations

There is significant literature in social science on the factors that impact
violence during demonstrations. There are many macro-level qualitative de-
scriptions of the influencing factors on the violence level. Each theory focuses
on a small sub-set of factors. Integrating all of them into a single unified
model is a real challenge. Thus, in order to enable modeling and reasoning
where there is imprecise and partial information requires qualitative reason-
ing techniques. In this chapter we show that QR modeling techniques are
appropriate for the current state of knowledge in social sciences regarding
demonstrations.

The Israeli police initiated a comprehensive study to address this chal-
lenge, resulting in a report [18] that provides a collection of factors and their
influence on the violence level and also on each other. Their goal was to
classify and analyze different kinds of demonstrations in order to propose ap-
propriate methods to the police force for dealing with masses. They studied
102 crowd events (in particular demonstrations) during the years 2000–2003
and 87 interviews with policemen and police officers. They analyzed a vari-
ety of factors that may affect violent behavior, as well as relevant literature.
Their report is thus a comprehensive, yet informal and imprecise, collection
of factors which affect demonstrations.

The first contribution we make is in translating the textual results in
the report into an executable model, using QR. Indeed, we developed three
separate models, incrementally increasing in complexity and size, of the dif-
ferent components influencing violence in demonstrations. We describe these
models below.

7.2.1 The Base Model

The first (Base) model was based on the literature review presented in the
Israeli Police report [18] (see Figure 7.2). This was the first attempt at
building a baseline model purely founded on literature review. According
to the Base model the factors most influential on the violence level during
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demonstration are (1) the crowd’s a-priori hostility towards the police; (2)
willingness to pay a personal price (such as willingness to be arrested); (3) the
chance of punishment for violent actions (e.g., the belief that the police will
or will not respond strongly); (4) group cohesiveness; (5) previous history of
violence. All of these directly increase the level of violence. However, not all
have an opposite effect when reversed. For instance, the existence of previous
history of violence among the specific group of demonstrators increases the
potential violence level, but lack of such history does not decrease the violence
level (i.e., it has no effect).

Figure 7.1 presents a description of the model and Figure 7.2 presents the
graphical structure of the model. We defined one entity (termed population)
comprising six quantities, five of which were based on the presented theo-
retical description and one on the outcome violence level. For each quantity
we defined a quantity space (QS), direct influence (I) between them and the
violence level. I+ represents the derivative of the target quantity (violence
level) that increases and I− means it decreases. For example, high hostility
towards the police increases the violence level while low hostility towards the
police decreases the level. There are also quantities with unidirectional effects
such as previous history where existence of previous history of violence will
increase the violence level while lack of history will not decrease the violence
level; lack of such history will actually have no effect on the level.

7.2.2 The Police Model

The Police model, described by Karmeli and Ravid-Yamin [18] (Figure 7.4),
significantly expanded the Base model, based on interviews with police of-
ficers and their investigation into 102 demonstrations. In addition to the
factors from the Base model, the Police model comprises additional variables
which can be divided into several groups: Environment variables (such as
time, weather and space characteristics of the location of the event), Partic-
ipant variables (sociological and behavior characteristics of the participants
such as the number of participants, the existence of speakers or leaders, etc.),
Police variables (referring to behavior and organizational characteristics of
the police such as intervention time and intervention strength), Procedural
variables (refer to the dynamic characteristic of the event) and Outcome
variable (refer to the outcome of the event).

The variables added to the Base model which were also found to be influ-
ential on the demonstration outcome include: (1) number of participants, (2)
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Figure 7.1: Description of the Base Model

the existence of a group representative (such as a group leader or speaker),
(3) the existence of a demonstration license (permit; i.e., whether the demon-
stration was legal), (4) existence of a violent core among the participants, (5)
the participants’ united identity (such as racial minority, social groups etc.),
(6) event purpose (such as emotional event or rational event), (7) police time
intervention, (8) police intervention strength, (9) weather, (10) time of the
day (such as morning, night etc.), (11) demonstration location sensitivity (a
highly sensitive place, such as a mosque or synagogue, or a place with low
sensitivity such as a city square or piazza) and (12) time of year sensitivity
(e.g., Christmas). The research results showed significant relations between
these variables and their impact on the event outcome (the violence level).
For example, political or social demonstrations usually end with a low level of
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Figure 7.2: Base Model Structure

violence (typically without casualties). However, demonstrations of national-
istic nature intended to express emotions (letting off steam) are characterized
by much more violent outcomes. It has also been found that the time of the
day has an impact on the violence level, where violent demonstrations occur
more at nighttime than daytime.

Figure 7.3 presents a description of the Israeli-police model and Figure
7.4 depicts its graphical structure. We defined three entities (Population,
Nature and Police) and 18 quantities, where 6 are similar to the Base model
and 12 are additional ones. Moreover, based on the research conclusions
we defined influence (I) among the different variables. As in the previous
model, I+ represents the derivative of the target quantity (such as violence
level) increases and I− means it decreases. For example, an emotional event
increases the existence of a violent core among the participants.

7.2.3 The Bar-Ilan University Model

The third model, BIU (Bar Ilan University), shown in Figure 7.6, is our
novel extension of the Police model. Based on interviews with social and
cognitive scientists, as well as additional literature surveys [53,70], we added
four additional variables, and updated 19 influences (relations) among the
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Figure 7.3: Description of the Israeli-Police Model
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Figure 7.4: Police Model Structure.

variables. The factors we added include: (1) event order (indicating the
amount of preparation invested in the event, such as delineation, disposition
of the police forces etc.) (2) participants anonymity (indicating whether the
participants believe that they can be recognized and identified), (3) partici-
pants’ visual cohesiveness (such as similar outfits like football fans apparel)
and (4) lighting.

Figure 7.5 presents a description of the model and Figure 7.6 depicts
its graphical structure. We used the same entities (Population, Nature and
Police) as in the Israeli-Police model and added four additional quantities to
the existing ones. Furthermore we updated the quantity space of the police
intervention strength and the influences (I) among the variables as described
in detail in the model description in Figure 7.5. As in previous models I+
represents the derivative of the target quantity that increases and I− means
it decreases.

We provide several examples of the updated influences. For instance, we
updated the effect of police intervention strength. Thus, instead of direct im-
pact on the violence level as in the Police model, it impacts the participants’

131



7.3 Prediction and Analysis

belief that they may be punished, and their hostility toward the police. In
the BIU model, high intervention strength increases the participants’ hostil-
ity toward the police and increases the participants’ chance of punishment.
However, low intervention strength decreases only the participants’ chance
for punishment without affecting their hostility towards the police factor.
Another example of updates that we introduced into our model relate to
the existence of a group speaker and the request (and approval) of a per-
mit to demonstrate (demonstration license) which increase the maintenance
of order, and in turn decrease the violence level. In contrast, in the Police
model, the license and group speaker variables only had a direct influence on
the violence level. Moreover, in the BIU model the variable of the number
participants no longer directly influences the violence level as in the Police
model. Instead this factor affects the participants’ anonymity level (”the
more participants around me the less I am recognizable”). Another variable
added to the BIU model is the participants’ visual cohesiveness which has an
impact on group cohesiveness, and actually increases the sense of belonging
to the same group.

7.3 Prediction and Analysis

For different demonstration cases, one can set the initial state quantities to
their qualitative values, based on the demographics and environment values
known at the time. Then the qualitative simulation is used to expand all pos-
sible outcomes based on the initial values. The resulting violence outcomes
are used as the basis for prediction. Then, the simulation graph is used to
point out specific settings in which intervention is particularly important.

7.3.1 Estimating the Likelihood of Different Out-
comes.

The qualitative simulator uses the initial setting of the world state (partial
state information is acceptable) as input and produces a simulation state-
transition graph. Each sequence of states, following transitions from the
initial state and ending with a different outcome state is a possible system
trajectory—a possible sequence of qualitative state changes that may occur
given the initial state and the qualitative dynamics specified. The end state
in each path is where the system dynamics do not allow any further evolution
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Figure 7.5: Description of the BIU Model
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Figure 7.6: BIU Model Structure
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(i.e., the system is stable). Taking the value of the outcome variables (in our
case, violence level) in these final states enables categorical predictions.

The violence level variable can be any of three categorical values: zero,
low and high. Zero value represents demonstrations that end without any
causalities and also without any property damage. Low value represents
demonstrations that end with property damage but without any causalities,
and high represents demonstrations that end with causalities.

However, since in a sufficiently complex model, all three possible outcomes
will have at least one stable state in which they appear, it is not sufficient
to know whether a demonstration might be violent. Instead, our goal was
to estimate the likelihood of different outcomes. To accomplish this goal, we
used the received state-graph as an input and based on this developed graph
we calculated the likelihood of different outcomes by counting the number
of behavior paths that lead to a specific violence level, and dividing it by
the total number of paths. The result is a distribution over possible violence
outcomes.

For instance, suppose that there are 345 total paths leading from the
initial simulation state to stable states (leaves in the simulation graph).
Furthermore, suppose that 123 of these paths end up in leaves with a
high level violence, high, 121 of the paths end up in leaves with a low
level violence, low, and the remaining 101 paths end up with a no vio-
lence level zero. Then the distribution of the predicted violence levels is
⟨high, low, zero⟩ = ⟨123/345, 121/345, 101/345⟩ = ⟨0.36, 0.35, 0.29⟩.

7.3.2 Determining Important Factors in Specific Set-
tings.

The a-priori predictions of the model, given initial values, do not provide
decision-makers with information about factors that, in a particular case,
will influence the level of violence. Thus we do not know which of the many
different factors that may increase the level of violence are important in the
specific case being simulated.

For instance, the perception of anonymity among the demonstrators may
reduce their fear of being punished for breaking the law, which in turn may
increase the chances of violence erupting during a demonstration. Perception
of anonymity can be addressed by the police by various means: segregating
the demonstrators into smaller disconnected groups, shining bright lights (if
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the demonstration is held when dark), etc. However, a-priori, there are few
indicators of the potential anonymity perceived by the crowd. Moreover, we
do not know whether tackling such perception can be effective: It could be
that there are so many factors increasing the violence, that anonymity (being
an indirect influencing factor) is just not worth treating. Or likewise, it could
be that violence is highly unlikely, and thus bringing in bright lights is just
an overkill that may incite the crowd. Thus anonymity should be addressed
only in specific settings, where it becomes a determining factor in promoting
violence.

To aid in this decision-making process, we describe an algorithm for de-
termining the k most important factors in influencing the outcome of the
simulation, and also for determining the conditions under which they should
be addressed.

First, we traverse the simulation graph bottom up (from leaves to the
root, which is the initial state). In each node, we count the number of
paths resulting from it, which end up in the high level of violence, in the
low level of violence, or in the zero level of violence. This process is in
fact a generalization of the prediction process described above for making
predictions. The number of paths of each type which is associated with the
initial state is exactly the outcome distribution which we describe above. In
this case, we simply generate the same count for all nodes in the graph.

Then, we identify the k nodes with the highest level of outcome entropy
that have more than a single child1. The outcome entropy measures the
uniformity of the distribution of different potential violence outcomes. A
perfectly-uniform distribution ⟨0.33, 0.33, 0.33⟩ will have the maximal en-
tropy; a perfectly non-uniform distribution where all paths lead to the same
outcome will have minimal entropy (0).

The reason for seeking simulation nodes with a high entropy is that these
are the nodes where a difference may be made, i.e., they are potentially
actionable. Nodes with a low entropy are those in which the outcome is es-
sentially already determined. Changing their outcome will necessarily involve
making multiple changes to the state, i.e., involve more complex intervention.
In contrast, nodes with a high entropy are nodes with an outcome which has
not been determined, and thus provides a good opportunity for relatively

1A parent with a single child will have the same number of paths going through it as
its child, and thus the same entropy. But we seek the state where the divergence into
multiple outcomes occurs, hence we prefer the child.
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7.3 Prediction and Analysis

simple intervention.
Given the k highest-entropy nodes, we can identify the factors that in-

fluence the outcomes. We do this by examining the simulation information
saved at the node, and compare it with that of its children. We then de-
termine which qualitative relations are at work at the node, and how they
interact to lead towards the different outcomes. This significantly narrows
down the list of factors that are relevant to the different outcomes, and also
unravels the conditions under which these factors are important.

For instance, we may see that a node splits into different children due to
the interaction between two opposing forces: Low anonymity which decreases
violence (it increases the chances of punishment, as perceived by the crowd),
and the lack of police response to events (i.e., the police respond too late, or
with not enough force) which increases violence. Both these factors interact
to cause multiple possible outcomes. Taking action (e.g., by increasing police
force) can countermand the interaction, and cause the outcomes leading from
this node to converge towards low or zero violence. Moreover, the state
represented by the simulation node indicates the conditions under which
increasing the police force will be affective (as this action may not always be
the correct response to violence!).
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Chapter 8

Evaluation of the Qualitative
Reasoning Approach
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8.1 Prediction accuracy

To evaluate the approach described in chapter 7 we implemented the three
models in GARP3 [14], a QR engine including a user-friendly visual inter-
face, which enables building and simulating qualitative models. GARP3 has
been successfully used in many domains [15, 69]. We also developed 24 test-
cases, i.e., real-life demonstrations reported in a variety of sources. Twenty
two of these cases were taken from Hebrew Wikipedia under the category
demonstrations [85]. The cases were taken both from the main category,
and from the subcategories: ”demonstrations in Israel” and ”massacres of
demonstrators”. We excluded general descriptions which did not describe
a specific event (e.g., descriptions of recurring demonstrations) and we also
omitted two cases due to lack of information (resulting in a total of twenty
cases). Three additional cases are well known events which have been exten-
sively analyzed and described [18, 51, 74, 81] by experts. The last event was
a peaceful demonstration that we video-taped.

To initialize the test cases, we utilized the information appearing in their
descriptions in the literature and in Wikipedia. We initialized only the quan-
tities for which we had explicit information. Quantities for which we had no
information or ambiguous information were removed from the initial set.
Qualitative simulation can work with partial information of this type.

8.1 Prediction accuracy

Each model was examined on the twenty four test cases described above. We
use the simulation state graph for our calculation of the numeric probability
as presented earlier. Figure 8.1 presents the example of the transitions state-
graph built by GARP in one of the experiments. Figure 8.1(a) presents
the Base model state-graph, Figure 8.1(b) presents the Police model state-
graph in the same experiment and Figure 8.1(c) presents the BIU model
state-graph in the same experiment. The circles represent states and the
arrows represent state transitions. The end path circles are the final states
with one of the possible outcomes: zero, low or high level of violence. The
figure demonstrate the results of the BIU model on a much more complex
and richer state-graph than the Base and Police models, which elucidates the
complexity of reasoning afforded by a rich qualitative model.

In evaluating the predictions of the different models, we observed the
maximum likelihood predictions of each model, for the 24 different cases. If
the maximum-likelihood prediction corresponded to the outcome of the event
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8.1 Prediction accuracy

(a) (b)

(c)

Figure 8.1: Transitions state-graph

in the real world, we denoted this as an error of 0. Otherwise, we examined
how far off the prediction was from the actual outcome, and we defined the
following types of errors:

• Yes, denoting success. Equivalent to an error of 0.

• One level error, corresponding to one ordinal mistake level such as
classification by the model as a low level of violence instead of a high
level

• Two level error, corresponding to two ordinal mistake levels such as
classification by the model as a high level of violence instead of zero.
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8.2 Comparison to the Machine Learning Techniques

Figure 8.2 summarizes the experiment results across the 24 cases. The
different models are presented on the horizontal axis. The vertical axis mea-
sures the number of cases. The results of the three models are presented
as stacked bars. Their total height is always equal (24 cases), but they are
internally divided into 0-level errors, 1-level errors, and 2-level errors. All
three models achieved 19 of 24 possible successes. While the Base and Po-
lice models had five cases of 2-level errors, the BIU model had one case of
2-level errors (predicted high levels of violence where there was none) and
four cases of 1-level errors (predicted low levels of violence where there was
none). The predictions of the Bar Ilan model are thus noticeably closer to
the actual outcomes.

Figure 8.2: Results of the models’ predictions

8.2 Comparison to the Machine Learning

Techniques

There are other techniques in the field of artificial intelligence which can
be used to make qualitative (ordinal, in this case) predictions. We decided
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8.3 Sensitivity Analysis

to compare the QR predictions with those of a popular machine learning
algorithm, i.e., decision tree learning [55].

To do this, we used WEKA [10], an open source, user-friendly software
that contains a collection of machine learning algorithms and we used the
J48 decision tree algorithm, which is considered state-of-the-art.We used the
algorithm with the default parameters (confidence threshold of 0.25, and a
minimum of two instances per leaf). Testing was carried out via 10-fold cross-
validation, which is a standard in this field. We built three files that were
used as an input for WEKA. Each file contained a collection of attributes
with their values and was built based on the quantities initialization set of
each QR model (Base model, Police model and BIU model). The target class
value of the violence attribute in each file was set based on the real-life event
outcome. The output of the J48 algorithm is a learned decision tree and
classification statistics.

Figure 8.3 presents the decision trees that were learned based on the each
QR model’s initial quantity set. Figure 8.3(a) presents the decision tree that
was learned based on the quantity set of the Base model (Base decision tree),
Figure 8.3(b) presents the tree that was learned based on the quantity set of
the Police model (Police decision tree) and the same tree was learned based
on the quantity set of the BIU model (BIU tree).

The results show that the Police tree and the BIU tree achieved 100%
success in classification, while the Base tree attained only 70.8% of success.
Although the decision tree technique provided an accurate prediction, which
was a slightly better prediction than the BIU model with the QR approach,
in the next section we claim that the QR approach is much more sensitive
to changes and can account for what if scenarios. Thus, the QR approach
is better for reasoning on the potential violence level and can improve the
police decision making process.

8.3 Sensitivity Analysis

In the following experiments we demonstrate the use of QR and decision trees
for a variety of hypothetical changes. According to experts [51,74,81] in sev-
eral of the events we modeled (Exp. 15–17), the police intervention strength
was found to be one of the important factors in the eruption of violence.
Thus, in this section, we examined the presented QR model’s prediction and
the decision tree technique with what if scenarios.
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8.3 Sensitivity Analysis

(a)

(b)

Figure 8.3: Decision trees
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8.3 Sensitivity Analysis

First we examined whether the presented models with the QR approach
and the decision tree technique are sufficiently sensitive to changes in terms
of what if scenarios. We then examined the degree of influence the police
intervention strength has on the event outcome, i.e., could this be the main
factor that could prevent violence or the essence of the event itself is violent
and the police intervention strength has little effect? Then we examined
hypothetical situations of changing the probability of violence in several test
case scenarios by changing different controlled factors and not only the police
intervention strength.

8.3.1 Sensitivity Analysis: Experiment 1

In this experiment we examined whether the models based on the QR ap-
proach and the machine learning technique, could take into account changes
in the police intervention strength. We used the same twenty four test cases
described in Section 8 and examined the police intervention strength at-
tribute with all its possible values. As in Section 8, we estimated the likeli-
hood of different event outcomes. The model was considered to be sensitive
to the changes if it provided a different outcome for different values in the
attribute examined. The change could be one of the following: different dis-
tribution but no change in classification, or a different distribution, as well
as a change in classification.

We compared the BIU and Police models built with QR techniques to a
decision tree that was built with the BIU initialization set. The Base model
built with QR techniques is irrelevant for this experiment since the Base
model does not take into account the factor of police intervention strength
and thus there would be no changes in the model’s predictions.

The results show that the Police model changed its distribution in five
of the test cases (of twenty four) and in two of them it also changed its
classification. The BIU model changed its distribution in all of the examined
test cases and in seven of them it also changed its classification. The decision
tree is not able to provide distribution for all possible outcomes; it can only
provide the final classification, thus unless there was a change in classification
the prediction remains the same1. Out of twenty four examined test cases,
the decision tree changed its classification in six.

1Note that there are other machine learning algorithms that result in a complete dis-
tribution that exist, and thus may be useful in this task. Exploring their use remains high
on our list of future work.
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8.3 Sensitivity Analysis

These results demonstrate that the QR model (the BIU model) is much
more sensitive to changes in the input conditions than the competing QR
model (the Police model) as well as the decision-tree. But of course, these
are all hypothetical changes and we do not know whether the modified pre-
dictions will correspond to the hypothetical results. In other words, the
question remains whether the predictions were correctly changed.

8.3.2 Sensitivity Analysis: Experiment 2

To address the question raised in the previous section, we used three test
cases which were explored independently by experts. The experts had al-
ready discussed the hypothetical results of the changes in the police force
used in these test cases, and their conclusions could be used to validate the
predictions of the models:

• The first case, Exp. #15, was the 1985 Heysel Stadium Disaster, during
the European Cup Final. According to Lewis [51] who analyzed this
event, one of the reasons for this violent outcome was the police’s lack
of intervention to prevent the emergent violence.

• The second case, Exp. #16, was the Los Angeles Riots which occurred
in 1991. Useem [81] who analyzed this event, argued that the police
were not properly organized and did not react in time with appropriate
force to prevent the eruption which allowed a violent core to grow.

• The third case, Exp. #17, was the London Riot Disaster which oc-
curred in 1990. As opposed to the previous two events, in this case
the police used extensive force against the protesters without distin-
guishing between anarchists and peaceful marchers [74]. The marchers
fought back, and this changed the initially-peaceful protest into a very
violent event with many casualties.

Table 8.1 presents the experiment results. The first column corresponds
to the examined test case. The second column corresponds to recommended
police intervention strength. Then we present the models’ predictions for
each possible outcome: no violence, low violence and high violence. Below
each prediction, we present the change, if any, in the recommended predic-
tion. Dist. Change denotes a change in the distribution, but not in the
overall prediction; Classif. Change signifies a change in the classification.
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8.3 Sensitivity Analysis

For example, if in the Heysel stadium disaster (Exp. #15), the police
would have increased their intervention strength, the results show that there
would be a change in the Police and BIU distributions. With this change
the BIU model predicted 83% probability of high violence instead of 96%
(before the recommended change). Though there was a change, the max-
imum posterior prediction remained as high violence. The reason for this
outcome was that there were other factors in this test case that led to high
violence. Another example was the London disaster. If we decrease the po-
lice intervention strength, the BIU model predicts only a 19% probability
of high violence and 45% of low violence instead a 57% probability of high
violence. In this test case the BIU model changed its classification. Instead
of predicting a high violence, with this change it predicted a low violence.
Thus, it is apparent that the police force had immense influence on the event
outcome in this test case, which corresponds to the experts’ expectations.

The results demonstrate that the decision tree technique is not sensitive
to the examined changes that were claimed by the experts. The Police model
performed slightly better than the decision tree (which changed the distri-
bution in Exp. #15, but failed in the two other test cases). However, the
BIU model provided good results which match the experts expectations, and
indicate that it can account for what if scenarios. We remind the reader that
these results are limited to the use of the decision tree. Other machine learn-
ing algorithms could potentially perform better; we leave such evaluation for
future work.

8.3.3 Sensitivity Analysis: Experiment 3

In this experiment we examined whether we can further decrease the violence
level in test cases 15 (Heysel Stadium disaster) and 16 (LA riots). We used
the same initial settings with several updates as explained below. Some
factors such as weather or history of violence cannot be changed, while others
can be controlled. For example, police intervention strength, anonymity
and order are examples of features that can be manipulated in the sense
that actions can be done to change their values. Police may increase the
intervention strength by using more manpower or by using different types of
weapons. The existence of projectors and cameras in the demonstration area
will decrease the participants’ perception of anonymity.

Table 8.2 presents the experiment results. In this experiment we examined
the BIU model and the decision tree. The first column corresponds to the
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8.4 Determining Influential Factors

examined test case and the second column corresponds to the changed initial
values of the quantities. Then we present the models predictions before the
change and after.

Here again the results demonstrate that the decision tree technique is not
sensitive to the changes. This is not surprising, since the only components of
the learned tree which can change its classification is the existence of violence
core and the police intervention strength. In contrast, the BIU model was
found to be sensitive to the changes.

We emphasize that these results do not lead to the conclusion that ma-
chine learning algorithms in general cannot be used in ways that will allow
some hypothetical reasoning and sensitivity analysis. For example, a novel
form of visualization [58] has recently been used to allow certain sensitivity
analysis with another machine-learning method (Naive Bayes).

8.4 Determining Influential Factors

The previous section demonstrates that while QR models are sensitive to
hypothetical changes to the simulated quantities, not all changes can cause
a qualitative change in the predictions of the system. In other words, not all
factors have equal weight on the outcome of a particular case. Attempting
to test all factors, in the hope of identifying those that are important is a
long computer-intensive process that is not scalable.

We now turn to evaluating the use of the algorithm described in Sec-
tion 7.3 to determine the important factors influencing the outcome of the
demonstrations. We ran the algorithm on the resulting simulation graphs for
the three cases (Exp 15–17) for which we had expert analysis in addition to
the predictions of the different models. We requested the 5 highest-entropy
nodes. The algorithm analyzed the information associated with them to de-
termine which factors interacted to cause the different outcomes to form (or
more accurately, to create children leading to the different outcomes).

In Table 8.3 we report the top factors increasing violence in cases Exp. 15–
17. The second and third columns in the table show the factors determined
by the algorithm, and the factors determined by experts in the field, who
have analyzed these cases.

In case Exp. 15 there was complete agreement between the algorithm
and the expert. In case Exp. 16 there was only partial agreement: Both
the algorithm and the expert agree that the police responded with insuffi-
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8.4 Determining Influential Factors

Exp. # Factors (Algorithm) Factors (Experts)

15 Police Strength Too Low Police Strength Too Low [51]

16 Police Strength Too Low, Police Strength Too Low,
Number of participants > 100 Too Late [81]

17 Hard Core of Demonstrators, Police Strength Too Much [74]
Low Perceived Chance of Punishment

Table 8.3: Important Factors in Test Cases Exp. 15–17.

cient strength, but the expert also pointed out that its intervention occurred
too late. The algorithm, in contrast, reported the number of participants
as a significant factor in the violence. This is a factor that cannot typically
be changed dynamically, and of course the algorithm cannot differentiate
static from dynamically-controllable factors (we leave such extension for fu-
ture work). Note, however, that the algorithm does recognize that the erup-
tion of violence occurs when, in addition to police responding too weakly,
they also respond too late. Nonetheless, the algorithm does not report this
fact as a key factor in the eruption of violence. In this result the algorithm
differs from the expert opinion.

Finally, disagreement between the expert and the algorithm is apparent
for case Exp. 17. The expert believes that the main factor accounting for
the violence is that the police acted too harshly, while the algorithm points
out the existence of a core of demonstrators and a low perceived chance of
punishment, as the key factors. Note, of course, that the algorithm and
experts do not provide contradictory results. Perhaps both are correct. Our
algorithm’s goal was to discover opportunities for intervention, and perhaps
the expert’s analysis accounted for a large portion of the state space, where
no intervention is possible (since there, the police acted too harshly, but this
cannot be reversed).

Indeed, almost as a side-effect of this analysis, not only do we discover
which factors are important, but also under what circumstances to act on
them. These circumstances are easily determined by examining the state
of the qualitative behavior, as denoted by the node in question. Take for
example Exp. 15, where the highest-entropy state (where the algorithm rec-
ommends increasing police response) has the following attributes: Moderate
weather, high cohesion of the demonstrators, emotional event, a hard core
of demonstrators is present, between 100 and 1000 participants, weak police
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8.4 Determining Influential Factors

strength applied, too quickly, lack of a spokesman or representative for the
demonstrators, evening hours and dark, property damage already caused by
the demonstrators (i.e., low violence already erupted). Under these specific
settings, the corrective action to take would be to immediately increase the
strength of the police response, in hopes of preventing the violence from
escalating.
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Chapter 9

Future Directions and Final
Remarks
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9.1 Summary of the Key Contributions

We summarize the key contributions of this thesis in Section 9.1 and in
Section 9.2 we discuss future directions for this research.

9.1 Summary of the Key Contributions

In the first part of this dissertation we used an agent-based approach for
modeling crowd behaviors. Our contribution from this part of the work is as
follows:

• We presented validation of the SCT model (and competing models)
against human crowd behavior. We evaluated the SCT on pedestrian
phenomena and showed that the SCT model generated pedestrian be-
havior more in tune to human pedestrian behavior. The results support
the general applicability of the SCT model.

• We evaluated the SCT model in the evacuation domain. The use of
SCT in evacuation leads to increased grouping of the agent (herding),
as we show in the experiments and this herding has been reported to
occur in real-world emergencies [2, 36].

• We have shown that it is possible to have a task-neutral, architecture-
level, social comparison process capable of working well across multiple
tasks. We explored alternative action-selection mechanisms that enable
continuous comparison (required for such processes), and provided ev-
idence that one of the mechanisms, based on threshold selection, was
superior.

• We revised the underlying comparison process itself to account for the
comparison group size, a key issue neglected in previous work. We have
shown that in some cases the revised model offers superior performance
to that of the previous model. Nonetheless it is important to note that
our results are less conclusive than we would have preferred.

• We explored the impact of micro-level, individual agent, cultural pa-
rameters on macro-level crowd behavior. Building on existing litera-
ture which investigated culture in human crowds, we identified impor-
tant cultural parameters in two physically crowded domains (pedes-
trian movement and evacuation). We implemented these parameters
in established agent-based simulations for these domains, and used the
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9.1 Summary of the Key Contributions

simulations to measure their impact on crowd dynamics. We thus go
beyond existing work, which has focused on describing cultural param-
eters of individuals, without investigating their crowd-level effects.

• Exploring cultural differences in the pedestrian motion domain, we con-
ducted three sets of experiments. The first explored the effect of each
parameter by itself, in mixed crowd settings (mixed, in the sense that
the parameter in question were varied among the agents). The second
explored mixing agents, each with a pre-set bundle of the parameters
(i.e., values of each of the parameters matched recorded videos from dif-
ferent countries and cultures. Finally, the results of the simulation were
quantitatively validated against data extracted from videos of crowds
in five different countries.

• Exploring cultural differences in the evacuation domain, we presented
a subset of results which demonstrate how cultural parameters (such
as the seriousness with which evacuees treat indications of the need
to evacuate) affect evacuation time and panic levels. For these experi-
ments, we additionally examined the effect that authority figures have
on the evacuation measures. We found that in some cultures (in par-
ticular where agents treat evacuations seriously), authority figures do
not speed up evacuations. In others (in particular where agents do not
take evacuations seriously), the authority figures have a calming effect
(lower the panic level), while they still increase the rate of evacuation.

In the second part of this dissertation we used a qualitative reasoning
approach to modeling crowd behavior. Our contribution from this part of
the work is as follows:

• We proposed the use of qualitative reasoning (QR) method in social
sciences. Its use in modeling demonstrations, as presented in this dis-
sertation, is only one of the possible domains of application. The nature
of qualitative modeling seems to fit well with the nature of social science
knowledge. This proposed technique can therefore be used to validate
and test theories against qualitative data.

• We presented and compared three QR models for predicting the level
of violence in demonstrations: the Base model, the Police model and
the BIU model.We evaluated these models on twenty four real life test
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case scenarios. The results show that the BIU model makes better
predictions than the compared models and it also was found to be
sensitive to changes.

• We compared the performance of our QR models with the machine
learning method, i.e., a decision tree. While, the machine learning
method made accurate predictions, it failed in the sensitivity analysis.
Thus, the BIU model built with the QR approach can account for what
if scenarios as opposed to the decision tree. Furthermore it is preferable
for reasoning about the potential violence level in order to improve the
police decision making process.

• We developed an algorithm which analyzes the qualitative simulation
graph of each test-case to determine the factors that are most important
in influencing the outcomes of the specific case under consideration.

9.2 Future Directions

Indeed, there are many questions still open. We believe that there are several
important directions for future work in reference to the agent-based approach:

• Preliminary experiments with human subjects’ evaluation of synthetic
situations have consistently yielded replies that indicate expectations
not only of reduced attraction in some cases, but of actual avoidance. In
other words, in some settings, human subjects sometimes expect agents
to move away from a group, rather than simply not move towards it.
This avoidance is also discussed in more modern elaborations of social
comparison theory, but is not yet accounted for in our models. We plan
to extend the SCT model to include the repelling forces. Thus, each
agent should not only be attracted to the similar but also should avoid
the dissimilar.

• A possible direction of research which we hope to pursue would be to
take advantage of the highly accurate predictions made by the models
we have developed. Building on their fidelity, it may now be possible
to begin investigating their use for tasks other than simulations. For
instance the use of these models to identify suspicious behaviors (e.g.,
a person posing as a pedestrian, but really not belonging to the crowd)
should be considered.
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• We plan to continue our work on collecting and analyzing movies of
crowds in different cultures. We believe that it would be possible to
form an international collaboration with colleagues in different coun-
tries in order to collect data and make it available to crowd researchers
world-wide. We believe that the availability of annotated, analyzed
data is a true stumbling block in this field.

There are also several points which have been left for future work in
reference to the qualitative reasoning approach:

• We plan to expand our model to account for bidirectional influences
(feedback loops). For example, in the BIU model the hostility toward
the police increases the violence level. However, increasing the violence
level has no impact on hostility. We believe that such expansion is
necessary to provide a more accurate prediction.

• We plan to tackle the next logical step in the use of QR for social simu-
lation, which is to advance beyond determining the important factors,
to determining plans of action that utilize them.
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