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Abstract

It is important for agents to model other agents’ unobserved
plans and goals, based on their observable actions, a process
known as plan recognition. Plan recognition often takes the
form of matching observations of an agent’s actions to a plan-
library, a model of possible plans selected by the agent. In
this paper, we present efficient algorithms that handle a num-
ber of key capabilities implied by plan recognition applica-
tions, in the context of hybrid symbolic-probabilistic recog-
nizer. The central idea behind the hybrid approach is to com-
bine the symbolic approach with probabilistic inference: the
symbolic recognizer efficiently filters inconsistent hypothe-
ses, passing only the consistent hypotheses to a probabilis-
tic inference engine. There are few investigations that utilize
an hybrid symbolic-probabilistic approach. The advantage
of this kind of inference is potentially enormous. First, it
can be highly efficient. Second, it can efficiently deal with
richer class of plan recognition challenges, such as recogni-
tion based on duration of behaviors, recognition despite in-
termittently lost observations, and recognition of interleaved
plans.

Introduction

Plan recognition (Kautz & Allen 1986; Charniak & Gold-
man 1993; Carrbery 2001) focuses on mechanisms for
recognizing the unobservable state of an agent, given ob-
servations of its interaction with its environment. Most ap-
proaches to plan recognition utilize a plan library, which
encodes the behavioral repertoire of a typical observed
agent. Observations are matched against this plan library
in sequence, and resulting recognition hypotheses are often
ranked according to their likelihood or via some other rank-
ing method. In general, plan recognition libraries have a
complex structure, and may explain a large number of pos-
sible resulting observation sequences.

The ability to perform plan recognition can be useful in
a wide range of applications. Such applications include in-
trusion detection applications (Geib & Harp 2004), virtual
training environments (Tambe & Rosenbloom 1995), visual
monitoring (Bui 2003) and suspicious or anomalous behav-
ior (Wu et al. 2003; Niu et al. 2004; Duong et al. 2005b). A
number of key capabilities implied by these applications, are
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either handled in very expensive probabilistic approaches or
are not addressed at all by these approaches (see Section

for details): (i) handling lossy observations (where an ob-
servation or a component of an observation is intermittently
lost); (ii) dealing with plan execution duration constraints;
and (iii) interleaved plans (where an agent interrupts a plan
for another, only to return to the first later).

In this paper we present our initial steps towards an ef-
ficient hybrid symbolic-probabilistic recognizer that han-
dles these challenges. We build our hybrid recognizer on
highly efficient symbolic algorithms presented in earlier
published work (Avrahami-Zilberbrand & Kaminka 2005;
Avrahami-Zilberbrand, Kaminka, & Zarosim 2005). To the
best of our knowledge, these are the fastest symbolic plan-
recognition algorithms today. The benefit of a symbolic
recognizer is that it can act as a highly efficient filter, which
only lets through valid hypotheses. A probabilistic reasoner
will then rank the remaining hypotheses based on their like-
lihood.

Existing approaches often do not consider combining
symbolic inference to reduce complexity and to allow richer
class of plan recognition inference, as we propose to do.
Pure probabilistic recognizers are much more computation-
ally complex than their symbolic counterparts. In the hy-
brid recognizer, the probabilistic recognition components
will only be ranking a small number of hypotheses, and thus
we expect the hybrid recognizer to combine the best of both
worlds.

Background and Related Work

There has been considerable research exploring plan recog-
nition. Here we only address those efforts that relate directly
to the challenges addressed in this paper. There are few
investigations that utilize an hybrid symbolic-probabilistic
approach. (Geib & Harp 2004) developed PHATT, a hy-
brid recognizer, where a symbolic algorithm filters incon-
sistent hypotheses before they are considered probabilisti-
cally. PHATT assumes instantaneous, atomic actions, and
takes a generate-and-test approach: With each observation,
the symbolic algorithm generates a pending set of possi-
ble expected observations, which are matched against the
next observation to maintain correct state history hypothe-
ses. The size of the pending set may grow exponentially
(Geib 2004). In contrast, our work incrementally main-



tains hypotheses implicitly, without predicting impending
observations. Moreover, our system is taking durations into
account, and addresses efficient matching of (lossy) multi-
feature observations.

YOYO#* (Kaminka, Pynadath, & Tambe 2002) is a hybrid-
probabilistic plan recognition algorithm for multi-agent
overhearing. The plan-library used by YOYO¥* includes in-
formation about the average duration of plan steps, which
is used to calculate the likelihood of an agent terminating
one step and selecting another without being observed to do
so0. In this, YOYO* addressed missing observations (though
their likelihood of becoming lost is to be provided a-priori).
However, in contrast to our work, YOYO* did not address
matching multi-feature observations (where some features
may be intermittently lost), not did it allow for interleaved
plans.

Our work differs significantly from probabilistic ap-
proaches, though it complements them in principle (as
demonstrated by Geib et al.). The first probabilistic plan
recognition system was described in (Charniak & Goldman
1993) using Bayesian Networks (BN). Later work (Albrecht,
Zukerman, & Nicholson 1997; Xiang & Gong 2003) has uti-
lized Dynamic Bayesian Networks (DBN) for the same pur-
pose. It is known that the exact inference of BN is intractable
with respect to the network size ((Cooper 1990)), as it is in
DBN (Kjerulff 1992; Boyen & Koller 1998).

There have been much work that utilize Hidden Markov
Models and its extensions ((Rabiner 1989; Ghahramani
& Jordan 1997; Han & Veloso 1999; Bui, Venkatesh, &
West 2002; Brand, Oliver, & Pentland 1997; Murphy 2002;
Fine, Singer, & Tishby 1998)). An HMM is the most simple
case of DBN, where in each time slice there is only a single
state variable and an observation node. HMMs explicitly
represent uncertainty in observations. The complexity of the
HMM is O(T'N?) where N is the number of the states and
T is the observation length. However, this model does not
handle reactive recognition, nor different execution duration
of plans, lossy observations, etc.

There has been recent work on using hidden semi-
Markov models (HSMMs) in recognizing plans (Duong et
al. 2005a). Hidden semi-Markov models allow for provid-
ing some probabilistic constraints over the duration of plans.
Howeyver, the model does not allow for interleaved activi-
ties, nor does it address matching with multi-feature obser-
vations.

None of these probabilistic approaches consider combin-
ing symbolic inference to reduce complexity and to allow
richer class of plan recognition inference, as we propose to
do. Note that the hybrid recognizer we propose will com-
plement these approaches, by allowing them to focus the
computational efforts on (the small number of) hypotheses
whose probability is greater than zero.

Fast and Complete Symbolic Plan Recognition

We focus on a specific model of symbolic plan recog-
nition, briefly described below. The reader is referred
to (Avrahami-Zilberbrand & Kaminka 2005; Avrahami-
Zilberbrand, Kaminka, & Zarosim 2005) for details.
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Figure 1: Example plan library. Circled numbers denote
timestamps.

The plan library is a single-root directed acyclic con-
nected graph, where vertices denote plan steps, and edges
can be of two types: vertical edges decompose plan steps
into sub-steps, and sequential edges specify the expected
temporal order of execution. Each plan has an associated set
of conditions on observable features of the agent and its ac-
tions. When these conditions hold, the observations are said
to match the plan. At any given time, the observed agent is
assumed to be executing a plan decomposition path, root-to-
leaf through decomposition edges.

Figure 1 shows an example portion of a plan library, in-
spired by the plan hierarchies of RoboCup soccer teams (e.g.
(Kaminka & Tambe 2000)). An observed agent is assumed
to change its internal state in two ways. First, it may follow
a sequential edge to the next plan step. Second, it may reac-
tively interrupt plan execution at any time, and select a new
(first) plan (we later address the case of interleaving, where
the agent may resume an interrupted plan sequence).

The recognizer operates as follow: First, it matches ob-
servations to specific plan steps in the library. Then, after
matching plan steps are found, they are tagged by the time-
stamp of the observation. These tags are then propagated
up the plan library, so that complete plan-paths (root to leaf)
are tagged to indicate they constitute hypotheses as to the
internal state of the observed agent when the observations
were made. The propagation process tags paths along de-
composition edges. However, the propagation process is not
a simple matter of following from child to parent. A plan
may match the current observation, yet be temporally incon-
sistent, when a history of observations is considered.

A plan is temporally consistent in time stamp ¢ if one of
three cases holds: (a) the node in question was tagged at time
t — 1 (i.e., it is continuing in a self-cycle); or (b) the node
follows a sequential edge from a plan that was successfully
tagged at time ¢t — 1; or (c) the node is a first child (there
is no sequential edge leading into it). A first child may be
selected at any time (e.g., if another plan was interrupted). If
neither of these cases is applicable, then the node is not part
of a temporally-consistent hypothesis, and its tag should be
deleted, along with all tags that it has generated in climbing



up the graph. The tags made on the plan-library are used to
save information from one run to the next.

Figure 1 shows the process in action (the circled num-
bers in the figure denote the time-stamps). Assume that
the matching algorithm matches at time ¢ = 1 the multi-
ple instances of the position plan. At time ¢ = 1, Prop-
agate begins with the four position instances. It immedi-
ately fails to tag the instance that follows cof fee and shop,
since these were not tagged at ¢ = 0. The position instance
under board is initially tagged, but in propagating the tag
up, the parent board fails, because it follows security, and
security is not tagged ¢t = 0. Therefore, all tags ¢t = 1 will
be removed from board and its child position. The two re-
maining instances successfully tag up and down, and result
in possible hypotheses root — entrance — position and
root — security — position.

The basic model described above may be used to recog-
nize plan(s) whose execution follows in some order, yet can
be interrupted. It also allows for plans to have self-cycles,
and thus be non-instantaneous. However, it cannot recog-
nize more complex temporal behavior, such as maintaining
the selection of a specific plan-step within some bounded
interval, or interrupting a sequence of plan steps under one
node, to execute another, only to return to it to the first se-
quence later (plan interleaving). We briefly described these
extensions below. The reader is referred to (Avrahami-
Zilberbrand, Kaminka, & Zarosim 2005) for details.

Managing Durations Instances of the same plan step can
vary in the duration of their execution. For example, depend-
ing on the line to the security check, a passenger may take a
long time or short time to execute the position plan in Fig-
ure 1. As a result, we may have multiple observation time-
stamps (¢,t+1,...t+ k) that are all consistent with a single
plan, and only reflect the duration that its execution requires
between one and k + 1 time-stamps. However, often some
bounds are known on execution duration. For instance, in
an airport terminal, there exist a difference in the plans of a
passenger who stands at the check-in area for a few minutes,
and a passenger who is held there for half an hour. We thus
want to take into account constraints on the duration of plan-
steps. To handle different execution duration the constraints
in the propagation algorithm are modified as described in
(Avrahami-Zilberbrand, Kaminka, & Zarosim 2005).

Interleaved plans Many plan recognition algorithms can-
not cope with modeling an agent that is pursuing multiple
plans (i.e., for multiple goals), by interleaving plan steps.
Here, the agent may begin with one plan, and interrupt its
execution to execute another, only to return to the remain-
ing plan steps in the first plan. This challenge is handled by
the symbolic algorithm by adding a memoryFlag in each
of the first children. this flag will hold the latest time-stamp
tag, in the sequential link chain from this child. This flag is
used to disqualify plans that are in the middle of the chain
and are not the ones that we paused at.

Lossy Features We take each observation to consist of a
tuple of observed features, including states of the world that
pertain to the agent (e.g.,a person’s role — passenger or cop),
actions taken (e.g., shop), and execution conditions main-
tained (e.g., velocity = 200). In most applications an im-

plicit assumption was made that all relevant features were in
fact observable. However, in realistic settings, some features
may be intermittently unobservable. For instance, due to a
sensor failure, a plan recognition system might only know
the position of another agent, but not its velocity or head-
ing. (Avrahami-Zilberbrand, Kaminka, & Zarosim 2005)
has shown how to efficiently determine which plans match a
set of observations and deals with lossy observations, using
structure called LFDT. The LFDT is a decision tree that au-
tomatically constructed prior to run-time and allows efficient
mapping from observations to plans that may match them.

Missing Observations An underlying assumption in
LFDT is that every change in internal state (in our terms,
change in plan path) is somehow reflected in observations.
However, in realistic settings, this assumption is sometimes
violated (e.g., in overhearing applications (Kaminka, Py-
nadath, & Tambe 2002)). Some internal decision-making
may be permanently or intermittently unobservable, for all
of the plans along a specific plan decomposition path. In this
case, an entire observation is essentially missing (all features
are unobservable). For example, a passenger that is not in
the camera zone for certain amount of time. (Avrahami-
Zilberbrand, Kaminka, & Zarosim 2005) proposed some
small changes in the propagation algorithms, to allow them
to address this difficulty.

Hybrid Approach: Disambiguating
Hypotheses using Probabilities

After getting all current state hypotheses from the symbolic
recognizer, the next step is to rank these hypotheses, e.g.,
to determine the maximum-posterior probability hypothesis.
Each such hypothesis called probable current state hypoth-
esis.

We follow in the footsteps of Hierarchical Hidden
Markov Model (HHMM) (Fine, Singer, & Tishby 1998) in
representing probabilistic information for the plan library.
Each plan-step in the plan library denoted by ¢¢, where i is
the plan-step index and d is the depth in the hierarchy (the
depth index of the root is 1 and the index of the last level is
D). For each plan step ¢¢ in the plan library we define the
following probabilities:

The first probability is the probability to follow a sequen-
tial edge from the ith plan-step to the jth plan-step, mean-
ing how likely it is that the agent will complete execution
of the current plan step and go on to its next plan-step in
the sequential chain. For each internal state qf, there is a

.ps o1e . a qd
state transition probability matrix denoted by A9 = (ai7 j),

where agz = P(q}“‘1 |gT™) is the probability of making a

horizontal transition from the ith plan-step to the jth plan-
step. Note that self cycle edges are also represented by se-
quential edges probabilistic matrix.

The second probability signifies how likely it is that the
agent will interrupt its execution of the current plan step and
give back the control to the plan step’s parent. This proba-
bility is denoted by agin 4» the probability that the plan-step
1 going to the end state and returns the control to its parent

qf.
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Figure 2: An example of plan library represented as HHMM.

The third probability is the vertical transition, meaning
how likely the agent will execute each of the plan’s first chil-
dren. This probability is denoted by e = qu(qd“) =
P(q?*t|q%), the probability that plan-step ¢¢ will initially
activate the plan-step qurl It is also possible to represent
the probable duration of a step (e.g., as in (Kaminka, Pyna-
dath, & Tambe 2002; Duong et al. 2005b)).

Figure 2 shows portion of the plan library after convert-
ing it to HHMM. First, we add an end state for each level,
then we add edge from each plan-step to this end state. This
edge represent the probability to interrupt. Each plan-step
should also have a self-cycle edge; We omitted this edge,
for presentation clarify.

We will use these probabilities to rank the hypotheses that
we got from the symbolic recognizer. To calculate the prob-
ability for each hypothesis, we traverse the plan library from
the leaf of each selected hypothesis in time-stamp ¢ — 1, to
the leaf of each of the current state hypotheses in time stamp
t that we got from the symbolic recognizer. While travers-
ing the plan library we multiply the appropriate probabilities
(continue or interrupt or move-to-next) for each plan-step
from the leaf of the previous path to the leaf of the current
path. If there is more then one way to get from the leaf of
the previous hypothesis to the leaf of the current hypothesis,
then it should be calculated too, and the most probable way
should be taken.

X; = arg max P(X;|observations) =

1
arg max Z (Wg) x P(X;|Wg) M

X

WieWw

Formally, the symbolic algorithm filtered all previous hy-
potheses (paths) W = Wy, Ws,...,W,, and current pos-
sible hypotheses (paths) X = Xj, Xo,..., X, based on
the observations. To calculate the best hypothesis, we
need to calculate for each current hypothesis the probabil-
ity P(X;,t + 1|observations), meaning the probability to
get path X; in time-stamp ¢ + 1 given sequence of observa-
tions, and find the best hypothesis. By assuming a Markov
property, we get Equation 1. To calculate it we use the cal-

culated probability in previous time-stamp P(W},) and mul-
tiply it by P(X;|W}y), for each possible current path X,
where X; = z},..., 27" and previous path Wy, = w}, ..., w}
that the symbolic algorithm had returned (note that the upper
index denotes depth in the plan library). This probability is
described in Equation 1. Note that we omitted the plan-step
index, and left only the depth index, for presentation clarify.

The calculation of this probability is calculated in two
cases, for a given w € W and x € X. In the first case,
z and w have a common parent, and x is a path made by
first child edges from this common parent. Here, we calcu-
late the probability of climbing up vertices in w (by taking
interrupt edges) until we hit a common parent to x and w,
and then climb down (by taking first child decomposition
edges) to x. In the second case, x is reached by following a
sequential edge from a vertex in w to a vertex in z.

In both cases, the probability of climbing up from a leaf
g" at depth n, to a parent g7 (where j < n) is given by

J

’YZ = H CL;l,end (2)

d=n

and the probability of climbing down from a parent ¢/ to a
leaf g™ is given by

g =11~ (g 3)
=]

Note that we omitted the plan-step index, and left only the
depth index, for presentation clarity.

Using 7 and (32, and summing over all possible j’s, we
can calculate the probability for the two cases in which a
move from wy, to ,, is possible (Equation 4). The first case
is covered in the term 77, x Eq(27, w’) x 37, where the func-
tion Eq(z7, w?) returns 1 if 2/ = w7, and 0 otherwise. The
overall probability calculation covers all ways of interrupt-
ing a plan, climb up to a common parent, and then following
first-child decompositions to a new plan. The second case is
covered by the term v/ x a{;j,z X (3], where a{wx returns the
probability of taking a sequential edge from w’ to 27, given
that such an edge exists, and that the observed agent is done
m wy.

1
PRI = 32 o x Baled ) 2

+7], x al, , x B3] 4)
1

>

Jj=n—1

v Ea(? w’) +al, ]

To see the process in action in the previous example, as-
sume that the symbolic algorithm matches at time ¢ = 6
the multiple instances of the coffee plan, and at time ¢ = 5
the multiple instances of x-ray. To calculate the probability
of P(board— coffee — security—x-ray) we traverse the tree
and multiply the probabilities on the arrows. We will get
P(board—coffee — security—x-ray) =1 x 0.8 x 0.5 = 0.4



Algorithm 1 calcProb(SBR ¢ — 1 results M, Plan Library g,
Time-stamp t)

1: for all v € MnotVisited do

2:  PropagateProbUpAndDown(v, g,t,r00t(g))

3: Normalize(M,g,t)

4: FindMax(M,g,t)

Algorithm 2 PropagateProbUpAndDown(SBR ¢ — 1 path v, Plan

) ) ) ) . Library g, Time-stamp ¢, End Plan )
(interrupting x-ray under security, then following sequential I: B — leaf(v)

link to board and then choosing coffee). The probability: 2 7 Prob(B,t — 1)
P(entrance —coffee — entrance—x-ray) = 0.8 (following 3: S « sequentialEdgeTagged(B,t —1,g,t)
sequential link from x-ray to coffee in the entrance). There- 4: forall s € S do
fore, the probable option is that the agent drinks coffee in the 5:  calcDownProb(Z,Ap,s, B)
entrance area, and not in the boarding area. (Pay attention 6: if Isel fCycleEdgeTagged(B,t — 1, B, t) then
7.
8

that these results should be multiplied by P(security—x-ray) : qachownProb(Z ,Ap B, B)
and P(entrance—x-ray). We assumed here that these proba- : while B # r do
bilities are equal, and therefore we omitted them). 9: Z < ZxApend

: . . 10: B < Parent(B)
We presented above a naive algorithm for calculating the ;' C < childrenTagged(B, t — 1)notVisited

probabilities of the hypotheses in time-stamp ¢. However, 12: forallc e C do
this calculation can be expensive, if we go over all leaves 13: Z — Z+ PropagateProbUpAndDown(leaf(c), g, t, B)
of the paths in ¢ — 1 and for each of these leaves traverse 141 C « childrenTagged(B, 1)
the plan library until getting to all leaves of paths we got in 15: forallc € C do
time-stamp ¢. The complexity in the worst case is O(N?T)), 16: if ~Visited(B) then
where N is the plan library size, and 7" is the number of 17: caleDownProb(Z,1, B)
observations. 18: else
We developed set of algorithms that calculates the proba- 19: MultProbabililityO f Plan(leaf (c), Ac,ena*IlB,c)

e . L : 20: S <« sequential Edges(B,t)
bility in Equation 1 in time O(N DT'), where D is the depth 71:  foralls € S do

gf the pla.ln library. The .c.eptral idea beh.lnd these algorlthms 2. calcDownProb(Z, Ap.., B)
is summing the probabilities for paths in ¢ — 1 while prop- 23: return(Z)

agating up along the hierarchy, i.e,. going over the plan li-
brary from leaves of paths in £ — 1, and summing up the cal-
culated probabilities. While propagating up and summing
the ¢ — 1 paths, we check if there is a child or a sequential
edge to path that is tagged with ¢. If the answer is yes, then
we propagate down the calculated probability.

This process is described in Algorithms 1-3.  The
calcProb algorithm (Algorithm 1) calculates the probabil-
ity of all valid hypotheses that the symbolic algorithm had
returned, normalizes these probabilities and find the hypoth-
esis with the maximum probability. To calculate these prob-
abilities, it goes over all matching paths M in time stamp
t — 1, we got from SBR (which we did not visited yet) and
calls algorithm 2. The Propagate ProbU pAndDown algo-
rithm (Algorithm 2) calculate Z, which holds the probability
from paths in £ — 1. It goes up from leaf of v, which is one
of the paths from ¢ — 1, and add the probabilities while go-
ing up the hierarchy. If there is a child or sequential edge

Algorithm 3 calcDown(probability Z, probability p, Plan B,
Plan Library g, Time-stamp t)

I: Z—Zxp

2: if isLeaf(B) then

from this path to plan that tagged with time-stamp ¢, it calls 3. AddProbabililityToPlan(B, Z)

to algorithm 3. Algorithm 3 goes down along the hierarchy 4: else

and multiply probabilities until reaching the leaf of path in ¢. 5:  C « childrenTagged(B,t)

When reaching to leaf node it add it to the probability of this 6: forallc € Cdo

node and save this probability there. Therefore, the proba- 7: calcDownProb(Z,11p,. * Ap,B, B)

bilities of the leaves are saved in the tree in its leaves, and
can be collected, normalized and analyzed later by algorithm
1.

There is a significant difference between the HHMM and
our hybrid approach. First, the hybrid approach deals with
interleaved execution and duration constraints, which the
HHMM cannot handle. An initial extension to include con-



sideration of duration, the Switching Hidden Semi-Markov
Model (S-HSMM), appears in (Duong et al. 2005b). How-
ever, these methods do not allow for interleaving plans, nor
do they allow for lossy observations, either at the level of
features or complete set of observations. Second, since the
symbolic algorithm had already given us the possible paths,
we do not need to consider all possible paths. Hopefully,
many paths had been disqualified by the symbolic algorithm,
due to ordering constraints or duration constraints. There-
fore, we expect that the performance in practice will de-
crease significantly. Our initial analysis indicates that it may
be possible to exploit the hybrid nature of the model to pro-
vide exact probabilistic inference at lower complexity than
the S-HSMM model.

Complexity Analysis: the run-time complexity of the al-
gorithm is O(T'DN). We first propagate the ¢ — 1 probability
bottom up the hierarchy, not visiting plans that already been
visited O(N) (Algorithm 2, Lines 9-13). Then, calculat-
ing down for different depths (Algorithm 2, Lines 14-19),
adding to path tagged with ¢ the probability to interrupt and
reselect the plan (Algorithm 2 Line 19) is O(N D).

The complexity analysis of HHMM is O(T?), where T is
the length of the observation sequence. (Murphy & Paskin
2001) showed how to reduce the run-time complexity to
O(TQ?P) by representing HHMM as dynamic baysian net-
work (DBN), where Q is the maximum states in each level.
And reduced it even to O(TDQP by using approximate
DBN inference techniques. In contrast, our work has the
run-time complexity of O(TDN) = O(TDQP), in exact
inference.

Summary and Future Work

Agents must often rely on their observations of others, to in-
fer their unobservable internal state, such as goals, plans,
or selected plans. This paper addresses efficiency in the
context of Hybrid Symbolic-Probabilistic plan recognition,
relaying on hierarchical plan-based representation. In the
hybrid recognizer, the probabilistic recognition components
will only be ranking a small number of hypotheses, and thus
we expect the hybrid recognizer to combine the best of sym-
bolic and probabilistic worlds. The algorithms we propose
are efficient, and can handle intermittent failures in obser-
vations, plans with duration, and lossy observations, both
of complete observations and of only a subset of observable
features.
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