
Symbolic Behavior-Recognition

Gal A. Kaminka and Dorit Avrahami
MAVERICK Group

Bar Ilan University, Israel
{avrahad1,galk}@cs.biu.ac.il

Abstract

It is important for robots to model other robots’ unob-
served actions, plans, goals and behaviors. However, clas-
sic plan recognition is ill-suited to modeling robotic sys-
tems, as (i) it assumes that actions are discrete, instanta-
neous and cannot take place in parallel; and (ii) it uses a
planning operator-based representation, which differs sig-
nificantly from the behavior-based controllers often used
with robots—thus making it difficult to represent the re-
active components of robots interactions with their envi-
ronment. We present a behavior-based approach to plan-
recognition, in which hierarchical behaviors are used to
model the observed robots. We show that our new model
allows efficient, practical inference based on observations
of parallel and continuous actions, and knowledge of the
observed robots. We present highly efficient symbolic algo-
rithms for answering key queries about observed robots, un-
der conditions of lossy and lossless observations.

1. Introduction

It is important for robots to be able to reason about other
robots’ internal state, such as their selected behaviors, plans,
intentions, and goals. A model of other robots is impor-
tant, for instance, in assisting other robots [9], or counter-
ing their adversarial actions [15]. Since it is often imprac-
tical for a robot to rely on its peers to continuously trans-
mit their internal unobservable state to it, a robot modeling
its peers must often rely on inferring its peers’ unobserv-
able state based on their observable actions. This inference
process is calledplan recognition.

However, most plan recognition methods are ill-suited to
modeling modern robots. First, plan recognition typically
assumes that observed actions are discrete, instantaneous,
and come one at a time. However, robots often use take con-
tinuous actions that have duration, and affect several actua-
tors at once (e.g., maintain velocity and direction over a pe-
riod of time) [2, 12]. Second, the representation underlying

plan-recognition is based on STRIPS-like operators, a rep-
resentation not commonly used in generating reactive be-
havior in robots. An operator-based model of a robot’s in-
teraction with the environment would not capture the reac-
tive components of its behavior.

There have been attempts at addressing these challenges
(see Section 2 for details). RESC [15] and RESL [7] use a
behavior-based representation to infer the current behaviors
selected by observed agents. However, they do not take a
history of observations into account, and assume that agents
do not change states (behaviors) unobservably. Other meth-
ods are often able to take a history of observations into ac-
count, but assume all relevant features (e.g., actions of the
robot) will always be observable (e.g., [5, 13, 4]). More-
over, these methods require a translation of the observed
robots behavior-based control structure into a form suitable
for the probabilistic recognition algorithms used in these ap-
proaches. Also, none of the approaches discussed above can
utilize negative evidence, i.e., inference from a lack of an
observation [3].

This paper focuses on comprehensive mechanisms for
behavior recognition, the task of recognizing the unobserv-
able behavior-based state of a robot, given observations of
its interaction with its environment. We examine the key
behavior recognition queries that may be asked of a behav-
ior recognition system, and provide algorithms to infer the
answers to these queries, building on a a representation of
hierarchical behavior that is general and compatible with
many existing behavior-based control methodologies. We
analyze the complexity of the algorithms, and show that
they are efficient, even when handling loss of observations,
unobservable behaviors, and negative evidence. The algo-
rithms are all symbolic, in that they produce all possible hy-
potheses that are consistent with the observations.

2. Background and Related Work

Classic plan recognition work has focused on efficiently
matching observed atomic actions against STRIPS-like op-
erators, to infer a sequence of operators that (best) accounts
for the actions (e.g., [8]). This approach faces inherent dif-



ficulties when applied to the complex, dynamic settings in
which robots are typically deployed.

Indeed, robots that operate in complex, dynamic settings,
may interrupt planned action sequences in order to react
to unexpected situations. To do this, many robots utilize a
behavior-based control approach, which executes multiple
control modules (calledbehaviors) so as to produce the de-
sired behavior, while still maintaining the ability to react to
unexpected situations [10, 12, 1]. Such behaviors often con-
trol several actuators at once, and with varying duration.

An ideal behavior recognition system would be able to
address the deficiencies above, while taking into account
a history of observations to infer answers for recognition
queries such as: (i) What is the current selected behavior of
the observed robot? (ii) What sequence of behaviors did the
observed robot go through?

Ideally, the recognition system would be able to provide
answers to the recognition queries despite challenges of-
ten associated with real-world robotic applications, such as
lossy observations (e.g., occasionally not being able observe
a robot’s heading), and varying behavior execution dura-
tions. The response to queries can be a single answer, or
a set of hypothesized answers (in case of uncertainty). We
focus in this paper on pure symbolic approaches, and do
not consider the issue of ranking hypotheses according to
some criteria (e.g., likelihood). We follow the plan recogni-
tion literature in assuming that the underlying model used
for recognition completely covers the behavioral repertoire
of the observed robot.

There have been several relevant previous investigations.
RESC [15] uses a hierarchical behavior-based representa-
tion to infer the current behaviors selected by observed
robots. In each run-time cycle, RESC maintains only a sin-
gle hypothesis as to the current state of the observed robot.
RESL [7] is similar, but maintains multiple hypotheses as
to the current state. Both algorithms essentially reset with
every new observation, and do not take a history of obser-
vations into account. Thus they cannot provide hypotheses
as to the sequence of unobservable states that the observed
agents has gone through, nor can they provide predictions
as to the next possible state.

Other alternatives to classic plan recognition are also rel-
evant. Many of these are probabilistic in nature, and also are
able to take a history of observations into account. [5] ex-
plores an approach in which a Bayesian network for plan-
recognition is automatically constructed out of reaction-
plan specifications (that are similar in nature to behavior-
based controllers). [13] explores an efficient probabilistic
grammar representation for plan-recognition. However, it
assumes discrete actions come one at a time. [4] explores
a recognition approach based on hidden Markov models,
and allows for behaviors to be interrupted. All of these ap-
proaches assume all relevant features (e.g., actions of the

robot) are always observable. Also, none of the approaches
discussed above (including RESC and RESL) can utilize
negative evidence, i.e., inference from a lack of an obser-
vation [3].

3. Representation

Many state-of-the-art robotic controllers employ hierar-
chical behavior-based control methodologies (e.g., [2, 12,
10, 1]). Given this emphasis in the literature, we utilize
a behavior-based recognition representation which serves
as the basis for representing the modeled behaviors of the
observed robot. In choosing a representation for recog-
nition, we are fortunately not constrained by a specific
methodology—since the representation does not express
executable controllers—but instead can focus on common
features to these methodologies. As a result, the representa-
tion can be generic, and be used to represent controllers of
various types.

We follow previous work in representations for moni-
toring [6], and represent the behavior-based controllers of
an observed robot as a directed acyclic connected graph,
where vertices denote behaviors, and edges can be of two
types: vertical edges that decompose top behaviors into sub-
behaviors, and sequential edges that specify the expected
temporal order of execution. Each behavior has associated
with it a set of conditions on observable features of the robot
or world that specify the settings under which observations
are said to match the behavior.

At any given time, the observed robot is assumed to be
controlled by abehavior-path, a root-to-leaf path of behav-
iors that follows decomposition edges. Figure 1 shows an
example portion of a behavior graph, inspired by the behav-
ior hierarchies of existing robotic soccer teams [14]. The
figure shows decomposition edges (solid arrows) and se-
quential edges (dashed arrows). For presentation clarity, we
show the decomposition edges only to the first (in tempo-
ral order) child behaviors. Thus in the figure, the behavior
pathroot → defend → turn → with ball can be an hy-
pothesis as to the current internal state of an observed robot.
A set of such behavior paths would constitute a set of hy-
potheses. An observed robot may change its internal state
in two ways. First, it may follow the sequential edges, such
that when no further sequential links are available, control
goes back to the parent (which then continues using its own
sequential edges, if they exist). Second, control may be in-
terrupted at any time to respond reactively to the environ-
ment, and a new (first) behavior may be selected. For in-
stance, suppose a robot was executingroot → defend →
turn → with ball, and then interrupted this behavior. It
may now chooseroot → attack → pass, but notroot →
attack → turn. The figure does not show the observation
conditions associated with behaviors. For instance, suppose
there is a featurehave_ball whose value is true whenever



root

attackdefend score

position

clear

turn

Approach 
ball

position

without 
ball

position turn pass position turn kick

with 
ball

without 
ball

With
ball

with 
ball

without 
ball

2

1

3

1

1 1 2

2

2

22

2

222

2

2

31 1

Figure 1. Example behavior graph. Circled
numbers denote timestamps.

the ball is observed to be in close proximity to the observed
robotic soccer player. The behaviorkick may have a con-
dition that specifieshave_ball = true, while the behavior
approach_ball would test forhave_ball = false.

4. Behavior Recognition Algorithms

We now turn to presenting basic behavior recognition
algorithms that utilize the representation above. The algo-
rithms work in three incremental phases: (i)matchingob-
servations to behaviors, tagging those that match using ob-
servation timestamps (Section 4.1); (ii)propagatingtime-
stamp tags up and down the graph, to tag complete behav-
ior paths (Section 4.2); and (iii) extracting hypotheses ac-
cording to the query (Section 4.3).

4.1. Matching Observations to Behaviors

We consider complex observations, that consist of a tuple
of observed features, including states of the world (e.g.,the
observed robot’s uniform number), actions taken by the
robots (e.g., kick ball), and execution conditions maintained
by the robot (e.g., speed=200). It is likely, in realistic set-
tings, that more than one behavior will match a set of obser-
vations, and this may result in multiple hypotheses as to the
internal state of the observed robot.

Matching observations to behaviors can be expensive, if
we go over all behaviors and for each behavior check all ob-
served features. Since not all behaviors utilize all observed
features in their associated observation conditions (see pre-
vious section), much of this effort may be wasted.

To overcome this problem, we augment the behavior
graph with a novel data-structure, aFeature Decision Tree
(FDT), which allows efficient mapping from observations
to behaviors that may match them. An FDT works similarly
to a machine-learning decision tree [11], and is constructed
similarly, but with important differences.

Each node in an FDT corresponds to an observation fea-
ture (e.g., velocity, heading, etc.). Each branch descending
from a node, represents one of the possible values of this

feature. Unlike traditional decision trees, each leaf also has
pointers that point to the behaviors that test for the feature
represented by the leaf. In this way, each node in the FDT
divides a set of behaviors to subsets according to values of
one feature. Thus determining the behaviors that match a set
of observations features is efficiently achieved by traversing
the FDT top-down, taking branches that correspond to the
observed values of features, until a leaf node is reached. The
leaf points to behaviors that match the conjunctive set of ob-
servations.

Similarly to a decision tree, the construction of an FDT
can use information gain to determine the most important
features to test first, thus guaranteeing optimal testing of
features. We briefly review this well-known process here
(see [11] for details). First, we create a root node (corre-
sponding to all behaviors), and associates it with the feature
that provides the greatest information gain (intuitively, that
divides behaviors that test it as uniformly as possible). We
then create children FDT nodes for each of its values, and
recursively repeat the process of selecting a feature that best
divides the behaviors associated with the node. The process
continues until a node points at only a single behavior, or
there are no more features that differentiate behaviors.

Unlike machine-learning decision trees, that are built
based on examples of the target data, here we base the con-
struction of the decision tree on the behavior graph which
is given to us by the designer of the behavior recognition
system. This behavior graph contains all the behaviors exe-
cutable in principle by an observed robot. There is no uncer-
tainty in determining which behaviors match a set of obser-
vations, and no need to prune nodes to prevent over-fitting
([11]). In case some behaviors do not test a feature, they
are simply passed in the construction phase to all children
FDT nodes, as they are consistent with all values of the fea-
tures they do not test.

For example, the FDT in Figure 2, shows a portion of an
FDT using features associated with behaviors in Figure 1,
such as distance from other players,have_ball, opponent
goal visibility, and uniform number. The FDT separates the
behaviors according to the values of these features. To de-
termine matching behaviors, the matching algorithm first
checks thehave_ball feature. Based on its value, it con-
tinues the appropriate branch to test in sequence other fea-
tures, until it finally reaches a leaf node. This leaf node will
have pointers to all instances of the behaviors associated
with it in the behavior graph. For instance the leaf-node for
position will have four separate pointers into the behavior
graph in Figure 1. Note that since the behaviorturn is ap-
plicable regardless of whetherhave_ball is true or false, a
node associated with it will appear in both left and right sub-
trees of thehave_ball root node.

Matching behaviors to observations is efficiently done
using an FDT, by following along a root-to-leaf path. The



Have ball ?

Opp-Goal 
Visible?

destination 
from players

Uniform-
number

yes no

32
1

yes no

Very 
far

farnear

kick

pass

position turn

turn

Figure 2. Example FDT.

height of an FDT is (in the worst case)O(F ) whereF is
the number of the features. This would be true only if a be-
havior test all available features, an unrealistic case. We be-
lieve that in realistic settings, the height of the tree would
be closer to the best case ofO(logF ). This result should be
contrasted with previous algorithms (e.g., [15]). In these al-
gorithms, the matching step goes over all behaviors, and for
each behavior tests all features, therefore the time complex-
ity of these two algorithm for the matching step isO(FL),
whereL is the number of vertices in the behavior graph.

4.2. Tagging and Propagating

Once matching behaviors are found, they are tagged by
the observation time-stamp. These tags are then propagated
up and down the behavior graph, to determine complete
behavior-paths that constitute hypotheses as to the inter-
nal state of the observed robot, at the time the observations
were made. However, the propagation is not a simple mat-
ter of following child and parent edges.

One complication in tagging is that a behavior may
match the observations (and is therefore tagged), and yet
it cannot be a part of a valid hypothesis, when a history of
observations is considered, i.e., it istemporally inconsistent.
For instance, suppose that the first set of observations match
thepass behavior (Figure 1), and the second set of obser-
vations match theturn behavior. The FDT would point the
propagation algorithm to the three instances ofturn, un-
derdefend, attack, andscore. Assuming no observations
were lost, only the behavior instance underscore is valid,
since it is the only instance in whichturn could have been
selected without first going throughposition. This reason-
ing about hypothesis consistency over time is a key novelty
compared to previous symbolic behavior recognition algo-
rithms (e.g., [15]).

The process is shown in Algorithm 1—Propagate—
which is called for each of the behaviors that match the
observations. It takes a pointer to a matching behav-
ior, and tags behaviors using uses timestamps to keep track
of the order in which the hypotheses are formed. It ex-
ploits the sequential edges and the timestamps to disqualify

Algorithm 1 Propagate(Nodew, Behavior Graphg, Time-
stampt)

1: T ← ∅
2: propagateUpSuccess← true
3: v ← w
4: while v 6= root(g) ∧ propagateUpSuccess ∧
¬tagged(v, t) do

5: if ∃X, s.t.seq_edge(X, v) ∈ g ∧ tagged(X, t − 1)
then

6: tag(v, t)
7: else if¬∃X, s.t.seq_edge(X, v) ∈ g then
8: tag(v, t)
9: if tagged(v, t) then

10: T ← tagged ∩ {v}
11: v ← parent(v)
12: else
13: propagateUpSuccess← false
14: if propagateUpSuccess then
15: PropagateDown(w, g, t)
16: else
17: for all a ∈ T do
18: delete_tag(a, t)

hypotheses that are inconsistent givena historyof observa-
tions.

The algorithm operates as follow: Lines 4–13 climb
up the graph, tagging the behavior-path towards the root.
If successful (line 14), it also propagates the time-stamp
tag down (Algorithm 2). When propagating up or down,
successful propagation is determined using the conditions
(lines 5–8, Algorithm 1, and lines 2–5, Algorithm 2). These
conditions are the key to the temporal validity of the hy-
pothesis. There are two cases: (a) the node in question fol-
lows a sequential edge from a behavior that was success-
fully tagged at timet − 1; or (b) the node is a first child
(there is no sequential edge leading into it). A first child
may be selected at any time (for instance, if another behav-
ior was interrupted). If neither of these cases is applicable,
then the node is not part of a temporally-consistent hypoth-
esis, and its tag should be deleted, along with all tags that it
has caused in climbing up the graph (lines 16–17).

For each behavior instance that matches the observa-
tions, the entire propagation traverses the height of the be-
havior graph, and may thus takeO(L2) in a theoretical
worst case in which we check previous tag for each be-
havior. Realistically, we believe that run-time will often be
closer toO(log2L).

Figure 1 shows the process in action (the circled num-
bers in the figure denote the timestamps). Assume that the
FDT is used at timet = 1 to find multiple matching in-
stances of theposition behavior. Propagate (Algorithm 1)
begins with these four instances. It immediately fails to tag
the instance that followsclear and approach ball, since



Algorithm 2 PropagateDown(Nodew, behavior graphg,
time-stampt)

1: for all c ∈ children(w) do
2: if ∃X, s.t.seq_edge(X, c) ∈ g ∧ tagged(X, t − 1)

then
3: tag(c, t)
4: else if¬∃X, s.t.,(X, c) ∈ g then
5: tag(c, t)
6: if tagged(c, t) then
7: for all b ∈ children(c) do
8: tag(b, t)
9: propagateDown(b, g, t)

these were not tagged (att = 0). The position instance
underscore is initially tagged, but in propagating the tag
up, the parentscore fails, because it followsattack, and
attack is not tagged. Therefore, all tagst = 1 will be
removed fromscore and its childposition. The two re-
maining instances successfully tag up and down, and result
in possible hypothesesroot → defend → position and
root→ attack → position.

At time t = 2, suppose the observations match theturn
behavior (three instances). The tagt = 2 propagates suc-
cessfully up and down in the behavior tree, for all instances.
Now, there are six possible hypotheses (we omit the com-
mon root prefix): defend → turn → without ball,
defend → turn → with ball, attack → turn →
without ball, attack → turn → with ball, score →
turn → without ball, score → turn → without ball.
Now, we can not decide which of the three main behav-
iors took place:defend, attack or score. However, getting
the next observation can disambiguate the hypotheses. If we
will next observe aclear or approach ball, then it would
be clear that the observed robot is executing thedefend hy-
pothesis. Otherwise, we can eliminate this hypothesis. In
other words, we can exploit negative evidence to disam-
biguate the hypotheses space. This process is tightly cou-
pled to the hypothesis generation phase, described next.

4.3. Generating Hypotheses

After having the behavior tree tagged with labels accord-
ing to time-stamps, we can generate hypotheses to answer
recognition queries. As briefly mentioned above, the same
process also exploits negative evidence to further eliminate
hypotheses.

Generating hypotheses about the current selected state
(behavior path), is trivial: Given the latest time-stampt0, we
traverse the behavior-graph, identifying complete behavior
paths that are taggedt = t0. The set of these behavior paths
constitutes the response to this type of query.

However, generating hypotheses as to the sequence of
states that was selected over time is not a simple matter of
enumerating combinations of the above queries for times
t = 0, t = 1 . . . , t = t0. The reason for this is that new

hypotheses, generated at timet0, may serve to rule out hy-
potheses that successfully matched at timet < t0, by ex-
ploiting failures to observe expected behaviors.

Before discussing the hypotheses generation method, it
would be useful to see an example of how reasoning about
a sequence of behavior paths can lead to using negative ev-
idence.

Suppose that after having made the observations at times
t = 1 and t = 2 in the example of the previous sec-
tion, we now make observations at timet = 3 that match
kick. The score behavior is the only behavior consistent
with the tagt = 3, though bothdefend and attack are
tagged for timest = [1, 2]. However, after having made
the observation att = 3, we can safely rule out the possi-
bility that defend was ever selected by the robot, because
score can only followattack, and the lack of evidence for
eitherclear or approach ball at timet = 3 (which would
have madedefend a possibility at this time) can be used
to rule it out. Thus we infer that the sequence of behavior
paths that was selected by the robot isattack → position
(at t = 1), attack → turn at t = 2 (though we cannot
be sure which one ofturn’s children was selected), and fi-
nally score→ kick.

We now turn back to the hypothesis generation method.
Extracting all paths is not trivial (since as we saw, some
successful tags at timet < t0 are invalid att = t0. Here
we present an incrementally-maintained structure that holds
hypotheses according to time stamps. The advantage is that
with every time stampt, we can use the structure to elim-
inate hypotheses that were tagged at timet − 1, that have
become invalid.

We use a connected graphG′, whose vertices correspond
to successfully-tagged behavior paths in the behavior graph
(i.e., hypotheses). Edges inG′ connect hypothesis vertices
tagged with time stampt to hypothesis vertices tagged with
time stampt + 1. G′ is therefore built in levels, where each
level represents hypotheses that hold in each time stamp.
For each set of observations made at timet0, we add toG′ a
level t0 all possible hypotheses that were taggedt = t0 and
propagated successfully in the behavior graph. We then cre-
ated edges between verticesy1, . . . , yn in levelt−1 to each
new hypothesisX in level t in the following manner: IfX
is not part of a sequence (i.e., it is a first child), then we con-
nect eachyi to X; otherwise, ifX is part of a sequence, we
connectyi to X if any of the behaviors inyi has a sequen-
tial edge to any behavior inX.

Now, to generate all sequences of behavior paths that are
consistent with the observations, we traverseG′ from level
to level, keeping track of allG′ paths that take us from the
first level to the last level (the most recent observation).

For example, based on the behavior tree in Figure 1, we
constructG′ (Figure 4.3). In the first level, we put all paths
in the behavior tree that were tagged with time-stamp 1,



1

2

3

defend-position attack-position

defend-turn-

without ball

defend-turn-

with ball

attack-turn-

without ball

score-turn-

without ball

attack-turn-

with ball

score-turn-

with ball

score-kick

Time 
stamps

Figure 3. An example extracting graph G′.

in the next level we put all paths that were tagged with
time-stamp 2. Now, from each node in time-stamp 2, we
check which nodes can be appropriate in time-stamp 1. The
t = 1 node defend → position can be connected to
the t = 2 nodesdefend → turn → without ball and
defend → turn → with ball, because there exist se-
quential edges in the behavior graphs that connectposition
to turn underdefend. Similarly, attack → position has
edges toscore → turn → without ball and score →
turn→ with ball. Once we add the observations fort = 3,
the variousdefend hypotheses have no link to timet = 3.
If we now go back to asking what hypotheses exist for the
current behavior paths at timet = 2, we will getattack →
turn → without ball andattack → turn → with ball.
Here we can see the advantage of usingG′: Out of six hy-
potheses that matched the observations until time-stamp 2,
four hypotheses are eliminated once we incorporate the ev-
idence in time-stamp 3.

The worst-case runtime complexity of constructingG′

overN observation time steps isO(NL2), where andL is
the worst-case number of behaviors that the matching al-
gorithm had returned given a single observation. For each
node inG′ with time stampt (of which there could be at
mostO(L)), we check all nodes in time stampt− 1 (again,
O(L)), thus a factor ofL2 for each step of adding another
level. However, Note that theL component is a purely theo-
retical worst-case, as it corresponds to a recognition system
that simply returns all behaviors in the behavior graph.

5. Algorithms for Realistic Settings

Real-world applications sometimes violate assumptions
that are made in recognition systems. Two common viola-
tions of assumptions involve intermittent observation fail-
ures, and varying behavior execution duration. This section
addresses these challenges.

5.1. Lossy Observations

In section 4.1, we showed how efficiently determine
which behaviors match a set of observations. An implicit as-
sumption was made (present also in most related work) that
all relevant features were in fact observables. However, in

realistic settings, some features may be intermittently un-
observable, e.g., due to hardware failures, communication
errors, etc. Observations that are lost would fail the condi-
tions associated with behavior, and thus the matching phase
will fail.

We propose to use an augmented FDT, called LFDT
(Lossy Feature Decision Tree), which has all the properties
of FDT, but deals with lossy observations. The LFDT rep-
resentation is the same as FDT, except that for each node,
we add an extra branch that represents amissing value. Dur-
ing construction of the LFDT, all behaviors that are consis-
tent with the node (and which are divided based on the value
of the feature associated with the node) would be passed
as-is to the missing value branch. When the LFDT is tra-
versed, if a feature is temporarily unobservable, we will fol-
low the missing value branch instead of one of the normal
branches.

The runtime complexity of LFDT is the same as FDT
(Section 4.1), though the size of the LFDT would be greater:
(a) it will have more branches than FDT (extra branch for
each feature); (b) its height may be deeper than FDT (be-
cause of the need to handle missing features at the leaves).

5.2. Behaviors with Duration

In state-of-the-art applications, behaviors can vary
greatly in the duration of their execution. Even the same be-
havior can vary in its duration. Therefore, the observation
time and behavior time are not synchronized. For ex-
ample, the approach ball behavior in Figure 1 can
sometimes take much time, and sometimes be done al-
most immediately (depending on the distance to the ball).
As a result, we may have multiple observation times-
tamps (t, t+1, . . . t+k) that are all consistent with a single
behavior, and only reflect the duration that its execution re-
quires.

Fortunately, it is easy to allow for unknown durations
in the approach we presented. Instead of insisting that we
time-stampt a behaviorv only if it follows a sequential edge
from a behavior timestampedt − 1, we must allow for the
possibility thatv itself has previously matched, and that the
observed robot is simply continuing its execution ofv. We
therefore add a condition underwhich we allowtag(v, t). To
the tests in lines 5–8 of Algorithm 1, and lines 2–5 of Algo-
rithm 2 we addif tagged(v, t− 1)) then tag(v, t).

6. Summary and Future Work

It is important for a robot to monitor other robots in or-
der to carry out its tasks. To do this, robots must often rely
on their observations of others, to infer their unobservable
internal state, such as goals, plans, or selected behaviors.



However, plan-recognition approaches to this task are in-
sufficient for modern robotic applications.

This paper addresses this challenge by defining a
behavior-based recognition representation and a compre-
hensive set of algorithms that can answer a variety of
recognition queries. The algorithms we propose are effi-
cient, and can handle important real-world challenges to
existing techniques, such as intermittent failures in ob-
servations, behaviors with duration, etc. In the future, we
home to extend our approach to cover interleaved and re-
sumable behaviors. A promising direction is to exploit the
high efficiency of these algorithms to pre-process hypothe-
ses for probabilistic ranking.

References

[1] T. Balch. Behavioral Diversity in Learning Robot Teams.
PhD thesis, Georgia Institute of Technology, 1998.

[2] R. J. Firby. An investigation into reactive planning in com-
plex domains. InAAAI-87, 1987.

[3] R. P. Goldman, C. W. Geib, and C. A. Miller. A new model
of plan recognition. InUAI-1999, Stockholm, Sweden, July
1999.

[4] K. Han and M. Veloso. Automated robot behavior recogni-
tion applied to robotic soccer. InProceedings of the IJCAI-99
Workshop on Team Behavior and Plan-Recognition, 1999.
Also appears in Proceedings of the 9th International Sympo-
sium of Robotics Research (ISSR-99).

[5] M. J. Huber, E. H. Durfee, and M. P. Wellman. The auto-
mated mapping of plans for plan recognition. InProceed-
ings of UAI-94, 1994.

[6] G. A. Kaminka and M. Bowling. Robust teams with many
agents. InAAMAS-02, 2002.

[7] G. A. Kaminka and M. Tambe. Robust multi-agent teams via
socially-attentive monitoring.JAIR, 12:105–147, 2000.

[8] H. A. Kautz and J. F. Allen. Generalized plan recognition.
In AAAI-86, pages 32–37. AAAI press, 1986.

[9] Y. Kuniyoshi, S. Rougeaux, M. Ishii, N. Kita, S. Sakane, and
M. Kakikura. Cooperation by observation—the framework
and the basic task patterns. Inthe IEEE International Con-
ference on Robotics and Automation, pages 767–773, San-
Diego, CA, May 1994. IEEE Computer Society Press.

[10] M. J. Mataric.Interaction and Intelligent Behavior. PhD the-
sis, Massachusetts Institute of Technology, 1994.

[11] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[12] M. Nicolescu and M. J. Mataric. A hierarchical architecture

for behavior-based robots. InAAMAS-02, pages 227–233,
Bologna, Italy, July 15–19 2002.

[13] D. V. Pynadath and M. P. Wellman. Probabilistic state-
dependent grammars for plan recognition. InUAI-2000,
pages 507–514, 2000.

[14] M. Tambe, J. Adibi, Y. Al-Onaizan, A. Erdem, G. A.
Kaminka, S. C. Marsella, and I. Muslea. Building agent
teams using an explicit teamwork model and learning.AIJ,
111(1):215–239, 1999.

[15] M. Tambe and P. S. Rosenbloom. RESC: An approach
to agent tracking in a real-time, dynamic environment. In
IJCAI-95, August 1995.


